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A testing point of view

We have at our disposal a sample X = (X1, . . . ,Xn) of i.i.d random
variables having a common density f , Xi ∈ Rd .

Goal: we want to test

H0 : f ∈ F0 = {x ∈ Rd 7→ φ(x − µ), µ ∈ Rd}

against

H1 : f ∈ F1 =
{

x ∈ Rd 7→ (1− ε)φ(x − µ1) + εφ(x − µ2);

ε ∈]0,1[, µ1, µ2 ∈ Rd
}

where φ(.) is a known density.
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A testing point of view

We want to
construct a testing procedure,

control the first kind error by a fixed level α,

find (optimal) conditions on (ε, µ1, µ2) for which a second kind
error β can be achieved.
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Bibliography

This question has already been addressed in the literature
Test based on the likelihood ratio (Garel, 07; Azais et al., 09; ...)

Modified likelihood ratio test (Chen et al, 01)

EM approach (Chen and Li, 09)

Tests based on the empirical characteristic function (Klar and
Meintanis, 05)

Seminal contribution of Y. Ingster (1999)
The Higher-Critiscism proposed by Donoho and Jin (2004), Cai et
al. (11), ...

...
In these contributions, d = 1 and µ = µ1 = 0 is a known parameter.
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Contributions

Laurent et al. (2014, Bernoulli) :
unidimensional case (d = 1)
φ(.) = Gaussian density or Laplace density
µ, µ1, µ2 unknown parameters

Laurent et al. (preprint) :
multidimensional case
φ(.) = Gaussian density
contamination problem: µ = µ1 = 0

We want to adopt a non-asymptotic point of view
In this talk, we will focus on the Gaussian case
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Testing problem

We want to test :

H0 : f ∈ F0 = {x ∈ R 7→ φ(x − µ), µ ∈ R}

against

H1 : f ∈ F1 = {x ∈ R 7→ (1− ε)φ(x − µ1) + εφ(x − µ2);

ε ∈]0,1[, µ1 < µ2 ∈ R}
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A test based on the order statistics

Let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the order statistics.

Idea :
The spacing of these order statistics are free w.r.t µ:
for some k < ` ∈ {1, ...,n}, µ affects the spatial position of X(k), but
not X(`) − X(k).

The distribution of the variables X(`) − X(k) is known under H0

... and has a different behavior under H1, provided k and ` are
well-chosen.
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A test based on the order statistics

Our test statistics:

Ψα := sup
k∈Kn

{
1X(n−k+1)−X(k)>qαn,k

}
,
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A test based on the order statistics

Let n ≥ 2 and Kn be the subset of {1,2, . . . ,n/2} defined by

Kn = {2j ,0 ≤ j ≤ [ln2(n/2)]}.

Our test statistics:

Ψα := sup
k∈Kn

{
1X(n−k+1)−X(k)>qαn,k

}
,
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A test based on the order statistics

Let n ≥ 2 and Kn be the subset of {1,2, . . . ,n/2} defined by

Kn = {2j ,0 ≤ j ≤ [ln2(n/2)]}.

Our test statistics:

Ψα := sup
k∈Kn

{
1X(n−k+1)−X(k)>qαn,k

}
,

where
qu,k is the (1− u)-quantile of X(n−k+1) − X(k) under H0 for all
u ∈]0,1[,

αn = sup
{

u ∈]0,1[,PH0

(
∃k ∈ Kn,X(n−k+1) − X(k) > qu,k

)
≤ α

}
.

αn and qαn,k are approximated (via Monte-Carlo method for
instance)
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First error rate

By definition, Ψα is a level-α test:

PH0 (Ψα = 1) = PH0

(
sup
k∈Kn

{
1X(n−k+1)−X(k)>qαn,k

}
= 1

)
= PH0

(
∃k ∈ Kn; X(n−k+1) − X(k) > qαn,k

)
≤ α.

Remark: α
|Kn| ≤ αn ≤ α.

PH0

(
∃k ∈ Kn,X(n−k+1) − X(k) > qα/|Kn|,k

)
≤

∑
k∈Kn

PH0(X(n−k+1) − X(k) > qα/|Kn|,k ),

≤
∑

k∈Kn

α

|Kn|
≤ α.
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Second kind error

The test Ψα is a multiple testing procedure.

Note that for any f ∈ F1,

Pf (Ψα = 0) = Pf

(
sup
k∈Kn

{
1X(n−k+1)−X(k)>qαn,k

}
= 0

)
,

= Pf

 ⋂
k∈Kn

{
1X(n−k+1)−X(k)>qαn,k

}
= 0

 ,

≤ inf
k∈Kn

Pf

(
1X(n−k+1)−X(k)>qαn,k

= 0
)
,

The second kind error of Ψα is close to the smallest one in the
collection Kn.
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Outline

In the sequel, two kinds of alternatives are considered:

the dense regime: 0 < µ2 − µ1 ≤ M and ε > C√
n

the sparse regime: µ2 − µ1 can be large (asymptotic point of view)
... such ε can be very small

Goal: Find optimal conditions on (ε, µ1, µ2) for the both regimes.
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"Road map"

We assume that 0 < µ2 − µ1 ≤ M where M is a positive constant

F1[M] = {(1− ε)φ(.− µ1) + εφ(.− µ2); 0 < µ2 − µ1 ≤ M}

In this regime,

establish a lower bound (Gaussian case),

validate this bound with a test based on the variance,

prove that our testing procedure is optimal.
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Lower bound (Gaussian case)

Proposition
Let α, β ∈]0,1[ and M > 0. There exists C = C(α, β,M) > 0 such that
for all ρ < C√

n ,
inf
Tα

sup
f∈F1[M]

ε(1−ε)(µ2−µ1)2≥ρ

Pf (Tα = 0) > β.

Remarks:
Testing is not possible if ε(1− ε)(µ2 − µ1)2 < C/

√
n.

In the "contamination problem", the separate condition is different:
ε(µ2 − µ1) ≥ C/

√
n.

Non-asymptotic result.
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Upper bound - Test based on the variance

Under H1,
Xi = (µ2 − µ1)Vi + ηi , ∀i ∈ {1 . . . n},

where Vi ∼ B(ε)q ηi ∼ φ(.− µ1).

Var(Xi) = Var(ηi) + ε(1− ε)(µ2 − µ1)2.

Let σ2 = Var(ηi) and ψα be the test defined by

ψα = 1{S2
n>σ

2+cα/
√

n},

where S2
n = 1

n−1
∑n

i=1(Xi − X̄n)2 and cα is such that
PH0(S2

n − σ2 > cα/
√

n) ≤ α.

By definition, ψα is a level-α test.

C.Maugis-Rabusseau Detection of two-component mixtures 19 / 50



Upper bound - Test based on the variance

For any f ∈ F1[M],

Pf (ψα = 0) = Pf (S2
n ≤ σ2 + cα/

√
n),

= Pf (S2
n − E[S2

n ] ≤ cα/
√

n − ε(1− ε)(µ2 − µ1)2),

≤ Pf

(∣∣∣S2
n − E[S2

n ]
∣∣∣ ≥ ε(1− ε)(µ2 − µ1)2 − cα/

√
n
)
,

≤ Var(S2
n)

[ε(1− ε)(µ2 − µ1)2 − cα/
√

n]2
.

In particular, if Var(S2
n) ≤ C/n, we have

Pf (ψα = 0) ≤ β,

as soon as
ε(1− ε)(µ2 − µ1)2 >

Cα,β√
n
.
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Upper bound - Test based on the variance

Proposition
Let α ∈]0,1[ and β ∈]0,1− α[. Assume that the density function φ has
a finite fourth moment:

∫
R x4φ(x)dx ≤ B. There exists a positive

constant C(α, β,M,B) such that if

ρ ≥ C(α, β,M,B)/
√

n,

then
sup

f∈F1[M]
ε(1−ε)(µ2−µ1)2≥ρ

Pf (ψα = 0) ≤ β.
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Upper bound - our testing procedure (Ψα)

Proposition
There exists a positive constant Cα,β,M > 0 such that, if

ρ ≥ C(α, β,M)

√
ln ln(n)

n
,

then
sup

f∈F1[M]
ε(1−ε)(µ2−µ1)2≥ρ

Pf (Ψα = 0) ≤ β.

Remarks:
The proof is based on the control of deviations of the order
statistics and the associated quantiles
This log log term is due to the multiple (adaptive) testing
procedure
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An asymptotic study

The asymptotic dense regime in the Gaussian setting:

ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

n−r

with 0 < δ ≤ 1
2 and 0 < r < 1

2 .

Corollary

The detection boundary in the dense regime is r∗(δ) = 1
4 −

δ
2 :

the detection is possible when r < r∗(δ) = 1
4 −

δ
2 and impossible if

r > r∗(δ).

Remark : in the "contamination problem"

r∗(δ) =
1
2
− δ
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Sparse Gaussian mixtures - Asymptotic study

The asymptotic sparse regime:

ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

√
2r ln(n)

with 1
2 < δ < 1 and 0 < r < 1.

”ε� 1√
n

and µ2 − µ1 → +∞when n→ +∞.”
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Sparse Gaussian mixtures - Asymptotic study

Proposition
We assume that r > r∗(δ) with

r∗(δ) =


δ − 1

2 if 1
2 < δ < 3

4

(1−
√

1− δ)2 if 3
4 ≤ δ < 1

.

Then, setting f (.) = (1− ε)φ(.− µ1) + εφ(.− µ2), we have, for n large
enough,

Pf (Ψα = 0) ≤ β.

In the sparse regime, we exactly recover the separation boundaries
that are already known in the contamination problem.
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The variance test for sparse mixtures

For any f = (1− ε)φ(.− µ1) + εφ(.− µ2),

Varf (Xi) = Varφ(Xi) + ε(1− ε)(µ1 − µ2)2.

For both Gaussian and Laplace mixtures,

Varf (Xi)− Varφ(Xi) = ε(1− ε)(µ1 − µ2)2 � 1√
n
, as n→ +∞.

Since the variance is estimated at a parametric "rate" 1/
√

n, the test
ψα will fail in this setting
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Simulation study

Our testing procedure is compared with the adaptations of
Kolmogorov-Smirnov test: ψ̂KS,α = 1T̂KS>q̂KS,α

where

T̂KS = sup
x∈R

√
n|Fn(x)− ΦG(x − X̄ )|

Higher Criticism (Donoho and Jin, 04)
Let p̂i = P(Z − X̄ > Xi) where Z ∼ N (0,1) for all i ∈ {1, . . . ,n}
and p̂(1) ≤ p̂(2) ≤ . . . ≤ p̂(n). The level-α test function is
ψ̂HC,α = 1ĤC>q̂HC,α

with

ĤC = max
1≤i≤n

√
n
( i

n − p̂(i)
)√

p̂(i)(1− p̂(i))
.

A Monte-Carlo procedure is considered with N = 100000 samples of
size n = 100 for a Gaussian mixture with ε ∈ {0.05,0.15,0.25,0.35},
µ1 = 0 and µ2 ∈ [0,10].

C.Maugis-Rabusseau Detection of two-component mixtures 29 / 50



Simulation study - Gaussian case
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Figure: Power function of the three considered testing procedures (continuous line
for our test Ψα, dashed line for Higher Criticism and dotted line for the
Kolmogorov-Smirnov test) according to µ, for ε = 0.05 (top-left), 0.15 (top right), 0.25
(middle left) and 0.35 (middle right).
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Simulation study - Laplace case
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Figure: Power function of the three considered testing procedures (continuous line
for our test Ψα, dashed line for Higher Criticism and dotted line for the
Kolmogorov-Smirnov test) according to µ, for ε = 0.05 (top-left), 0.15 (top right), 0.25
(middle left) and 0.35 (middle right).
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Testing problem

Let (X1, . . . ,Xn) i.i.d d-dimensional random vectors with density f

Let φ(.) be the density function of the standard Gaussian
distribution Nd (0d , Id ).

We want to test

H0 : f = φ against H1 : f ∈ F1

where

F1 = {x ∈ Rd 7→ (1− ε)φ(x) + εφ(x − µ); ε ∈]0,1[, µ ∈ Rd}

Dense regime: ε > C/
√

n and ‖µ‖ ≤ M.
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A lower bound

Let F ⊂ F1 a subset of alternatives, and π a probability measure on F .
Then,

inf
ψα

sup
f∈F

Pf (ψα = 0) ≥ 1− α− 1
2

√
EH0 [L2

π(X )]− 1,

where L2
π(X ) the likelihood ratio dPπ/dP0 and the infimum is taken

over all α-level tests.

In particular, for some appropriate constant η(α, β),

EH0 [L2
π(X )] ≤ η(α, β) =⇒ inf

ψα
sup
f∈F

Pf (ψα = 0) ≥ β.

See e.g, Ingster (1999) or Baraud (2002) for more details.

C.Maugis-Rabusseau Detection of two-component mixtures 36 / 50



Lower bound

Let F1[M] = {f (.) = (1− ε)φ(.) + εφ(.− µ); ε ∈]0,1[, ‖µ‖ ≤ M}.

Proposition
Let α, β ∈]0,1[ and M > 0. There exists C = C(α, β,M) > 0 such that
for all ρ < C d

1
4 /
√

n,

inf
Tα

sup
f∈F1[M]
ε‖µ‖≥ρ

Pf (Tα = 0) > β.

Testing is impossible if ε‖µ‖ < C d
1
4√

n .
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First testing procedure (Ψ1,α)

Proposition
Let α ∈]0,1[. Let the level-α test

Ψ1,α = 1‖
√

nX̄n‖2>υα

where υα is the (1− α) quantile of χ2(d) and X̄n = 1
n

n∑
i=1

Xi .

Let β ∈]0,1− α[ and M > 0. Then, there exists a positive constant
C(α, β,M) such that, if

ρ ≥ C(α, β,M)
d

1
4
√

n

then
sup

f∈F1[M]
ε‖µ‖≥ρ

Pf
(
Ψ1,α = 0

)
≤ β.
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Second testing procedure (Ψ2,α)

The sample X is splitted in two different parts:

A = (A1, . . . ,An) and Y = (Y1, . . . ,Yn).

Let vn = Ān/‖Ān‖ where Ān = 1
n
∑n

i=1 Ai .

Let Zi = 〈Yi , vn〉 for all i ∈ {1, . . . ,n} and Z(1) ≤ · · · ≤ Z(n).

Conditionally to A,
the Zi are i.i.d standard Gaussian random variables under H0.
Zi ∼ (1− ε)N (0,1) + εN (µ, vn) under H1

The testing procedure:

Ψ2,α = sup
k∈Kn

1Z(n−k+1)>qαn,k
.
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Second testing procedure (Ψ2,α)

Proposition
Let β ∈]0,1− α[ and M > 0. Then, there exists a positive constant
C(α, β,M) such that, if

ρ ≥ C(α, β,M)d
1
4

√
ln ln(n)

n

then
sup

f∈F1[M]
ε‖µ‖≥ρ

Pf
(
Ψ2,α = 0

)
≤ β.

C.Maugis-Rabusseau Detection of two-component mixtures 41 / 50



Outline

1 Introduction

2 The unidimensional case
Testing procedure
Dense mixtures
Sparse mixtures
Simulation study

3 The multidimensional contamination problem
Testing problem
Lower bound
Two testing procedures
The unbounded case

4 Perspectives

C.Maugis-Rabusseau Detection of two-component mixtures 42 / 50



Results when µ is unbounded

Theorem
Let α, β ∈]0,1[ be fixed and, Ψ1,α and Ψ2,α be the both previous tests.
Then, there exists a positive constant C(α, β), only depending on α, β
and n0 ∈ N∗ such that, for n ≥ n0 and for all f = f(ε,µ) ∈ F satisfying
ε ≥ C(α, β) ln ln(n)

n and

ε2‖µ‖2 ≥ C(α, β)

[(√
d

n

)
∧

{
ε

√
d
n

ln
(

1
ε

)}]
,

we have
Pf (Ψ1,α/2 ∨Ψ2,α/2 = 0) ≤ β.
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ε
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d

εn ε̃n

√
d

nε
√

d
n ln

(
1
ε

)

1

Figure: Summary of the separation condition on ε2‖µ‖2 for the test
Ψ1,α/2 ∨Ψ2,α/2, where εn = ln ln(n)/n and ε̃n = inf

{
ε ∈]0,1[: ε2 ln(1/ε) > 1

n

}
C.Maugis-Rabusseau Detection of two-component mixtures 44 / 50



An other testing procedure

Ψ4,α = sup
U∈U

1TU>tn,d,|U|,α

where U denotes the set of the nonempty subsets of {1, . . . ,n}, |U|
denotes the cardinality of U,

TU =
1
|U|

∥∥∥∥∥∑
i∈U

Xi

∥∥∥∥∥
2

,

tn,d ,k ,α = d + 2
√

d xn,k ,α + 2 xn,k ,α and xn,k ,α = k ln(en/k) + ln(n/α).
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An other testing procedure

Theorem
Let α, β ∈]0,1[ be fixed. Let Ψ1,α and Ψ4,α be the both previous tests.
There exists a positive constant C(α, β) only depending on α, β such
that, for all f = f(ε,µ) ∈ F which fulfills nε ≥ 8

β and

ε2‖µ‖2 ≥ C(α, β)

[(√
d

n

)
∧

{
ε2 ln

(
1
ε

)
+ ε3/2

√
d
n

ln
(

1
ε

)}]
, (1)

we have
Pf (Ψ1,α2

∨Ψ4,α2
= 0) ≤ β.
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Figure: Summary of the separation condition on ε2‖µ‖2 for the test
Ψ1,α/2 ∨Ψ4,α/2, where ε̄n = inf{ε ∈]0,1[; nε3 ln(1/ε) ≥ 1}
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Perspectives

Lower bound when ‖µ‖ is unbounded?

Testing procedure in the sparse regime?
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