# Non-asymptotic detection of two-component mixtures

B. Laurent, C. Marteau and C. Maugis-Rabusseau





Image: A matrix a

C.Maugis-Rabusseau

Detection of two-component mixtures



### Introduction

#### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

### The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case



### Introduction

- The unidimensional case
  - Testing procedure
  - Dense mixtures
  - Sparse mixtures
  - Simulation study

### 3 The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

# A testing point of view

- We have at our disposal a sample X = (X<sub>1</sub>,..., X<sub>n</sub>) of i.i.d random variables having a common density f, X<sub>i</sub> ∈ ℝ<sup>d</sup>.
- Goal: we want to test

$$H_0: f \in \mathcal{F}_0 = \{ x \in \mathbb{R}^d \mapsto \phi(x - \mu), \mu \in \mathbb{R}^d \}$$

against

$$\begin{aligned} H_1 &: f \in \mathcal{F}_1 = \left\{ x \in \mathbb{R}^d \mapsto (1 - \varepsilon)\phi(x - \mu_1) + \varepsilon\phi(x - \mu_2); \\ \varepsilon \in ]0, 1[, \mu_1, \mu_2 \in \mathbb{R}^d \right\} \end{aligned}$$

where  $\phi(.)$  is a known density.

< □ > < 三 >

We want to

- construct a testing procedure,
- control the first kind error by a fixed level  $\alpha$ ,
- find (optimal) conditions on (ε, μ<sub>1</sub>, μ<sub>2</sub>) for which a second kind error β can be achieved.

< A > <

# Bibliography

This question has already been addressed in the literature

- Test based on the likelihood ratio (Garel, 07; Azais et al., 09; ...)
- Modified likelihood ratio test (Chen et al, 01)
- EM approach (Chen and Li, 09)
- Tests based on the empirical characteristic function (Klar and Meintanis, 05)
- Seminal contribution of Y. Ingster (1999)
- The Higher-Critiscism proposed by Donoho and Jin (2004), Cai et al. (11), ...

#### • ...

In these contributions, d = 1 and  $\mu = \mu_1 = 0$  is a known parameter.

• Laurent et al. (2014, Bernoulli) :

- unidimensional case (d = 1)
- \$\phi(.)\$ = Gaussian density or Laplace density
- $\mu, \mu_1, \mu_2$  unknown parameters
- Laurent et al. (preprint) :
  - multidimensional case
  - $\phi(.) =$ Gaussian density
  - contamination problem:  $\mu = \mu_1 = 0$

We want to adopt a non-asymptotic point of view In this talk, we will focus on the Gaussian case



### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

#### The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case



#### introduction

- The unidimensional case
  - Testing procedure
  - Dense mixtures
  - Sparse mixtures
  - Simulation study

### 3) The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

• We want to test :

$$H_0: f \in \mathcal{F}_0 = \{ x \in \mathbb{R} \mapsto \phi(x - \mu), \mu \in \mathbb{R} \}$$

#### against

$$\begin{aligned} H_1 &: f \in \mathcal{F}_1 = \{ x \in \mathbb{R} \mapsto (1 - \varepsilon)\phi(x - \mu_1) + \varepsilon\phi(x - \mu_2); \\ \varepsilon \in ]0, 1[, \mu_1 < \mu_2 \in \mathbb{R} \} \end{aligned}$$

æ

- Let  $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$  be the order statistics.
- Idea :
  - The spacing of these order statistics are free w.r.t μ: for some k < ℓ ∈ {1,..., n}, μ affects the spatial position of X<sub>(k)</sub>, but not X<sub>(ℓ)</sub> − X<sub>(k)</sub>.
  - The distribution of the variables  $X_{(\ell)} X_{(k)}$  is known under  $H_0$
  - … and has a different behavior under H₁, provided k and l are well-chosen.

< ロ > < 同 > < 回 > < 回 > .

• Our test statistics:

$$\Psi_{\alpha} := \sup_{k \in \mathcal{K}_n} \left\{ \mathbbm{1}_{X_{(n-k+1)} - X_{(k)} > q_{\alpha_n, k}} \right\},$$

▲ □ ▶ ▲ □ ▶ ▲

-

- Let  $n \ge 2$  and  $\mathcal{K}_n$  be the subset of  $\{1, 2, ..., n/2\}$  defined by  $\mathcal{K}_n = \{2^j, 0 \le j \le [\ln_2(n/2)]\}.$
- Our test statistics:

$$\Psi_{\alpha} := \sup_{k \in \mathcal{K}_n} \left\{ \mathbbm{1}_{X_{(n-k+1)} - X_{(k)} > q_{\alpha_n, k}} \right\},$$

# A test based on the order statistics

• Let  $n \ge 2$  and  $\mathcal{K}_n$  be the subset of  $\{1, 2, \dots, n/2\}$  defined by

$$\mathcal{K}_n = \{2^j, 0 \le j \le [\ln_2(n/2)]\}.$$

Our test statistics:

$$\Psi_{\alpha} := \sup_{k \in \mathcal{K}_n} \left\{ \mathbbm{1}_{X_{(n-k+1)} - X_{(k)} > q_{\alpha_n, k}} \right\},$$

#### where

 $q_{u,k}$  is the (1 - u)-quantile of  $X_{(n-k+1)} - X_{(k)}$  under  $H_0$  for all  $u \in ]0, 1[$ ,

$$\alpha_n = \sup\left\{u\in ]0,1[,\mathbb{P}_{H_0}\left(\exists k\in\mathcal{K}_n,X_{(n-k+1)}-X_{(k)}>q_{u,k}\right)\leq\alpha\right\}.$$

 $\alpha_n$  and  $q_{\alpha_n,k}$  are approximated (via Monte-Carlo method for instance)

### First error rate

• By definition,  $\Psi_{\alpha}$  is a level- $\alpha$  test:

$$\mathbb{P}_{H_0} (\Psi_{\alpha} = 1) = \mathbb{P}_{H_0} \left( \sup_{k \in \mathcal{K}_n} \left\{ \mathbbm{1}_{X_{(n-k+1)} - X_{(k)} > q_{\alpha_n, k}} \right\} = 1 \right)$$
$$= \mathbb{P}_{H_0} \left( \exists k \in \mathcal{K}_n; X_{(n-k+1)} - X_{(k)} > q_{\alpha_n, k} \right)$$
$$\leq \alpha.$$

• Remark:  $\frac{\alpha}{|\mathcal{K}_n|} \leq \alpha_n \leq \alpha$ .

$$\mathbb{P}_{H_0} \left( \exists k \in \mathcal{K}_n, X_{(n-k+1)} - X_{(k)} > q_{\alpha/|\mathcal{K}_n|,k} \right)$$

$$\leq \sum_{k \in \mathcal{K}_n} \mathbb{P}_{H_0}(X_{(n-k+1)} - X_{(k)} > q_{\alpha/|\mathcal{K}_n|,k}),$$

$$\leq \sum_{k \in \mathcal{K}_n} \frac{\alpha}{|\mathcal{K}_n|} \leq \alpha.$$

C.Maugis-Rabusseau

э

The test  $\Psi_{\alpha}$  is a multiple testing procedure.

Note that for any  $f \in \mathcal{F}_1$ ,

$$\begin{split} \mathbb{P}_f(\Psi_{\alpha} = \mathbf{0}) &= \mathbb{P}_f\left(\sup_{k \in \mathcal{K}_n} \left\{\mathbbm{1}_{X_{(n-k+1)} - X_{(k)} > q_{\alpha_n,k}}\right\} = \mathbf{0}\right), \\ &= \mathbb{P}_f\left(\bigcap_{k \in \mathcal{K}_n} \left\{\mathbbm{1}_{X_{(n-k+1)} - X_{(k)} > q_{\alpha_n,k}}\right\} = \mathbf{0}\right), \\ &\leq \inf_{k \in \mathcal{K}_n} \mathbb{P}_f\left(\mathbbm{1}_{X_{(n-k+1)} - X_{(k)} > q_{\alpha_n,k}} = \mathbf{0}\right), \end{split}$$

The second kind error of  $\Psi_{\alpha}$  is close to the smallest one in the collection  $\mathcal{K}_n$ .

< D > < P > < P >

In the sequel, two kinds of alternatives are considered:

- the dense regime:  $0 < \mu_2 \mu_1 \le M$  and  $\varepsilon > \frac{C}{\sqrt{n}}$
- the sparse regime: μ<sub>2</sub> μ<sub>1</sub> can be large (asymptotic point of view)
   ... such ε can be very small

**Goal:** Find optimal conditions on  $(\varepsilon, \mu_1, \mu_2)$  for the both regimes.

< 🗇 🕨 < 🖹 🕨



#### Introduction

### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

### 3 The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

• We assume that  $0 < \mu_2 - \mu_1 \leq M$  where *M* is a positive constant

• 
$$\mathcal{F}_1[M] = \{(1 - \varepsilon)\phi(. - \mu_1) + \varepsilon\phi(. - \mu_2); 0 < \mu_2 - \mu_1 \le M\}$$

- In this regime,
  - establish a lower bound (Gaussian case),
  - validate this bound with a test based on the variance,
  - prove that our testing procedure is optimal.

#### Proposition

Let  $\alpha, \beta \in ]0, 1[$  and M > 0. There exists  $C = C(\alpha, \beta, M) > 0$  such that for all  $\rho < \frac{C}{\sqrt{n}}$ ,  $\inf_{\substack{T_{\alpha} \\ \epsilon(1-\epsilon)(\mu_{2}-\mu_{1})^{2} \geq \rho}} \mathbb{P}_{f}(T_{\alpha} = 0) > \beta.$ 

Remarks:

- Testing is not possible if  $\varepsilon(1 \varepsilon)(\mu_2 \mu_1)^2 < C/\sqrt{n}$ .
- In the "contamination problem", the separate condition is different:  $\varepsilon(\mu_2 \mu_1) \ge C/\sqrt{n}$ .
- Non-asymptotic result.

・ロト ・同ト ・ヨト ・ヨト

# Upper bound - Test based on the variance

Under  $H_1$ ,

$$X_i = (\mu_2 - \mu_1)V_i + \eta_i, \ \forall i \in \{1 \dots n\},$$

where  $V_i \sim B(\varepsilon) \amalg \eta_i \sim \phi(.-\mu_1)$ .

$$\operatorname{Var}(X_i) = \operatorname{Var}(\eta_i) + \varepsilon(1-\varepsilon)(\mu_2 - \mu_1)^2.$$

Let  $\sigma^2 = \operatorname{Var}(\eta_i)$  and  $\psi_{\alpha}$  be the test defined by

$$\psi_{\alpha} = \mathbb{1}_{\{S_n^2 > \sigma^2 + c_{\alpha}/\sqrt{n}\}},$$

where  $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$  and  $c_\alpha$  is such that  $\mathbb{P}_{H_0}(S_n^2 - \sigma^2 > c_\alpha/\sqrt{n}) \le \alpha$ .

By definition,  $\psi_{\alpha}$  is a level- $\alpha$  test.

< 同 > < 回 > < 回 > -

### Upper bound - Test based on the variance

For any  $f \in \mathcal{F}_1[M]$ ,

$$\begin{split} \mathbb{P}_f(\psi_\alpha = \mathbf{0}) &= \mathbb{P}_f(S_n^2 \leq \sigma^2 + \mathbf{c}_\alpha/\sqrt{n}), \\ &= \mathbb{P}_f(S_n^2 - \mathbb{E}[S_n^2] \leq \mathbf{c}_\alpha/\sqrt{n} - \varepsilon(1-\varepsilon)(\mu_2 - \mu_1)^2), \\ &\leq \mathbb{P}_f\left(\left|S_n^2 - \mathbb{E}[S_n^2]\right| \geq \varepsilon(1-\varepsilon)(\mu_2 - \mu_1)^2 - \mathbf{c}_\alpha/\sqrt{n}\right), \\ &\leq \frac{\operatorname{Var}(S_n^2)}{[\varepsilon(1-\varepsilon)(\mu_2 - \mu_1)^2 - \mathbf{c}_\alpha/\sqrt{n}]^2}. \end{split}$$

In particular, if  $\operatorname{Var}(S_n^2) \leq C/n$ , we have

$$\mathbb{P}_f(\psi_{\alpha}=\mathbf{0})\leq\beta,$$

as soon as

$$\varepsilon(1-\varepsilon)(\mu_2-\mu_1)^2 > \frac{C_{\alpha,\beta}}{\sqrt{n}}.$$

< 同 > < ∃ >

#### Proposition

Let  $\alpha \in ]0, 1[$  and  $\beta \in ]0, 1 - \alpha[$ . Assume that the density function  $\phi$  has a finite fourth moment:  $\int_{\mathbb{R}} x^4 \phi(x) dx \leq B$ . There exists a positive constant  $C(\alpha, \beta, M, B)$  such that if

 $\rho \geq C(\alpha, \beta, M, B)/\sqrt{n},$ 

then

$$\sup_{\substack{f\in\mathcal{F}_1[M]\\\varepsilon(1-\varepsilon)(\mu_2-\mu_1)^2\geq\rho}}\mathbb{P}_f(\psi_{\alpha}=\mathbf{0})\leq\beta.$$

# Upper bound - our testing procedure ( $\Psi_{\alpha}$ )

#### Proposition

There exists a positive constant  $C_{\alpha,\beta,M} > 0$  such that, if

$$\rho \geq C(\alpha, \beta, M) \sqrt{\frac{\ln \ln(n)}{n}},$$

then

$$\sup_{\substack{f\in\mathcal{F}_1[M]\\\varepsilon(1-\varepsilon)(\mu_2-\mu_1)^2\geq\rho}}\mathbb{P}_f(\Psi_{\alpha}=\mathbf{0})\leq\beta.$$

Remarks:

- The proof is based on the control of deviations of the order statistics and the associated quantiles
- This log log term is due to the multiple (adaptive) testing procedure

▲ 同 ▶ → (三 )→

# An asymptotic study

The asymptotic dense regime in the Gaussian setting:

$$\varepsilon \underset{n \to +\infty}{\sim} n^{-\delta} \text{ and } \mu_2 - \mu_1 \underset{n \to +\infty}{\sim} n^{-r}$$

with  $0 < \delta \leq \frac{1}{2}$  and  $0 < r < \frac{1}{2}$ .

#### Corollary

The detection boundary in the dense regime is  $r^*(\delta) = \frac{1}{4} - \frac{\delta}{2}$ :

the detection is possible when  $r < r^*(\delta) = \frac{1}{4} - \frac{\delta}{2}$  and impossible if  $r > r^*(\delta)$ .

Remark : in the "contamination problem"

$$r^*(\delta) = \frac{1}{2} - \delta$$

・ロト ・同ト ・モト ・モト



#### Introduction

### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

### 3) The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

• The asymptotic sparse regime:

$$\varepsilon \underset{n \to +\infty}{\sim} n^{-\delta} \text{ and } \mu_2 - \mu_1 \underset{n \to +\infty}{\sim} \sqrt{2r \ln(n)}$$

with  $\frac{1}{2} < \delta < 1$  and 0 < r < 1.

"
$$\varepsilon \ll \frac{1}{\sqrt{n}}$$
 and  $\mu_2 - \mu_1 \to +\infty$  when  $n \to +\infty$ ."

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Proposition

We assume that  $r > r^*(\delta)$  with

$$r^*(\delta) = \begin{cases} \delta - \frac{1}{2} & \text{if } \frac{1}{2} < \delta < \frac{3}{4} \\ \\ (1 - \sqrt{1 - \delta})^2 & \text{if } \frac{3}{4} \le \delta < 1 \end{cases}$$

Then, setting  $f(.) = (1 - \varepsilon)\phi(. - \mu_1) + \varepsilon\phi(. - \mu_2)$ , we have, for *n* large enough,

$$\mathbb{P}_f(\Psi_{\alpha}=\mathbf{0})\leq\beta.$$

In the sparse regime, we exactly recover the separation boundaries that are already known in the contamination problem.

For any 
$$f = (1 - \varepsilon)\phi(. - \mu_1) + \varepsilon\phi(. - \mu_2)$$
,

$$\operatorname{Var}_{f}(X_{i}) = \operatorname{Var}_{\phi}(X_{i}) + \varepsilon(1-\varepsilon)(\mu_{1}-\mu_{2})^{2}.$$

For both Gaussian and Laplace mixtures,

$$\operatorname{Var}_{f}(X_{i}) - \operatorname{Var}_{\phi}(X_{i}) = \varepsilon(1-\varepsilon)(\mu_{1}-\mu_{2})^{2} \ll \frac{1}{\sqrt{n}}, \text{ as } n \to +\infty.$$

Since the variance is estimated at a parametric "rate"  $1/\sqrt{n}$ , the test  $\psi_{\alpha}$  will fail in this setting



#### Introduction

### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

### The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

# **Simulation study**

Our testing procedure is compared with the adaptations of

• Kolmogorov-Smirnov test:  $\hat{\psi}_{KS,\alpha} = \mathbb{1}_{\hat{T}_{KS} > \hat{q}_{KS,\alpha}}$  where

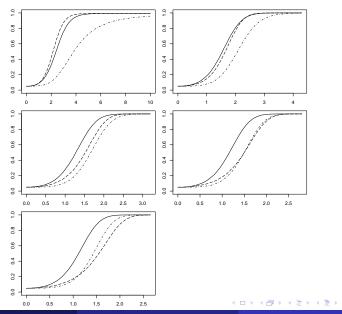
$$\hat{T}_{\mathcal{KS}} = \sup_{x \in \mathbb{R}} \sqrt{n} |F_n(x) - \Phi_G(x - \bar{X})|$$

• Higher Criticism (Donoho and Jin, 04) Let  $\hat{p}_i = \mathbb{P}(Z - \bar{X} > X_i)$  where  $Z \sim \mathcal{N}(0, 1)$  for all  $i \in \{1, ..., n\}$ and  $\hat{p}_{(1)} \leq \hat{p}_{(2)} \leq ... \leq \hat{p}_{(n)}$ . The level- $\alpha$  test function is  $\hat{\psi}_{HC,\alpha} = \mathbb{1}_{\widehat{HC} > \hat{q}_{HC,\alpha}}$  with

$$\widehat{HC} = \max_{1 \leq i \leq n} \frac{\sqrt{n} \left(\frac{i}{n} - \hat{p}_{(i)}\right)}{\sqrt{\hat{p}_{(i)}(1 - \hat{p}_{(i)})}}.$$

A Monte-Carlo procedure is considered with N = 100000 samples of size n = 100 for a Gaussian mixture with  $\varepsilon \in \{0.05, 0.15, 0.25, 0.35\}, \mu_1 = 0$  and  $\mu_2 \in [0, 10].$ 

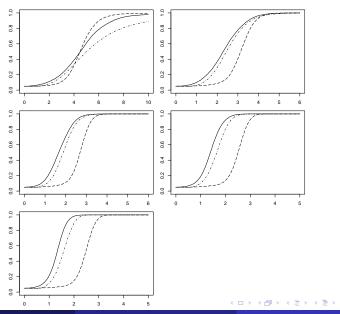
### Simulation study - Gaussian case



C.Maugis-Rabusseau

Detection of two-component mixtures

### Simulation study - Laplace case



C.Maugis-Rabusseau

Detection of two-component mixtures



### Introduction

#### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

### The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case



#### Introduction

#### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

### The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

# **Testing problem**

- Let  $(X_1, \ldots, X_n)$  i.i.d *d*-dimensional random vectors with density *f*
- Let φ(.) be the density function of the standard Gaussian distribution N<sub>d</sub>(0<sub>d</sub>, I<sub>d</sub>).
- We want to test

$$H_0$$
:  $f = \phi$  against  $H_1$ :  $f \in \mathcal{F}_1$ 

where

$$\mathcal{F}_1 = \{ \boldsymbol{x} \in \mathbb{R}^d \mapsto (1 - \varepsilon)\phi(\boldsymbol{x}) + \varepsilon\phi(\boldsymbol{x} - \mu); \varepsilon \in ]0, 1[, \mu \in \mathbb{R}^d \}$$

• Dense regime:  $\varepsilon > C/\sqrt{n}$  and  $\|\mu\| \le M$ .

A (B) < (B) < (B) < (B) </p>



### Introduction

#### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

# The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

Let  $\mathcal{F} \subset \mathcal{F}_1$  a subset of alternatives, and  $\pi$  a probability measure on  $\mathcal{F}$ . Then,

$$\inf_{\psi_{\alpha}}\sup_{f\in\mathcal{F}}\mathbb{P}_{f}(\psi_{\alpha}=\mathbf{0})\geq 1-\alpha-\frac{1}{2}\sqrt{\mathbb{E}_{H_{0}}[L_{\pi}^{2}(X)]-1},$$

where  $L^2_{\pi}(X)$  the likelihood ratio  $d\mathbb{P}_{\pi}/d\mathbb{P}_0$  and the infimum is taken over all  $\alpha$ -level tests.

In particular, for some appropriate constant  $\eta(\alpha, \beta)$ ,

$$\mathbb{E}_{\mathcal{H}_0}[L^2_{\pi}(X)] \leq \eta(\alpha,\beta) \Longrightarrow \inf_{\psi_{\alpha}} \sup_{f \in \mathcal{F}} \mathbb{P}_f(\psi_{\alpha}=\mathbf{0}) \geq \beta.$$

See e.g, Ingster (1999) or Baraud (2002) for more details.

Let 
$$\mathcal{F}_1[M] = \{f(.) = (1 - \varepsilon)\phi(.) + \varepsilon\phi(. - \mu); \varepsilon \in ]0, 1[, \|\mu\| \le M\}.$$

#### Proposition

Let  $\alpha, \beta \in ]0, 1[$  and M > 0. There exists  $C = C(\alpha, \beta, M) > 0$  such that for all  $\rho < C d^{\frac{1}{4}} / \sqrt{n}$ ,

$$\inf_{T_{\alpha}} \sup_{\substack{f \in \mathcal{F}_{1}[M]\\ \varepsilon \|\mu\| \ge \rho}} \mathbb{P}_{f}(T_{\alpha} = 0) > \beta.$$

Testing is impossible if  $\varepsilon \|\mu\| < \frac{C d^{\frac{1}{4}}}{\sqrt{n}}$ .

э

・ロット (日) ・ (日)



### Introduction

### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

## The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

# First testing procedure ( $\Psi_{1,\alpha}$ )

#### Proposition

Let  $\alpha \in ]0, 1[$ . Let the level- $\alpha$  test

$$\Psi_{1,\alpha} = \mathbb{1}_{\|\sqrt{n}\bar{X}_n\|^2 > \upsilon_\alpha}$$

where  $v_{\alpha}$  is the  $(1 - \alpha)$  quantile of  $\chi^2(d)$  and  $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ .

Let  $\beta \in ]0, 1 - \alpha[$  and M > 0. Then, there exists a positive constant  $C(\alpha, \beta, M)$  such that, if

$$\rho \geq \boldsymbol{C}(\alpha,\beta,\boldsymbol{M}) \frac{\boldsymbol{d}^{\frac{1}{4}}}{\sqrt{n}}$$

then

$$\sup_{\substack{f \in \mathcal{F}_1[M] \\ \varepsilon \parallel \mu \parallel \ge \rho}} \mathbb{P}_f \left( \Psi_{1,\alpha} = \mathbf{0} \right) \le \beta.$$

C.Maugis-Rabusseau

• The sample X is splitted in two different parts:

$$A = (A_1, ..., A_n)$$
 and  $Y = (Y_1, ..., Y_n)$ .

• Let 
$$v_n = \overline{A}_n / \|\overline{A}_n\|$$
 where  $\overline{A}_n = \frac{1}{n} \sum_{i=1}^n A_i$ .

• Let 
$$Z_i = \langle Y_i, v_n \rangle$$
 for all  $i \in \{1, \dots, n\}$  and  $Z_{(1)} \leq \dots \leq Z_{(n)}$ .

- Conditionally to A,
  - the  $Z_i$  are i.i.d standard Gaussian random variables under  $H_0$ .
  - $Z_i \sim (1 \varepsilon)\mathcal{N}(0, 1) + \varepsilon \mathcal{N}(\mu, v_n)$  under  $H_1$
- The testing procedure:

$$\Psi_{2,\alpha} = \sup_{k \in \mathcal{K}_n} \mathbb{1}_{Z_{(n-k+1)} > q_{\alpha_n,k}}.$$

#### Proposition

Let  $\beta \in ]0, 1 - \alpha[$  and M > 0. Then, there exists a positive constant  $C(\alpha, \beta, M)$  such that, if

$$ho \geq m{C}(lpha,eta,m{M})m{d}^{rac{1}{4}}\sqrt{rac{\ln\ln(n)}{n}}$$

#### then

$$\sup_{\substack{f\in\mathcal{F}_1[M]\\\varepsilon\parallel\mu\parallel\geq\rho}}\mathbb{P}_f\left(\Psi_{2,\alpha}=\mathbf{0}\right)\leq\beta.$$

< D > < A > < B >



### Introduction

### The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

## The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

#### Theorem

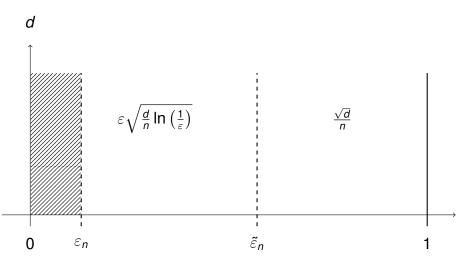
Let  $\alpha, \beta \in ]0, 1[$  be fixed and,  $\Psi_{1,\alpha}$  and  $\Psi_{2,\alpha}$  be the both previous tests. Then, there exists a positive constant  $C(\alpha, \beta)$ , only depending on  $\alpha, \beta$  and  $n_0 \in \mathbb{N}^*$  such that, for  $n \ge n_0$  and for all  $f = f_{(\varepsilon,\mu)} \in \mathcal{F}$  satisfying  $\varepsilon \ge C(\alpha, \beta) \frac{\ln \ln(n)}{n}$  and

$$\varepsilon^2 \|\mu\|^2 \ge C(\alpha, \beta) \left[ \left( \frac{\sqrt{d}}{n} \right) \wedge \left\{ \varepsilon \sqrt{\frac{d}{n} \ln \left( \frac{1}{\varepsilon} \right)} \right\} \right]$$

we have

$$\mathbb{P}_f(\Psi_{1,\alpha/2} \vee \Psi_{2,\alpha/2} = \mathbf{0}) \leq \beta.$$

< D > < A > < B >



**Figure:** Summary of the separation condition on  $\varepsilon^2 ||\mu||^2$  for the test  $\Psi_{1,\alpha/2} \vee \Psi_{2,\alpha/2}$ , where  $\varepsilon_n = \ln \ln(n)/n$  and  $\tilde{\varepsilon}_n = \inf \{\varepsilon \in ]0, 1[: \varepsilon^2 \ln(1/\varepsilon) > \frac{1}{n}\}$ 

$$\Psi_{\mathbf{4},\alpha} = \sup_{U \in \mathcal{U}} \mathbbm{1}_{T_U > t_{n,d,|U|,\alpha}}$$

where  $\mathcal{U}$  denotes the set of the nonempty subsets of  $\{1, \ldots, n\}$ , |U| denotes the cardinality of U,

$$T_U = rac{1}{|U|} \left\| \sum_{i \in U} X_i \right\|^2,$$

 $t_{n,d,k,\alpha} = d + 2\sqrt{d x_{n,k,\alpha}} + 2 x_{n,k,\alpha}$  and  $x_{n,k,\alpha} = k \ln(en/k) + \ln(n/\alpha)$ .

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

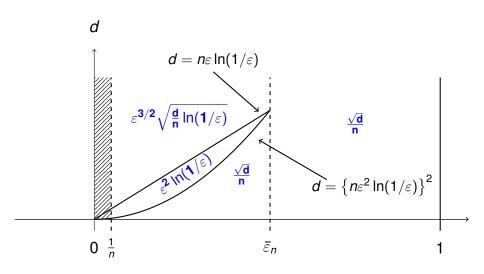
#### Theorem

Let  $\alpha, \beta \in ]0, 1[$  be fixed. Let  $\Psi_{1,\alpha}$  and  $\Psi_{4,\alpha}$  be the both previous tests. There exists a positive constant  $C(\alpha, \beta)$  only depending on  $\alpha, \beta$  such that, for all  $f = f_{(\varepsilon,\mu)} \in \mathcal{F}$  which fulfills  $n\varepsilon \geq \frac{8}{\beta}$  and

$$\varepsilon^{2} \|\mu\|^{2} \geq C(\alpha, \beta) \left[ \left( \frac{\sqrt{d}}{n} \right) \wedge \left\{ \varepsilon^{2} \ln \left( \frac{1}{\varepsilon} \right) + \varepsilon^{3/2} \sqrt{\frac{d}{n} \ln \left( \frac{1}{\varepsilon} \right)} \right\} \right], \quad (1)$$

we have

$$\mathbb{P}_{f}(\Psi_{1,\frac{\alpha}{2}} \vee \Psi_{4,\frac{\alpha}{2}} = \mathbf{0}) \leq \beta.$$



**Figure:** Summary of the separation condition on  $\varepsilon^2 \|\mu\|^2$  for the test  $\Psi_{1,\alpha/2} \vee \Psi_{4,\alpha/2}$ , where  $\bar{\varepsilon}_n = \inf\{\varepsilon \in ]0, 1[; n\varepsilon^3 \ln(1/\varepsilon) \ge 1\}$ 



### Introduction

#### 2 The unidimensional case

- Testing procedure
- Dense mixtures
- Sparse mixtures
- Simulation study

## 3) The multidimensional contamination problem

- Testing problem
- Lower bound
- Two testing procedures
- The unbounded case

- Lower bound when  $\|\mu\|$  is unbounded?
- Testing procedure in the sparse regime?
- Consider a more general test problem in the multidimensional context

...

< A >

# **References I**



Azaïs, J.-M., Gassiat, É., and Mercadier, C. (2009). The likelihood ratio test for general mixture models with or without structural parameter. *ESAIM Probab. Stat.*, 13:301–327.

Cai, T. T., Jeng, X. J., and Jin, J. (2011).

Optimal detection of heterogeneous and heteroscedastic mixtures. J. R. Stat. Soc. Ser. B Stat. Methodol., 73(5):629–662.



Chen, H., Chen, J., and Kalbfleisch, J. D. (2001). A modified likelihood ratio test for homogeneity in finite mixture models. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, 63(1):pp. 19–29.



Chen, J. and Li, P. (2009).

Hypothesis test for normal mixture models: the EM approach.

Ann. Statist., 37(5A):2523-2542.



#### Chernoff, H. and Lander, E. (1995).

Asymptotic distribution of the likelihood ratio test that a mixture of two binomials is a single binomial.

J. Statist. Plann. Inference, 43(1-2):19-40.



Dacunha-Castelle, D. and Gassiat, E. (1999).

Testing the order of a model using locally conic parametrization: population mixtures and stationary ARMA processes.

Ann. Statist., 27(4):1178-1209.

<ロ> <同> <同> < 同> < 同>



#### Donoho, D. and Jin, J. (2004).

Higher criticism for detecting sparse heterogeneous mixtures. *Ann. Statist.*, 32(3):962–994.



Garel, B. (2007). Recent asymptotic results in testing for mixtures. *Comput. Statist. Data Anal.*, 51(11):5295–5304.

Klar, B. and Meintanis, S. G. (2005). Tests for normal mixtures based on the empirical characteristic function. *Comput. Statist. Data Anal.*, 49(1):227–242.

< D > < A > < B >