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Résumé

Ce travail de thése se décompose en deux points : (i) I’étude, d’un point de vue théorique,
du probléme d’échantillonnage adaptatif dans les champs de Markov et (ii) la modélisation
du probléme d’échantillonnage d’une espéce adventice au sein d’une parcelle cultivée et la
conception de stratégies d’échantillonnage adaptatives de cette espéce.

Le probléme d’échantillonnage que nous considérons est le suivant. On considére un vecteur

aléatoire discret X = (X(1),...,X(n)), dont la distribution est de type champ de Markov. La
valeur de ce vecteur aléatoire est inconnue et doit étre inférée & 1’aide d’observations de cer-
taines composantes de X. L’observation d’une variable ayant un cott, le nombre d’observations
est limité par un budget initial fixé. Le probléme d’échantillonnage est alors de choisir quelles
sont les variables & observer afin d’optimiser la qualité de la reconstruction du vecteur X, en
respectant les contraintes de budget. Ce probléme d’échantillonnage peut étre formulé comme
un probléeme d’optimisation de la valeur d’une politique d’échantillonnage sous une contrainte
de respect du budget initial. Pour de grandes valeurs de m, rencontrées pour des problémes
concrets, ce probléme d’optimisation ne peut étre résolu de maniére exacte. La premiére par-
tie de ce travail de thése a consisté & adapter la littérature classique de I'apprentissage par
renforcement afin de proposer des méthodes de résolution approchée de ce probléeme d’optimi-
sation. Le probléme du choix d’une politique d’échantillonnage adaptative optimale a d’abord
été formulé comme un Processus Décisionnel de Markov & horizon fini. Ensuite un algorithme
combinant programmation dynamique et apprentissage par renforcement a été proposé. Ce
nouvel algorithme, nommé Least Square Dynamic Programming (LSDP), permet de concevoir
des stratégies d’échantillonnage adaptatives pour tout type de champ de Markov et tout type
de cotit d’observation.
Ce type de probléme d’échantillonnage se pose dans beaucoup de domaines finalisés. Ce travail
de thése a été motivé par la question de ’échantillonnage d’une espéce adventice au sein d’une
parcelle cultivée. Dans ce cas, le probléme est la conception de cartes de répartition spatiale de
I’espéce. La conception de telles cartes repose sur des observations de la densité de ’adventice
au sein de la parcelle. La taille de la parcelle ne permettant pas une observation compléte de
celle-ci, la question de la localisation des observations est importante afin d’optimiser la qualité
de la carte reconstruite. La deuxiéme partie de ce travail de thése a consisté & modéliser ce
probléme d’échantillonnage et proposer de nouvelles stratégies d’échantillonnage adaptatives.
La modélisation de la répartition spatiale & ’aide des champs de Markov a tout d’abord été
étudiée. Un modele de cotut d’échantillonnage d’'une adventice a également été proposé. Fi-
nalement, de nouvelles stratégies d’échantillonnage adaptatives ont été proposées a 'aide de
I’algorithme LSDP. Ces stratégies ont ensuite été comparées & d’autres stratégies d’échantil-
lonnage plus classiques, ainsi qu’a une heuristique simple.

Mots-clefs : échantillonnage adaptatif, champ de Markov, processus décisionnel de Markov,
apprentissage par renforcement, programmation dynamique, batch, adventice, cotit d’échantil-
lonnage.






OPTIMAL ADAPTIVE SAMPLING IN MARKOV RANDOM FIELDS, APPLICATION TO
WEED SAMPLING

Abstract

This work is divided into two parts: (i) the theoretical study of the problem of adaptive
sampling in Markov Random Fields (MRF) and (ii) the modelling of the problem of weed
sampling in a crop fields and the design of adaptive sampling strategies for this problem.

The sampling problem we consider can be described as follows. Let X = (X(1),...,X(n))
be a discrete random vector with a MRF joint distribution. The complete value of X is not
known and has to be inferred from observations of some of its variables. We assume that
observing a variable has a cost and that the number of observations is limited by a sampling
budget. Then, the sampling problem consists in selecting the variables to observe in order to
optimize the quality of the inferred vector under the constraint that the number of observations
respects the sampling budget. This sampling problem can be formulated as a constrained opti-
mization problem where the quantity to optimize is the value of a sampling strategy, which cost
is constrained to respect the sampling budget. We explore the case of adaptive sampling, where
variables to observe are chosen sequentially on the basis of previous observations’ results. For
large values of n, encountered in real world problems, exact resolution is out of reach. My first
contribution was to adapt reinforcement learning algorithms in order to propose approximate
solution methods for this sampling problem. This contribution was based on an original finite
horizon Factored Markov Decision Process (FMDP). Then, I proposed a generic algorithm for
computing an approximate solution to any finite horizon (factored) MDP with known model.
This algorithm, called Least-Squared Dynamic Programming (LSDP), combines the concepts
of dynamic programming and reinforcement learning. It was then adapted to compute sub-
optimal adaptive sampling strategies for any type of MRF distributions and observations costs.
An experimental evaluation of this algorithm was performed on simulated problems.

The problem of designing spatial sampling strategies arises in many real world applications.
In particular, my work was motivated by the question of weeds sampling in a crop field. In
this application, the sampling problem consists in selecting the sites to observe in order to
reconstruct a map of the weed density repartition as reliable as possible . The field is divided
into a regular grid of n sites. The random vector X represents a map of the spatial repartition
of the weed density and each variable X (i), represents the weed density class at site i. Given
the large number of sites in a crop field, observing all sites is too time-consuming. So, a
sampling budget is defined to represent the time available for the observer for sampling.A part
of my work has consisted in applying the theoretical tools developed in the first part to the
weed sampling problem. First, I have modelled the weed density spatial repartition in the
MRF framework. Second, I have built a cost model adapted to the weed sampling problem.
Finally, both models were used together to design adaptive sampling strategies with the LSDP
algorithm. Based on real world data, these strategies were compared to a simple heuristic and
to static sampling strategies classically used for weed sampling.

Keywords : adaptive sampling, Markov random field, Markov decision process, reinforcement
learning, dynamic programming, batch, weed, sampling cost.
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Introduction générale

Définition et tour d’horizon du probléme d’échantillonnage spatial

La notion d’échantillonnage apparait dans de nombreux de domaines d’étude (in-
dustrie miniére, sondage d’opinion, traitement du signal, écologie...). Echantillonner
consiste toujours a acquérir des observations pour I’é¢tude d’'un phénoméne qui ne peut
étre observé dans sa totalité. Se poser un probléme d’échantillonnage, c’est se deman-
der quelles sont les observations qui doivent étre faites afin de permettre une étude
du phénoméne considéré de bonne qualité. Un premier exemple est la surveillance de
la qualité de l'air en France (phénoméne étudié). Pour 1’étudier, des relevés (observa-
tions) d’ozone, de dioxyde d’azote et de particules sont effectués par les associations
agréées de surveillance de la qualité de I'air. Sur la base de ces observations, des cartes
de prévisions quotidiennes de la qualité de ’air sont ensuite construites et diffusées au
public par 'INERIS!. Dans ce premier exemple, le probléme d’échantillonnage consiste
a se demander ou effectuer les relevés, afin de construire quotidiennement des cartes de
prévision les plus fiables possibles.
Dans ce travail de thése nous aborderons le probléme d’échantillonnage lorsque le
phénoméne étudié est un phénoméne spatial. Formellement, on considére que ce
phénomene est décrit par un champ aléatoire X = (X(S))SES’ ot S & R? est un ensemble
fini de sites. Les variables X (s) peuvent représenter directement ou non le phénomeéne
étudié. Dans I'exemple précédent, le phénoméne est la qualité de I’air qui n’est pas une
grandeur physique directement mesurable. La description de ce phénomeéne passe alors
par la connaissance de trois indicateurs (ozone, dioxyde d’azote, particules). Ici chaque
variable X (s) est multidimensionnelle, ce qui définit le cas le plus général.
Il se pose un probléme d’échantillonnage deés lors que toutes les variables ne peuvent pas
étre observées. Lorsque celles-ci sont corrélées spatialement, I’observation d’une variable
apporte de I'information sur les valeurs possibles d’autres variables. L’étude globale du
phénoméne est alors envisageable, méme si le nombre d’observations est limité. Résoudre
un probléme d’échantillonnage consiste alors a utiliser au mieux ces corrélations, afin
de choisir les lieux des relevés pour 'étude globale du phénomeéne a partir d’un nombre
limité d’observations.
On peut diviser les problémes d’échantillonnage en deux parties suivant que (i) 'on
souhaite étudier le phénomeéne dans le temps ou (ii) a4 un instant donné. Dans chacun
des cas, ’échantillonnage peut étre adaptatif ou statique. En échantillonnage adaptatif
les sites a observer sont déterminés de maniére séquentielle, en fonction des résultats
précédents. Dans le cas statique les sites a observer sont choisis une fois pour toute au
début de I’échantillonnage.
L’étude d’un phénomeéne dans le temps a souvent pour pour objectif la surveillance de
ce phénoméne. On souhaite par exemple s’assurer que le phénoméne n’évolue pas de
maniére critique, ou controler l'effet de certaines actions. Le phénomeéne étudié est par
conséquent temporel. Il est alors possible d’ajouter une dimension temporelle a I’échan-
tillonnage et de se demander non seulement ol, mais également quand acquérir des
observations. Cependant, certains capteurs acquiérent des observations en continu, le
probléme d’échantillonnage consiste alors uniquement & savoir ou placer ces capteurs.
Ainsi, dans [59], il s’agit de déterminer les emplacements optimaux de capteurs de pol-
lution (observations en continu) au sein d’un réseau de distribution d’eau potable, afin

1. Institut National de I’Environnement Industriel et des Risques



13

de minimiser le temps de détection d’une contamination de ’eau. Le phénoméne étudié
est ici spatio-temporel : la qualité de ’eau au sein du réseau de distribution d’eau
potable. Dans I'exemple introductif, la qualité de l'air est également un phénomeéne
spatio-temporel. L’emplacement des capteurs a été déterminé pour permettre la con-
struction quotidienne de cartes de la qualité de 'air. Pour ceci, des relevés sont effectués
chaque jour le matin et l'aprés midi. Ici il s’agit bien de surveillance : on souhaite
surveiller la qualité de l'air, pour pouvoir prendre des décisions en conséquence. No-
tons que méme si les capteurs effectuent des relevés de maniére répétée dans le temps,
ce n’est pas un cas d’échantillonnage adaptatif. En effet la localisation des relevés et
I’heure d’observation ne changent pas au cours du temps, en fonction des observations
passées.

Au contraire lorsque le but de I’échantillonnage est d’obtenir une représentation du
phénoméne a un instant donné, il s’agit de se demander o1 acquérir des observations afin
de posséder une “photographie” la plus précise possible du phénomeéne. Par exemple dans
[33], ’échantillonnage a pour but de déterminer les caractéristiques d’un sol, phénoméne
qui évolue généralement peu. Dans [7], 1239 lacs ont été échantillonnés afin de déter-
miner leurs niveaux de pollution (phénoméne temporel) & un moment précis. Ainsi,
I’étude d’un phénoméne & un instant donné ne se limite pas qu’aux phénoménes pure-
ment spatiaux, mais également a des phénoménes spatio-temporels. Toutefois, lorsque
le phénoméne évolue dans le temps et que I’échantillonnage est adaptatif, il faut alors
veiller a ce que les observations soient effectuées dans une échelle de temps suffisamment
courte, pour que le phénoméne n’évolue pas entre les observations successives.

Enfin, la derniére caractéristique d’un probléme d’échantillonnage provient de la nature
des observations, qui peuvent étre continues (e.g. concentration) ou discrétes (e.g. comp-
tage).

Méme si la notion d’échantillonnage revient toujours a déterminer o (et quand) acquérir
des observations, les caractéristiques d’un probléme d’échantillonnage sont multiples, ex-
pliquant la diversité des problémes rencontrés. Ces différentes caractéristiques peuvent
étre résumées de la maniére suivante :

— Phénoméne étudié : spatio-temporel / spatial.

— Etude : surveillance dans le temps / photographie a un instant donné.
— Variables descriptives corrélées : continues / discrétes.

— Echantillonnage : statique / adaptatif.

Les outils méthodologiques permettant de résoudre chaque type de probléme d’échan-
tillonnage doivent ensuite étre choisis en fonction de ses caractéristiques.
Enfin, pour tout type de probléme d’échantillonnage, I’observation d’'une variable pos-
sede un cout intrinséque. Par exemple dans le cas de la surveillance de la qualité de
Iair, les relevés sont effectués a ’aide de capteurs dont les cotits d’achat et de mainte-
nance limitent leur nombre sur le territoire. Le nombre d’observations est ainsi limité
par le budget d’échantillonnage. Le cott d’échantillonnage est rarement modélisé et pris
en compte dans la détermination des lieux d’échantillonnage, ce qui peut diminuer la
qualité de I’échantillonnage et/ou conduire & un échantillonnage non réalisable sur le
terrain.
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Probléme d’échantillonnage considéré

Dans ce travail de thése nous étudions le probléme d’échantillonnage pour I’analyse
d’un phénomeéne a un instant donné. Pour ce type de probléme d’échantillonnage, le cas
des variables a valeurs réelles a déja été largement étudié a l'aide des outils classiques de
la géostatistique, voir par exemple [42]. Pourtant d’intérét dans beaucoup de domaines
(e.g. écologie), le cas des variables discrétes n’a que trés peu été exploré. C’est le sujet
d’étude de cette thése. Le probléme d’échantillonnage considéré se formule de la maniére
suivante : “Quelles sont les variables X (A), A C S, a observer afin d’obtenir une recon-
struction du vecteur X de bonne qualité, tout en respectant des contraintes de budget
d’échantillonnage ? ”.
Les corrélations entre les variables sont exprimées a l'aide d’une distribution de prob-
abilité P(.) sur le vecteur X. Dans ce travail nous utilisons des distributions de type
champ de Markov [31], bien adaptées au cas des variables discrétes.
L’échantillonnage statique étant un cas particulier d’échantillonnage adaptatif, nous
nous consacrons a ce dernier.
En échantillonnage adaptatif, on ne définit plus un échantillon (i.e. ensemble des vari-
ables & observer) mais une “politique d’échantillonnage”, fonction qui détermine les
prochaines variables & observer en fonction des résultats précédents. Le probléme de-
vient alors de trouver la politique d’échantillonnage permettant une reconstruction du
vecteur X de bonne qualité, tout en respectant le budget d’échantillonnage.
Ce probléme de recherche d’'une politique optimale peut étre formulé comme un prob-
léme d’optimisation discréte sous contraintes. Pour des problémes réels, le nombre élevé
de variables considérées (i.e. card(S)) empéche une résolution exacte de ce probléme
d’optimisation.
Le premier défi, méthodologique, de ce travail de thése est de proposer une méthode
générique de résolution approchée (i.e. pour toute distribution de champs de Markov
P(.) et tout cout d’échantillonnage) pour la conception de politiques d’échantillonnage.

Contributions méthodologiques

La piste explorée durant ce travail est celle des algorithmes d’Apprentissage par Ren-
forcement (AR, [75]) pour le calcul approché de politiques optimales.
Le probléme du calcul d’une politique d’échantillonnage optimale a d’abord été mod-
¢lisé comme un Processus Décisionnel de Markov (PDM, [67]) & horizon fini, les PDM
constituant le cadre naturel d’application des algorithmes d’AR.
Lorsque le nombre de variables est faible (expérimentalement, card(S) < 16) ’algo-
rithme TD(A) [76] peut étre utilisé. Cet algorithme bénéficie d’une preuve de conver-
gence asymptotique de la politique calculée vers la politique optimale. Lorsque le nombre
de variables augmente, d’autres algorithmes doivent étre utilisés. La littérature sur 'AR
fournit également des algorithmes possédant des preuves de convergence sous des con-
ditions plus contraignantes que dans le cas précédent. Une simple application de ces
algorithmes n’est pas suffisante pour le calcul de politiques d’échantillonnage dans notre
cas. Tout d’abord, peu d’algorithmes sont dédiés au cas des PDM a horizon fini. De
plus, dans certains problémes concrets, notamment celui que nous considérerons par la
suite, le calcul de la politique d’échantillonnage adaptative doit étre fait avant son util-
isation sur le terrain. Or, la plupart des algorithmes classiques proposent de calculer la
politique “en ligne”. Dans le cas de I’échantillonnage, cela signifie que lorsque la premiére
variable a observer est déterminée, il est nécessaire de spécifier a 'algorithme la valeur
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de I'observation pour qu’il détermine le lieu de la prochaine observation et ainsi de suite.
Ceci nécessite I'utilisation, sur le terrain, d’un ordinateur suffisamment puissant et d’ac-
cepter la contrainte d’attendre que le calcul s’effectue entre deux observations. Afin de
dépasser ces contraintes, nous avons proposé l'algorithme Least-Squares Dynamic Pro-
gramming (LSDP, [11]), permettant de calculer hors-ligne une politique sous-optimale
de tout PDM a horizon fini. Dans ce cas, la politique d’échantillonnage est calculée une
fois pour toute avant la période d’échantillonnage. Etant adaptative, cette politique doit
toutefois étre stockée sur un ordinateur. Mais le calcul de la prochaine variable a ob-
server s’effectue de maniére instantanée. Cet algorithme a été validé expérimentalement,
mais ne posséde pour ’heure aucune preuve de convergence.

Probléme d’échantillonnage pour la cartographie d’une espéce adventice

Ce travail de thése a été motivé par I’étude de la structure spatiale d’une espéce ad-
ventice ? au sein d’une parcelle cultivée. Ce type d’étude est basé sur ’analyse de cartes
de répartition spatiale de I'espéce adventice. Ces cartes sont construites a partir d’ob-
servations directes de la densité de 'espéce adventice. Généralement de grandes tailles,
ces parcelles ne peuvent étre explorées de maniére exhaustive, compte tenu du temps
et du nombre de personnes que cela demanderait (cott d’échantillonnage). Ainsi I’étude
de la répartition spatiale d’une espéce adventice peut se réaliser uniquement sur la base
de cartes reconstruites a partir d'un échantillonnage spatial. Le choix des lieux ou ac-
quérir des observations impacte directement la qualité de la reconstruction, c’est a dire
la ressemblance de la carte reconstruite a la carte réelle. Le probléme d’échantillonnage
qui en découle revient a choisir les parties de la parcelle a observer afin de reconstruire
une carte de bonne qualité, tout en respectant les contraintes de budget d’échantillon-
nage.
Malgré le caractére générique de l'algorithme LSDP, son utilisation pour la conception
de politiques d’échantillonnage adaptatives d’une espéce adventice, comme pour toute
autre application, nécessite un travail important de modélisation. Afin de proposer des
politiques d’échantillonnage applicables sur le terrain, les notions de cotit d’observation
et de budget d’échantillonnage doivent étre définies. Un modéle de corrélations entre les
variables doit également étre défini convenablement, sans quoi aucune politique d’échan-
tillonnage ne pourra fournir de résultats satisfaisants.
Ainsi, le deuxiéme défi, en modélisation, de ce travail de thése est de proposer a la fois
un modéle de cott d’échantillonnage et une famille de modéles de répartition spatiale
d’une espéce adventice.

Contributions en modélisation

Tout d’abord le coiit de ’échantillonnage d’une espéce adventice a été défini et mod-
élisé en termes de temps nécessaire a ’application d’une stratégie d’échantillonnage.
La deuxiéme contribution porte sur la modélisation des corrélations spatiales de la den-
sité d’une espéce adventice. Pour ceci plusieurs distributions de champs de Markov ont
été proposées. Pour chaque espéce étudiée, une “meilleure distribution” a été calculée
a l'aide d’une approximation du score BIC [38]. Ces distributions et le modéle de cott
ont ensuite été utilisés pour la conception de politiques d’échantillonnage a 'aide de

2. Une adventice, communément appelée mauvaise herbe, est une espéce végétale autre que l’espéce
cultivée au sein de la parcelle.
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I’algorithme LSDP. Les politiques produites ont été comparées a des politiques d’échan-
tillonnage classiques, ainsi qu’a une heuristique simple du probléme d’optimisation de
la valeur d’une politique d’échantillonnage |66].

Enfin, dans un cas réel, aucune donnée n’est disponible a priori pour sélectionner une
meilleure distribution et estimer ses paramétres. De plus, lors du choix d'une “meilleure
distribution” pour différentes espéces adventices, nous avons constaté qu’il n’existait
pas une distribution universelle, meilleure en terme de score BIC, pour chacune des es-
péces étudiées. Néanmoins, nous avons montré que la conclusion est différente lorsque la
pertinence des différentes distributions est discutée dans un objectif de reconstruction
de carte a partir d'un nombre d’observations limité. Dans ce cas, une des distributions
proposée (le modéle de Potts avec champ externe) semble étre adaptée pour la plupart
des espéces adventices considérées. Enfin, nous avons proposé un ensemble de régles
expertes pour en estimer les parameétres, sans observation initiale. Ces régles ont ensuite
été testées pour la conception de politiques d’échantillonnage et la reconstruction de
cartes, fournissant des résultats comparables au cas ot une meilleure distribution et la
valeur de ses parameétres sont appris sur des données.

Organisation générale du manuscrit

Ce manuscrit de thése est construit en deux parties, regroupant respectivement les
contributions méthodologiques et en modélisation.
Les parties sont indépendantes du point de vue des notations. La premiére partie est
rédigée en anglais sous forme d’un article qui a été soumis a la revue Computational
Statistics and Data Analysis, sous le titre Simulation-based design of sampling strategies
under cost constraints in Markov Random Fields.
La deuxiéme partie de ce manuscrit sera utilisée pour la soumission d’un article a la
revue Fcological Modelling, sous le titre Model-based Adaptive Sampling Strategies for
Weed Mapping in Crop Fields. Cette partie est également rédigée en anglais.
Enfin, une conclusion générale et une description de quelques perspectives de ce travail
complétent ce manuscrit.
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Premiére partie

Conception de stratégies
d’échantillonnage optimales
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18 INTRODUCTION

1 INTRODUCTION

The question of building probabilistic models of spatial processes and building plau-
sible reconstructions from the model and observed data is classic and has mobilised
several research fields in spatial statistics or probabilistic graphical models communi-
ties. Nearly as classical is the question of designing optimal sampling policies allowing
to build reconstructions of high probability. This question is more complex to solve
than the pure reconstruction problem and cannot be solved optimally in general. This
sampling design problem has been tackled in spatial statistics [26], [55] and artificial
intelligence |44, |43], [65]. It is even more complex in the case of adaptive sampling,
where the set of sampled sites is chosen sequentially and observations from previous
sampling steps are taken into account to select the next sites to explore [79].

Among spatial models, the case of real-valued observations (e.g. temperature or pol-
lution monitoring) has been the most studied, mainly within the geostatistical framework
of Gaussian random fields and kriging. Much less attention has been paid to the case
of discrete-valued observations. However, this problem arises naturally in many studies
about biological systems, where discrete-valued observations can be species abundance
classes, disease severity classes, presence/absence values...

Since optimal solutions to sampling problems in discrete-valued random fields are out
of reach, one should look for approximate solution algorithms with reasonable/moderate
complexity and with satisfying approximation quality. In this article, we propose, simi-
larly to [43], [65], [66], to define the optimal sampling problem within the framework of
Markov random fields (MRF, [31]), classically used in image analysis. In [43|, the authors
considered the sampling problem in a particular subset of MRF, defined on polytrees.
They looked for static policies, as in |65]. The work in [66] was the first proposition of
a naive heuristic solution to design an adaptive sampling policy in any MRF model,
derived from a strong simplification of the MRF model. We propose here to extend this
work by using a heuristic built from simulations of the exact model. For this, we first
encode the optimal adaptive sampling problem as a finite-horizon Markov Decision Pro-
cess (MDP, [67]) with factored state space. Casting the optimal sampling problem within
the MDP framework allows to exploit principles from the family of simulation-based or
Reinforcement-Learning (RL, |75]) approaches which have been proposed to solve ap-
proximately large state space MDPs. As we will demonstrate, classical RL algorithms
cannot be applied to solve the optimal sampling problem without being adapted. There-
fore we provide a new generic RL algorithm that can be used to solve approximately any
large state-space MDPs in the specific case where the horizon is finite : the Least Square
Dynamic Programming algorithm (LSDP). LSDP is a model-based method, as opposed
to model-free methods where an explicit form of the transition probability function is
not required. In LSDP the value function is parameterised and simulated trajectories are
computed off-line and stored in a batch. The batch of trajectories is used to build sys-
tems of linear equations which are solved in order to compute approximate policies. We
then show how to specialize this generic algorithm to the sampling problem in MRFs.
We show experimentally that this algorithm improves classical “one-step-look-ahead”
heuristics and RL approaches, thus providing a reference algorithm for sampling design.

The MRF formalization of the optimal adaptive spatial sampling problem is intro-
duced in Section 2, together with a computational complexity study. We show how to
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model it as a finite-horizon factored MDP in Section 3 and we discuss classical RL solu-
tions in Section 4. Then, we describe the LSDP algorithm in Section 5 and its application
to the problem of sampling in MRF in Section 6. We present an empirical comparison
between one-step-look-ahead approaches, classical RL algorithms and LSDP in Section
7. Some methodological and applied perspectives of this work are discussed in Section
8.

2 OPTIMAL ADAPTIVE SAMPLING IN MARKOV
RANDOM FIELDS

In this section we formalise the problem of optimal adaptive sampling in a Markov
random field and we establish its computational complexity.

2.1 Problem statement

Let X = (Xi,...,X,) be a vector of discrete random variables taking values in
Q" ={1,...,K}". V ={1,...,n} is the set of indices of the vector X and an element
t € V will be called a site. The distribution P of X is that of a Markov Random Field
(MRF, also named undirected graphical model) with associated graph G = (V| E'), where
E C V?%is aset of undirected edges. The vector x = (z1, ..., z,) is a realisation of X and
we adopt the following notation : 25 = {x;};cp, VB C V. Then the joint distribution of
X is a Gibbs distribution : P(X = ) o< [[.ce We(2c), where C is the set of cliques of V
and the V., c € C, are strictly positive potential functions [41].

In order to reconstruct the vector X on a specified subset R C V' of sites of interest,
we can acquire a limited number of observations on a subset O C V' of observable sites.
We will assume that R U O =V and intersection between O and R can be non-empty.
The sampling problem is to select a set of sites A C O, named a sample, where X will be
observed. When sample A is chosen, a sample output x4 results, from which the MRF
distribution P is updated. Our objective is, intuitively, to choose A so that the updated
distribution P(:|z4) becomes as informative as possible (in expectation over all possible
sample outputs).

In the following we describe the different elements allowing to formally define the
problem of Optimal Adaptive Sampling in a MRF (AOSMRF).

Reconstruction. When a sample output x4 is available, the Mazimum Posterior
Marginal (MPM) criterion is used to derive an estimator x7, of the hidden map zp :

= {x;‘ | i€ R, xf=argnaxP(z; | xA)} :
z; €Q

Alternately, other reconstruction criteria, such as the Mazimum A Posteriori (MAP)
criterion [65] can also be considered.
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Al= §'=(8}

FIGURE 1 — Tree representation of an adaptive sampling policy. Left : graph G associated
to the MRF model (n = 8, K = 5); Right : exemple of adaptive sampling policy for
L =2 H =2 and V = R = O, nodes represent samples and edges represent all possible
sample outputs.

Adaptive sampling policy. In adaptive sampling, the sample A is chosen sequentially.
The sampling plan (the sequence of samples) is divided into H steps. A" C O is the sam-
ple explored at step h € {1,..., H} and x4 is the sample output at step h. The sample
size is bounded (|A"| < L) and Ay is the set of all policies satisfying |A"| < L,Vh. The
choice of sample A" depends on the previous samples and outputs. An adaptive sampling
policy 6 = (8%,...,6") is then defined by an initial sample A' and functions 6" speci-
fying the sample chosen at step h > 2, depending on the results of the previous steps :
S((AY xg1), ..., (AP 2 4n1)) = AP (see Figure 1 for a graphical representation of an
adaptive sampling policy). A history is a trajectory (A',za1),..., (A", 2 u) followed
when applying policy 4. The set of all histories which can be followed by policy ¢ is 7.
We will assume throughout the paper that observations are reliable. As a consequence,
we will only consider policies visiting each site at most once (A" N A" = (, Vh # 1).

Quality of a sampling policy. The quality of a policy ¢ is measured as the expected
quality of the estimator x% that can be obtained from d. In practice, we first define the
quality U of a history ((An, 4, ))n=1..m as a function of (A, x,), where A = U, Ay, :

U(A,za) = ) max {]P’(xl | xA)}. (1)

The quality of a sampling policy ¢ is then defined as an expectation over all possible
histories :
V((S) == Z P(.TA)U(A,Z‘A)
((An,way,))nETs

Remark that this definition of the quality of a sampling policy can be adapted to
the MAP criterion. In section 5 we will show that our approach can also be adapted to
an entropy definition of map uncertainty.

Optimal adaptive sampling in MRF (OASMREF). Finally the problem of optimal
adaptive sampling amounts to finding the policy of highest quality :

0= arg?éi’fv<5)' (2)
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Note that since our definition of the quality of a policy is based on the MPM crite-
rion 3, it does not depend on the order in which observations are received. Therefore, the
pair (A, x,), where A = U, A", contains exactly the relevant information in a history :

A — 5h<(A1,xA1), L (Ahfl,xAhfl)) _ 5h( U Ai,xui<hA,.).

i<h

However this does not imply that the above defined sampling problem is not adaptive.
Indeed, sample choices and observations are interleaved, meaning that the optimal policy
0* is a function, and not a plan (i.e. a constant choice, independent of the successive
observations).

2.2 How to represent and handle cost constraints ?

So far, we have considered a sampling budget in terms of a number, H, of allowed
sampling steps and a fixed number L of sampled variables per step. This has been de-
fined regardless of any notion of observation costs. In this section, we will discuss more

general sampling costs models and discuss how they can be handled within the proposed
OASMRF model.

Optimising a trade-off between restoration quality and cost. In order to opti-
mise a global trade-off between restoration quality and cost it is possible to include a
measure of sampling cost, which has to give values commensurate with the restoration
quality. Then, cost and quality measures can be added in the definition of U, to form
the sampling policy quality.

However, one may question the assumption that cost and restoration quality measures
be commensurate. One way to avoid this assumption is to consider a sample budget
constraint instead of including sample costs into the function U, as we suggest next.

Maximising restoration quality under cost constraint. Instead of considering
that L x H sites can be sampled, we can consider a global (integer-valued) sampling
budget B (e.g. a time budget), and assume that each subset A C O has a different
(integer) sampling cost, denoted Sc(A). It may as well be that sample costs depend on
the observed values of the variables, x4 : Sc(A, z4). This cost function S¢ is not used
in the definition of U, but rather for the definition of the space of allowed trajectories,
{(AY,z41), (A% x42) .. .}. In that case the length of a trajectory is no more constant. It
depends on the number of samples needed to exhaust the budget and of the correspond-
ing observations. We will see in Section 5 that the simulation-based procedure proposed
in this paper can handle this case.

Minimising cost under restoration quality constraint. Conversely, one could also
consider that the objective is to minimise the sampling budget, and that we are given
a MPM restoration quality threshold. Sampling should be continued until the restora-
tion quality threshold is met, and then stopped. Then, the optimisation problem would
be to find the sampling strategy of minimum expected cost, which allows to compute

3. This is also true for MAP and entropy-based criteria.
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restored maps which quality is above the fixed threshold. One difficulty to apply the
simulation-based procedure proposed in this paper would be that the MPM value has to
be computed at every sampling step, in order to check whether the end of a trajectory
is reached.

2.3 Computational complexity of optimal adaptive sampling in
MRF

In this section we study the computational complexity of the OASMREF problem.
More precisely, we study the following, generalised OASMRF problem (GOASMRF),
expressed in a decision form* :

Does there exist 6 of depth at most N, such that :

Z P(xA)U(A,xA) >G7

(Ansea))nETs

Here G is a fixed positive threshold, and the definition of quality is more general :
U(A,z4) =Y ,cr fi(2],P(z] | 24)), where the functions f; are non-decreasing functions
in their second argument and x} = arg max,, P(x; | z4).

This form of quality of a history generalises (1), which is recovered when f; is a
projection on its second argument. The extended form can represent criteria consisting
in maximising a weighted expected number of well-restored variables (when some vari-
ables are more important than others), or the expected number of variables restored
with confidence above a given threshold. The fact that z7 is involved and not only its
probability, allows to bias restoration towards particular values of x;. This can be useful,
for instance, if we want to build an invasive species map, where we give more weight to
restoring invaded sites than non-invaded ones. Finally, the fact that f; is non-decreasing
is not essential for proving the proposition, but reflects the fact that the more certain
we are about z7, the better.

Proposition 1 The GOASMRF problem is Pspace-complete.

Proof

There is not much difficulty in proving that GOASMREF belongs to Pspace. The
difficult part is to establish the Pspace-hardness of the GOASMREF problem. To prove
this, we reduce the State Disambiguation problem, which is known to be Pspace-hard
|22| to it. A detailed proof is given in [49].

The consequence of Proposition 1 is that exact optimisation is intractable. In the next
section we present a factored Markov Decision Process (MDP) model of the OASMRF
problem °. It will allow us to solve OASMRF problems approximately by applying Re-
inforcement Learning (RL) principles [75].

4. See [60] for a detailed description of computational complexity theory and the decision form of
optimisation problems.
5. Which can be easily extended to GOASMRF.
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3 FINITE HORIZON MDP MODELLING OF THE
OASMRF PROBLEM

A finite-horizon Markov Decision Process model [67] is a 5-tuple < S, D, T, p,r >,
where S is a finite set of system states, D is a finite set of available decisions,
T = {1,...,H} is a finite set of decision steps, termed horizon. p is a set of transi-
tion functions p',t = 1... H, where p'(s'™!|s!,d") indicates the probability that state
s't1 € S results when the system is in state s' € S and decision d' € D is implemented
at time t € {1,...,H}. A terminal state s"™1 € S results when the last decision is
applied, at decision step H. r is a set of reward functions : r*(s',d") € R is obtained
when the system is in state s* at time ¢ and d* is applied. A terminal reward r%+1(sH+1)
is obtained when state s”*! is reached at time H + 1.

A decision policy (or policy, for short), m = {r!,... 7}, is a set of decision functions
7t : S — D. Once a decision policy is fixed, the MDP dynamic becomes that of a finite
Markov chain over S, with transition probability p!(s'™|s’, 7!(s")). The value function
V™. SxT — Rof a policy 7 is defined as the expectation of the sum of future rewards,
obtained from the current state and time step when following the Markov chain defined
by 7 :

H

V™(s,t) =E, Zrt/(st

t'=t

/

Jm(st)) + r (s | st = 5| W(s,t) € S x T.

Solving a MDP amounts to finding an optimal policy 7 which value is maximal for
all states and decision steps : V™ (s,t) > V7(s,t),V7,s,t (it can be proved that there
always exists at least one optimal policy, see |67]).

We now model the OASMRF problem in the MDP framework. It corresponds to the
graphical representation of Figure 2.

State space. state s',t = 1,..., H + 1 summarizes current information about variables
indexed in O :

t—1 t—1
st = (UAh, UmAh) Vt=2,...,H+1and s' = (0,0).
h=1  h=1
It may be convenient to model s as a vector of length |O], where st = —1 if site 4

has not yet been sampled, and st =k, k € Q if value k has been observed on site i.

Decision space. A decision d' is a sample A® C O such that |A*| < L. In practice,
it will never be optimal to sample a site twice (since observations are assumed to be
reliable). So, we can restrict the set of decisions to those satisfying d* N d" = 0, Vt' < t.

Horizon. Decision steps in the MDP correspond to decision steps in the OASMRF
problem. Thus, "= {1,..., H}.
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Transition functions. If s' = (A, 24) and d' = A’, the transition function of the MDP
can be derived straightforwardly from the original MRF' distribution P :

pt(s“rl | St,dt) = IP’(xAt | xA),Vt eT,

where x4¢ is the realisation of X 4¢ encoded in s'*'. Note that for all states s'*!
corresponding to observations not compatible with state s’, this transition probability
will be zero.

Reward functions. Vi = 1,..., H, rewards are set to zero :

ri(st,d") =r'(d) =0, VteT, s d".

Note that rewards could be non zero if the objective was to optimise a trade-off
between restoration quality and sampling costs (see Section 2.2).

After decision d¥ has been applied at decision step H, and state s7™! = (A, z,)
has been reached, the final reward r71(s*1) defined as the quality of the MPM
reconstruction, is obtained :

The optimal policy for the above-defined MDP is a set of functions associating sam-
ples to unions of past samples outputs. It thus has the same structure as an OASMRF
sampling policy. Furthermore, we can establish the following proposition :

Proposition 2 An optimal policy for the MDP model of an OASMREF problem provides
an optimal policy for the initial OASMRF problem (2).

Proof (Sketched). The proof is only sketched here, the full version is in the Appendix
section. The proof follows three steps and uses the fact that the quality of a policy does
not depend on the order in which observations are obtained :

(i) We define a function ¢, transforming any MDP policy 7 into a valid OASMRF
policy d = ¢(), which defines decisions independently of the order in which past
observations were received, and show that V(¢(r)) = V™((0,0), 1).

(ii)) We establish that, for any partial history (past observations), the value of an
optimal OASMRF policy starting from these observations does not depend on the
order in which they were received. As a consequence, we can limit the search for
optimal policies of the OASMREF problem to policies prescribing decisions which
do not depend on the order of observations.

(iii) We show that any such OASMRF policy § can be transformed into a MDP policy,
through a transformation p, and that V(8) = V*©O((0,0),1).

As a result of these three steps, if 7* is an optimal policy for the MDP encoding of the
OASMRF problem, then ¢(7*) is optimal for the OASMRF problem.
O
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st = (0,0 ,

52 = {J’-ll,;,r‘ﬂ.]

53 = {.-‘111 I fqz,x,qluﬂ-z]

FIGURE 2 — MDP model of a OASMRF problem with horizon H = 2.
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In the following we will use the same notation 0 to represent both OASMRF and MDP
policies.

Note that the finite-horizon MDP model of the OASMREF problem has state and
action spaces of size exponential in the size of the original problem. This exponential
space representation cannot be avoided since MDP are known to be solvable in poly-
nomial time in their representation, while problems of optimal sampling in MRF are
Pspace-complete (see Section 2). Even though the MDP representation of the OASMRF
problem takes exponential space, explicit representation of the problem (and its solu-
tion policy) can be avoided, thanks to the use of RL algorithms. We describe the RL
approach in the next section.

4 CANDIDATE APPROACHES FOR SOLVING
OASMRF

4.1 Exact dynamic programming

Let us define the state-action value function, also called Q-function associated to
any finite-horizon MDP problem :

Q‘S(s,d, t) =r'(s,d)

+ Z ’8 d Z rt S (5 t/ H+1<SH+1> ’ 8t+1 — 4
s’ESucct(s,d) =t+1

This function represents the expected reward when applying decision d in state s and
thereafter following policy 0. Succ!(s,d) = {s',p'(s|s,d) > 0} is the set of possible suc-
cessors of s when d is applied at time ¢. In the OASMRF problem the size of Succ'(s,d)
can be small. From the Q)-function of a policy, it is straightforward to compute the value
of that policy. The backwards induction algorithm |67 is based on this property and com-
putes exactly the optimal policy of any finite-horizon MDP. It consists in initialising the
value function of the optimal policy at time H + 1 :

Vs, H+1) = rH(s),
and then solving iteratively the following equations :
Vt=H,...,1 and Vs, de S x D,

Q(sdt) = s+ Y P s VIS D),
s'eSucct(s,d)
Vi(s,t) = max Q*(s,d,t).

At each iteration the optimal policy is progressively build, as follows :
6 (s) = arg max Q*(s,d,t)

However, since the OASMRF problem typically involve a factored state space, |S| is
huge, so the above system has too many equations and variables (|S| x |D| x H) to
be used. Therefore, we have to look for approximate solution methods instead of exact
ones. To do this, we can explore two families of approaches for solving OASMRF :
one-step-look-ahead approaches and simulation-based approaches.
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4.2 Heuristic approaches

Heuristic approaches are methods for sample selection which provide an arbitrary
(most likely suboptimal) sample in reasonable time. These methods can either (i) solve
exactly a simpler optimization problem which approximates the original one or (ii) pro-
vide policies maximising a function which approximates the optimal @)-function. This
approximate ()-function can be, in particular, parameterized and computed through
simulations.

One-step-look-ahead heuristics. One-step-look-ahead heuristics provide policies
that optimise (exactly or approximatively) the immediate reward. Such heuristics have
been proposed, either in Statistics or in Artificial Intelligence, that can be applied to
solve the OASMRF problem. In spatial sampling of natural resources, random and
regular sampling are classic heuristic approaches [26]. Another classical method to sam-
ple 0/1 variables is Adaptive Cluster Sampling (ACS, [79]). Recently, [66] proposed a
heuristic (BP-max heuristic), which consists in sampling locations where the marginal
probabilities are the least informative (i.e. the closest to 3 in the 0/1 case), in order to
solve (2). It has been shown, experimentally, to outperform random, regular and ACS
heuristics. In [44], the authors proposed to optimise a mutual information (MI) criterion
to design sampling strategies in Gaussian fields.

Simulation based approaches : reinforcement learning. The main idea of Re-
inforcement Learning approaches (RL, [75]) is to use repeated simulated ezperiences
(st,dt,rt, sT1), instead of exact dynamic programming, in order to estimate Q* or to
compute a parameterized approximation of Q* [75]. They can either estimate Q* directly
(Q-learning approach, for example), or interleave estimation steps of a current policy 0
(T'D(X) [75] can be used) with improvement steps, in a general policy iteration scheme.

In general when simulation is used to solve large factored MDP such as in the
OASMREF problem, functions Q° are too expensive to store in tabular form. A paramet-
ric approximation of the optimal Q-function is built as : Q"(s,d,t) =< w, ¢(s,d,t) >,
where w € R™ is a vector of parameters values and ¢ : (S, D,T) — R™ is a map-
ping from state-action pairs to real-valued m-dimensional vectors (also called features).
Simulations are used to compute values of w that give a good approximation of Q*. In
general little can be said about the convergence of such algorithms and no universal
properties are given. However in some case performance bounds (e.g. [56],[3]) or con-
vergence guaranties ([77],[50]) can be found. Algorithms for computing w for a specific
choice of features are, for example, LSPI [46] and Fitted Q-iteration ([29],[58]).

5 LEAST-SQUARES DYNAMIC PROGRAMMING
(LSDP)

We now present the procedure we proposed to compute an approximate solution to
the original OASMREF problem. This procedure is not limited to this problem. It can be
used to solve any finite horizon MDP as long as the model (transitions and rewards) is
known explicitely. So we first describe it in its general form and then show how it can
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be specialised for the OASMREF problem.

5.1 Approximate dynamic programming

The main idea of the algorithm we propose is to combine a parametrized represen-
tation of the Q-function with dynamic programming (DP) iterations and simulations in
order to approximate Q*. Namely, we consider an approximation Qv of * as a linear
combination of m arbitrary features :

Q"(s,d,t) = Y wigi(s.d,t),¥s,d,Vt €T and
i=1..m

Q“(s,H+1) = r(s),Vs.

Note that linear approximations of the ()-function have already been proposed for
the case of infinite horizon MDP. However, these are less classical in the finite horizon
case. The main difference is that when the horizon is finite, the optimal policy needs not
be stationnary. Therefore, we define a set of weights {w!}; for every time steps. These
weights are computed recursively for ¢t = H to 1, in such a way that equations (3) are
approximately satisfied :

V(s,d,t) € Sx D xT,
S owlei(s,dt) = (s d)+ Y p(sls VIS, E+ 1)

i=1l..m s'eSucct(s,d)
w _ .
where V¥(s,t) = max Z w; ¢i(s,d,t). (3)

i=1..m

Equations (3) form a set of |S| x |D] linear equations for each time step ¢t € T, with
variables w!, i = 1..m. In general these systems are clearly over-constrained (|S| x |D| >
m), therefore we look for least-squares approximate solutions, instead of exact ones. The
dynamic programming part of the approach comes from the fact that the systems are
solved backwards for t = H to 1, each solution vector w'™! being plugged into the system
obtained at time ¢. Then, from the set of weights we can derive the Q-function and thus
an approximation of the optimal policy and its value.

In the case where the resources constraints are not defined by a fixed number of
sampling steps but by a maximal budget B, the same principle can still be applied. We
simply define Q-functions and features as functions of b, the budget used so far, instead
of functions of decision steps ¢ performed so far. As a consequence, the sets of weights
and features are also indexed by the budget already spent. A trajectory is stopped if all
actions have a cost higher than the remaining budget. Since it is more general to define
constraints in terms of budget, we will consider this representation in the following.
Property 2 still holds with this definition.

5.2 LSDP Algorithm

Systems (3) are too large to build when S is factored, not to mention solving. There-

fore, we suggest to sample this system, by considering only a subset of equations, corre-
sponding to a subset of triplets B = {(s,d,b)} C S x D x{1,..., B}, (called batch [68]).
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The system (3) becomes :

Y(s,d,b) € B,
Yo witi(s.db) = Psd)+ Y P s AV )
i=1..m (s',b')ESucct (s,d)
w _ b .
where V¥(s,b) = max Z w; (s, d,b). (4)

i=1..m

Note that now Succ®(s,d) is the set of pairs (s',') which can possibly result from the
application of d in s when the remaining budget is b.

We propose to build the batch B from a finite set of simulated trajectories starting
in s1, obtained by simulating successive transitions. Therefore, we have the guarantee
that every 4-tuple (s,d,b,0') € B effectively corresponds to a reachable configuration.
Decisions are chosen randomly according to the e-greedy method, either maximizing the
current estimation Q" (with probability 1 —¢) or uniformly (with probability €) at each
time step. Note that € and the batch size are the only parameters to tune in LSDP.

The restricted system of equations (4) allows to define the Least-Squares Dynamic
Programming (LSDP) algorithm, a variant of the policy iteration algorithm [67]. LSDP
is initialised with a set of weights (one for each value b < B). Then, we iterate steps
of batch generation and updates of the weights values from the current batch. Weights
updates are performed by applying the approximate dynamic programming procedure
described above. The updated values are accepted only if the value of the corresponding
policy (estimated by simulation) improves the previous one. If the value is not improved,
another batch is built and used. A maximum number of batches to simulate is fixed, and

when reached, the current policy is returned. See Figure 3 for a schematic representation
of LSDP.

LSDP
weights
batch_ B updates W Monte-Carlo
generation > Qv;/’ evaluation
W,
Qw F W w
Qw <- Qw’

FIGURE 3 — Schematic representation of the LSDP algorithm.

Of course, for a given set of weights values, different batches may be obtained by
simulation, leading to different updated weights values and thus to different updated
policies. Furthermore, there is no guarantee that the updated policy improves the current
policy in state s;. This is why the value of the updated policy has to be estimated (by
simulation) and compared to the value of the previous policy, before being accepted
if its estimated value improves that of the current selected policy. This conditional
acceptation allows to guarantee that the successive policies returned by the algorithm
are of increasing value®.

6. Since simulation is used to estimate policy values, these estimations may well be incorrect but
they hopefully preserve policies values ranking.
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6 Application of LSDP to the OASMRF problem

In order to apply the LSDP algorithm to the OASMRF problem, we take into ac-
count the problem structure (i) to define features ¢; and (ii) to propose a time efficient
batch construction method. It also requires to be able to compute efficiently (in terms
of time complexity) conditional marginals of the form P(z; | z4). These quantities are
necessary to compute transition probabilities, to evaluate the final reward (the MPM
value) and, as we will see, to compute the features. We also present two other applica-
tions of LSDP for the OASMRF problem, based on different feature choices or quality
measures.

6.1 LSDP implementation for the OASMREF problem

Features choice. We choose to define one feature per variable in the MRF (m = n).
The features definition is inspired by the BP-max heuristic (see [66] and section 4).
This heuristic consists in selecting for sampling, at each sampling step, the variables
which remain the most uncertain. Uncertainty is defined as a conditional max marginal
max,,coP(x; | x4) close to 0.5 (in the binary case). The BP-max heuristic can be
obtained as the greedy policy with respect to a parametrised Q-function Q' with the
following features, and all weights equal to 1 : Vi € {1,...,n},

¢i(s,d,b) = (1 — Lji=ay) g}ggp(% | IA) + Ljizay, (5)

where A C O is the set of indices of previously observed variables. We adopt definition
(5) to apply LSDP to the OASMRF problem. Thus, in practice, we initialise the LSDP
algorithm with weights all equal to 1. Then, the LSDP algorithm performs successive
updates in order to improve this initial set of weights.

Batch construction. Simulating trajectories in the OASMREF problem is costly since,
for each transition, one has to simulate observations x 4:+1 from the MRF conditional
distribution P(x ge+1 | 2 4¢). This requires to apply the Gibbs Sampling algorithm a large
number of times, which is rather costly, thus severely limiting the size and number
of batches that can be constructed. However, larger batches can be constructed if we
divide the construction into two phases. First, we simulate, off-line, a batch of maps,
{z',. .. 2P}, from P(.). It will be used for all iterations of the LSDP algorithm. The
construction of this batch is done using Gibbs Sampling, and induces a single overhead
cost for the whole algorithm. Then, trajectories are easy to simulate : (i) a map is selected
at random in the batch, (ii) actions are chosen following the e-greedy method with
respect to the current policy, and (iii) successor states follow immediately by reading
the value of the variables corresponding to the current observation. This second phase
of trajectories simulation is fast. Furthermore, simulated trajectories do not have to be
stored (only the batch of maps does), thus saving much memory space. In addition, we
can establish that it is valid to use this batch procedure to simulate transitions of the
MDP encoding of the OASMRF problem. More formally, if we encode a state s’ as a
vector of size |O|, with s*(i) = —1 if site 7 has not been visited yet, and s’(7) equals the
observed state x; otherwise, we establish the following lemma
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Lemma 1 For a given action trajectory (d, ..., d"), a state trajectory (s, ..., )7
stmulated according to the following two-steps scheme has the same joint probability
distribution as a trajectory simulated according to the OASMRE MDP model transition

function.
1. Simulate a map x according to the joint distribution P(.).
2. Deduce iteratively the values (st,. .., s according to s*(i) = —1 Vi € O and :
vte{1,...,H}, si) =s'(i) if d'(i) = 0 and s (i) = d'(i); else.

(We recall that a site is visited at most once during a trajectory).

A proof is given in the Appendix.

Approximation of P(x; | x4). The Belief Propagation (BP) algorithm [61| can be
used to compute (approximately) P(z; | x4) . However since this evaluation has to be
performed a huge number of times, BP cannot be applied in practice. So we propose to
use the distribution PP defined below as an approximation of P :

Bl ) = B (o) + 3 [P )~ PP ©)
jEA

This approximation does not necessarily belong to [0, 1] but sums to one. It has the
advantage to be fast to compute. Indeed, before running LSDP, all marginals and condi-
tional marginals PP”(z;) and PP” (z;|z;) are computed using BP, inducing a fixed over-
head computational cost. Then, within an iteration of LSDP, we can compute P(z; | 2.4)
in an incremental way since P(z; | 24 U T;) = P(x; | z4) + PBP (z;|x;) — PBP(z;). Our
approximation is ad-hoc and we could have considered more sound methods to define
an approximate distribution of P(x; | z4) from the PP (x;) and PP (z;|x;). Different
options are discussed in [1|. In particular the authors pointed out the superiority of
methods based on multiplication instead on addition. We did not explore this option
since ours provided good empirical results and does not require any extra parameters
estimation.

6.2 Two variants to carry out LSDP for OASMRF

Static version of LSDP. It is possible, by changing the features definition, to design
a static policy for the OASMRF problem. Here by static we mean that the choice of
the next sample does not depend on the value of the variables observed in the previous
sampling steps. It depends only on their locations. Therefore the set of sampled sites (a
plan) can be computed in advance, before actually sampling the sites. Such a static policy
can be obtained by considering the following definition for the features, Vi € {1,...,n},

$i(s,d,b) = Li—ayu(s2-13-

The feature is equal to zero for all sites not sampled (at the current step or in previous
ones) and 1 otherwise.

7. here H is the length of a given trajectory, and not necessarily a fixed number of sampling steps
since under budget constraints trajectories do not have a common length.
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Entropy based LSDP. Up to now, the OASMREF problem and the LSDP algorithm
have been described for a measure of sampling policy quality based on the MPM criterion
(1). This choice is not arbitrary since with this definition the procedure used to restore
the MRF state from a sample output and the procedure used to define the sampling
policy quality rely on the same criterion. Still, other classical options can be considered
to define sampling policy quality. We could, for instance, define the OASMRF problem
with an entropy-based criterion. In this case, since entropy has to be minimised, we
define :

U(A,2a) = —H(P(Xg | 24)) = Y _Plag | 24)log(P(zg | 2.)),

with 77+ defined accordingly. The steps of the LSDP algorithm would remain roughly

unchanged with the entropy criterion but the features definition should be adapted to :
Vie{l,...,n},

¢i(57 da b) = _(1 - 1{z:d})H(]P(Xz | 37A)) + 1{7;:d},

where A C O is the set of indices of the previously observed variables and H(P(X; |
z4)) = =D scol(@i | xa)logP(z; | x4) is the marginal entropy of the conditional
distribution of X; given x4. Evaluating marginal entropy is not simpler than evaluat-
ing conditional marginals. In order to approximate these quantities we can again use
approximation (6).

Note that the entropy criterion does not provide a rule to estimate the variables Xg
from a sample output. This reconstruction step still has to be performed using MPM or
MAP methods.

7 EXPERIMENTAL EVALUATION

We present simulated sampling problems and one real problem of weeds sampling
to illustrate the gain of using LSDP instead of classical heuristics or RL-based solution
algorithms. We compared LSDP to the random heuristic, the LSDP-static policy, the
BP-max policy, TD(A) [76] with tabular representation of the @Q-function, and LSPI.
LSPI and LSDP were implemented with the same features definition and were run with
e = 0.9. We also compared LSDP to a greedy algorithm based on the Mutual Information
(MI) criterion [44].

The OASMRF problem considered is the following. The graph G is a regular grid
and R = O = V. One variable is observed at each decision step (L = 1) and sampling
costs are null on the three first sets of experiments. We considered the following Potts
model distribution : V = € {1,2}"

1
]P(x) X exp (5 Z 1{xi_xj}>.
(

,j)EE

4 x 4 grid. This small problem was introduced in the experiments since we were able
to compute the corresponding optimal policy, using the backward induction algorithm
(see Section 4), and the exact value of any policy. TD(A) was run with A = 0.1, using the
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e-greedy method for action choice (¢ = 0.1). It was run using 675000 simulated state-
action trajectories, in order to reach convergence. To be comparable, we ran LSDP and
LSPI with a batch of 100 maps and 6750 iterations (in practice a few hundred iterations
are enough). For LSDP the value of the policy obtained at the last iteration of the
algorithm was returned, and for LSPI the value of the best policy among all iterations
was returned.

The first conclusion is that the absolute difference between the values of all policies
is small : an absolute increase of the percentages of 2.2 at most. We also compared the
policies in terms of normalised gain compared to the random one i (Figure 4) : the

score of a given policy d is defined as scorel(d) = %.

1.5-

scorel

) #Optimal gsm
-0.5, @LSDP D)
Wotatic LSDP M1 €BP-max

3 4 5
Number of observed variables (H)

FIGURE 4 — OASMRF problem with 16 variables : scorel of LSDP and classical one-
step-look-ahead and RI-based heuristic policies. A policy with scorel equal to 0 is a
policy with the same value as the random policy.

Among RL algorithms, TD(A) is the best and LSDP gives very similar results. In
comparison, LSPI shows a poor behaviour, always returning dominated policies. Sur-
prisingly the relative values of the MI and LSPI policies decrease with the number of
observed variables, while the opposite behavior is observed for the BP-max heuristic.
The poor performance of the BP-max heuristic with small sample size is explained by
the fact that with few observed sites, all sites have similar marginal probabilities. In

that situation we arbitrarily choose the site to sample as the one with the lowest index
inV.

10 x 10 grid. For this problem size, only LSDP, LSDP-static, LSPI, BP-max and
random policy can be computed. For LSDP, LSDP-static and LSPI we used a batch size
of 1000 maps and 1000 iterations. The value of a policy was estimated by Monte Carlo
approximation. We modified scorel into score2(d) = Tl 6£f)7;‘:)(i?/)( 5]
of an optimal policy cannot be computed, dgp_mq: Serves as a reference. Results are
displayed on Figure 5.

: since the value

We observed again the poor performance of the LSPI algorithm (dominated by the
random policy for H = 10 to 20). On the contrary, LSDP performs quite better than
the BP-max heuristic for small sample sizes. LSDP also performs better than LSPI, in
terms of computation time : for H = 40, an iteration takes about 7 seconds for LSDP,
77 seconds for LSPI. The LSDP-static policy also leads to an improvement compared to
BP-max, but lower than with LSDP : this example and the previous one demonstrate
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FIGURE 5 - OASMRF problem with 100 variables : score2 of LSDP, LSDP-static and
LSPI policies. A policy with score2 equal to 0 (resp. 1) is a policy with the same value
as the random (resp. BP-max) policy.

the interest of looking for adaptive policies.

Constrained moves problem. We compared LSDP, BP-max and random policies
on a more realistic sampling problem, involving constrained moves on the grid for observ-
ing sites. The agent starts by sampling the site at the top-left corner of the grid.Then,
after having observed a site, the agent can only move to distance-2 sites for the next
observation.

81sDp

5 10 15 20
Number of observed variables (H)

FI1GURE 6 — Constrained moves problem with 100 variables : score2 of LSDP policy. A
policy with score2 equal to 0 (resp. 1) is a policy with same value as the random (resp.
BP-max) policy.

We again observed that the absolute difference between all policies remained small
(for H = 10, the value of the LSDP policy is 61.7 while the value of the BP-max policy
is 59.4). LSPI showed the same poor behaviour than in the previous experiment. As we
expected, the gain provided by LSDP in terms of relative improvement of the random
policy (H < 20, see Figure 6) is significant when the sample size is small (Figure 6).

Sampling under cost constraints With this set of experiments we introduced dis-
tincts costs values S¢ (7, z;) and we considered the problem of maximising the restoration
quality under the constraint of a fixed allocated budget B. We considered three different
cost functions Sc(A,x4). For the type I and type II, cost depends only on the site lo-
cation. With cost I, the sampling cost increases with the distance to the grid boundary,
while with cost II, we have two different costs in the two diagonals (see Figure 7). With
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’ \ Type I cost \ Type II cost \ Type III cost ‘
Policy Value | sampled sites | Value | sampled sites | Value | sampled sites
LSDP 64.80 27.3 (2.5) 63.6 22.8 (0.7) 65.4 25.6 (1.7)
BP-max | 61.77 | 19 (1.9) 60.4 | 15.8(1.9) | 64.7 | 25.6 (1.8)
Random | 60.27 | 26.65 (2.8) 59.7 15.6 (2.3) 63.7 25.6 (1.9)

TABLE 1 — Values and mean number of visited sites under different configurations of cost
constraints, for the LSDP, BP-max and random policies. Values between parentheses are
standard deviations for the mean number of visited sites.

the type III cost, we consider a function S¢ which depends only on the value of the obser-
vation : S¢(i,z;) = 2 if z; = 1 and 1 otherwise. We ran the LSDP, BP-max and random
policy on a 20 x 10 grid and for a budget B = 38. For LSDP we used a batch of size
4000 or 2000, and 1000 iterations. Results in terms of policy values and numbers of sites
sampled are presented in Table 1. For the three types of cost function, one can observe
that the ranking of the three policies values is always LSDP > BP — max > random.
The LSDP policy distributes the budget B in a way that enables to sample more sites
than with BP-max.

FIGURE 7 — Left : type I repartition of costs, costs are respectively of 1, 2 and 4 for
black, grey and white sites. Right : type II repartition of cost, costs are respectively of
1 and 4 for black and white sites.

Weeds sampling in a crop field under time constraint. We applied the LSDP
algorithm to a real-life sampling problem : the design of adaptive strategies for weeds
sampling in a crop field [10]. A spring barley field has been divided into a grid of
13 x 13 quadrats and a particular weed species Galium Aparine has been sampled in
each quadrat. The observation x; in quadrat 7 is the weed abundance and belongs to one
of the three following classes : 0 (no weeds), 1 (less than one plant per square meter),
2 (between 1 and 3 plants per square meter). We considered different Markov random
field models corresponding to different properties and we selected the model with the
higher BIC value. This model was an anisotropic Potts model with external field :

IF’ x ocexp(Zoch-Fﬁt Z 1{xz_xj}+ﬁo Z 1{%—%})

eV (i,5)€E: (4,7)EE,

Subsets E; and E; respectively represent the subsets of edges in tillage direction and
in the orthogonal direction, since anisotropy was induced by a difference of spatial cor-
relation between these two directions. The estimated parameters where : (o, ag, ag) =

(0, —0.0357, —3.4401) and (B, 3,) = (0.8813,0.0876).
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(c) ()

FIGURE 8 — Sampling strategies for weeds mapping. (a) : true abundance map, (b) MPM
reconstruction based on the LSDP sampling strategy, (¢) MPM reconstruction based on
the BP-max sampling strategy, (d) MPM reconstruction based on the random sampling
strategy. Sampled quadrats are marked by a cross. White, grey and black quadrats
correspond respectively to abundance class 1, 2 and 3.

The cost function Sc(A, x4) represents the time needed for abundance estimation in
a quadrat (a site of the MRF). We used a regression model based on factors identified as
the most relevant by experts. Then, we applied LSDP on the MRF model estimated on
the weeds data set, with a batch size of 4000 and 1000 iterations. We observed the same
ranking of policies (in terms of values, i.e. expected number of quadrats where abundance
is well estimated) : LSDP (120) then BP-max (118.7) and then random (117.16). Then
we applied the three strategies to sample and reconstruct the original weeds abundance
map used to build the MRF model. Figure 8 shows the true abundance map, and maps
estimated from sample outputs provided by LSDP, BP-max and the random policy.

8 CONCLUSION

In this article, we have provided a factored Markov Decision Processes (MDP) model
to represent problems of optimal adaptive sampling of spatial processes expressed in
the Markov random fields framework. Our second contribution is a generic batch mode
reinforcement-learning algorithm, LSDP, which can be applied to any large state-space
finite-horizon MDP problem, as soon as the MDP model is known explicitly. Then, our
last contribution is an experimental evaluation of the LSDP approach for solving the
OASMREF problem. Our experimental work enables us to draw the following conclusions.
First, in small problems where the optimal policy can be computed, we notice that the
performance of a purely random strategy is quite close to that of the optimal one. This
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seems to also hold for larger problems, where the estimated value of the random policy
remains close to that of the LSDP policy. However, in real-life applications of sampling
for mapping, small errors in the reconstruction of maps can lead to a significant increase
in management costs (think of imperfect mapping and eradication of invasive species,
leading to future catastrophic outbreaks). Second, for large problems, non-parametrized
RL approaches (such as TD())) are too computationally intensive to apply, and the
LSPI approach does not perform well. On the contrary, both BP-max heuristic and
the LSDP algorithm provide good results (provided that the sampling budget is large
enough, as far as BP-max is concerned). BP-max is less computationally expensive to
apply than LSDP. However, its main drawback is that the choice of the sample does
not take into account its cost. The budget constraint can only be used to decide when
to stop a sampling trajectory. In contrast, LSDP can handle cost functions and our ex-
periments show that when sampling costs are nonhomogeneous the superiority of LSDP
over BP-max and random policies is increased.

This work opens several directions for future work : on the problem of sampling in
spatial random fields in one hand, and on more general problems of sequential decision
under uncertainty.

Regarding the framework and algorithm we proposed for spatial sampling, a first pos-
sible extension would be to consider other definitions of sample quality measures. In
this paper, the measure used to illustrate the approach is the MPM value. However,
the MDP encoding and the application of LSDP do not crucially depend on the qual-
ity measure definition. Other criteria, such as MAP, or Entropy should be explored. It
would probably require to define new features, as we have illustrated for the entropy
case, and belief propagation algorithms could still be used to compute approximately
MAP or entropy values.

We largely discussed the different options to introduce cost constraints in the optimal
sampling problem. We have modelled our sampling problem as a problem of optimising
reconstruction quality, under sampling budget constraint. However, one could, dually,
be interested in finding sampling policies achieving a minimum reconstruction quality
threshold, while minimising the sampling cost. An MDP encoding of this problem is still
possible and the LSDP algorithm could be applied. It would require an MPM evalua-
tion at every sampling step to check if the minimal quality is reached, but this can be
evaluated approximately based on our time efficient approximation of the conditional
marginals. Other forms of sampling cost could also be discussed : these could be more
general than the ones we have considered in the paper. These could be linked, for ex-
ample, to a maximum sampling trajectory duration, modelled as a sum of transitions
(s,a,s’) costs.

Finally, even the choice of a Markov Random Field to model map uncertainty can be
challenged, while keeping the approach we proposed. One could easily adapt the princi-
ples of our approach to continuous space models, provided that the number of potential
sampling locations be finite. In a MRF, each variable typically take values in a finite
set of small size. We could consider applying LSDP to problems with larger (but still
finite) domains, when counts data should be modelled. The only requirement would be
to be able to efficiently compute conditional marginals and simulate full maps. If the
domain of the variable to map is continuous, this rises the more complex question of the
definition of MDP on continuous state space.



38 CONCLUSION

Then, as we already mentioned, the LSDP algorithm is not specific to the resolution
of the optimal sampling problem. One important contribution of this work is a new
model-based reinforcement learning algorithm for large size finite-horizon Markov Deci-
sion Processes. This means that it can be applied to solve problems of sequential decision
under uncertainly where the state and/or decision space are/is large and factored. (eg.
invasive species control, biodiversity conservation, weeds management, ...). MDP for-
malisms already exist to model the control of spatial processes in time : Factored MDP
|34] and Graph-based MDP |71], for example. The structure of these MDPs shares nu-
merous common points with the MDP model of the OASMRF problem. Clearly, the
LSDP approach could be adapted to approximately solve FMDP or GMDP problems,
when the horizon is finite.
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9 Introduction

In arable fields, weeds are responsible for yield loss [57] (i) they are competing with
crop for resources [84], (ii) they can be host for parasites [51] and diseases [82]. In order
to optimize yield and hence, an economic criterion, herbicides have been widely used.
However, the impact of herbicides on soil and groundwater is now recognized [4] and in
the meantime, the role of weeds in agro-ecosystem food webs and in providing ecological
services has been established [32|, [63]. Therefore weed management has to deal both
with economic (i.e. maintaining yield at acceptable levels) and ecological (i.e. promoting
ecological services) criteria. The design of more sustainable cropping systems to manage
weeds requires first to understand the spatio-temporal dynamics of weeds within fields.
Such understanding is based on the knowledge of their spatial distribution within fields
and on the influence of agricultural practices on this distribution.

One way to improve knowledge on their spatial structure is to map weeds at the field
scale. Construction of such maps is based on observations within the field and sampling
methods represent the different ways to acquire these observations.

These methods can be divided into two categories : continuous and discrete weed sam-
pling [6]. For continuous weed sampling, the field is not discretized. A continuous and
complete observation of the field is acquired, like for picture. This method became pop-
ular for commercial use and site specific management [47], [73]. In this case, weed maps
are constructed using satellite 2], aerial [14] or near-ground imagery [36] and some im-
age processing techniques. For discrete weed sampling, the field is divided into a regular
grid of quadrats® and due to the large size of fields, observations of weeds are performed
only on a subset of quadrats.

Due to the high cost of continuous weed sampling techniques and weak performance
for precise weed mapping |73], discrete weed sampling is the most popular method for
academic research (|53],[16],[39]). In this case an observer moves within the field and
measures weed presence in the selected quadrats.

The aim of our study is to discuss and improve current discrete sampling methods for
weeds mapping at the field scale.

Before applying any discrete sampling method, several questions have to be ad-
dressed : which type of observations (e.g. counting, density classes or occurrence), which
quadrat size, which budget for sampling * and which extrapolation method used for map-
ping. All these questions are linked and the answers depend on the aim of mapping. For
example in |6], the weeds maps are created for a site-specific weed management. These
maps are used to determine the area of the field where herbicides must be sprayed and
in which quantity. Thus, 4 weed density classes were proposed according to the potential
yield loss risk and the needed herbicide treatment. In this case the map scale does not
need to be very precise since the herbicide spraying equipments are not.

Then, based on the observations nature, an adapted extrapolation method has to be
identified.

In the following we will consider the problem of mapping the spatial repartition of one
weed species of interest. We consider that such maps will be used for spatial structure

8. A rectangle put down on the ground where weeds population was estimated
9. This is the initial resource available for sampling. For example it can be the number of observers
or the time available for sampling.
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analysis. We will consider observations of type class (e.g. density classes or occurrence)
and suppose that a good weed map is a map where a large proportion of quadrats are
reconstructed to their true values . We propose an extrapolation method, several models
for spatial repartition of weeds density classes, a way to model budget for sampling and
a way to choose observations locations that respect this budget and take into account
the objectives of sampling.

In order to have a relevant representation of weeds repartition, locations of obser-
vations are crucial [15],[83], [24]. This requires that observations locations are spatially
dependent [15]. Several articles have demonstrated the aggregated repartition of weeds
into fields [81],[16], [15], [21],[19]. As mentionned in [15] :

Most weeds occur at various densities in clumps or patches of various sizes
and shapes, and few individual plants occur between patches.

In addition, weeds density and species vary greatly across field in space and time
[25], [52], [81], [19],[21], which makes unsuitable the use of previous sampling re-
sults. Literature gives a large range of sampling strategies!? for weeds mapping
[6],120],|23],|64],]69],|80]. Observations locations are generally chosen randomly or in
order to cover a large area within the fields, like for regular sampling. These strate-
gies are generally static. Observations locations are chosen once and for all, whatever
the value and locations of previous observations which can lead to reconstructed maps
of poor quality. Indeed, when observations locations are fixed in advance, probability
that this location falls on places where weeds occur can be small. Shape and size of
patches can also be highly different from reality. On the contrary, for adaptive sampling
strategies observations locations are determined step by step, taking into account previ-
ous observations. When adaptive, the sampling strategy can be modified if a patch has
been discovered to enhance the quality of the reconstructed map, as it has been already
demonstrated in some other sampling problems [66],[79].

The extrapolation method will also determine the reconstructed map quality [37],[35].
All extrapolation methods are based on a probabilistic model which describes the spatial
repartition of the phenomenon under study. In the case of count data, a wide range of
models has been proposed [62],[48],[13],[12]. The extrapolation method is generally krig-
ing |28],[16],|39],[37],|24]. Some of these models have been adapted to the case of classes
data, but combined with kriging they lead to over-smoothed maps [69]. In this analysis
we propose the use of Markov Random Fields (MRF, [31]), a natural model for data of
type class, widely used in image analysis. Adapted MRF distributions are selected for
different weed species and quadrat sizes. Then a common extrapolation method based
on the Maximum Posterior Marginals (MPM, [31]) is used.

Generally, the number of observations is chosen in advance for practical reasons or
according to expert rules. However the achievement of a sampling strategy can be com-
promised if it takes too much time to apply in a field. Therefore in this work we propose
to model the time needed to observe one quadrat as a function of the field and quadrat
configurations. Thus the budget constraint can also be expressed in terms of available

10. The word strategies is used instead of methods to focus on observations location. The sampling
method focus on the quadrat sizes, the extrapolation method and the observation nature.
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time for sampling. We also propose an adaptive strategy which selects the next quadrat
to observe according to the remaining time.

Finally, the design of adaptive sampling strategies is defined as an optimization
problem. The value of any adaptive sampling strategy is based on the expected recon-
structed map quality. The optimal adaptive sampling strategy is the one with highest
value, respecting the budget constraints. Since this optimization problem is too complex
for exact resolution, we used an approximate resolution algorithm, named Least-Squares
Dynamic Programming LSDP defined in [11]. A heuristic solution [66] was also tested
and these model-based sampling strategies were compared to classical static strategies.

The rest of the paper is organized as follows. In Section 10 we describe all the material
necessary to define the problem of finding an optimal adaptive sampling strategy that
realizes a trade-off between quality of the reconstructed map and sampling cost. In
Section 11 the weeds sampling cost model and the selected MRF models for different
weeds species and quadrat sizes are presented. Adaptive sampling strategies are then
compared to some classical static strategies for different budget constraints. Concluding
remarks are presented in Section 12.

10 Method

In Section 10.1 we present candidate MRF models of the spatial repartition of weeds
density classes. A model selection procedure and the extrapolation method are also pre-
sented. Then the weed sampling cost model is defined in Section 10.2. Optimal adaptive
sampling strategies are defined in Section 10.3. Two datasets are presented in Section
10.4. Finally in Section 10.5 we present the method used to compare the sampling
strategies.

First, a mathematical formulation of a weed map is given.

10.1 Weed Map Model

We suppose that the field of interest is divided into n contiguous quadrats, num-
bered 1,....,n. On each quadrat ¢ € {1,...,n}, we define a discrete random variable
X(q), representing the density class of the weed species of interest on this quadrat.
These variables take values in 2 = {0,..., K}, where each k € Q is a density class
(or represent presence/absence of the weed species when K = 1). Notation z(q) rep-
resents a realization of the random variable X(g). This notation is extended to a
set of quadrats A = {q1,...,qu}, ©(A) := {x(¢;) }i=1..g. Finally, the random vector
X = (X(l), o 7X(n)) represents a map of spatial repartition of the weed’s density
classes within the field.

We write P(.), the probability distribution over all possible maps. For any map x =
(z(1),...,2z(n)) € Q", P(X = x) is the probability that the density classes on quadrat
1 to n are simultaneously z(1),...,x(n).
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Possible distributions P(.) adapted to the spatial repartition of weeds density classes
are presented in the next section.

10.1.1 Proposed models for the spatial repartition of weeds density classes

For the choice of P(.), we propose to use a pairwise MRF distribution !*. The prob-
ability of any possible map, x = (z(1),...,z(n)) € Q", is written as follow :

P(z(1),....x(n)) o [Texp (¢g(2(@) [T exp (Yup(x(a), 2(p))),

(¢.p)EE

where FE is the set of pairs of neighboring quadrats, v, : Q — R and ¢, : Q? — R
are real-valued functions called potential functions. Note that the joint distribution is
only proportional to the exponential term. In order to get a normalized probability
distribution, the exponential term has to be divided by a normalizing constant Z :

2= % e (L ulal)+ Y vulala)alo) ).

xeQn (¢.,p)EE

In practice, exact computation of Z is out of reach due to the large number of terms in
the sum. Therefore only approximations of the joint distribution are reachable.

When using a pairwise MRF distribution, the probability value of a weed
map x = (z(1),...,2(n)), is based on the value of each quadrat indepen-
dently of each other, {exp (wq(x(q))) }Zzl and the value of neighboring quadrats,
{ exp (Ygp(z(q), z(p))) }(q,p)eE. Then the choice of an appropriate MRF distribution for
mapping weeds density classes repartition amounts to the choice of adapted potential
functions.

In this paper, we study 8 different models detailed in Table 2. These models are
extensions of the model M1, the classical Potts model with external field, where
Ve(2(q)) = a(q) and Ygp(2(q), ©(p)) = Blia(q)=a(p)}- In this model the real-valued vector
a=(ag,...,ak), called external field, influences the relative proportions of the different
density classes in the map. For example when [ is small, a large value of « (compared
to the others), leads to a distribution P giving more weight to maps with a large pro-
portion of variables in state 0. Then the real valued parameter 5 governs the proportion
of nearby quadrats in the same state (spatial correlation). For example when g = 0,
variables (X (q))q are independent. And when  increases, patches progressively appear.
In order to understand the contribution of each parameter, let’s compare the probability
of the two maps presented in Figure 9. In this example 2 = {0,1} and so « is a two
dimensional vector. First, if « is equal to (0,0) and f is positive, the joint probability
of the map (b) is greater than that of map (a) because a larger number of neighboring
quadrats are in the same state (2 against 0). When a; > ag and f3 is again positive, the
same conclusion arises. And the difference between the joint probabilities of each map
is higher than in the first example because both the number of variables in state 1 and
the number of neighboring quadrats in the same state are larger for map (b).

11. More complex MRF than pairwise can be defined. However estimation becomes more complex
and in practice they are rarely used.
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(a) (b)

FIGURE 9 — Two examples of maps configurations for Q = {0,1} and n=4. Variable in
state O (resp. 1) are in white (resp. black).

We now describe the different definitions of potential functions we used.

First we proposed models where v,(x(q)) = 0 for all ¢ = 1,...,n and all z(q) € Q.
This type of models is very simple because  is the only parameter to estimate. These
models are denoted M5 to M8 in Table 2.

We also proposed anisotropic models since patches of weeds are known to be more
extended in the tillage direction [39], |[70], [83]. In these models the spatial parameter
is now different in tillage direction (5;) and in the direction perpendicular to tillage
(B,)- The set E is divided into E; and E, representing pairs of neighboring quadrats
respectively along tillage direction and perpendicular to tillage direction. In Table 2,
models M2, M4, M6 and M8 are anisotropic models.

Potential functions 1y, used for the Potts model are of “all or nothing” type. When
B > 0, they attach the same (null) weight to any neighboring quadrats ¢ and p that
are not in the same state, whatever the distance between these two states. We proposed
more flexible potential functions [17], 1, (z(q),z(p)) = B(1 — M). A maximal
weight is given when neighboring quadrats ¢ and p are in the same state and this weight
decreases when the absolute difference between x(q) and z(p) increases. As for the Potts
model, a weight of 0 is given when one of the two variables is in state 0 and the other
in state K (models M3, M4, M7 and M8 in Table 2). When K = 1, these models are
respectively equivalent to models M1, M2, M5 and M6.

These models can be grouped in 4 different types, depending on their properties. Each
model type contains two models, one model is isotropic and the other anisotropic.

In the next section we describe the model selection procedure.

10.1.2 Model selection

We propose to compare the ability of each model to describe weeds repartition using
the Bayesian Information Criterion (BIC, [72]). The BIC score of each model is com-
puted from complete maps of different weed species and for different quadrat sizes. The
BIC scores are then compared for each weed species and quadrat size and the best model
is selected.

An exact computation of the BIC score is out of reach for MRF distributions. When a
complete map is available a common method to estimate the parameters of all models
and their BIC scores |38| is based on the pseudo-likelihood approximation [8].



10.1 - Weed Map Model 45

Model | ¢,(x(q)) Vap(2(q), 2(p))
Type 1
M1 Qa(q) Blia(g)=2(r)}
M2 Oa(g) Biliag)=2).pa)e B} + Pol{a(@)=().(pa)eNL)
Type 11
M3 o) B(1 — le@-etoll)

M4 a(y) 5t(1 _ |I(Q)I—<$(P)|)1{(p7q)€Et} + Bo(l _ |»’C(Q)I—{$(P)|)1{(p7q)€Ns}

Type III
M5 0 Blia(g)=r(m)}
M6 0 Bl ie(@)=2p).(pa)c By + Bol{a(@)=c(p).(pg)eNo}
Type IV
wr o B(1 — e
M8 0 | Bl = FOREE) 1 ey + Bo(1 — ) 1 geny

TABLE 2 — Proposed potential functions for modeling spatial repartition of weeds density
classes.

10.1.3 Extrapolation Method

If observations z(A) are available, the reconstructed map, named x™ M

with respect to the Mazimum Posterior Marginals (MPM) criterion :

, is computed

Vge{l....n},  2MV(g) = argnax P(a(g) | 2(4)).
x(q)E

Thus, on each quadrat the weed density class is reconstructed at its most probable value.
It can be shown that this reconstructed map is the one which maximizes the expected
number of well reconstructed quadrats when quadrats A were observed at density classes
z(A). The main difficulty when using the MPM criterion is to compute the values of
all conditional marginals P(a:(q) | a:(A)) In practice, only approximate computation is
possible. A common method is the Belief-Propagation (BP,[61]) algorithm. For all the
experiments presented in this article, conditional marginals are computed using the BP
algorithm.

Logically the reconstructed and true maps differ in the unobserved quadrats. When
a quadrat ¢ is far from any observed quadrats, there is no information in order to
reconstruct the value of this quadrat. If quadrats A were observed at density classes
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(a) (b)

FIGURE 10 — Reconstructed map using model M2 when the centering is observed at
value (a) 1 or (b) 2.

z(A), we have :
Jnax P(z(q) | 2(A)) ~ Jnax P(z(q)).

In this case, quadrat ¢ is reconstructed to its most probable value when no other
quadrats were observed. On the contrary when the unobserved quadrat q is close to
other observed quadrats, the conditional marginal P(z(q) | x(A)) is influenced by the
observations values z(A). This influence is governed by the model type and its pa-
rameters values. In Figure 10 we show two reconstructed maps for model M2 with
Q= {0,1,2}, = (0,—0.03,—3.58) and (G, 3,) = (0.71,0.12). In Figure 10.a (resp.
10.b) the central quadrat is observed at value 1 (resp. 2). When the central quadrat is
observed at density class 1 some closed quadrats are also reconstructed to this density
class. This is not the case when it is observed at density class 2 since as has small value.
In both cases distant quadrats are reconstructed to density class 0 since o has the
highest value. When models of type III are used, the distant quadrats are reconstructed
to one of the density classes with the same probability. If models of type IV are used,
they are reconstructed to the density classes of median values which is a bias of these
models, due to the definition of 1), 2.

Finally the best sampling strategy must achieve a good compromise between explo-
ration (all parts of the field are explored) and patches boundaries detection (with small
distances between sampled quadrats) while respecting the budget constraint.

10.2 Cost of Weed Sampling

The cost of sampling represents the effort needed to apply a sampling method. In
this study, we assume that sampling cost could be restricted to the time needed to
sample given a sampling strategy. We proposed and fitted a model on data from a field
experiment.

12. When K = 2k is even, they are reconstructed to density class k and when H = 2k + 1 is odd, to
density class k or k + 1 with the same probability.
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Most of sampling effort can be summed up by the time needed to observe the weed
species within the field. Here we assume that the observations are performed by only
one person. The initial budget for sampling is then the available time for the observer
to explore the field.

The time needed to follow a sampling strategy can not be known in advance. For
example, when there is high weeds species diversity, observations of weeds will be very
time consuming. In practice, the time needed to observe a fixed number of quadrats
depends on many other parameters than only diversity. From discussion and survey of
practitioners we drew up a list (obviously non exhaustive) of these parameters, listed in
Table 3 and described hereafter.

The time required to follow a sampling strategy can be decomposed into a sum of
observation time, ¢, plus the time needed to move to the next quadrat, t,,ove. If the
sampling strategy resulted in observing quadrats {qi,...,qy}, the time used is :

H
tnote(th(QI)) + ( tnote(Qia x(‘]z)) + tmove(Qi—ly %) )
=2

)

Then it is sufficient to model the time T := t,0e(q, £(q)) + tmove(q, ¢'), for all quadrats
q,¢ € {1,...,n} and observation x(q) € .

We attempted to explain the relationship between the time 7' and the parameters of
Table 3 by a linear model with interaction between Z; and Z; and between Z; and
Zg. The observation period, 71, is a qualitative variable with two states {"unfavorable’,
"favorable’}. This variable quantifies the faisability of the observation given at a specific
stage. It is set to 'favorable’ (resp. 'unfavorable’) if the crop coverage'® is less (resp.
more) than 30%. Z, is a qualitative variable indicating the cropping system. This variable
takes five values {1,...,5}, depending on which cropping system the observations are
made. These five cropping systems are presented in Section 10.4. Z3 is a qualitative
variable indicating the crop type in the field during the exploration. This variable takes
seven values : {"winter wheat’, "winter rape’, "winter barley’, 'winter horse bean’, ’spring
barley’, ’sorghum’, ’corn’, 'no crop’ }. Z; indicates the number of weed species into
the observed quadrat. Z; indicates the quantity of weeds in the quadrat. This is a
continuous variable equal to the sum of the middle values of density classes of all weeds
species present in the quadrat 4.

The support of any variable Z; is denoted Sup(Z;). In order to simplify notations, we
suppose that the support of categorical variables are positive integers i.e. each possible
value of the variable is encoded by a positive integer. For example Sup(Z;) = {0,1}
and Z; = 0 (resp. Z; = 1) indicates that the observation period is unfavorable (resp.

13. The crop coverage is the proportion of the observer’s field of vision occupied by the crop.

14. The total number of individuals in the quadrat could be more appropriate but only the density
class is recorded in the data set. We recall that if a density class is “between a and b individuals/m? 7,

the middle of this class is ”‘7‘1
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Name Meaning
A Observation period
Zy Cropping system
Zs Crop
Zy Total number of species into the quadrat
Zs, Weeds quantity in the quadrat
Zg Distance covered, in meters, between two observed quadrats

TABLE 3 — Names and meaning of variables that influence the observation time.

favorable). The model is finally denoted :

3 6
T ~ Z Z Pijl{z,=jy + Z%’Zz‘ + Z Mij1{z1=i,2,=5}
=1 jeSup(Z;) i=4 i€Supp(Z1)
jE€Supp(Z2)
—|—Z@ X Z 92-1{21:@-}

i€ Supp(Z1)

For the rest of the paper, the available time for sampling will be denoted B. For
technical reasons when building our adaptive sampling strategies, the distance between
two observed quadrats can not be taken into account when we evaluate the cost of a
sampling strategy. This problem is discussed in Section 11.3.2. However we show that
the time used to move within the tested adaptive strategies does not vary greatly.
Therefore we decided to consider only time needed to observe a quadrat, simply defined
as thote(q, ©(q)). This is computed using the cost model with Zg fixed to 0.

We now define the notion of adaptive sampling strategy and we present how to de-
sign such a strategy based on our weed map and cost models.

10.3 Design of Adaptive Sampling Strategies

Definition 1 (adaptive sampling strategy) For any set of observed quadrats qi,. .., q:,
at density classes x(q1),...,x(q), an adaptive sampling strategy § = (6%,...,0%) is a
function which indicates the next quadrat to be sampled given the preceding observed
quadrats and the values of the weed plant quantity :

5 ((qu, 2(q))s -5 (. 2(qr)) = qeer-

A history is a trajectory (q1,x(q1)), - - -, (qu, z(qu)) followed when applying a strategy 0.
The set of all histories which can be followed by strategy ¢ is denoted 5.

If a budget B is available for sampling, a strategy 0 is said to respect this budget when
it stops the exploration as soon as the remaining budget becomes negative or equal to
zero. A schematic representation of an adaptive sampling strategy is given in Figure 11.
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XLy | X2)
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FIGURE 11 — Schematic representation of an adaptive sampling strategy §. The field
is divided into 4 square quadrats and observations can take binary values (e.g. pres-
ence/absence of species). The initial budget, B, is 3 and sampling costs only depends on
the observation value. For all quadrats ¢ € {1,2,3,4}, t,oe(q, 2(q)) = 1 when x(q) =0
and 2 when z(q) = 1. In this example, quadrat 3 was observed first. Then depending on
the observation value a second quadrat is selected. When X (3) is observed at value 0
(left part of the diagram), quadrat 1 is observed next ,0%((3,0)) = 1, and the remaining
budget is 2. If X (1) is observed to 1, the exploration is stopped. When X (1) is observed
to 0, the remaining budget is still positive and another quadrat can be observed. It is
quadrat 4 in this example and exploration is stopped after. If the first observations value
is 1 (right part of the diagram) the remaining budget is 1 and quadrat 4 is observed
next. Whatever the observations value x(4), the exploration is stopped after.

10.3.1 Quality of an Adaptive Sampling Strategy

First, the value of any history (¢1,2(q1)), -, (qu, z(qg)) is defined as the sum over
all quadrats of the probability of the most probable density classes. If A = U, ¢;, then
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the value of this history, named U(A, z(A)), is defined as :

U(A,z(4)) = D PM™(q) | z(A))

n

— Zargmax P(z(q) | #(A))

z(q)€eN

It can be shown that the value of an history corresponds to the expectation over all
possible maps, of the number of well reconstructed quadrats when variables quadrats A
were observed to density classes x(A). Thus, the closer U(A, x(A)) is to n, the more we
can expected a large number of quadrats reconstructed to the true density classes when
using the history (A, z(A)) for reconstruction.

For weed mapping, it can be more relevant to give a good representation of quadrats
with high weed density than quadrats with no or few plants. The value of an history
can be adapted accordingly :

U(A,z(4)) = Y P(™™(q) | 2(4))p(z""M(q))

where p : 2 — R. In this case the value of an history is a weighted expectation of the
number of well reconstructed quadrats. Then if it is more important that quadrats with
density class above [ € € are well reconstructed, p can be defined as :

9 ifk>1
Vk € Q, k) = -
p(F) {1 if k<1

Finally, the quality of any adaptive strategy o is defined as the expected value of
possible histories when following 9 :

QW) = X P(A)U(4,2(4)). 7
(Az(A))ers

In practice an exact computation of the quality of any strategy is not reachable since, an
exact computation of P(x(A)) is intractable (see Section 10.1.1). A common approach
consists in computing an MCMC estimation of the expectation. First 2000 weeds maps
are simulated according to distribution P(.). On each map, observations are acquired
following strategy . Then a reconstructed map is computed and compared to the orig-
inal one. The number of well reconstructed quadrats is then stored. The approximation
of the policy value is then the average number of quadrats with good estimates of weed
density over the 2000 maps.

10.3.2 Optimal Adaptive Sampling Strategies

An optimal adaptive sampling strategy is defined as follows :

Definition 2 (optimal adaptive sampling strategy) An optimal adaptive strategy 6* is a
strateqy of highest value, respecting the budget constraint :

= arg max Q(5) such that & respects the budget constraint . (8)
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10.3.3 Approximate Solution Method

In practice, an exact computation of §* is out of reach and approximate resolution
methods have to be found. This paper focus on two particular strategies, named dpspp
and 0pp_maz, computed from the two known approximate resolution methods. The first
method consists in (i) modeling the choice of optimal strategy as a Markov decision pro-
cess (|78]) and (ii) proposing an adapted reinforcement-learning algorithm (|78],|75]),
named LSDP, to solve problem (8). The second method , named BP-maz heuristic,
consists in (i) solving (8) greedily, that is each sampling plan is computed on-line ac-
cording to previous sampling plans and observations and (ii) making the hypothesis
that given the preceding observations, variables X (1),..., X (n) are independent. This
strategy consists in observing the quadrat with highest uncertainty in term of marginal
probability value. In other words, if quadrats ¢y, ..., ¢ were already observed at density
classes z(q1), ..., x(q;), the next quadrat that will be observed is :

qt+1 = 6Bmeax((Q17 z(q1))s -, (a, l’(Qt)));
= argmin { max P(z(q) | z(q1), . .. ,x(qt))}.

q€{1l,..n} | z(q)eR

More details on the strategies dpp_mar and dpspp are available respectively in [66] and
[11].

Finally note that these adaptive strategies are both model-based. Then to apply such
strategies a weed map model has to be known or estimated. For the other sampling
strategies the weed map model is only needed for the extrapolation method.

In the next section we present the dataset used for the model selection procedure,
comparing the sampling strategies and estimating the parameters of the weed sampling
cost model.

10.4 Presentation of the dataset

10.4.1 Available data set for model selection and comparison of the sam-
pling strategies

The model selection procedure was run independently on complete maps of 22 dif-
ferent weeds species. These maps were obtained on the same subfield of 2500m2, located
in Dijon-France (47°20'N, 5°2’E) with a semi continental climate. The field was used for
barley and observations were recorded between April 11, 2006 and April 18, 2006. This
subfield was discretized into contiguous quadrats of 0.36m?, which represent around
6950 quadrats. On each quadrat a count of each weed species has been recorded.

The nature of observations was initially count data, so we first converted them into den-
sity classes. We defined the six density classes presented in Table 4. These weeds density
classes defined in [5] are an adapted version of the Braun-Blanquet cover abundance
method [54].

All density classes are not observed for all the weeds species. Then € is defined inde-
pendently for each weed species as the set of observed density classes.
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Class number ‘ Definition
0 No weed
1 Less than 1 individual /m?
2 between 1 and 3 individuals /m?
3 between 3 and 20 individuals /m?
4 between 20 and 50 individuals /m?
5 between 50 and 500 individuals /m?

TABLE 4 — Definition of the density classes used for model selection

The density classes were defined on square quadrats of different area : 0.36m?2,
1.44m?2, 3.24m?, 5.76m?, 9m?, 12.96m? and 17.64m?. The model selection procedure
was run for each quadrat size. Figures 16 and 17 are examples of weed maps at different
spatial scales for chaenorrhinum minus (L.) lange and fallopia convolvulus L..

10.4.2 Available dataset for modeling the weed sampling cost

We use a large data set of a six-year experiment located in the same place of the
previous dataset. The experiment was designed to compare four different cropping sys-
tems based on integrated weed management with a reference standard cropping system.
The first cropping system (S1) is a standard reference designed to maximize financial
returns. Herbicides are used for weeds control and mouldboard ploughind is carried out
each year. The four other cropping systems (S2 to S5) are Integrated Weeds Manage-
ment (IWM) cropping systems. The use of herbicides gradually decreases from the first
cropping system to the fifth one for which no herbicides are used. Over the six-years, no
significant differences were observed between the standard and the IWM cropping sys-
tems. Weed density varies during the growth of the crop. After weed control, the average
weed density was generally lower for the first cropping system than the I'TW systems.
Before weed control, the average weed density was higher in S2 and 54, intermediate
in S1 and lower in S3 and S5. Weed density also varied among weed species. Before
weed control, the average density of winter broad-leaved species tended to be lower in
IWM cropping systems than in S1. The average density of summer broad-leaved species
tended to be higher for IWN cropping systems, both before and after weeds control.
For S2, the average density of annual grassy weed species was higher than in the others
cropping systems, both before and after weed control. Each of the cropping systems
was tested on two different fields. In each field, sampling focused particularly on weed
species which were known to be percinious and/or abundant. These weeds species were
identified and their density classes estimated using the six density classes presented in
Table 4. The density of each species was estimated through visual assessment and geo-
referenced with a global positioning system (GPS) in 16m? square quadrats. The visual
assessments were generally done by the same observer. This was repeated two to four
times a year in each field. A detailed presentation of this data set is available in [18].
The time of weed sampling per quadrat was automatically recorded by the GPS system.
Then the difference between two recording times gives the time needed to asses the
density class of a weed species plus the time needed to move from the next observations
location (i.e. tnote + tmove). Thus the parameters of the cost model were fitted using
about 14 000 observation plus moving time for 80 different weeds species. In general
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only few repetitions were available for a given weed species, regarding to the number of
model parameters. In order to get a larger data set, no distinctions were made between
the observation times of different weed species. The effect of the weed species is then
averaged when fitting the parameter of the linear model and it can be used for all types
of weed species. Finally note that the model parameters were fitted with observation
times for 16m? quadrats only. Then the model can be used for prediction only for the
same quadrat size.

10.5 Method for the comparison of sampling strategies

We considered two different sampling problems.

In the first problem, we expressed the budget constraint in terms of available time for
sampling. Three strategies are then compared : the random strategy drunqg and the two
model-based strategies é.spp and dpp_ma,. The weed sampling cost model (see Section
10.2) is used to stop the strategies when the available time for sampling is exhausted.

In the second problem, the budget constraint is simply expressed as a number of allowed
observations. In this simplified case we will consider 8 additional static strategies : dreg,,
ORegss ORegss ORegss 07, 0wy, 0wy, Ostar. Lhese strategies are presented in Figure 12. dpeg,,

FIH T
o

(e) 62 (f) 5W1 (g) 5W2 (h) 5Star

FIGURE 12 — Different static strategies for comparison.

ORegs> ORegs and Opeq, are different versions of a regular sampling strategies. For d; the
set of observed quadrats forms a Z into the field. For oy, and dyy, it forms a W and for
O5tar @ star.

For both sampling problem, a density class repartition model is needed in order to
compute (i) the adaptive sampling strategies and (ii) the reconstructed maps. In order
to compare the strategies, we selected the best models for quadrat of 12.96m?2, for the
weeds species Lactuca serriola L., Galium aparine L., Picris hieracioides L., Chaenor-
rhinum minus (L.) lange, Cirsium arvense (L.) scopoli, and Sinapsis arvensis L.. The
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model parameters were computed using the observed maps of each species, again using
the pseudo-likelihood approximation [8]. The models parameters will be detailed in Sec-
tion 11.3.1.

We compared the different sampling strategies based (i) on simulated maps and
(ii) observed maps. The two comparison procedures are summarized in Figure 13 and

{6Ls0P,0BP-maz }

Computation of

Model Based imulated
True Otﬁggdﬂap Strategies 209? Simulated Maps
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1.Application of each strategies 1.Application of each strategies
on frue map. on each simulated maps.
2.Computation of the } { 2.Computation of the
reconstructed map reconstructed maps
3.Comparison of the percentages 3.Comparison of the average
of well reconstructed quadrats. percentages of well reconstructed
quadrats.

FIGURE 13 — Schematic representation of the procedure for comparing the sampling
strategies.

organized as follows.

Simulated maps In this case the model used for computation of the adaptive strate-
gies and the extrapolation method is also used to simulate 2000 weeds maps. All strate-
gies are applied on each map and a reconstructed map is computed. Then the sam-
pling strategies are compared according to their average number of well reconstructed
quadrats. It corresponds to a MCMC approximation of the strategy value defined by
equation (7). Values are presented in terms of average percentage of well reconstructed
quadrats, which we will denoted WR.

Observed maps The sampling strategies are also applied to the six observed maps
of the weeds species introduced previously. The strategies are still compared according
to their percentage of well reconstructed quadrats. We also compare the strategies in
terms of percentage of well reconstructed quadrats in the different density classes. We
denote WRIi this percentage for density class i.

For each weed species, the repartition model used for computing the adaptive strategies
and the extrapolation method corresponds to the best model for the corresponding weed
species.

For the first sampling problem (budget defined as a time constraint), strategies are
compared on simulated and observed maps. Results are presented in Section 11.3.2. For
the second sampling problem (budget defined as a number of observation), the strategies
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are only compared on observed maps. Results are presented in Section 11.3.3.

As illustrated in Figure 13, the use of a repartition model is central. In a practical
application the model parameters are generally not known and have to be estimated.
Parameter estimation could be based on few initial observations but the estimated pa-
rameters can be widely different from those estimated on the complete map. Then the
extrapolation method and the model-based strategies can performed really poorly. In
this work we propose the use of empirical rules in order to estimate the model pa-
rameters. The sampling strategies are then compared on observed maps. Results are
presented in Section 11.3.4.

11 Results

11.1 Cost model

Parameters of the cost model were fitted using the software R, results are summarized
in Table 5.
We first note that all the model parameters have a significant influence. The adjusted
R-squared of the fitted model is 0.8925.

P g
p1. = (—6.61; —3.24) 4 = 20.19
p2.=(0; 17.3; 8.13; 9.44 ; 9.19) s = 27.36.1074
p3.=(0; —1.69; —5.17; 6.07; 12.89; 1.7; 12.8; 6.54) || 76 = 2.37

n 0
m.=(0;05;0;0;0) 0o =0
m. = (0; —20.34 ; —20.44 ; —18.77 ; —14.09) 01 =0.49

TABLE 5 — Values of the fitted parameters for the cost model.

We first discuss the influence of the cropping system and observation period on the
observation time t,... Note that the cropping system does not influence the moving
time t,,,pe. The observation time is longer in the unfavorable observation period than in
the favorable one, only for the first cropping system.

In the favorable observation period the first (resp. second) cropping system corresponds
to the shortest (resp. longest) observation time and the three other cropping systems
are associated approximately to the same observation time. In the unfavorable obser-
vation period the third (resp. the first) cropping system corresponds to the shortest
(resp. longest) observation time. There is a significant variation of the observation time
among cropping system. Figure 14 shows the observation time for all cropping systems
in favorable and unfavorable observation periods. In this example the field is used for
winter wheat. The observation time is given when the studied weed species is in density
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FIGURE 14 — Example of observation time values of one quadrat with a single species
in density class 1, for the five cropping systems.

class 1 and no other weed species are present into the quadrat.

In Figure 15 is presented the observation times for all the density classes defined Ta-
ble 4. The observation times are given for both observation periods, in a field used for
winter wheat, managed using the fourth cropping system and where the studied weed
species is the only one present in the quadrat. For other configurations the observation
times will be different but the shape of the graph will not change. We can note that the
observation time increases exponentially with the density class value. This is due to the
density class definition.
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FIGURE 15 — Observation times for the density classes defined in Table 4 for both
observation periods. The observation time is given when a single weed species is present
into the quadrat, the field is used for winter wheat and managed with the fourth cropping
system.

The crop nature also impacts the observation time. Logically, the observation time

is shortest when there is no crop into the field. The sorting, in ascending order of
observation time, of the crop is the following : no crop, winter barley, winter wheat,
winter horse bean, winter rape, sorghum, spring barley and corn.
The presence of an additional weed species into the quadrat increases the observation
time by 20.19 seconds. The walking speed of the observer is estimated to 1.52 km/h™!
in the favorable observation period and to 1.26 km/h~! in the unfavorable observation
period.
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11.2 Model Selection

The selection model procedure was run independently for the 22 weeds species of the
dataset presented in Section 10.4.1. As expected, there is no universal model describing
weeds density repartition for all weeds species and/or quadrat sizes. The selected models
for the different quadrat sizes and species are presented in Tables 6 and 7. When the
selected model is not given, it corresponds to a technical limit of the simplex search
method [45] we used to maximize the pseudo-likelihood. In these cases the BIC scores
could not be calculated.

For all weeds species, the selected models change with quadrat size. This evolution
of the best model can, most of the time, be explained by the effect of the quadrat size
on the weed map. As illustrated in Figures 16 and 17, when the quadrat sizes increases
the weeds map is smoother as the information on each quadrat is averaged. In Figure 17
we can see that the proportion of the field in density class 0 decreases with the quadrat
size, replaced by density class 1 (or more) quadrats. As a consequence, models with
smooth spatial variation (i.e. models of type IT and IV) are progressively preferred. This
is true for all weed species. For quadrats of 0.36m? only 10% of the selected models
are of type IT or IV , over all weeds species. For the other quadrat sizes they are se-
lected in 78%, 100%, 100%, 85%, 90% and 95% of the cases. These results are given in
ascending order of quadrat size. For the rest of the paper, if no confusion is possible,
the results will always be given in ascending order of quadrat size. Indeed, as long as
the quadrat size increases the number of density classes present on the map decrease.
When only two density classes are present, models of type II and IV are respectively
equivalent to models of type I and ITI. This is illustrated in Figure 16. For quadrats
of 12.96m? and 17.64m? area, only density classes O and 1 are present. In both cases,
model M5 is selected which is equivalent to model M7. Thus for large quadrat sizes the
percentage of selected models with “real”’smooth spatial variation is lower. Models with
“real’smooth spatial variation are selected in 10%, 73%, 78%, 77%, 59% and 51% of the
cases. We can also note that models with external field and with or without smooth
spatial variation (i.e. models of type II or I) are practically equivalent when two density
classes are present in large proportion and a third one in small proportion (i.e. observed
in one or two quadrats). Here by practically equivalent we mean that probabilities of
each possible map are very closed. If we consider that this models are also equivalent
the number of selected models with “real”’smooth spatial variation again decrease. They
will be selected in 10%, 73%, 72%, 76%, 54%, 37% and 36% of the cases.

Finally when the quadrat size increases the weed maps are simpler to describe,
because there is less spatial variation and fewer density classes are present. Thus the
simplest models with no external field (i.e. models of type III and IV) are progressively
chosen. They are selected in 18%, 14%, 51%, 82%, 68%, 55%, 68% of the cases over all
weeds species. Finally we can notice that the proportion of selected models which are
non-isotropic increases slightly with the quadrat size. They are selected in 19%, 18%,
19%, 32%, 23%, 23%, 18% of the cases over all weeds species. This conclusion can vary
for different weeds species and it seems that no general interpretation can be made. For
example for fallopia convolvulus (see Figure 17), the selected models are alternatively
non-isotropic and isotropic.
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FIGURE 16 — Weed maps for chaenorrhinum minus (L.) lange and selected models for
all quadrat sizes.

Quadrat size [06]1.2] 18 | 24| 3 [ 36 | 4.2
Sonchus spp. M1 | M4 | M3 | M7 | M7
Thlaspi arvense L. M5 | M5 | M5* | M7 | M5 | M5* | M5*
Viola arvensis murray M1 | M3 | M3 | M1* | M1* | M1* | M5*
Valerianelle locusta (L.) laterrade | M5 | M1 | M1* | M5* | M1* | M1* | M1*

TABLE 6 — Selected models for the first four weeds species depending on quadrat size.
A star indicates that there are only two different density classes on the weed map, so
models M1 and M5 are respectively equivalent to models M3 and M?7.
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(g) M8, 17.64m?2

FI1GURE 17 — Weed maps for fallopia convolvulus L. and selected models for all quadrat
sizes.
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Quadrat size | 06] 1.2 | 1.8 | 24 | 3 | 36 | 42
Aethusa cynapium L. Parley M1 | M3 | M3 | M3 | M1 | M4 | M3
Alopecurus agrestis L. M1 | M3 | M7 | M7 | M7 | M7 | M7
Anagallis arvensis L. M4 | M3 | M7 | M8 | M6
Brassica napus L. spp. napus M1 | M4 | M4 | M8 | M8
Chaenorrhinum minus (L.) lange | M2 | M3 | M3 | M7 | M8 | Mb* | M5*
Cirsium arvense (L.) scopoli M3 | M3 | M7 | M7 | M7 | M7 | M7
Convolvulus arvensis L. M1 | M3 | M7 | M7 | M7 | M7 | M7
Euphorbia exigua L. M1 | M3 | M3 | M8 | M3 | M7 | M5
Fumaria officinalis L. M5 | M5* | M5* | M5* | M5* | M5* | M5*
Galium aparine L. MI | M3 | M3 | M3 | M3 | M4 | M3
Geranium spp. M5 | M5 | M5* | M5* | M5* | M5* | M5*
Lactuca serriola L. M1 | M1 | MT* | MT* | MT* | M1* | M1*
Silene latifolia poiret M1 | M1 | M7 | M7 | M5* | M5 | M5*
Myosotis arvensis (L.) hill M1 | M3 | M8 | M8 | M7 | M3 | M7
Picris hieracioides L. M2 | M4 | M4 | M7 | M3 | M4 | M8
Polygonum aviculare L. M1 | M4 | M4 | M8 | M8 | M8 | M8
Fallopia convolvulus L. M2 | M3 | M7 | M8 | M7 | M7 | M8
Sinapsis arvensis L. M1 | M3 | M7 | M8 | M8 | M8 | M8

TABLE 7 — Selected models for the last eighteen weeds species depending on quadrat
size. A star indicates that there are only two different density classes on the weed map,
so models M1 and M5 are respectively equivalent to models M3 and M7.
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11.3 Comparison of sampling strategies
11.3.1 Selected Weed for the comparison

In this section we present the density repartition models and weed maps used for
the comparison of the sampling strategies.

First the comparison was achieved for quadrat of 12.96m? area in order to be able

to use the cost model proposed in Section 10.2 and define the cost constraint in term
of available time for sampling. We recall that the cost model gives the observation time
for quadrat of 16m? area. Here we used smaller quadrats but we supposed that the
observation time would be similar.

The models we have chosen correspond to the best models for this quadrat size, for the
weeds species Lactuca serriola L., Galium aparine L., Picris hieracioides L., Chaenor-
rhinum minus (L.) lange, Cirsium arvense (L.) scopoli, and Sinapsis arvensis L.. These
weeds species were selected because (i) their density repartition maps exhibit a variety
of spatial patterns and (ii) the selected models are all different.

The models selected for each weed species and their parameters values are summarized
in Table 8. The complete maps used for parameters estimation and comparison are pre-
sented in Figure 18.

The weeds species Picris hieracioides L. and Sinapsis arvensis L. are present practically
in every quadrats of the field. On the contrary Lactuca serriola L. is rare and seems to
be distributed randomly over the field. No patches are observed. Cirsium arvense (L.)
scopoli is also rare but a patch of density class 3 is located on the bottom left part of the
field. For the maps of Galium aparine L. and Chaenorrhinum minus (L.) lange density
class 0 and 1 are present in close proportion. Sinapsis arvensis L. is the weed species
present in the larger proportion. A large patch of density class 3 is located in the centre
of the field.

Weed species ‘ Q ‘ Model ‘ Q ‘ B or (B, Bo)
Lactuca serriola L. {0,1} M1 (0;-1.66) 0.05
Galium aparine L. {0,1,2} M2 | (0,-0.03,-3.58) | (0.71,0.12)
Picris hieracioides L. {0,1,2} M4 | (0,0.89,-0.75) | (-0.47,4.01)
Chaenorrhinum minus (L.) lange {0,1} M5 0 0.378
Cirsium arvense (L.) scopoli {0,1,2,3} | M7 0 3.86
Sinapsis arvensis L. {0,1,2,3} | M8 0 (9.42,2.39)

TABLE 8 — Density class repartition models for the six weeds species used to compare
the sampling strategies

11.3.2 Time constraint

Simulated maps We first compare the two adaptive sampling strategies drspp,
0BP—maz and the random policy dgenq using a fixed sampling budget defined by the
available time for sampling. For all strategies we fix it to 2 hours and 30 minutes. This
is only the time available for quadrats observations, the moving time is not taken into
account (see Section 10.2). Using the cost model described in Section 10.2, the mov-
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ing times can also be computed a posteriori for all strategies. Results are presented in
Table 9. The moving time for the random strategy is around 35 minutes, it is logically
approximately constant for all models. For d,spp it is also around 35 minutes. We can
observed that for model M1 the strategy dpspp spends exactly 39 minutes for moving
on each of the 2000 simulated maps. On simulated map this strategy acts as a static
strategy. 0pp_maz generally requires fewer move into the field. The moving time varies
greatly among the models. For model M4 it is estimated to 18 minutes and 34 minutes
for model M1. Thus when the moving time is taking into account, the time needed to
apply these strategies is between 2H50 and 3HO05.

Model | drspp | 0BP-maz | ORand

M1 39 (0) | 34.2(6.3) | 34.8 (2.9)
(

0
M2 | 36.3(2.3) | 22.29 (2.8) | 35 (2.9)
M4 | 37.1(3) | 179 (3.2) | 35 (2.9)
M5 | 38 (0.5) 29 4(2.6) | 35(2.9)
M7 | 38.6(3) | 31(3.1) | 35(2.9)
M8 | 30 (2.8) | 25.9 (4.1) | 34.9 (2.9)

TABLE 9 — Mean moving times in minutes (over 2000 simulated maps) for the strategies
0rspPs 0BP—maz and dgang and all models. The standard deviation is given in brackets.

The average percentage of well reconstructed quadrats for the different models are
presented in Table 10.
First we can note that there are no big differences between the strategies values. The
largest absolute difference is 1.6%, observed for the model M8 between the random
policy and 0gp_maz. Apart for model M1 the largest difference between adaptive and
random strategies is about 1%. For model M1 all strategies have approximately the same
values.
Even if the absolute difference between the strategy value is small, the random strategy
is always dominated by the adaptive strategy dpp_mae. And except for model M8 it is
also the case with d;5pp.

We can also compare the average number of observations of all sampling strategies.
Results are presented in Table 11. As expected the average number of observations is
stable for the random strategy. We can see that d,spp is the sampling strategy which
generally has the highest number of observations. This is also logical since the other

Model | dpspp | 0BP—mas | Orand
M1 89.2% 89% 89%
M2 69.1% | 68.8% | 67.6%
M4 81.5% | 82.2% | 80.9%
M5 67.9% | 67.8% | 66.8%
M7 |65.5% | 64.5% | 64.4%
M8 77.5% 80% 78.4%

TABLE 10 — Average percentage of well reconstructed quadrats computed on 2000 sim-
ulated maps for sampling strategies d.spp, 0BP—mar and Orand-
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Weed species ‘ 5LSDP ‘ 6Bmeax ‘ 5Rand
Lactuca serriola L. 40 (0) | 35.3 (0.6) | 37.1 (0.8)
Galium aparine L. 38.7 (0.6) | 36.8 (0.6) | 37.1 (0.8)
Picris hieracioides L. 36.2 (0.9) | 34.1 (0.6) | 37.1 (0.8)
Chaenorrhinum minus (L.) lange | 38.8 (0.5) | 36.5 (0.7) | 37.1 (0.8)
Cirsium arvense (L.) scopoli 37.3 (0.9) | 35.4 (0.8) | 37.1 (0.8)
Sinapsis arvensis L. 36.9 (0.9) | 36.2 (0.8) | 37.1 (0.8)

TABLE 11 — Average number of observations (over 2000 simulated maps) for the strate-
gies 0rspp, 0BP—maz and dgang and all models. The standard deviation is given in brack-
ets.

sampling strategies does not take into account the possible cost of the future observa-
tions. This is illustrated in Figure 19. The strategy d.spp was applied on the real map
of Chaenorrhinum minus (L.) lange and based on the corresponding best model (see
Table 8). Observation was stopped when the remaining time for sampling was about
30 minutes. For this budget, the next quadrat to observe is located line 5 and row 10.
This quadrat is marked with a black cross on Figure 19.a while the quadrats observed
previously are marked with gray crosses. Then we voluntarily reduced the remaining
budget to 15 minutes. For this new budget, the next quadrat to observe is located line
1 and row 1, see Figure 19.b. For the other strategies, the next quadrat to observe will
be the same whatever the time remaining for sampling.

(a) (b)

FIGURE 19 — Next observed quadrat with sampling strategy d,spp when the remaining
time for sampling is about 30 minutes in case (a) and 15 minutes in case (b). Previously
observed quadrats are marked with gray crosses and the next quadrat to observe by a
black cross. In the background is the reconstructed map. The strategy and the recon-
structed map are computed using model M5 with parameters fitted on the observed map
of Chaenorrhinum minus (L.) lange. The model parameters are presented in Table 8.

Observed maps We now compare these strategies on the observed weed maps. The
number of well reconstructed quadrats for all weeds species and density classes are pre-
sented in Table 12. The observed maps, locations of observations and reconstructed
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maps for all sampling strategies are presented in Figures 21 and 22.

First we can observe that the absolute difference between the percentage of well re-
constructed quadrats of the adaptive strategies and the random strategy is higher than
with comparison using simulated maps. The largest difference is now of 10.7%, between
O0rspp and dgp_mae for the Sinapsis arvensis L. map.

Generally the relative performances of the three strategies are the same that with sim-
ulated maps. This is not true for Sinapsis arvensis L. where the order of performance
is reversed.

For the Lactuca serriola L. map the three strategies give similar results, even if for the
random strategy WRI1 is a beat higher. We can note that using model M1 with pa-
rameters described in Table 8, the reconstruction method is very simple. It consists in
reconstructing the quadrats where no observations are available at the density class 0.
Then for such weeds repartitions, the simplest strategy drunqg can be preferred and only
the quadrats where the weed is observed have to be stored.

For the Galium aparine L. map, adaptive strategies become more efficient. We can see
that the left part of the map was more explored by the adaptive strategies. This is
beneficial since the weed species is more present in this area. And both adaptive strate-
gies allow to find approximately correct spatial patterns in this area. For dgp_ 4, when
a quadrat is observed in density class 1, the sampling strategy consists in finding the
boundaries of patches of density 1. For dpspp this is similar but softened. This strategy
also tries to keep some time to explore other areas of the map. This explains why d.spp
leads to higher performance. For the random strategy, the reconstructed map looks really
different from the observed map. Unlike for the adaptive strategies the boundaries be-
tween quadrats in density classes 0 and 1 are never estimated. So the reconstructed map
over estimates the number of quadrats in density class 1 around an observed quadrat at
this density class.

The same conclusion generally holds for the other weeds species. For Picris hieracioides
L. 6p_mae allows the largest number of well reconstructed quadrats. For this strategy
the observed quadrats are grouped in different areas of the field, which increases WR0
and WRI1.

For Chaenorrhinum minus (L.) lange the reconstructed maps of both adaptive strate-
gies precisely located the regions where Chaenorrhinum minus (L.) lange is present,
even though these regions are better delimited by d.spp. The better performance of the
adaptive strategy is due to a larger number of well reconstructed quadrats in density
class 1. WRO is approximately constant for all sampling strategies.

For Cirsium arvense (L.) scopoli only the two adaptive strategies recover the patch of
density class 3. Unlike the other maps where a large proportion of quadrats are in density
class 0 (e.g. Lactuca serriola L., Galium aparine L., Chaenorrhinum minus (L.) lange),
WRO is surprisingly small (about 55% ). The main reason is the biased behaviour of
model M7. In this case this simple model exhibits its limit for reconstruction. We saw in
Section 10.1.3 that density classes 1 and 2 are the most probable when no observation
are available. The number of quadrats in density class 1 is thus largely overestimated
whatever the strategy. For comparison, we ran the same reconstruction experiment with
model M1 (a = (0,—0.327, —1.54, —1.07) and § = 0.68) instead of model M7. We also
computed the three strategies with model M1. WR is respectively equal to 82.25%,
85.27% and 76.92% for dr.spp, 0BP—mazr and Oranq. All strategies give better results.
This appears logical since model M1 and more generally model with external field (i.e.



66 REsuLTS

of type I and II), include informations about the proportions of the different density
classes within the field. The reconstructed maps and the locations of observations are
presented Figure 20.

In certain cases type IV models also perform well, like for Sinapsis arvensis L. where
drspp leads to the largest number of well reconstructed quadrats. In addition this is the
second larger number of well reconstructed quadrats over all weeds species. dranq is the
second best strategy and the general spatial pattern of the map is respected for these
two strategies. Surprisingly dpp_maz 18 the worst strategy. It is the only strategy which
does not find the patch of density class 3.

Cirsium arvense (L.) scopoli with model M1

5

(a) Observed
Map

(b) drspp (C) 0BP—maz (d) ORand

FIGURE 20 — Location of observations and reconstructed map when following é.5pp,
OBP—maz OT Opang O the observed map of Cirsium arvense (L.) scopoli. The adap-
tive strategies and the reconstructed map are computed using model M1 with a =
(0,—-0.327,—1.54, —1.07) and 5 = 0.68.
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Lactuca serriola L.
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FIGURE 21 — Locations of observations (quadrats with crosses) and reconstructed maps
when following drspp, 0BP—_maz OF Ogang ON the observed map of the first three selected
weed species. The cost constraint is expressed in terms of time.
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Cirsium arvense (L.) scopoli
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Sinapsis arvensis L.
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FIGURE 22 — Locations of observations (quadrats with crosses) and reconstructed maps
when following d;spp, 0BP—maz OF ORana ON the observed map of the three last selected
weed species. The cost constraint is expressed in terms of time.
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11.3.3 Fixed number of observations

In this section we compare the three strategies drspp, 0BP—maz and dreng With 8
static strategies named, dreg,, ORegos ORegss ORegss 07, Owrs Oy, Ostar Presented in Figure
12. The budget constraint is now expressed in terms of possible number of observations,
which is fixed to 23 (about 14% of the quadrats are observed).

The percentage of well reconstructed quadrats are presented in Table 13 for all strategies.
The locations of observations and the reconstructed maps of the two adaptive and best
static strategies are presented in Figures 24 and 25. The percentage of well reconstructed
quadrats in all density classes are presented in Table 14 for these strategies.

In Figure 23 we presented the box-plot of the absolute differences between the percentage
of well reconstructed quadrats of the best strategy and that of all other strategies. We
can note that dge is generally the best strategy to follow. drey, and drspp also provide
good results. Unlike the other static strategies, dgtqr and dpeg, realize a good compromise
between exploration of the field, with distant observed quadrats, and delimitation of the
boundaries between patches of different density classes, with closed observed quadrats.
The adaptive strategies provide good results only for the three first weeds species, when
models with external field are used.

N +
30 B
251 B

201 i

e

FIGURE 23 — Box-plot of the differences between the percentage of well reconstructed
quadrats of the best strategy and that of each strategy, for all weed species.

The advantage of the adaptive strategies is not demonstrated in this case. dgsqr
provides good performances over all weeds species. Except for Chaenorrhinum minus
(L.) lange and Cirsium arvense (L.) scopoli the strategy dpspp also provides good
results, close to dsier and often better. We can expect that the use of models with
external field can improve the efficiency of dpspp for Chaenorrhinum minus (L.) lange
and Cirsium arvense (L.) scopoli. But this will certainly also improves the results of
dstar and the other strategies.

We can also note that the efficiency of the other static strategies vary greatly among
weeds maps. dpeg, is in general the best regular sampling strategy. The other strategies
ORand> 0z, Ow, and Jdy, seem to be less appropriate.

For the best sampling strategies, the general spatial pattern of the observed map is
globaly respected. For the map of Lactuca serriola L. and Picris hieracioides L., this
is easy because a density class dominate the other. This information is carried by the
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external field o, making the extrapolation method efficient °.

For the map of Sinapsis arvensis L. model M8 particularly well fitted the observed map
and thus reconstruction was good. For the other maps the task is more complex and the
reconstructed maps generally look different from the observed maps for all strategies.

‘ 6LS DP 6B P—maz 5Rand 5Regl 5Regg 6Reg3

L. serriola L. 87.6 87.6 87.6 86.4 88.2 87.6
G. aparine L. 72.2 65.1 63.3 69.2 66.9 65.7
P. hieracioides L. 81.1 81.6 787 Ti.> 78T 8.7
C. minus (L.) lange 63.9 66.9 68.6 704 T74.5 728
C. arvense (L.) scopoli | 45 34.3 485 74 66.3 66.3
S. arvensis L. 72.8 67.4 65.1 69.8 76.3 68.6
5 Regy 55’ tar 5 A 5W1 5W2
L. serriola L. 88.2 87.6 87.6 87 88.2
G. aparine L. 66.3 69.2 61.5 62.1 59.8
P. hieracioides L. 78.1 79.9 80.5 77.5 787
C. minus (L.) lange 72.8 72.8 68 68 68
C. arvense (L.) scopoli | 56.8 75.7 58  55.6  44.4
S. arvensis L. 71.6 72.2 71 55.6 728

TABLE 13 — Percentage of well reconstructed quadrats on observed maps, when the
number of observations is fixed to 23 for all strategies.

15. We can expect that if type IIT or IV models are used instead, the efficiency of all the sampling
strategies will decrease.
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Lactuca serriola L.
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FIGURE 24 — Locations of observations and reconstructed maps when following d.spp,
0BpP_maz and the best static strategy on the observed maps of the first three selected
weeds species. All strategies were allowed 23 observations.
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Cirsium arvense (L.) scopoli

Observed
1(\2211) o (b) drspp (¢) dBP—max (d) Sstar

Sinapsis arvensis L.

Ob d
Vg e ©) dusor (8) 95 -mas (1) ey

Chaenorrhinum minus (L.) lange

i Ob d .
1(\2)&[) serve (i) drspp (k) 6BP—max (1) ORreg,

O m1 m2 w3

FIGURE 25 — Locations of observations and reconstructed maps when following d.spp,
0BpP—_maz and the best static strategy on the observed maps of the three last selected
weeds species. All strategies were allowed 23 observations.
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11.3.4 When no data are available to select the model

In previous experiments, a best model was selected for each weed species according
to the corresponding observed maps and parameters were fitted on this maps. In prac-
tice, when no data are available to estimate and select a best model, methods have to
be found in order to select a density class repartition model and fix the values of the
model parameters. This is what we will focus on in this section.

We have seen in previous sections that the use of an external field can increases
the reconstructed map quality since it indicates which density class is present in largest
proportion. For quadrat size 12.96m?, model M1 is the most often selected model among
models with external field. So, we propose to use model M1 whatever the studied weed
species.

For parameters estimation, the most common method consists in fitting the parameters
using incomplete observations. In practice, we have notice that this can leads to wrong
models, highly different from those estimated from complete maps. In addition, when
initial observations are needed for parameters estimation, less time is available for sam-
pling in order to optimize the reconstructed map quality. Here we propose to fix the
parameters values using the following rules.

First, 3 is fixed to 0.58, which is the average value of this parameter for all weeds species
for model M1.

The value of the external field « is more complicated to fix without any information
on the weed species repartition. We propose to use the two following informations :
(i) which are the different density classes present within the field and (ii) which is the
density class present in largest proportion. Then if K is the highest density class present
within the field and [ € {0,..., K}, the density class present in largest proportion, the
external field, a = (ao, ..., ak), is equal to :

Vk e {0,..., K}, ak:{o itk =1
0.2 ifk#I
Thus, in the non explored areas of the field, quadrats are reconstructed to the density
class which appears to be the most frequently present. And when a quadrat is observed
in density class k € {0,..., K}, the influence on the neighboring quadrats is averaged
among weeds species.

As in Section 11.3.3 we compare the two adaptive strategies, the random strategy
and the eights static strategies only on observed maps. Results are presented in Table
15.

First we can note that dpp_q. provides good results for all weeds species. It leads
to higher performances in half of the case. Surprisingly, this is not the case for dpspp,
which in general leads to poor results, like the static strategies.

We can also note that for Cirsium arvense (L.) scopoli, all strategies leads to better
results than with the selected model and the estimated parameters on the observed
map. For the other weeds species, all strategies generally leads to lower performances.
In addition, we can see in Figures 26 and 27 that the reconstructed map of the adaptive
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‘ 5LSDP 5BP7maac 5Rand 6Reg1 5R692 5R693

L. serriola L. 87.6 88.2 88.7 86.4 87 87.6
G. aparine L. 62.7 64.5 58.6  63.3 63.3 63.3
P. hieracioides L. 79.3 78.7 745 763 769 775
C. minus (L.) lange 68.6 70.4 71.6 722 698 73.4
C. arvense (L.) scopoli | 81.6 83.4 79.3 775 751 78
S. arvensis L. 66.3 76.3 674 71 751 65.1
ORegs  Ostar 0z Ow,  Ow,
L. serriola L. 88.2 86.4 86.4 87 876
G. aparine L. 59.8 60.9 62.7 59.8 55
P. hieracioides L. 78.1 74 745 781 76.3
C. minus (L.) lange 71 71 69.2 728 716
C. arvense (L.) scopoli | 72.8 76.9 80.4 734 722
S. arvensis L. 66.9 68.6 70.4 46.7 63.9

TABLE 15 — Percentage of well reconstructed quadrats on the observed maps, when the
number of observations is fixed to 23 for all strategies. Adaptive sampling strategies and
the extrapolation method used model M1 with parameters fixed with empirical rules.

strategies look really different from the observed maps.
When the parameters are not estimated form a complete map, a larger number of ob-
servations is needed to find the correct spatial pattern of the true map.

Finally, we also try to estimate the parameters from the observed quadrats. After
applying each strategy the parameters of model M1 were fitted using variational version
of the EM algorithm [30] and the new model is used to compute the reconstructed maps.
This decrease the performances of all strategies.
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Lactuca serriola L.
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FIGURE 26 — Locations of observations and reconstructed map when following d.spp,
0BP_maz and the best static strategy on the observed map of the three first selected
weed species. All strategies were allowed 23 observations. Model M1 is used for the
extrapolation method and computation of the adaptive strategies. Parameters are fixed
by empirical rules.
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Cirsium arvense (L.) scopoli

(a) Observed

Map (b) drspp (¢) dBP—max

Sinapsis arvensis L.

(d) Observed
Map
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FIGURE 27 — Locations of observations and reconstructed map when following é,spp,
0BP—_maz ON the observed map of the three last selected weed species.. All strategies were
allowed 23 observations. Model M1 is used for the extrapolation method and computa-
tion of the adaptive strategies. Parameters are fixed by empirical rules.
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12 Conclusion

The aim of this study was to discuss and propose improvements of current sampling
strategies for weed mapping at the field scale. In order to meet this objectives, we have
tackled the three following important questions : (i) which weeds sampling cost model,
(ii) which models of spatial distribution of weeds density classes and (iii) which method
for the design of sampling strategies.

We have proposed to base the weeds sampling cost model on the time needed to ap-
ply a sampling strategy. This model represents the time needed to observe one quadrat,
plus the time needed to move between quadrats within the field, as a regression involving
factors defined as relevant by experts. We have used this model in order to constrain
the number of observations a sampling strategy can make. In order to estimate the pa-
rameters of this cost model, we have used a data set collected from various sampling
strategies under different conditions (i.e. crop type, cropping system, quantity and di-
versity of weeds into the observed quadrats, crop coverage). Now, the model still has to
be validated by dedicated experiments. For instance, by preliminary analysis it seems
that the model overestimates the time needed to observe quadrats when the weeds quan-
tity and diversity are high and underestimates it when they are low. However this cost
model provides reasonable estimated times and its precision is enough for our purpose
of sampling strategies comparison. Having a reliable cost model can also be helpful to
compute bounds on the time needed to apply a sampling strategy before actually ap-
plying it, which can improve the scheduling of sampling strategies on multiple fields.

We have also proposed several models of spatial distributions of weeds density classes.
All of them are based on the Markov random field framework, commonly used for
quantitative variables. The models we have proposed consider several features : (i)
isotropy/anisotropy, (i) smooth/abrupt spatial variation and (iii) presence/absence of
an external field. We have performed a model selection study over the eight proposed
models using the BIC score. The selection was performed using data on the spatial repar-
tition of 22 different weeds species and we have considered 7 different quadrat sizes. We
have shown that, among the proposed models, no one model dominates the others. How-
ever a general trend can be highlighted, considering quadrat size : When quadrat size
increases, the information is “averaged” and thus, spatial variation of weeds density is
smoother and the number of density classes decreases. As a consequence, models with
smooth spatial variations are progressively chosen more often. Furthermore the weeds
maps are simpler to describe, because there is less spatial variation and fewer density
classes are present. Thus the simplest models with no external field are progressively
chosen. However the objective of map reconstruction is not reflected by the BIC score
and the use of an external field brings valuable information when reconstructing maps
using few observations. We have notice that the use of such models generally increases
the quality of reconstructed maps. Once a model has been chosen, the difficulty is that
for practical applications the model parameters have to be estimated using few obser-
vations. We have noticde that this leads to poor model quality. So we recommended (i)
to preferably use a model with external field and (ii) to apply a set of empirical rules
in order to estimate the model parameters. We obtained good results using these two
recommendations on real weed sampling and mapping problems.
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Finally, we have proposed a mathematical formulation of the weeds sampling prob-
lem (using the above cost and spatial repartition models) and we have formulated it as
a complex combinatorial optimization problem. In order to solve this problem and to
design adaptive sampling strategies, we have considered two different approximate reso-
lution methods from literature : LSDP and BP-max. We have compared these strategies
with more classical static sampling strategies on two sampling problems, where the cost
constraint is defined either in terms of available time for sampling or in terms of allowed
number of observations. We have shown that these strategies offer different compromises
between field exploration and patch boundary detection sampling efforts : the strategy
drspp realizes more exploration than the strategy dpp_,mq. in general. The interest of
using adaptive strategies is demonstrated when time constraints are considered, even
though for some “pathological” problems where spatial correlations are weak, a sim-
ple random strategy is as (in)efficient as any more complex strategy. For the second
sampling problem (fixed number of observations), adaptive sampling strategies did not
clearly dominate static ones. In some cases, the static sampling strategies dgsqr and d,eg2
gave better results than strategies d,spp and dgp_mae in terms of percentage of well
reconstructed quadrats. Static strategies appear especially efficient when models with-
out external field are used. The two mentioned static strategies were able to provide a
satisfying compromise between field exploration and patch boundary detection, unlike
the other static strategies. However, the maps obtained when applying static strategies
do not, in general, reflect the spatial pattern of the true map. Even though the best
static strategy leads to acceptable spatial pattern, this best static strategy is not the
same for all studied weeds species. These strategies are penalized by the fact that they
cannot focus sampling on areas with high weeds density variation, which is detrimen-
tal for spatial structure analysis. On the contrary, adaptive strategies generally focus on
these boundary areas when density variations are detected, thus helping to improve map
quality for all weeds species. Finally, when applying all strategies in field condition (i.e.
no data to estimate a model) by using our above-mentioned recommendations to build
a model, we showed that dgp_q. gives better results, than the other strategies. Follow-
ing our results, a general sampling scheme can be proposed. First the observer makes a
walk over the field (exploration) and acquires observations in order to find rough bound-
aries of weeds patches (adaptive patch boundaries detection). This first survey can be
achieved using the sampling strategy d.s5pp, which allocates most efforts for exploration.
Part of this sampling effort should also be devoted to determining which density class
is the most present, in order to fix the external field value. Then the strategy dpp_mas
can be used for a second survey for patch boundaries detection within the areas of high
density variation.

Building optimal sampling strategies certainly consists in finding the optimal com-
promise between field exploration and patch boundaries detection according to observa-
tions values. This can be an other criterion to optimize in future works. Besides, several
questions remain open when dealing with weed sampling, like for instance sampling for
mapping of multiple weeds species or mapping at the landscape scale.
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Conclusion générale et perspectives

Dans ce travail nous avons tout d’abord abordé, dans un cadre purement théorique,
le probléme d’échantillonnage d’un processus spatial a états discrets dans un but de
cartographie. A partir de cette étude, des outils génériques permettant la conception
de politiques d’échantillonnage adaptatives ont été proposés. L’utilisation de ces outils
dans le cadre de I’échantillonnage d’'une espéce adventice a ensuite nécessité un travail
de modélisation des corrélations spatiales et du coiit d’échantillonnage d’une espéce ad-
ventice. Dans cette conclusion, les résultats obtenus seront d’abord résumeés et discutés.
Ensuite, quelques pistes de réflexion laissées ouvertes par ce travail seront présentées.

Résumé des résultats obtenus et discussions

Tout d’abord, le probléme d’échantillonnage considéré a été formulé comme un prob-
léme d’optimisation. Pour le résoudre de maniére approchée, le probléme du choix d’une
politique d’échantillonnage a été modélisé a I'aide des PDM a horizon fini, transformant
ainsi la résolution du probléme initial en celui de la résolution d'un PDM. Le PDM pro-
posé, de taille exponentielle en nombre de variables a reconstruire, ne peut également
pas étre résolu de maniére exacte. Pour le résoudre, nous avons proposé l'algorithme
LSDP combinant les principes de 'apprentissage par renforcement en mode batch et
de la programmation dynamique approchée. Cet algorithme peut étre utilisé pour la
résolution de tout PDM & horizon fini, mais nécessite un calcul rapide des probabilités
de transition du PDM étudié.
Cet algorithme a été validé sur plusieurs expérimentations dans le cadre de la résolution
du probléme d’échantillonnage spatial.
Une premiére validation a été effectuée sur des exemples jouets et lorsque le modéle de
champ de Markov est connu. Ici, la politique d;,5pp domine toutes les politiques sous-
optimales testées, excepté dans un seul cas, ou 'algorithme TD(\) fournit une politique
de meilleure qualité. Pour des coiits d’échantillonnage homogénes, les politiques dpspp
et 0pp_mae fournissent des résultats similaires. Toutefois, la politique d; spp se démar-
que plus largement lorsque le nombre d’observations est faible. En revanche, la politique
Orspr, calculée a partir d’un algorithme d’apprentissage par renforcement classique,
fournit des résultats arbitrairement mauvais. Lorsque les cotits d’observations sont in-
homogeénes, la supériorité de la politique 0 spp augmente.
Une deuxiéme validation a été effectuée sur des cartes réelles de répartition spatiale
d’espéces adventices. Cette fois les modéles de champ de Markov ont été appris soit
sur la carte compléte, soit a partir de régles expertes. Les performances des politiques
d’échantillonnage testées sont tres variables, aussi bien les politiques utilisées classique-
ment en échantillonnage d’une espéce adventice que drspp €t dpp_mae- Par conséquent,
aucune politique d’échantillonnage n’est universellement meilleure. Toutefois, la poli-
tique drspp permet, sur la majorité des exemples, de reconstruire des cartes de bonnes
qualités. Lorsque le modele de champ de Markov est construit en suivant les régles ex-
pertes, la politique dgp_q, fournit de bons résultats sur 'ensemble des cas testés.
Enfin, lors d'une étude récente [74|, le probléme d’échantillonnage dans les Markov
Logic Networks (MLN, [27]) a été abordé. Contrairement aux expérimentations précé-
dentes, les distributions utilisées ne sont plus stationnaires et les graphes représentant
les corrélations entre les variables sont non réguliers. Dans ce cas les performances de la
politique dspp sont significativement meilleures que celles de 'heuristique dgp_maz-
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Au-dela de ces résultats prometteurs, il faut étre conscient que les performances de
I’algorithme LSDP sont tributaires de certaines contraintes. En effet, sur 'exemple de
I’échantillonnage, 1’algorithme LSDP fournit de bons résultats lorsque le modéle de cor-
rélation spatiale est connu ou estimé sur des données complétes. En revanche lorsque
le modéle utilisé est de qualité moindre et que le nombre d’observations est faible, I’-
efficacité de ’algorithme LSDP est discutable. Ces conclusions sont sirement dues au
fait que cet algorithme repose sur I'apprentissage par renforcement. En effet, un des
principes de 'algorithme LSDP, et de tout algorithme d’apprentissage par renforcement,
est de simuler des réalisations du phénoméne étudié a partir du modeéle de corrélations
spatiales, puis “d’apprendre” sur ces réalisations ce que peut étre une bonne politique
d’échantillonnage. Ainsi, sur des cas réels, ot le phénoméne n’est pas une réalisation d’un
modeéle connu, I'algorithme LSDP peut étre peu performant dés lors que les réalisations
du modéle sur lesquelles I'apprentissage a été effectué sont différentes du phénomeéne réel.
Cette discussion reste vraie pour le modéle de coiit : si celui-ci est fiable, 'apprentissage
sera bénéfique. Dans les comparaisons effectuées, lorsque le cotit d’échantillonnage varie
en fonction de la position de la variable et/ou de sa valeur, la politique d spp observe
un plus grand nombre de variables que toutes les autres politiques d’échantillonnage
testées, ce qui permet d’augmenter ses performances.

Pour le PDM correspondant au probléme d’échantillonnage spatial, le calcul des prob-
abilités de transition correspond a un calcul de probabilités conditionnelles de champ
de Markov, tout comme les features que nous avons définies. Afin d’effectuer ce calcul
rapidement, nous avons proposé une approximation ad-hoc de ces probabilités condi-
tionnelles, limitant vraisemblablement les performances de 1’algorithme.

Pour appliquer 'algorithme LSDP au probléme d’échantillonnage d’une espéce ad-
ventice, un travail conséquent d’analyse des caractéristiques des corrélations spatiales et
du cott d’échantillonnage d’une espéce adventice (enquétes, tests de permutation) a été
réalisé avec des écologues et des techniciens familiers avec I’échantillonnage des espéces
adventices. Ce travail n’a pas été détaillé ici, mais a permis la conception des modéles
présentés dans cette thése. Tout d’abord, le cott d’échantillonnage adventice a été défini
comie le temps nécessaire a la réalisation d’'une politique d’échantillonnage. Un modéle
a été proposé pour calculer ce temps, en fonction des caractéristiques de la parcelle.
Ensuite, différents modéles de corrélation spatiale d’une espéce adventice ont été pro-
posés. A l'aide d’une approximation du score BIC, un meilleur modéle a été sélectionné
pour plusieurs espéces adventices et différentes échelles spatiales. Pour chaque échelle
spatiale, nous avons montré que parmi les modéles proposés, aucun n’était universelle-
ment meilleur pour toutes les espéces adventices. Toutefois, nous avons également montré
que pour 'objectif de reconstruction de cartes a partir d’'un nombre limité d’observa-
tions, les modéles de Potts avec champ externe fournissaient, en général, les meilleurs
résultats pour ’ensemble des espéces. Des régles expertes ont ensuite été proposées pour
fixer la valeur des paramétres de ce modéle dans des cas réels, sur la base d’une pre-
miére exploration de la parcelle. Ces régles répondent aux contraintes rencontrées en
pratique : 'exploration initiale peut étre rapide car elle ne nécessite aucun relevé de
densité et aucun calcul n’est nécessaire pour fixer la valeur des paramétres.

Différentes politiques d’échantillonnage ont été testées sur des cartes réelles de réparti-
tion spatiale d’espéces adventices. Les politiques ayant été testées sont les deux politiques
adaptatives drspp et 0Bp_maz, la politique aléatoire ainsi que huit politiques d’échantil-
lonnage statiques. Comme nous ’avons énoncé plus haut dans cette conclusion, aucune



11.3 - Comparison of sampling strategies 83

politique d’échantillonnage n’est universellement meilleure. Nous avons également mon-
tré que I’échantillonnage adaptatif permettait, la plupart du temps, de reconstruire des
cartes respectant ’apparence générale de la carte réelle. Enfin, & partir des quelques
exemples que nous avons traités, la politique d’échantillonnage dgp_qa. semble la plus
adaptée pour des applications réelles, la politique d;,5pp restant soumise aux contraintes
évoquées plus haut.

Perspectives

Tout d’abord, ’algorithme LSDP pourrait étre amélioré au niveau de la construction
du batch. Pour U'instant, seule une méthode trés classique (i.e. e-greedy) est utilisée. La
construction du batch pourrait s’appuyer sur des méthodes plus élaborées, en utilisant
par exemple le formalisme proposé dans [68].
Ensuite, pour la résolution du probléme d’échantillonnage, 1’algorithme LSDP pour-
rait étre appliqué en utilisant d’autres approximations des probabilités de transition
du PDM. Nous rappelons que cela revient en fait a4 calculer de maniére approchée des
probabilités marginales d’'un champ de Markov. L’utilisation d’autres méthodes d’ap-
proximation pourrait améliorer 'approximation proposée dans ce travail, en s’inspirant
par exemple de [1] et ainsi améliorer les performances de LSDP.

Il serait également intéressant de comparer les résultats de I'algorithme LSDP avec
ceux des algorithmes d’apprentissage par renforcement “en-ligne”; de type Monte-Carlo
Tree Search [40]. On peut s’attendre a ce que ces algorithmes fournissent des politiques
d’échantillonnage de meilleure qualité que les politiques présentées dans ce manuscrit.
De plus, ils permettraient de mieux situer les politiques d.spp et dpp_maez par rapport
a la politique optimale sur de grands problémes.

Les travaux réalisés durant cette thése pourraient également s’étendre naturellement
au cas des champs de Markov cachés [31], permettant de prendre en compte d’éventuelles
erreurs de mesure rencontrées dans certaines applications.

Comme nous l'avons déja énoncé plus haut, l'algorithme LSDP a été appliqué au
probléme d’échantillonnage dans les MLN. Lors d’une étude préliminaire, la politique
d’échantillonnage drspp a permis d’améliorer significativement I'heuristique dgp_maz-
Dans ce cas les distributions utilisées sont non-stationnaires et le graphe décrivant les
corrélations spatiales entre les variables est non régulier. D’autres tests avec des distri-
butions semblables pourraient étre effectués afin de montrer, si c’est le cas, 'efficacité
de 'algorithme LSDP sur ce type de probléme. Plus généralement, cela démontre que le
travail réalisé durant cette thése peut s’appliquer au cas de I’échantillonnage non spatial.

Pour la modélisation de la répartition spatiale d’une espéce adventice, les modeéles de
champs de Markov proposés pourraient étre comparés aux modeéles de Cox Log-Gaussien
[12]. Ces modéles, issus de la géostatistique, sont plus classiques pour la modélisation
de la répartition spatiale d'une espéce adventice. Ils permettent de considérer des ob-
servations continues ou discrétes (e.g. classe de densité).

D’autre part, dans ce travail, les modéles proposés ont été comparés grace a une approx-
imation du score BIC qui ne prend pas en compte 'objectif de cartographie. Prendre
en compte cet objectif permettrait de sélectionner les modéles les plus pertinents pour
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I’échantillonnage. Pour ceci, d’autres critéres doivent étre proposés, en s’inspirant par
exemple du critére ICL [9].

Enfin, le modéle de coiit d’échantillonnage proposé doit étre validé par une expérimen-
tation terrain.

D’autres questions restent ouvertes, comme la modélisation des interactions entre les
espéces adventices ou I’échantillonnage a ’échelle de la mosaique paysagére.
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Appendice

Proof of Proposition 2 :

First, let us define h' = ((0,0)) and V¢ = 2, ... H, ht = (A, 2 41), ..., (A7 2 40-1)).
From any history Af, a unique MDP state s'(h!) can be defined as s'(h') = (0,0) and
Vi =2,..,H, s'(ht) = ( ui—h Ak, xUEﬁ“)' Then, we define the following transforma-
tion ¢ from the set of MDP policies to the set of OASMREF policies. For 7, a MDP

policy, 0 = ¢(m) is defined as : for any ¢ = 1... H and any reachable trajectory A’
dt(h') = wt(s'(hY)).

(i) We first show that V™((0,0),1) = V(¢(w)). Indeed, we recall that

H+1

VE((0,0),1) = B[ r'|s"=(0,0)]

= PG st = (0,0)] D (e () + (s,

s2,... sH+1 t=1

where P(s%, ..., s | 7 s!) is the probability of the state trajectory (s?,...,sfT1),
starting from s* and following policy 7. Note that for any “feasible” MDP state trajectory
st ..., st we can define a unique history A7+ = (A, z01),..., (A" 241)), where

At is the set of vertices involved in s**! and not in s*. Then :

P(s .. i |1 sl) = 0 if state traje§tory not reachable,
P(x4 |) otherwise.

with A = UZ A" In addition, we have that : rf(w(s!)) = 0 and rZi(sf*) =
> epmaxy co {P(z, | z4)}. Finally

VE(@.0).1) = > IF’(J;A|)[—aZan+Zggé{]P’(xr|xA)}

hH+1€T¢(7T) t=1 ge At reR
= Y Plea)U(Az,)

hH+1€T¢(7r>
= V(o(m)).

(1) Then, we prove by backwards induction that an optimal policy §* for the
OASMREF problem can be defined, which prescribes successive samples independently
of the order of past observations. Let us consider 6** first.

SH((AY 2 1), ..., (AHY 2 ana)) = argrr}l%XZP(mAH]:I:Al, cony a1 U(A x4),

CCAH

where A = A'U...U A", Both P(xu|za1,...,245-1) and U(A, x4) do not depend on
the order of observations x 41,...,241n-1. Thus, 8 does not depend on the order of its
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arguments.
Now, at time h = H — 1 :

S (AY 20, .. (A2 g yn0)) = arg max
T AH-1

ZP($AH71,J]AH|JZA1, R ,.'L'AH7275*’H(. . ))U(A,J}A)

LBAH
Since 0% does not depend on the order of its arguments, 6%~ is also independent of
the order of its arguments x 41, ..., m-2.
Following the same reasoning for h = H — 2,...,1, we prove that an optimal policy

0* can be computed, which prescribes samples independently of past observations. This
result implies that we can limit the search for optimal policies of the OASMRF problem
to policies d prescribing actions which do not depend on the order of observations.

(47i) Let us now consider a given policy ¢ of the OASMRF in our limited search space.
We can derive a policy 7 of the corresponding MDP model. The construction is also by
induction : 7'((0,0)) = &', and for t = 2 to H and a reachable state s’ we define a his-
tory ((AY,za1),..., (A" z4-1)) of size t-1, where the order in which observations are
made are choosen arbitrarily, and we set 7(s") = §/((AY, xa1),..., (A1 2 40-1)). With
this procedure, 7 is defined only for states s’ reachable from policy . For other states,
the policy is set to an arbitrary decision (the value of 7 will not depend on this choice
since the corresponding state will never be reached). Let us call p this transformation
from a OASMRF policy to a MDP policy. Following the same reasoning as in (7), we
can easily show that V*©)((0,0),1) = V (¥).

(iv) Finally, let 7* be the optimal policy of the MDP model of the OASMRF problem :
V™ (s,t) > V™(s,t) Vst
Therefore the policy ¢(7*) is optimal for the OASMRF problem. Indeed, let § be a given

policy of the OASMRF problem (with the property of independence on the observations
order) and p(9) the corresponding policy of the MDP model. We have that

V™ ((0,0),1) > VEO(D, (), 1),

and since V™ ((0,0),1) = V(¢(7*)) and VO ((D,0),1) = V (), we obtain V(¢(r*)) >
V(0). This establishes Proposition 1.

Proof of Lemma 1 :
For a given action trajectory (d',...,d"), let us consider a state trajectory (s',...
simulated according to the following two-steps scheme.

’ SH+1)

1. Simulate a map z according to the joint distribution P(.).

2. Deduce iteratively the values (s, ..., s 1) according to s'(i) =0, Vi € O and :



vte {1,...,H}, s (i) = s'(i) + d'(i)a;. (9)
We have that

P(s',. s d' L dT) = Y Play)P(st, . s [y d L d).
Ty EQN
The probability P(s!, ..., st | xy,db, ... d") is either equal to zero or to 1, since
only one state trajectory can be reached from zy and (d%,...,d") according to (9).
Furthermore, given (d, ..., d"), the state trajectory (s',...,s# ") can be reached from

any configuration xy which agrees with the observations of this state trajectory on the
subset A of sites visited by the action trajectory (d',...,d"). Thus, if 2/, is the set of
observations collected on A along the state trajectory (s!,...,sf1)

P(s',..., s | d', ... dT) = Z P(2y) L y=ar,};

Ty €Q™

which by definition is equal to P(2/,).

Let us now evaluate the propability to observe the same state trajectory
(st,..., st given (d',...,d"), when simulating according to the OASMRF MDP
transition function :

H
P(Sl, ce SH+1 ’ dl, e ,dH) = P(.ffil) HP(JIZN | x:it—l, ce 7$2l1)'
t=2
Using the Bayes rule, one can see that P(z/,) [[I,P(z | 2y ,...2%) is exactly
P(z!,...,2)y), which is equal to P(x/y).
Therefore, with the two simulation schemes, for a given action trajectory (d', ..., d")

the same state trajectories can be reached (those where visited sites are coherent with
the actions) and each state trajectory has the same probability in both schemes.
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