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o Introduction
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A testing point of view

@ We have at our disposal a sample X = (Xj,..., X;) of i.i.d random
variables having a common density f, X; € RY.

@ Goal: we want to test
Hy: fe Fo={xeRY— ¢(x — p), u € RY}
against
Hy : fer = {XERdHU — )X — 1) + ed(X — p2);
e €10, 1 i1, iz € RV}

where ¢(.) is a known density.
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A testing point of view

We want to
@ construct a testing procedure,

@ control the first kind error by a fixed level «,

@ find (optimal) conditions on (e, u1, pp) for which a second kind
error 5 can be achieved.
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Bibliography

This question has already been addressed in the literature
@ Test based on the likelihood ratio (Garel, 07; Azais et al., 09; ...)

@ Modified likelihood ratio test (Chen et al, 01)
@ EM approach (Chen and Li, 09)

@ Tests based on the empirical characteristic function (Klar and
Meintanis, 05)

@ Seminal contribution of Y. Ingster (1999)

@ The Higher-Critiscism proposed by Donoho and Jin (2004), Cai et
al. (11), ...

o ..
In these contributions, d = 1 and © = uq = 0 is a known parameter.
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Contributions

@ Laurent et al. (2014, Bernoulli) :

e unidimensional case (d = 1)
e ¢(.) = Gaussian density or Laplace density
® L, [11, k2 UNKNnown parameters

@ Laurent et al. (preprint) :

e multidimensional case
e ¢(.) = Gaussian density
@ contamination problem: y =1 =0

We want to adopt a non-asymptotic point of view
In this talk, we will focus on the Gaussian case

C.Maugis-Rabusseau Detection of two-component mixtures 7150



e The unidimensional case
@ Testing procedure
@ Dense mixtures
@ Sparse mixtures
@ Simulation study
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e The unidimensional case
@ Testing procedure
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Testing problem

@ We want to test :
Hy:feFo={xeR— o¢(x—p),neR}
against

Hy « feF={xeR—(1-e)d(x— 1) +ed(x — puz);
e €]0,1[, u1 < p2 € R}
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A test based on the order statistics

o Let X(4) < X2) < ... < Xy be the order statistics.

@ Idea :

e The spacing of these order statistics are free w.r.t u:
for some k < ¢ € {1,..., n}, p affects the spatial position of X, but
not X(g) - )((k)-

e The distribution of the variables X(y) — Xx) is known under Hy

e ... and has a different behavior under H;, provided k and ¢ are
well-chosen.
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A test based on the order statistics

@ Our test statistics:

V= kseulg, {ﬂx(n—k+1)_x(k)>Qan,k} )
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A test based on the order statistics

@ Let n> 2 and K, be the subset of {1,2,...,n/2} defined by
Kn={2/,0 <j < [Iny(n/2)]}.
@ Our test statistics:

W, := sup {]lX(n—k+1)*X(k)>an,k}’
kekKn
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A test based on the order statistics

@ Let n> 2 and K, be the subset of {1,2,...,n/2} defined by
Kn = 12,0 < j < [Ing(n/2)]}.

@ Our test statistics:

Ve = sup {]lX(n—k+1)_X(k)>qan,k}7

ke’Cn
where
Qu.k is the (1 — u)-quantile of X(,_x1) — Xy under Hy for all
u €]0,1],

an =sup {u €]0,1[, Py, (Ik € Kn, Xin—ks1) — Xk) > Qui) < o} .

ap and q,, x are approximated (via Monte-Carlo method for
instance)
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First error rate

@ By definition, ¥, is a level-« test:

IEDHo (wa = 1) = Pn (kseulgn {]IX(n k1) = X(k)>an, k} = 1)
= Pr, (3k € Kni Xn—kt1) — X(k) > Qank)
< a.
@ Remark: & < ap < a.

Pry (3k € Kn, Xn—k+1) — X(k) > Qayikalk)

< Z Py (X(n—k+1) — X(k) > Ga/iKnl k)5
kE’Cn

C.Maugis-Rabusseau Detection of two-component mixtures 13/50



Second kind error

The test W, is a multiple testing procedure.

Note that for any f € Fj,

ke

Pi(Vo =0) = Py <SUp {]]‘X(n k+1) = X(k)>Gap, k} )
j=o

= Py ﬂ {]lx(n k+1)—X(k)>Gan.k
kekn

< klenlén Py <1X(n—k+1)_x(k)>qD¢n,k = 0) )

The second kind error of V,, is close to the smallest one in the
collection Cp,.
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In the sequel, two kinds of alternatives are considered:

@ the dense regime: 0 < pp — iy < Mand e > %

@ the sparse regime: uo> — pq can be large (asymptotic point of view)
... such ¢ can be very small

Goal: Find optimal conditions on (e, 11, ug) for the both regimes.
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e The unidimensional case

@ Dense mixtures
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@ We assume that 0 < up — 1 < M where M is a positive constant

© F[M] ={(1—e)o(. — 1) +ed(. — p2); 0 < po — iy < M}
@ In this regime,

e establish a lower bound (Gaussian case),

o validate this bound with a test based on the variance,

@ prove that our testing procedure is optimal.
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Lower bound (Gaussian case)

Proposition

Let o, 5 €]0,1[ and M > 0. There exists C = C(«, 3, M) > 0 such that
forall p < <,
inf sup P¢(T, =0) > B.
Ta  fer M
e(1—¢)(up—nq)2=p

Remarks:
@ Testing is not possible if (1 — &)(p2 — 11)? < C//n.

@ In the "contamination problem", the separate condition is different:
e(uz — p1) > C/v/n.

@ Non-asymptotic result.
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Upper bound - Test based on the variance

Under Hy,
Xi = (p2 — p1)Vi+mi, Vie {1...n},

where Vi ~ B(e) LI n; ~ ¢(. — p1).

Var(X;) = Var(n;) + (1 — &) (p2 — 1)?.
Let 02 = Var(n;) and 1, be the test defined by

Yo =gz o2 ic,/vmy

where §2 = 137 (X — X,)2 and ¢, is such that
P, (S2 — 02 > ¢, /v/n) < .

By definition, v, is a level-a test.

C.Maugis-Rabusseau Detection of two-component mixtures 19/50



Upper bound - Test based on the variance

For any f € F{[M],
Pi(tha =0) = Py(S2<0?+cu/V),
= P((S3—EISE] < ca/VA— (1= &)z — 11)?),
< Pr (|83~ EISl| = (1 = &)z — 1) — o/ VD) ,
Var(S2)
61— &)z — )2 — Ca/ /A2

In particular, if Var(S2) < C/n, we have

IN

Pf(¢a :0) < Bv

as soon as C
e(1—e)(uz — p1)? > ﬁ"’
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Upper bound - Test based on the variance

Proposition
Let « €]0,1[ and 5 €]0,1 — «af. Assume that the density function ¢ has
a finite fourth moment: [, x*¢(x)dx < B. There exists a positive
constant C(«, 8, M, B) such that if

p > C(CY,B,M, B)/\/777

then
sup P¢(yq = 0) < .
feF[M]
e(1—e)(up—p1)2>p
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Upper bound - our testing procedure (V)

Proposition

There exists a positive constant C, s » > 0 such that, if

Inl
o> Cla, 8, M)y "),
then
sup Pf(wa = 0) < B.
feF M
e(1—e)(up—11)2>p
Remarks:

@ The proof is based on the control of deviations of the order
statistics and the associated quantiles

@ This log log term is due to the multiple (adaptive) testing
procedure
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An asymptotic study

The asymptotic dense regime in the Gaussian setting:

-0 —r
e ~ n°%and up — ~ n
n—-+o00 12 1 n—-+o00

with0 <d < }and0<r< 3.

r > r(9).

Remark : in the "contamination problem"
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e The unidimensional case

@ Sparse mixtures
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Sparse Gaussian mixtures - Asymptotic study

@ The asymptotic sparse regime:

£~ n_‘sanduz—mnw varin(n)
o

n—+o00 —+

with J <d<t1and0<r<1.

1
"e K —= and po — pq — +oowhen N — +00."”

Jn
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Sparse Gaussian mixtures - Asymptotic study

We assume that r > r*(d) with
§—1% iff<d<3
(1-Vv1-6)2 if3<s<A

Then, setting f(.) = (1 — €)¢(. — p1) + eé(. — pu2), we have, for nlarge
enough,

r(s) =

PV = 0) < 6.

In the sparse regime, we exactly recover the separation boundaries
that are already known in the contamination problem.
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The variance test for sparse mixtures

Forany f = (1 —¢)¢(. — 1) +eo(. — p2),
Varg(X;) = Vary(X) +e(1 —)(u1 — p2)?.

For both Gaussian and Laplace mixtures,

1
Varg(X;) — Varg(X;) = e(1 — €)(u1 — p2)? < N as N — +o0.

Since the variance is estimated at a parametric "rate" 1/1/n, the test
o, Will fail in this setting
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e The unidimensional case

@ Simulation study
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Simulation study

Our testing procedure is compared with the adaptations of

@ Kolmogorov-Smirnov test: ks, = ]1¢KS>&K37O( where

Tks = supv/n|Fp(x) — dg(x — X)|
xeR
@ Higher Criticism (Donoho and Jin, 04)

Let p; = P(Z — X > X;) where Z ~ N'(0,1) forall i € {1,...,n}
and p(1) < Py < ... < P(n)- The level-a test function is

wHC,a = ]lf'/l\c>ch,a Wlth
76— max V"G —Pa)
1<i<n '

Piy(1 — Biy)

A Monte-Carlo procedure is considered with N = 100000 samples of
size n = 100 for a Gaussian mixture with ¢ € {0.05,0.15,0.25,0.35},
puy =0and up € [0,10].
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Simulation study - Gaussian case
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Simulation study - Laplace case
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e The multidimensional contamination problem
@ Testing problem
@ Lower bound
@ Two testing procedures
@ The unbounded case
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e The multidimensional contamination problem
@ Testing problem

C.Maugis-Rabusseau Detection of two-component mixtures 33/50



Testing problem

@ Let(Xj,..., Xy) i.i.d d-dimensional random vectors with density f

@ Let ¢(.) be the density function of the standard Gaussian
distribution N4(0q, Iy)-

@ We want to test
Hp : f = ¢ against Hy : f € Fq
where
Fr={xeR%— (1 —e)p(x) +ep(x — p);e €]0,1[, n € RY}

@ Dense regime: ¢ > C/y/nand ||u|| < M.
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e The multidimensional contamination problem

@ Lower bound
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A lower bound

Let F C Fq a subset of alternatives, and = a probability measure on F.
Then,

]
— - — 2 —
infsup Pr(Ya =0) 21 -a -3 \/EHO [L2(X] =1,

where L2(X) the likelihood ratio dP,./dPy and the infimum is taken
over all a-level tests.

In particular, for some appropriate constant n(«, ),

Ep[L2(X)] < (e, ) = inf sup Py(va = 0) = 6.
Yo fcF

See e.g, Ingster (1999) or Baraud (2002) for more details.
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Lower bound

Let A1 [M] = {f(.) = (1 —e)p(.) + (. — p); e €]0,1[, || p]| < M}.

Proposition

Let o, 5 €]0,1[ and M > 0. There exists C = C(«, 3, M) > 0 such that
forall p < C d//n,

inf sup Py(T,=0)> 4.
Ta teF[M]
cllpl>p

1
Testing is impossible if ||| < & j; :
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e The multidimensional contamination problem

@ Two testing procedures
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First testing procedure (V)

Let o €]0, 1[. Let the level-a test

Via =1 /m%|2>va
where v, is the (1 — &) quantile of x2(d) and X, = 1 3~ X..
i=
Let 5 €]0,1 — o[ and M > 0. Then, there exists a positive constant
C(a, 8, M) such that, if

>C M d:
p > C(a, B, )ﬁ
then
sup Py (\U‘I,a = O) <B.
feF[M]
cllull>p
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Second testing procedure (V. ,)

@ The sample X is splitted in two different parts:
A=(Ar,...,A)and Y = (Yq,...,Yp).

@ Let v, = A,/||An| where A, = %27:1 Ai.

o LetZ = (Y, vp) forallic {1,...,n} and Zy) < --- < Zp).

@ Conditionally to A,

e the Z; are i.i.d standard Gaussian random variables under Hp.
e Zi~(1—-¢)N(0,1) +eN(u, vp) under Hi

@ The testing procedure:

Vo, =sup 1z .
) —k >q k
kEICn (n—k+1) an
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Second testing procedure (V. ,)

Let 8 €]0,1 — a[ and M > 0. Then, there exists a positive constant
C(a, B8, M) such that, if

pZC(a,B,M)d1 /InIr;(n)

IN]

then
sup Pr(Vp,=0) <p.
feFi[M]
ellullZp
C.Maugis-Rabusseau Detection of two-component mixtures 41 /50




e The multidimensional contamination problem

@ The unbounded case
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Results when 1 is unbounded

Theorem

Let o, 5 €]0, 1] be fixed and, V4 , and V¥, , be the both previous tests.
Then, there exists a positive constant C(«, ), only depending on «, 8
and ng € N* such that, for n > ng and for all f = f. ) € F satisfying

€ > C(a,ﬁ)m and

2lul? > Clos ) [(?) 2 { an(2) H ,

PV a2V W24 =0)<p8.

we have
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3=

€n

n)

f{e€]0,1[: £2In(1/e) >

In

€n

=InIn(n)/nand

Summary of the separation condition on £2||x||? for the test

Uy o2V Vo 40, Where e,

Figure
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An other testing procedure

ll14,04 = Sup ]lTU>tn,d,|U|,a
Ueut

where U denotes the set of the nonempty subsets of {1,...,n}, |U|
denotes the cardinality of U,

2

X

1
Tu=
‘U| ey

)

thdka=0d+2/d Xpka +2 Xpka and X, ko = kIn(en/k) +In(n/a).
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An other testing procedure

Theorem

Let o, 5 €]0, 1] be fixed. Let ¥4 , and V4 , be the both previous tests.
There exists a positive constant C(«, 5) only depending on «, 8 such
that, for all f = f. ,) € F which fulfills ne > % and

2|l > Clas B) [(?) A {sﬁn (g) +e2, 9 (g) }] M

we have

Pr(W1s VVUse =0) < B.
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2[&

1S d= {ne2in(1/0))

Figure: Summary of the separation condition on 2| || for the test
Vi a2V Wy 42, Where &, = inf{e €]0,1[; ne3In(1/e) > 1}
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0 Perspectives
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@ Lower bound when ||| is unbounded?
@ Testing procedure in the sparse regime?

@ Consider a more general test problem in the multidimensional
context
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