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Network Clustering

Networks often used to represent complex systems

A network, or graph: G = (V, E)

V = Vertices, associated with the entities of the system under study
(people, companies, towns, natural species, ...).
represented by points

E = Edges, express that a relation defined on all pairs of vertices holds or not for each
such pair
represented by lines joining vertices
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Network Clustering

Networks often used to represent complex systems

social networks

telecommunication networks

transportation networks

...
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Communities

Automatic analysis of complex systems represented as networks
⇓

identification of communities

community = a subset of vertices such that there are
more edges within the community than edges joining it to the outside
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Partitions

A community corresponds to asubgraphGS = (S, ES) of a graphG = (V, E):
a graph with vertex setS⊆ V, edge setES equal to all edges with both vertices inS.

One aims at finding apartition ofV into subgraphsinduced by nonempty subsets

V1, V2, . . . , VM

such that
Vk ∩ Vl = ∅ ∀k ∈ 1, 2, . . .M

V1 ∪ V2 ∪ . . . ∪ VM = V

.

How to evaluate a partition?
⇓

we need a clustering criterion / definition of community
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Clustering criteria

Minimum cut:

min
C1,...,Ck

k
X

s=1

links(Cs, V\Cs)

Ratio cut (Cheng and Wei, 1991):

min
C1,...,Ck

k
X

s=1

links(Cs, V\Cs)

|Cs|

Normalized cut(Shi and Malik, 2000):

min
C1,...,Ck

k
X

s=1

links(Cs, V\Cs)

degree(Cs)

Min-max cut (Ding et al., 2001):

min
C1,...,Ck

k
X

s=1

links(Cs, V\Cs)

links(Cs, Cs)
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Clustering criteria
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Modularity

Newman and Girvan, 2004:

compare the fraction of edges falling within communities
to the expected fraction of such edges

Modularity:
Q =

∑

s

[as − es]

as = fraction of all edges that lie within modules

es = expected value of the same quantity in a graph in which the vertices have
the same degrees but edges are placed at random.
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Modularity

Newman and Girvan, 2004:

compare the fraction of edges falling within communities
to the expected fraction of such edges

Modularity:
Q =

∑

s

[as − es]

as = fraction of all edges that lie within modules

es = expected value of the same quantity in a graph in which the vertices have
the same degrees but edges are placed at random.

Q ≈ 0 : the network is equivalent to a random network (barring fluctuations);

Q ≈ 1 : the network has a strong community structure;

in practice, the maximum modularityQ is often between 0.3 and 0.7.

Maximizing modularity gives an optimal partition with the optimal number of clusters
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Modularity maximization: methods

Exact algorithms for modularity maximization

proposed only in a few papers

can only solve small instances (with about a hundred entities) in reasonable time

provide an optimal solution together with the proof of its optimality

Heuristics for modularity maximization

widely used

can solve approximately very large instances with up to hundred or thousand entities

do not have either an a priori performance guarantee
(finding always a solution with a value which is at least a given percentage of the
optimal one),
nor an a posteriori performance guarantee
(that the obtained solution is at least a computable percentage of the optimal one)
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Modularity maximization: methods

Heuristics based on:

Partitioning schemes
aim at finding the best partition into a given number of clusters

simulated annealing,

genetic search,

multistep greedy,

a variety of other approaches.

Hierarchical clustering
lead to a set of nested partitions

agglomerative schemes

divisive schemes
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Modularity literature: successful approaches

Clauset, Newman and Moore, 2004:

agglomerative hierarchical greedy, for sparse networks has a very low

complexity and is considerably faster than previously proposed methods.

Newman, 2006:

divisive hierarchical heuristic based on spectral graph theory,

splitting is done according to the sign of the components of the first eigenvector

of the modularity matrix.

Noack and Rotta, 2009:

heuristic based on a single-step coarsening with a multi-level refinement,

competitive with other methods in the literature.

Liu and Murata, 2010:

heuristic based on label propagation, gives better resultsthan previous heuristics
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Criticism to modularity

Resolution limit:

in the presence of large clusters, some clusters smaller than a certain size can be

undetectable⇒ modular structures like small cliques can be hidden in larger

clusters.

Degeneracy ofQ:

there can be a large number of partitions, even very different from each other,

having high modularity values⇒ easy to find high-scoring partitions but

difficult to identify the global optimum.
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Our contribution on modularity maximization

Exact algorithms:
row generation, column generation
⇒ raising the size of exact solved problems

Heuristic:
locally optimal hierarchical divisive heuristic

Refinement of heuristic results

Dynamical-Programming based algorithm for modularity maximization on trees
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Modularity: another expression

Modularity as a sum of values over all edges of the complete graphKn:

Q =
1

2m

∑

i,j∈V

(

aij −
kikj

2m

)

δ(ci , cj)

where:

m = |E|

ki , kj = degrees of verticesi andj

aij = ij component of the adjacency matrix ofG

δ(ci , cj) = 1 if the communities to whichi andj belong are the same,
0 otherwise (Kronecker symbol)

kikj/2m= expected number of edges between verticesi andj in a null model
where edges are placed at random and the distribution of degrees
remains the same.

Sonia Cafieri (ENAC) Clustering on networks by modularity maximization March 2012 17 / 76



logoenac

Modularity maximization as clique partitioning

Introducing binary variables
{

xij = 1 if verticesi, j belong to the same community
= 0 otherwise

and
wij =

1
m

(

aij −
kikj

2m

)

modularity maximization can be reformulated as a clique partitioning problem:

m= 5

d1= 2

d2= 2

d3= 3

d4= 2

d5= 1

a12= 1, m = 5, d1= 2, d2= 2

⇒ w12 = 1
5

`

1− 2×2
10

´

= 0.12
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Modularity maximization as clique partitioning

modularity maximization can be reformulated as a clique partitioning problem:

Kn complete graph⇒ it is a clique and any of its induced subgraphs are cliques.

PartitioningG is thus equivalent to partitioningKn into cliques.

The resulting partition is an equivalence relation:

reflexivity: each entity is in the same module as itself:∀i xii = 1

symmetry:if i is in the same module asj, j is in the same asi: ∀i, j xij = xji

transitivity: if i andj are in the same module andj andk are in the same module,
theni andk must be in the same module
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Modularity maximization as clique partitioning



































max
∑

i<j∈V

wij xij − C −C = −
∑

i∈V
kiki
2m

s.t. xij + xjk − xik ≤ 1 ∀1 ≤ i < j < k ≤ n

xij − xjk + xik ≤ 1 ∀1 ≤ i < j < k ≤ n

−xij + xjk + xik ≤ 1 ∀1 ≤ i < j < k ≤ n

xij ∈ {0, 1} ∀1 ≤ i < j ≤ n

(Grötschel and Wakabayashi, 1990)

Linear 0-1 program

n(n−1)
2 = O(n2) variables

3

(

n
3

)

= n(n−1)(n−2)
2 = O(n3) constraints
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Row generation

Typically used in combinatorial applications.

1. the linear continuous relaxation is first solved

2. if the solution of this relaxation is in integers, it is optimal
(often the case for modularity maximization)

3. if the solution of the continuous relaxation is fractional,add valid constraints violated by
the fractional solution:cutting planes

4. the number of constraints grows rapidly withn: they can be added by batches of unsatisfied
ones.

Our solution of the Linear 0-1 program:

CPLEX

row generation approach implemented with the “lazy constraints” feature ofCPLEX.
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Example: a social network

Dolphinsnetwork:
bottlenose dolphins studied by Lusseau in Doubtful Sound, New Zealand.
Network with 62 vertices corresponding to the dolphins and 159 edges joining vertices associ-
ated with pairs of dolphins with frequent communications among them.
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Column generation

It is a powerful technique of linear programming which allows solving exactly linear
programs with a number of variables (columns) exponential in the size of the input.

Basic steps:

1. select a small number of columns and solve the linear programusing only these

2. find an unused column which, if included, would most improve the objective value
(with favorablereduced cost) or determine that there is none

3. include the column in the linear program, re-solve it, and goto step 2.

The original problem is split into:

Master problem:
original problem with only a subset of variables being considered

Subproblem:
new problem created to identify a new variable
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Column generation – clique partitioning

Modularity maximization:the columns correspond to all subsets ofV
(all nonempty modules).

ait = 1 if vertex i belongs to modulet
= 0 otherwise

Master problem:






















max
∑

t∈T

ctzt − C

∑

t∈T

aitzt = 1 ∀i = 1, . . . , n

zt ∈ {0, 1} ∀t ∈ T

ct =
∑

i

∑

j>i wij aitajt

i.e., the value of the module indexed byt, t = 1 . . . 2n − 1.

obj. func.: sum of modularities of all selected modules minus the constant corresponding
to the diagonal terms

1st set of constrains: each entity must belong to one and onlyone module

2nd set of constraints: modules must be selected entirely ornot at all.
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Column generation – clique partitioning

Improving columns are added progressively to relaxation ofthe master problem.

Reduced cost associated with columnt: ct −
∑

i λiait .

To find a column with positive red. cost, we replace the coefficientsait by variablesyi .

Auxiliary problem:

max
∑

i

∑

j>i

wij yiyj −
∑

i

λiyi .

Quadratic program in 0-1 variables with a 100% dense matrix of coefficients

Solved using

- a Variable Neighborhood Search heuristic
(as long as a column with positive reduced cost can be found);

- as exact method, a simple branch and bound algorithm (Meyer 2000)
(when this is no more the case).
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Example: a social network

Victor Hugo’sLes Misérablesnetwork:

describes the relationships between characters in Victor Hugo’s masterpiece :
77 vertices associated to characters which interact and 257edges associated with
pairs of characters appearing jointly in at least one chapter.
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MIQP formulation

Xu, Tsoka and Papageorgiou (2007):

Q =
∑

s

[as − es] =
∑

s

[

ms

m
−

(

ds

2m

)2
]

ms = number of edges in modules
dS = sum of degreeski of the vertices of modules.

Variables used to identify to which module each vertex and each edge belongs:

Xrs =



1 if edge r belongs to modules
0 otherwise

∀r = 1, 2, . . . m, s = 1, 2, . . . M

Yis =



1 if vertex i belongs to modules
0 otherwise.

∀i = 1, 2, . . . n, s = 1, 2, . . . M

ms =
P

r Xrs and dS =
P

i kiYis
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MIQP formulation

Each vertex belongs to exactly one module:
∑

s

Yis = 1 ∀i = 1, 2, . . . n

Any edger = {vi , vj} with end vertices indiced byi andj can only belong to modules if
both of its end vertices belong also to that module:

Xrs ≤ Yis ∀r = {vi , vj} ∈ E

Xrs ≤ Yjs ∀r = {vi , vj} ∈ E

The number of modules isa priori unknown.
Variablesus = 1 if modules is nonempty and 0 otherwise. Then constraintsus ≤ us−1

express that modules can be nonempty only is modules− 1 is so. Consequently:
∑

r

Xrs ≥ us and
∑

r

Xrs ≤ (n− s+ 1)us

(n− s+ 1 due to the fact that each of the modules 1, 2, . . . s− 1 must be nonempty).

Alternative equivalent solutions can be obtained by simplyre-indexing clusters
⇒ symmetry-breaking constraints.
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MIQP formulation

⇓

Mixed-Integer Quadratic Program

with a convex continuous relaxation

Solved usingCPLEX.

Instances up to 104 vertices are solved.

Sonia Cafieri (ENAC) Clustering on networks by modularity maximization March 2012 30 / 76



logoenac

MIQP – column generation

Master problem: the same as the first CG approach

Auxiliary problem: mixed 0-1 quadratic program, approach similar to that one of Xu
et al.:







































max
∑

r

xr

m
−

(

d
2m

)2

−
∑

i

λiyi .

s.t.

d =
∑

i

kiyi

xr ≤ yi ∀r = {vi , vj} ∈ E
xr ≤ yj ∀r = {vi , vj} ∈ E

{

xr = 1 if edger belongs to the module which maximizes the obj.function
= 0 otherwise

{

yi = 1 if vertex i belongs to the module which maximizes the obj.function
= 0 otherwise
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MIQP – column generation

⇓

Mixed-Integer Quadratic Program

n + m binary variables + 1 continuous variable
2m+ 1 linear constraints
a single nonlinear term which is concave, in the objective function.

Solved using:

- a Variable Neighborhood Search heuristic
(as long as a column with positive reduced cost can be found);

- CPLEX (when this is no more the case).
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Computational results

clique partitioning row generation:CPRG

clique partionning column generation:CPCG

0-1 mixed integer programming:MIQP

0-1 mixed integer column generation:MICG

Comparison of CPU time

dataset n m opt M CPRG CPCG MIQP MICG
karate 34 78 0.4198 4 0.02 0.62 1.03 1.97

dolphin 62 159 0.5285 5 4.85 2.96 197.89 4.13

misérables 77 254 0.5600 6 1.49 1.70 55.58 1.63

p53 104 226 0.5351 7 601.69 2.80 1844.31 3.61

polbooks 105 441 0.5272 5 647.22 139.17 - 35.78

football 115 613 0.6046 10 193.50 - - 204.50

s838 512 819 0.8194 12 - - - 7655.56
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Hierarchies
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Hierarchical heuristics

Hierarchical heuristics are in principle devised for

finding a hierarchy of partitions implicit in the given network

when it corresponds to some situation where hierarchy is observed or

postulated.

They aim at finding a set of nested partitions.

Agglomerative heuristics

Divisive heuristics
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Agglomerative and Divisive heuristics

Agglomerative heuristics
proceed from an initial partition withn communities each containing 1 entity

iterativelymerge the pair of entitiesfor which merging increases most the objective
function (e.g., modularity)
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Agglomerative and Divisive heuristics

Divisive heuristics
proceed from an initial partition containing all entities

iterativelydivide a community into twoin such a way to increase most the objective
function (or the decrease in the objective value is the smallest possible).
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An exact algorithm for bipartition

Q =
∑

s

[as − es] =
∑

s

[

ms

m
−

(

ds

2m

)2
]

ms = number of edges in communitys
dS = sum of degreeski of the vertices of communitys

we aim to find a bipartition→ s∈ {1, 2}

Variables used to identify to which module each vertex and each edge belongs:

Xrs =

{

1 if edge r belongs to communitys
0 otherwise

∀r = 1, 2, . . .m, s = 1, 2

Yi1 =

{

1 if vertexi belongs to community 1
0 otherwise, i.e. if vertexi belongs to community 2

∀i = 1, 2, . . . n.
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An exact algorithm for bipartition

We expressd2 as a function ofd1:

d2 = dt − d1

(dt = sum of degrees in the community to be bipartitioned).

⇒ Modularity:

Q =
m1 + m2

m
−

d2
1

4m2
−

d2
2

4m2
=

=
m1 + m2

m
−

d2
1

4m2
−

d2
t + d2

1 − 2dtd1

4m2
=

=
m1 + m2

m
−

d2
1

4m2
−

d2
t

4m2
+

dtd1

2m2
.
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An exact algorithm for bipartition

We impose that any edger = {vi , vj} with end vertices indiced byi and j can only
belong to communitys if both of its end vertices belong also to that community:

Xr1 ≤ Yi1 ∀r = {vi, vj} ∈ E
Xr1 ≤ Yj1 ∀r = {vi, vj} ∈ E

and
Xr2 ≤ 1− Yi1 ∀r = {vi , vj} ∈ E
Xr2 ≤ 1− Yj1 ∀r = {vi , vj} ∈ E

Furthermore:

ms =
∑

r

Xrs ∀s∈ {1, 2}

d1 =
∑

i∈V1

kiYi1.
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An exact algorithm for bipartition

⇓

Mixed-Integer Quadratic Program

with a single non linear but concave term, in the objective function,

which is to be maximized. Hence, its continuous relaxation is easy to solve.

Solved usingCPLEX.
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A new locally optimal divisive heuristic :divisive CHL

Divisive scheme

splitting step performed using the above exact algorithm for bipartition

⇓
the proposed heuristic islocally optimal

(but not globally optimal)
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Results: comparison withCNM

dataset n m agglomerative CNM divisive CHL exact

M Q error(%) M Q error(%) M Q

karate 34 78 3 0.38067 9.31895 4 0.41880 0.23583 4 0.41979

dolphin 62 159 4 0.49549 6.24953 4 0.52646 0.38977 5 0.52852

les miserables 77 254 5 0.50060 10.6087 8 0.54676 2.36603 6 0.56001

A00_main 83 135 7 0.52394 1.31098 7 0.52806 0.53494 9 0.53090

p53 protein 104 226 8 0.52052 2.73018 7 0.52843 1.25203 7 0.53513

political_books 105 441 4 0.50197 4.79288 4 0.52629 0.18018 5 0.52724

football 115 613 7 0.57728 4.51395 10 0.60091 0.60539 10 0.60457

A01_main 249 635 12 0.59908 5.34366 15 0.62877 0.65255 14 0.63290

usair97 332 2126 7 0.32039 12.9848 8 0.35959 2.33840 6 0.36820

netscience_main 379 914 19 0.83829 1.21494 20 0.84702 0.18619 19 0.84860

s838 512 819 12 0.80556 1.68904 15 0.81663 0.33805 12 0.81940

power 4941 6594 39 0.93402 – 40 0.93937 – - –

average 8 0.55125 5.52342 9.3 0.57525 0.82540 8.8 0.57957
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Results: comparison withdivisive spectral + KL

dataset n m divisive spectral+ KL divisive CHL

M Q err_dv(%) error(%) M Q error(%)

karate 34 78 4 0.419 0 0.236 4 0.41880 0.23583

dolphin 62 159 5 0.508 3.415 3.792 4 0.52646 0.38977

les_miserables 77 254 7 0.538 1.533 3.862 8 0.54676 2.36603

A00_main 83 135 7 0.527 0.199 0.733 7 0.52806 0.53494

p53 protein 104 226 6 0.518 1.930 3.158 7 0.52843 1.25203

political_books 105 441 4 0.527 -0.081 0.099 4 0.52629 0.18018

football 115 613 8 0.579 3.638 4.221 10 0.60091 0.60539

A01_main 249 635 16 0.594 5.463 6.080 15 0.62877 0.65255

usair97 332 2126 7 0.358 0.501 2.827 8 0.35959 2.33840

netscience_main 379 914 23 0.820 3.191 3.371 20 0.84702 0.18619

s838 512 819 13 0.779 4.587 4.910 15 0.81663 0.33805

power 4941 6594 8 0.791 – 40 0.93937 –

average 9.09 0.56073 2.21592 3.02627 9.3 0.57525 0.82540
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Example: a social network

Football gamenetwork
it describes the schedule of games between American collegefootball teams in the Fall 2000.
n = 115 vertices, m= 613 edges.
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Improving a partition: basic idea

Given a partition found by a heuristic:

act on the reduced networks represented by the communities found

merge and split some communities if this is worthwhile in terms of
increase of modularity

In particular:

apply an exact algorithm for bipartitioning to split a community

⇒ Impact of exact algorithms on heuristic schemes
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Merging + splitting communities

Post-processing to available heuristics for modularity maximization

⇒ the initial partition is the solution provided by the considered heuristic.

First: split communities

split eachCLi of the original partitioninto 2 sub-communitiesCL1, CL2

by applying the exact algorithm for bipartition

if Q(CL1) + Q(CL2) > Q(CLi) then

replaceCLi by the 2 new communitiesCL1, CL2

else

keep the original communityCLi.
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Merging + splitting communities

Second:merge pairs of communities

for each pair(CLj , CLk), mergeCLj andCLk into CLm

if Q(CLm) > Q(CLj) + Q(CLk) then

replaceCLj , CLk with CLm = CLj ∪ CLk

else

keep the original communities.
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Merging + splitting communities

Third: merge + split communities

for each pair(CLj , CLk), mergeCLj andCLk into CLm

if Q(CLm) > Q(CLj) + Q(CLk) then

replaceCLj , CLk with CLm = CLj ∪ CLk

else

split CLm into CLm1, CLm2

if Q(CLm1) + Q(CLm2) > Q(CLm) then

replaceCLm with CLm1, CLm2

else

keepCLm
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Example: a social network

Dolphinsnetwork:
bottlenose dolphins studied by Lusseau in Doubtful Sound, New Zealand.
Network with 62 vertices corresponding to the dolphins and 159 edges joining vertices associ-
ated with pairs of dolphins with frequent communications among them.
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original: Q = 0.52377

split : Q = 0.52773

merge+split :Q = 0.52852
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Results: comparison of modularities

dataset n m QCNM Q′ QNR Q′′ Qopt

dolphin 62 159 0.49549 0.51958 0.52377 0.52852 0.52852

les miserables 77 254 0.50060 0.54039 0.56001 0.56001 0.56001

p53 protein 104 226 0.52052 0.52621 0.53216 0.53502 0.53513

political books 105 441 0.50197 0.52724 0.52694 0.52724 0.52724

adjnoun 112 425 0.29349 0.29446 0.30729 0.30848 –

football 115 613 0.57728 0.58685 0.60028 0.60457 0.60457

usair97 332 2126 0.32039 0.36161 0.36577 0.36605 0.3682

s838 512 819 0.80556 0.80914 0.81624 0.81656 0.8194

email 1133 5452 0.51169 0.53808 0.57740 0.57773 –

power 4941 6594 0.93402 0.93612 0.93854 0.93870 –

erdos02 6927 11850 0.78092 0.78095 0.71552 0.71570 –

we transform some partitions into optimal ones !
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Algorithm: labeling nodes and edges

The algorithm first proceeds to labeling of its vertices and edges:

a center of the tree is found and vertices are given a level equal to the distance to
the center and labeled accordingly beginning at the lowest level
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Algorithm: labeling nodes and edges

The algorithm first proceeds to labeling of its vertices and edges:

edges are labeled with the same label as their lower vertex
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Algorithm: triplets

Lists of triplets are associated with edges

they characterize the situation relative to the edges they are associated with and to the subtree

rooted at their lower vertices.

A triplet (ms, ds, qs):

ms = number of edges in the connected component containing the upper vertexv

of the edge with which the triplet is associated;

ds = sum of degrees of this subtree;

qs = sum of modularities of the clusters within the subtree and not containingv.
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Algorithm: triplets update

Two operations to update the set of triplets:

extension and merging

Extension:

considers the effect of adding or not an edge(u, v) to the subtree rooted atv

Merging:

considers the effect of combining two at a time, in increasing order of labels,

two subtrees rooted at the same vertexv.
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Algorithm: extension

Extension:
considers the effect of adding or not an edge(u, v) to the subtree rooted atv

2 cases:

the edge is cut

the edge is not cut
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Algorithm: extension

Extension:
considers the effect of adding or not an edge(u, v) to the subtree rooted atv

2 cases:

the edge is cut

the edge is not cut

Example: edge(7, 12)

⋆ if edge is cut→ cluster [1,2,7]

with

edges=2, sum_degrees=5,

Q[1,2,7] = ms
m −

`

ds
2m

´2
= 1

9

⋆ if edge is not cut→ contribution of the subtree{1, 2, 7, 12} to the cluster containing the

root 12: edges≥ 3, sum_degrees= 5+degree of the root
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Algorithm: triplets update

Extension:

the edge is cut:

the triplet(ms, ds, qs) is transformed into

(

0, dnewroot, qs +

(

ms

m
−

(

ds

2m

)2
))

the edge is not cut:

the triplet(ms, ds, qs) is transformed into

(ms + 1, ds + dnewroot, qs)

newroot= upper vertex of the edge under consideration
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Algorithm: merging

Merging:
considers the effect of combining two at a time, in increasing order of labels,
two subtrees rooted at the same vertexv.
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Algorithm: merging

Merging:
considers the effect of combining two at a time, in increasing order of labels,
two subtrees rooted at the same vertexv.
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Algorithm: triplets update

Merging:

Two triplets are considered:(ms, ds, qs) and (m′

s, d′

s, q′s)

one in each of the two subtrees with the common rootv,

and are transformed into

(ms + m′

s, ds + d′

s − dv, qs + q′s)
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Algorithm: dominance rules

All pendent edges must belong to all optimal solutions

=⇒ case cut edge not to be considered in extension

Any cut edge induces a subtree not containing the root with maximum (local)

modularity

=⇒ in the list of triplets corresponding to cut edges only the triplet with

maximum modularity needs to be kept
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Algorithm: dominance rules

Triplets may be dominated by other triplets.

Let (m1, d1, q1) and(m2, d2, q2) two triplets in the same list:

(m1, d1, q1) dominates(m2, d2, q2) if and only if

m1 ≥ m2, d1 ≤ d2 and q1 ≥ q2 with at least one strict inequality.

Extension

edge is cut : in the following extension step there will be twocorresponding triplets
“

0, dnewroot, q1 +
“

m1
m −

` d1
2m

´2
””

and
“

0, dnewroot, q2 +
“

m2
m −

` d2
2m

´2
””

.

m1 ≥ m2, d1 ≤ d2 andq1 ≥ q2 with at least one strict inequality⇒ dominance

edge is not cut : there will be two corresponding triplets

(m1 + 1, d1 + dnewroot, q1) and(m2 + 1, d2 + dnewroot, q2).

m1 ≥ m2, d1 ≤ d2 andq1 ≥ q2 with at least one strict inequality⇒ dominance
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Algorithm: dominance rules

Triplets may be dominated by other triplets.

Let (m1, d1, q1) and(m2, d2, q2) two triplets in the same list:

(m1, d1, q1) dominates(m2, d2, q2) if and only if

m1 ≥ m2, d1 ≤ d2 and q1 ≥ q2 with at least one strict inequality.

Merging

The two corresponding triplets will be:

(m1 + m′

s, d1 + d′

s − dv, q1 + q′

s) and(m2 + m′

s, d2 + d′

s − dv, q2 + q′

s)

where:(m′

s, d′

s, q′

s) is a triplet of the list to merged to the list containing the two triplets

dv is the degree of the upper vertex of the current edge.

m1 ≥ m2, d1 ≤ d2 andq1 ≥ q2 with at least one strict inequality⇒ dominance

By iteration ⇒ the second triplet and its descendents are dominated

by the first triplet and its descendent.
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Algorithm: solution

The set of cut edges is complementary to the set of connected subtrees

⇒ the optimal partition is given by the connected subtrees induced by all cut edges
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Research directions

Reformulations of the mathematical programming model for bipartitioning.

Conditions which must be satisfied by all communities:

combining a criterion for community evaluation with constraints on each

community.

Criteria other than modularity.

Sonia Cafieri (ENAC) Clustering on networks by modularity maximization March 2012 75 / 76



logoenac

The end

Thank you!
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