Clustering on networks by modularity maximization

Sonia Cafieri

ENAC – Ecole Nationale de l'Aviation Civile Toulouse, France

thanks to:

Pierre Hansen, Sylvain Perron, Gilles Caporossi (GERAD, HEC Montréal, Canada) Leo Liberti (École Polytechnique, France)

INRA - Toulouse, March 2012

イロン イロン イヨン イ

Outline

Community identification in Networks

Modularity maximization

- Definition & State of the art
- Exact algorithms for modularity maximization
 - Modularity maximization as clique partitioning
 - Modularity maximization by mixed 0-1 quadratic programming
- Locally optimal hierarchical divisive heuristic
 - Hierarchical schemes
 - An exact algorithm for bipartition & a new divisive heuristic

Refinement of heuristic results

- Improving heuristic by merging+splitting
- Modularity maximization on trees
 - Dynamical-Programming based algorithm

Other research directions

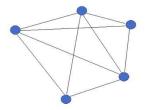
Networks often used to represent complex systems

A network, or graph: G = (V, E)

V = Vertices, associated with the entities of the system under study (people, companies, towns, natural species, ...). represented by points

E = Edges, express that a relation defined on all pairs of vertices holds or not for each such pair

represented by lines joining vertices



イロン イボン イヨン イヨン

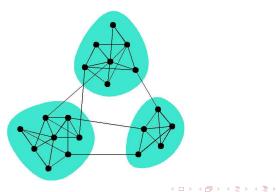
Networks often used to represent complex systems

- social networks
- telecommunication networks
- transportation networks
- ...

Automatic analysis of complex systems represented as networks $\downarrow\downarrow$

identification of communities

community = a subset of vertices such that there are more edges within the community than edges joining it to the outside



Partitions

A community corresponds to a subgraph $G_S = (S, E_S)$ of a graph G = (V, E): a graph with vertex set $S \subseteq V$, edge set E_S equal to all edges with both vertices in S.

One aims at finding a partition of V into subgraphs induced by nonempty subsets

$$V_1, V_2, \ldots, V_M$$

such that

$$V_k \cap V_l = \emptyset \quad \forall k \in 1, 2, \dots M$$

 $V_1 \cup V_2 \cup \dots \cup V_M = V$

How to evaluate a partition?

Clustering criteria

• Minimum cut:

$$\min_{C_1,\ldots,C_k}\sum_{s=1}^k links(C_s,V\backslash C_s)$$

• Ratio cut (Cheng and Wei, 1991):

$$\min_{C_1,\ldots,C_k}\sum_{s=1}^k \frac{links(C_s,V\backslash C_s)}{|C_s|}$$

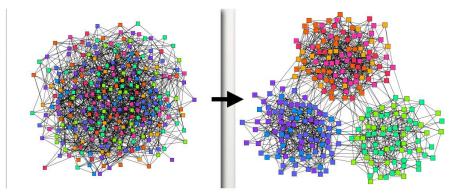
• Normalized cut (Shi and Malik, 2000):

$$\min_{C_1,\ldots,C_k} \sum_{s=1}^k \frac{links(C_s,V\backslash C_s)}{degree(C_s)}$$

• Min-max cut (Ding et al., 2001):

$$\min_{C_1,\ldots,C_k}\sum_{s=1}^k \frac{links(C_s,V\backslash C_s)}{links(C_s,C_s)}$$

Clustering criteria



Outline

Community identification in Networks

Modularity maximization

- Definition & State of the art
- 3 Exact algorithms for modularity maximization
 - Modularity maximization as clique partitioning
 - Modularity maximization by mixed 0-1 quadratic programming

Locally optimal hierarchical divisive heuristic

- Hierarchical schemes
- An exact algorithm for bipartition & a new divisive heuristic

5 Refinement of heuristic results

- Improving heuristic by merging+splitting
- Modularity maximization on trees
 - Dynamical-Programming based algorithm
- 7 Other research directions

イロン イボン イヨン イヨン

Modularity

Newman and Girvan, 2004:

compare the fraction of edges falling within communities to the expected fraction of such edges

Modularity:

$$Q = \sum_{s} \left[a_s - e_s \right]$$

 a_s = fraction of all edges that lie within module s

 e_s = expected value of the same quantity in a graph in which the vertices have the same degrees but edges are placed at random.

イロト イタト イヨト イヨ

Modularity

Newman and Girvan, 2004:

compare the fraction of edges falling within communities to the expected fraction of such edges

Modularity:

$$Q = \sum_{s} \left[a_s - e_s \right]$$

 a_s = fraction of all edges that lie within module s

- e_s = expected value of the same quantity in a graph in which the vertices have the same degrees but edges are placed at random.
 - $Q \approx 0$: the network is equivalent to a random network (barring fluctuations);
 - $Q \approx 1$: the network has a strong community structure;
 - in practice, the maximum modularity Q is often between 0.3 and 0.7.

Maximizing modularity gives an optimal partition with the optimal number of clusters

Modularity maximization: methods

- Exact algorithms for modularity maximization
 - proposed only in a few papers
 - can only solve small instances (with about a hundred entities) in reasonable time
 - provide an optimal solution together with the proof of its optimality
- Heuristics for modularity maximization
 - widely used
 - can solve approximately very large instances with up to hundred or thousand entities
 - do not have either an a priori performance guarantee (finding always a solution with a value which is at least a given percentage of the optimal one),

nor an a posteriori performance guarantee

(that the obtained solution is at least a computable percentage of the optimal one)

Heuristics based on:

Partitioning schemes

aim at finding the best partition into a given number of clusters

- simulated annealing,
- genetic search,
- multistep greedy,
- a variety of other approaches.

Hierarchical clustering lead to a set of nested partitions

- agglomerative schemes
- divisive schemes

• Clauset, Newman and Moore, 2004:

agglomerative hierarchical greedy, for sparse networks has a very low complexity and is considerably faster than previously proposed methods.

• Newman, 2006:

divisive hierarchical heuristic based on spectral graph theory, splitting is done according to the sign of the components of the first eigenvector of the modularity matrix.

• Noack and Rotta, 2009:

heuristic based on a single-step coarsening with a multi-level refinement, competitive with other methods in the literature.

• Liu and Murata, 2010:

heuristic based on label propagation, gives better results than previous heuristics

• Resolution limit:

in the presence of large clusters, some clusters smaller than a certain size can be undetectable \Rightarrow modular structures like small cliques can be hidden in larger clusters.

• Degeneracy of *Q*:

there can be a large number of partitions, even very different from each other, having high modularity values \Rightarrow easy to find high-scoring partitions but difficult to identify the global optimum.

Exact algorithms: row generation, column generation ⇒ raising the size of exact solved problems

- Heuristic: locally optimal hierarchical divisive heuristic
- Refinement of heuristic results
- Dynamical-Programming based algorithm for modularity maximization on trees

Outline

- Community identification in Networks
 - Modularity maximization
 - Definition & State of the art
- Exact algorithms for modularity maximization
 - Modularity maximization as clique partitioning
 - Modularity maximization by mixed 0-1 quadratic programming
- 4 Locally optimal hierarchical divisive heuristic
 - Hierarchical schemes
 - An exact algorithm for bipartition & a new divisive heuristic
- 5 Refinement of heuristic results
 - Improving heuristic by merging+splitting
- Modularity maximization on trees
 - Dynamical-Programming based algorithm
- 7 Other research directions

イロン イボン イヨン イヨン

Modularity: another expression

Modularity as a sum of values over all edges of the complete graph K_n :

$$Q = \frac{1}{2m} \sum_{i,j \in V} \left(a_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j)$$

where:

- m = |E|
- k_i, k_j = degrees of vertices *i* and *j*
- $a_{ij} = ij$ component of the adjacency matrix of G
- $\delta(c_i, c_j) = 1$ if the communities to which *i* and *j* belong are the same, 0 otherwise (Kronecker symbol)
- $k_i k_j/2m$ = expected number of edges between vertices *i* and *j* in a null model where edges are placed at random and the distribution of degrees remains the same.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

Modularity maximization as clique partitioning

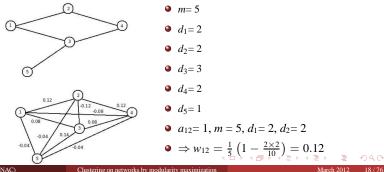
Introducing binary variables

 $\begin{cases} x_{ij} = 1 & \text{if vertices } i, j \text{ belong to the same community} \\ = 0 & \text{otherwise} \end{cases}$

and

$$w_{ij} = \frac{1}{m} \left(a_{ij} - \frac{k_i k_j}{2m} \right)$$

modularity maximization can be reformulated as a clique partitioning problem:



modularity maximization can be reformulated as a clique partitioning problem:

 K_n complete graph \Rightarrow it is a clique and any of its induced subgraphs are cliques. Partitioning *G* is thus equivalent to partitioning K_n into cliques.

The resulting partition is an equivalence relation:

- reflexivity: each entity is in the same module as itself: $\forall i \quad x_{ii} = 1$
- symmetry: if *i* is in the same module as *j*, *j* is in the same as *i*: $\forall i, j \quad x_{ij} = x_{ji}$
- transitivity: if *i* and *j* are in the same module and *j* and *k* are in the same module, then *i* and *k* must be in the same module

Modularity maximization as clique partitioning

$$\begin{cases} \max \sum_{i < j \in V} w_{ij} x_{ij} - C & -C = -\sum_{i \in V} \frac{k_i k_i}{2m} \\ \text{s.t.} & x_{ij} + x_{jk} - x_{ik} \le 1 & \forall 1 \le i < j < k \le n \\ & x_{ij} - x_{jk} + x_{ik} \le 1 & \forall 1 \le i < j < k \le n \\ & -x_{ij} + x_{jk} + x_{ik} \le 1 & \forall 1 \le i < j < k \le n \\ & x_{ij} \in \{0, 1\} & \forall 1 \le i < j \le n \end{cases}$$

(Grötschel and Wakabayashi, 1990)

Linear 0-1 program

$$\frac{n(n-1)}{2} = O(n^2) \text{ variables}$$

$$3\binom{n}{3} = \frac{n(n-1)(n-2)}{2} = O(n^3) \text{ constraints}$$

イロン イボン イヨン イヨン

Typically used in combinatorial applications.

- 1. the linear continuous relaxation is first solved
- 2. if the solution of this relaxation is in integers, it is optimal (often the case for modularity maximization)
- 3. if the solution of the continuous relaxation is fractional, add valid constraints violated by the fractional solution: *cutting planes*
- 4. the number of constraints grows rapidly with *n*: they can be added by batches of unsatisfied ones.

Our solution of the Linear 0-1 program:

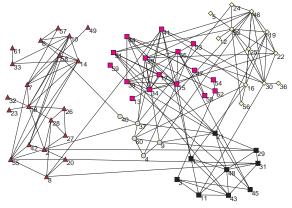
- OPLEX
- row generation approach implemented with the "lazy constraints" feature of CPLEX.

Example: a social network

Dolphins network:

bottlenose dolphins studied by Lusseau in Doubtful Sound, New Zealand.

Network with 62 vertices corresponding to the dolphins and 159 edges joining vertices associated with pairs of dolphins with frequent communications among them.



partition obtained for dolphins dataset.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

It is a powerful technique of linear programming which allows solving exactly linear programs with a number of variables (columns) exponential in the size of the input.

Basic steps:

- 1. select a small number of columns and solve the linear program using only these
- 2. find an unused column which, if included, would most improve the objective value (with favorable *reduced cost*) or determine that there is none
- 3. include the column in the linear program, re-solve it, and go to step 2.

The original problem is split into:

Master problem:

original problem with only a subset of variables being considered

Subproblem:

new problem created to identify a new variable

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Column generation – clique partitioning

Modularity maximization: the columns correspond to all subsets of V (all nonempty modules).

 $a_{it} = 1$ if vertex *i* belongs to module *t* = 0 otherwise

Master problem:

$$\begin{cases} \max \sum_{t \in T} c_t z_t - C \\ \sum_{t \in T} a_{it} z_t = 1 \\ z_t \in \{0, 1\} \end{cases} \quad \forall i = 1, \dots, n \end{cases}$$

 $c_t = \sum_i \sum_{j>i} w_{ij} a_{it} a_{jt}$

i.e., the value of the module indexed by t, $t = 1 \dots 2^n - 1$.

- obj. func.: sum of modularities of all selected modules minus the constant corresponding to the diagonal terms
- 1st set of constrains: each entity must belong to one and only one module
- Induces a set of constraints: modules must be selected entirely or not at all.

Sonia Cafieri (ENAC)

Column generation - clique partitioning

Improving columns are added progressively to relaxation of the master problem.

Reduced cost associated with column *t*: $c_t - \sum_i \lambda_i a_{it}$.

To find a column with positive red. cost, we replace the coefficients a_{it} by variables y_i .

Auxiliary problem:

$$\max\sum_{i}\sum_{j>i}w_{ij}y_iy_j-\sum_{i}\lambda_iy_i.$$

Quadratic program in 0-1 variables with a 100% dense matrix of coefficients

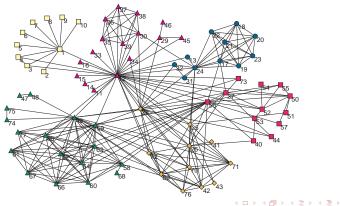
Solved using

- a Variable Neighborhood Search heuristic (as long as a column with positive reduced cost can be found);
- as exact method, a simple branch and bound algorithm (Meyer 2000) (when this is no more the case).

Example: a social network

Victor Hugo's Les Misérables network:

describes the relationships between characters in Victor Hugo's masterpiece : 77 vertices associated to characters which interact and 257 edges associated with pairs of characters appearing jointly in at least one chapter.



Outline

- Community identification in Networks
 - Modularity maximization
 - Definition & State of the art
- Exact algorithms for modularity maximization
 - Modularity maximization as clique partitioning
 - Modularity maximization by mixed 0-1 quadratic programming
- Locally optimal hierarchical divisive heuristic
 - Hierarchical schemes
 - An exact algorithm for bipartition & a new divisive heuristic
- 5 Refinement of heuristic results
 - Improving heuristic by merging+splitting
- Modularity maximization on trees
 - Dynamical-Programming based algorithm
- 7 Other research directions

イロン イボン イヨン イヨン

MIQP formulation

Xu, Tsoka and Papageorgiou (2007):

$$Q = \sum_{s} [a_s - e_s] = \sum_{s} \left[\frac{m_s}{m} - \left(\frac{d_s}{2m} \right)^2 \right]$$

 m_s = number of edges in module *s* d_s = sum of degrees k_i of the vertices of module *s*.

Variables used to identify to which module each vertex and each edge belongs:

$$X_{rs} = \begin{cases} 1 & \text{if edge } r \text{ belongs to module } s \\ 0 & \text{otherwise} \end{cases} \qquad \forall r = 1, 2, \dots m, s = 1, 2, \dots M$$
$$Y_{is} = \begin{cases} 1 & \text{if vertex } i \text{ belongs to module } s \\ 0 & \text{otherwise.} \end{cases} \qquad \forall i = 1, 2, \dots n, s = 1, 2, \dots M$$

$$m_s = \sum_r X_{rs}$$
 and $d_s = \sum_i k_i Y_{is}$

イロン イボン イヨン イヨン

MIQP formulation

• Each vertex belongs to exactly one module:

$$\sum_{s} Y_{is} = 1 \quad \forall i = 1, 2, \dots n$$

Any edge r = {v_i, v_j} with end vertices indiced by *i* and *j* can only belong to module *s* if both of its end vertices belong also to that module:

 $X_{rs} \leq Y_{is} \quad \forall r = \{v_i, v_j\} \in E$ $X_{rs} \leq Y_{js} \quad \forall r = \{v_i, v_j\} \in E$

• The number of modules is *a priori* unknown. Variables $u_s = 1$ if module *s* is nonempty and 0 otherwise. Then constraints $u_s \le u_{s-1}$ express that module *s* can be nonempty only is module s - 1 is so. Consequently:

$$\sum X_{rs} \ge u_s$$
 and $\sum X_{rs} \le (n-s+1)u_s$

(n - s + 1) due to the fact that each of the modules $1, 2, \ldots s - 1$ must be nonempty).

Alternative equivalent solutions can be obtained by simply re-indexing clusters
 ⇒ symmetry-breaking constraints.

Mixed-Integer Quadratic Program

1

with a convex continuous relaxation

Solved using CPLEX.

Instances up to 104 vertices are solved.

Master problem: the same as the first CG approach

Auxiliary problem: mixed 0-1 quadratic program, approach similar to that one of Xu et al.:

$$\begin{array}{rcl}
\max & \sum_{r} \frac{x_{r}}{m} - \left(\frac{d}{2m}\right)^{2} - \sum_{i} \lambda_{i} y_{i}, \\
s.t. & d &= \sum_{i} k_{i} y_{i} \\
d &= \sum_{i} k_{i} y_{i} \\
x_{r} &\leq y_{i} \quad \forall r = \{v_{i}, v_{j}\} \in E \\
x_{r} &\leq y_{j} \quad \forall r = \{v_{i}, v_{j}\} \in E
\end{array}$$

 $\begin{cases} x_r = 1 & \text{if edge } r \text{ belongs to the module which maximizes the obj.function} \\ = 0 & \text{otherwise} \end{cases}$ $\begin{cases} y_i = 1 & \text{if vertex } i \text{ belongs to the module which maximizes the obj.function} \\ = 0 & \text{otherwise} \end{cases}$

・ロト・西ト・ヨト ・ヨー うらの

Mixed-Integer Quadratic Program

 \downarrow

n + m binary variables + 1 continuous variable 2m + 1 linear constraints

a single nonlinear term which is concave, in the objective function.

Solved using:

- a Variable Neighborhood Search heuristic (as long as a column with positive reduced cost can be found);
- CPLEX (when this is no more the case).

Computational results

- clique partitioning row generation: CPRG
- clique partionning column generation: CPCG
- 0-1 mixed integer programming: MIQP
- 0-1 mixed integer column generation: MICG

dataset	п	т	opt	М	CPRG	CPCG	MIQP	MICG
karate	34	78	0.4198	4	0.02	0.62	1.03	1.97
dolphin	62	159	0.5285	5	4.85	2.96	197.89	4.13
misérables	77	254	0.5600	6	1.49	1.70	55.58	1.63
p53	104	226	0.5351	7	601.69	2.80	1844.31	3.61
polbooks	105	441	0.5272	5	647.22	139.17	-	35.78
football	115	613	0.6046	10	193.50	-	-	204.50
s838	512	819	0.8194	12	-	-	-	7655.56

Comparison of CPU time

Outline

Community identification in Networks

Modularity maximization

- Definition & State of the art
- Exact algorithms for modularity maximization
 - Modularity maximization as clique partitioning
 - Modularity maximization by mixed 0-1 quadratic programming

Locally optimal hierarchical divisive heuristic

- Hierarchical schemes
- An exact algorithm for bipartition & a new divisive heuristic

5 Refinement of heuristic results

• Improving heuristic by merging+splitting

Modularity maximization on trees

Dynamical-Programming based algorithm

Other research directions

イロン イボン イヨン イヨン

Hierarchies

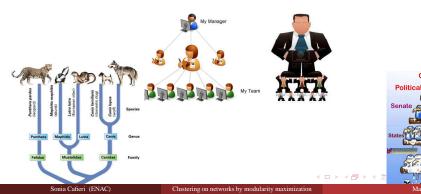
Obama's

March 2012

Hierarchy

House

35 / 76



Hierarchical heuristics are in principle devised for finding a hierarchy of partitions implicit in the given network when it corresponds to some situation where hierarchy is observed or postulated.

They aim at finding a set of nested partitions.

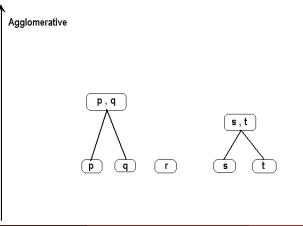
- Agglomerative heuristics
- Divisive heuristics

イロト イタト イヨト イヨ

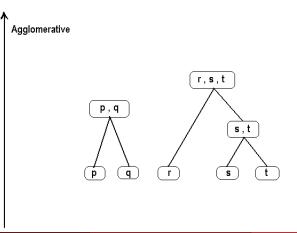
- Agglomerative heuristics
 - proceed from an initial partition with n communities each containing 1 entity
 - iteratively merge the pair of entities for which merging increases most the objective function (e.g., modularity)

Agglomerative				
	p q) r	s t	

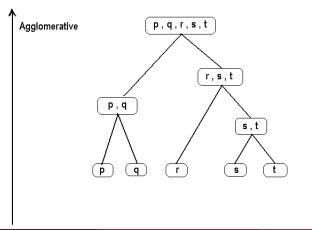
- Agglomerative heuristics
 - proceed from an initial partition with n communities each containing 1 entity
 - iteratively merge the pair of entities for which merging increases most the objective function (e.g., modularity)



- Agglomerative heuristics
 - proceed from an initial partition with n communities each containing 1 entity
 - iteratively merge the pair of entities for which merging increases most the objective function (e.g., modularity)



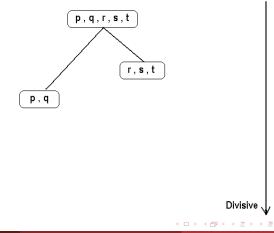
- Agglomerative heuristics
 - proceed from an initial partition with *n* communities each containing 1 entity
 - iteratively merge the pair of entities for which merging increases most the objective function (e.g., modularity)



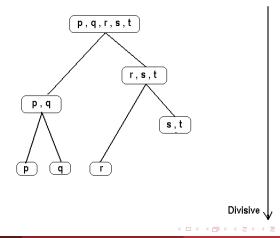
- Divisive heuristics
 - proceed from an initial partition containing all entities
 - iteratively divide a community into two in such a way to increase most the objective function (or the decrease in the objective value is the smallest possible).

(p,q,r,s,t

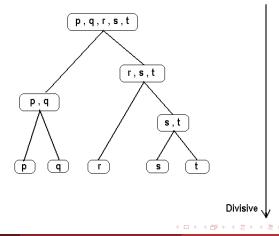
- Divisive heuristics
 - proceed from an initial partition containing all entities
 - iteratively divide a community into two in such a way to increase most the objective function (or the decrease in the objective value is the smallest possible).



- Divisive heuristics
 - proceed from an initial partition containing all entities
 - iteratively divide a community into two in such a way to increase most the objective function (or the decrease in the objective value is the smallest possible).



- Divisive heuristics
 - proceed from an initial partition containing all entities
 - iteratively divide a community into two in such a way to increase most the objective function (or the decrease in the objective value is the smallest possible).



Outline

Community identification in Networks

Modularity maximization

- Definition & State of the art
- Exact algorithms for modularity maximization
 - Modularity maximization as clique partitioning
 - Modularity maximization by mixed 0-1 quadratic programming

Locally optimal hierarchical divisive heuristic

- Hierarchical schemes
- An exact algorithm for bipartition & a new divisive heuristic

Refinement of heuristic results

• Improving heuristic by merging+splitting

Modularity maximization on trees

Dynamical-Programming based algorithm

7 Other research directions

イロン イボン イヨン イヨン

An exact algorithm for bipartition

$$Q = \sum_{s} [a_s - e_s] = \sum_{s} \left[\frac{m_s}{m} - \left(\frac{d_s}{2m} \right)^2 \right]$$

 m_s = number of edges in community s d_s = sum of degrees k_i of the vertices of community s

we aim to find a bipartition $\rightarrow s \in \{1, 2\}$

Variables used to identify to which module each vertex and each edge belongs:

$$X_{rs} = \begin{cases} 1 & \text{if edge } r \text{ belongs to community } s \\ 0 & \text{otherwise} \end{cases} \quad \forall r = 1, 2, \dots m, s = 1, 2$$

$$Y_{i1} = \begin{cases} 1 & \text{if vertex } i \text{ belongs to community } 1 \\ 0 & \text{otherwise, i.e. if vertex } i \text{ belongs to community } 2 \end{cases} \quad \forall i = 1, 2, \dots n$$

イロン イロン イヨン イ

An exact algorithm for bipartition

We express d_2 as a function of d_1 :

 $d_2 = d_t - d_1$

 $(d_t = \text{sum of degrees in the community to be bipartitioned}).$

 \Rightarrow Modularity:

$$Q = \frac{m_1 + m_2}{m} - \frac{d_1^2}{4m^2} - \frac{d_2^2}{4m^2} =$$

= $\frac{m_1 + m_2}{m} - \frac{d_1^2}{4m^2} - \frac{d_t^2 + d_1^2 - 2d_t d_1}{4m^2} =$
= $\frac{m_1 + m_2}{m} - \frac{d_1^2}{4m^2} - \frac{d_t^2}{4m^2} + \frac{d_t d_1}{2m^2}.$

(ロ) (四) (三) (三) (三)

An exact algorithm for bipartition

We impose that any edge $r = \{v_i, v_j\}$ with end vertices indiced by *i* and *j* can only belong to community *s* if both of its end vertices belong also to that community:

$$egin{array}{rcl} X_{r1} &\leq & Y_{i1} & orall r = \{v_i,v_j\} \in E \ X_{r1} &\leq & Y_{j1} & orall r = \{v_i,v_j\} \in E \end{array}$$

and

$$\begin{array}{ll} X_{r2} \leq 1 - Y_{i1} & \forall r = \{v_i, v_j\} \in E \\ X_{r2} \leq 1 - Y_{j1} & \forall r = \{v_i, v_j\} \in E \end{array}$$

Furthermore:

$$m_s = \sum_r X_{rs} \quad \forall s \in \{1, 2\}$$
$$d_1 = \sum_{i \in V_1} k_i Y_{i1}.$$

ヘロト 人間 ト 人居 ト 人居 ト

\Downarrow

Mixed-Integer Quadratic Program

with a single non linear but concave term, in the objective function, which is to be maximized. Hence, its continuous relaxation is easy to solve.

Solved using CPLEX.

(a)

- Divisive scheme
- splitting step performed using the above exact algorithm for bipartition

the proposed heuristic is locally optimal (but not globally optimal)

イロン イロン イヨン イ

dataset	n	т	agglomerative CNM			divisive CHL			exact	
			М	Q	error(%)	М	Q	error(%)	М	Q
karate	34	78	3	0.38067	9.31895	4	0.41880	0.23583	4	0.41979
dolphin	62	159	4	0.49549	6.24953	4	0.52646	0.38977	5	0.52852
les miserables	77	254	5	0.50060	10.6087	8	0.54676	2.36603	6	0.56001
A00_main	83	135	7	0.52394	1.31098	7	0.52806	0.53494	9	0.53090
p53 protein	104	226	8	0.52052	2.73018	7	0.52843	1.25203	7	0.53513
political_books	105	441	4	0.50197	4.79288	4	0.52629	0.18018	5	0.52724
football	115	613	7	0.57728	4.51395	10	0.60091	0.60539	10	0.60457
A01_main	249	635	12	0.59908	5.34366	15	0.62877	0.65255	14	0.63290
usair97	332	2126	7	0.32039	12.9848	8	0.35959	2.33840	6	0.36820
netscience_main	379	914	19	0.83829	1.21494	20	0.84702	0.18619	19	0.84860
s838	512	819	12	0.80556	1.68904	15	0.81663	0.33805	12	0.81940
power	4941	6594	39	0.93402	-	40	0.93937	-	-	-
average			8	0.55125	5.52342	9.3	0.57525	0.82540	8.8	0.57957

イロン イボン イヨン イヨン

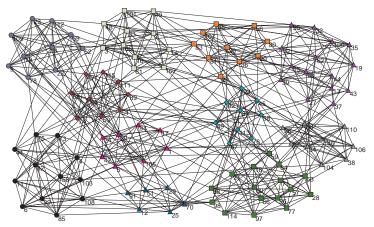
Results: comparison with *divisive spectral* + *KL*

dataset	n	т	divisive spectral + KL				divisive CHL		
			М	Q	$err_dv(\%)$	error(%)	М	Q	error(%)
karate	34	78	4	0.419	0	0.236	4	0.41880	0.23583
dolphin	62	159	5	0.508	3.415	3.792	4	0.52646	0.38977
les_miserables	77	254	7	0.538	1.533	3.862	8	0.54676	2.36603
A00_main	83	135	7	0.527	0.199	0.733	7	0.52806	0.53494
p53 protein	104	226	6	0.518	1.930	3.158	7	0.52843	1.25203
political_books	105	441	4	0.527	-0.081	0.099	4	0.52629	0.18018
football	115	613	8	0.579	3.638	4.221	10	0.60091	0.60539
A01_main	249	635	16	0.594	5.463	6.080	15	0.62877	0.65255
usair97	332	2126	7	0.358	0.501	2.827	8	0.35959	2.33840
netscience_main	379	914	23	0.820	3.191	3.371	20	0.84702	0.18619
s838	512	819	13	0.779	4.587	4.910	15	0.81663	0.33805
power	4941	6594	8	0.791	-		40	0.93937	-
average			9.09	0.56073	2.21592	3.02627	9.3	0.57525	0.82540

(日)

Football game network

it describes the schedule of games between American college football teams in the Fall 2000. n = 115 vertices, m = 613 edges.



イロン イワン イヨン イヨン

Outline

Community identification in Networks

Modularity maximization

- Definition & State of the art
- Exact algorithms for modularity maximization
 - Modularity maximization as clique partitioning
 - Modularity maximization by mixed 0-1 quadratic programming
- Locally optimal hierarchical divisive heuristic
 - Hierarchical schemes
 - An exact algorithm for bipartition & a new divisive heuristic

Refinement of heuristic results

- Improving heuristic by merging+splitting
- Modularity maximization on trees
 - Dynamical-Programming based algorithm
- 7 Other research directions

イロン イボン イヨン イヨン

Given a partition found by a heuristic:

- act on the reduced networks represented by the communities found
- merge and split some communities if this is worthwhile in terms of increase of modularity
- In particular:

apply an exact algorithm for bipartitioning to split a community

 \Rightarrow Impact of exact algorithms on heuristic schemes

イロン イロン イヨン イヨン

Post-processing to available heuristics for modularity maximization

- \Rightarrow the initial partition is the solution provided by the considered heuristic.
 - First: split communities
 - split each *CL_i* of the original partition into 2 sub-communities *CL*₁, *CL*₂ by applying the exact algorithm for bipartition
 - if $Q(CL_1) + Q(CL_2) > Q(CL_i)$ then

replace CL_i by the 2 new communities CL_1 , CL_2

else

keep the original community CL_i .

イロト イロト イヨト イヨト

• Second: merge pairs of communities

- for each pair (CL_j, CL_k) , merge CL_j and CL_k into CL_m
- if $Q(CL_m) > Q(CL_j) + Q(CL_k)$ then

replace CL_j , CL_k with $CL_m = CL_j \cup CL_k$

else

keep the original communities.

イロン イロン イヨン イヨン

• Third: merge + split communities

- for each pair (CL_j, CL_k) , merge CL_j and CL_k into CL_m
- if $Q(CL_m) > Q(CL_j) + Q(CL_k)$ then replace CL_j, CL_k with $CL_m = CL_j \cup CL_k$

else

split CL_m into CL_{m1} , CL_{m2} if $O(CL_{m1}) + O(CL_{m2}) > O(CL_m)$ then

replace CL_m with CL_{m1} , CL_{m2}

else

keep CLm

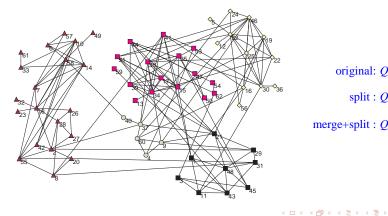
・ロト ・ 同ト ・ ヨト ・ ヨト

Example: a social network

Dolphins network:

bottlenose dolphins studied by Lusseau in Doubtful Sound, New Zealand.

Network with 62 vertices corresponding to the dolphins and 159 edges joining vertices associated with pairs of dolphins with frequent communications among them.



original: Q = 0.52377split : Q = 0.52773

merge+split : Q = 0.52852

dataset	n	m	Qan	<i>Q'</i>	Q _{NR}	<i>Q''</i>	Q_{opt}
dolphin	62	159	0.49549	0.51958	0.52377	0.52852	0.52852
les miserables	77	254	0.50060	0.54039	0.56001	0.56001	0.56001
p53 protein	104	226	0.52052	0.52621	0.53216	0.53502	0.53513
political books	105	441	0.50197	0.52724	0.52694	0.52724	0.52724
adjnoun	112	425	0.29349	0.29446	0.30729	0.30848	-
football	115	613	0.57728	0.58685	0.60028	0.60457	0.60457
usair97	332	2126	0.32039	0.36161	0.36577	0.36605	0.3682
s838	512	819	0.80556	0.80914	0.81624	0.81656	0.8194
email	1133	5452	0.51169	0.53808	0.57740	0.57773	-
power	4941	6594	0.93402	0.93612	0.93854	0.93870	-
erdos02	6927	11850	0.78092	0.78095	0.71552	0.71570	-

we transform some partitions into optimal ones !

イロト イポト イヨト イヨ

Outline

Community identification in Networks

Modularity maximization

- Definition & State of the art
- Exact algorithms for modularity maximization
 - Modularity maximization as clique partitioning
 - Modularity maximization by mixed 0-1 quadratic programming

Locally optimal hierarchical divisive heuristic

- Hierarchical schemes
- An exact algorithm for bipartition & a new divisive heuristic

Refinement of heuristic results

• Improving heuristic by merging+splitting

Modularity maximization on trees

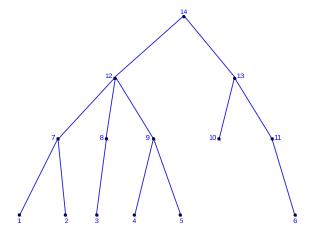
Dynamical-Programming based algorithm

Other research directions

イロン イボン イヨン イヨン

Algorithm: labeling nodes and edges

The algorithm first proceeds to labeling of its vertices and edges:

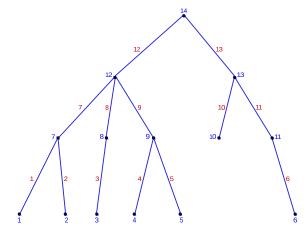


a center of the tree is found and vertices are given a level equal to the distance to the center and labeled accordingly beginning at the lowest level

・ロト ・ 同ト ・ ヨト ・ ヨ

Algorithm: labeling nodes and edges

The algorithm first proceeds to labeling of its vertices and edges:



edges are labeled with the same label as their lower vertex

イロン イロン イヨン イ

Lists of triplets are associated with edges

they characterize the situation relative to the edges they are associated with and to the subtree rooted at their lower vertices.

A triplet (m_s, d_s, q_s) :

- m_s = number of edges in the connected component containing the upper vertex v of the edge with which the triplet is associated;
- $d_s = \text{sum of degrees of this subtree};$
- $q_s = \text{sum of modularities of the clusters within the subtree and not containing } v$.

イロン イロン イヨン イヨン

Two operations to update the set of triplets: extension and merging

• Extension:

considers the effect of adding or not an edge (u, v) to the subtree rooted at v

• Merging:

considers the effect of combining two at a time, in increasing order of labels, two subtrees rooted at the same vertex v.

イロト イポト イヨト イヨ

Algorithm: extension

Extension:

considers the effect of adding or not an edge (u, v) to the subtree rooted at v

2 cases:

the edge is cut

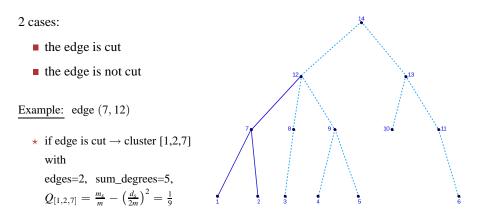
the edge is not cut

イロト イポト イヨト イヨ

Algorithm: extension

Extension:

considers the effect of adding or not an edge (u, v) to the subtree rooted at v



★ if edge is not cut → contribution of the subtree {1,2,7,12} to the cluster containing the root 12: edges≥ 3, sum_degrees= 5+degree of the root

Sonia Cafieri (ENAC)

Extension:

• the edge is cut:

the triplet (m_s, d_s, q_s) is transformed into

$$\left(0, \ d_{newroot}, \ q_s + \left(\frac{m_s}{m} - \left(\frac{d_s}{2m}\right)^2\right)\right)$$

the edge is not cut:

the triplet (m_s, d_s, q_s) is transformed into

$$(m_s+1, d_s+d_{newroot}, q_s)$$

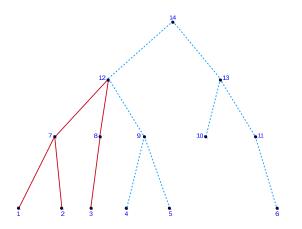
newroot = upper vertex of the edge under consideration

イロト イロト イヨト イヨト

Algorithm: merging

Merging:

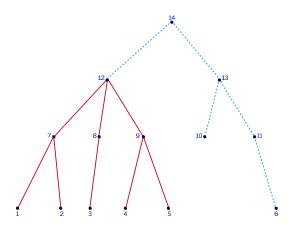
considers the effect of combining two at a time, in increasing order of labels, two subtrees rooted at the same vertex v.



Algorithm: merging

Merging:

considers the effect of combining two at a time, in increasing order of labels, two subtrees rooted at the same vertex v.



イロト イタト イヨト イヨ

Merging:

Two triplets are considered: (m_s, d_s, q_s) and (m'_s, d'_s, q'_s) one in each of the two subtrees with the common root v, and are transformed into

$$(m_s + m'_s, d_s + d'_s - d_v, q_s + q'_s)$$

イロン イワン イヨン イヨン

- All pendent edges must belong to all optimal solutions
 - \implies case cut edge not to be considered in extension
- Any cut edge induces a subtree not containing the root with maximum (local) modularity
 - \implies in the list of triplets corresponding to cut edges only the triplet with maximum modularity needs to be kept

イロン イロン イヨン イヨン

Algorithm: dominance rules

• Triplets may be dominated by other triplets.

Let (m_1, d_1, q_1) and (m_2, d_2, q_2) two triplets in the same list:

 (m_1, d_1, q_1) dominates (m_2, d_2, q_2) if and only if

 $m_1 \ge m_2$, $d_1 \le d_2$ and $q_1 \ge q_2$ with at least one strict inequality.

Extension

- edge is cut : in the following extension step there will be two corresponding triplets $\left(0, d_{newroot}, q_1 + \left(\frac{m_1}{m} \left(\frac{d_1}{2m}\right)^2\right)\right)$ and $\left(0, d_{newroot}, q_2 + \left(\frac{m_2}{m} \left(\frac{d_2}{2m}\right)^2\right)\right)$. $m_1 \ge m_2, d_1 \le d_2$ and $q_1 \ge q_2$ with at least one strict inequality \Rightarrow dominance
- edge is not cut : there will be two corresponding triplets
 (m₁ + 1, d₁ + d_{newroot}, q₁) and (m₂ + 1, d₂ + d_{newroot}, q₂).
 m₁ ≥ m₂, d₁ ≤ d₂ and q₁ ≥ q₂ with at least one strict inequality ⇒ dominance

Algorithm: dominance rules

• Triplets may be dominated by other triplets.

Let (m_1, d_1, q_1) and (m_2, d_2, q_2) two triplets in the same list:

 (m_1, d_1, q_1) dominates (m_2, d_2, q_2) if and only if

 $m_1 \ge m_2, \ d_1 \le d_2$ and $q_1 \ge q_2$ with at least one strict inequality.

Merging

The two corresponding triplets will be:

 $(m_1 + m'_s, d_1 + d'_s - d_v, q_1 + q'_s)$ and $(m_2 + m'_s, d_2 + d'_s - d_v, q_2 + q'_s)$

where: (m'_s, d'_s, q'_s) is a triplet of the list to merged to the list containing the two triplets

 d_v is the degree of the upper vertex of the current edge.

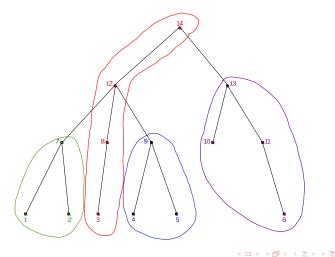
 $m_1 \ge m_2, d_1 \le d_2$ and $q_1 \ge q_2$ with at least one strict inequality \Rightarrow dominance

By iteration \Rightarrow the second triplet and its descendents are dominated by the first triplet and its descendent.

イロト イポト イヨト イヨト 二日

Algorithm: solution

The set of cut edges is complementary to the set of connected subtrees \Rightarrow the optimal partition is given by the connected subtrees induced by all cut edges

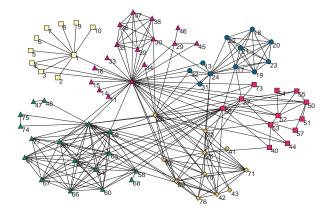


- Reformulations of the mathematical programming model for bipartitioning.
- Conditions which must be satisfied by all communities: combining a criterion for community evaluation with constraints on each community.
- Criteria other than modularity.

(a)

The end

Thank you!



ヘロト 人間 ト 人居 ト 人居 ト