Clustering on networ ks by modularity maximization

Sonia Cafieri

ENAC — Ecole Nationale de I'Aviation Civile
Toulouse, France

thanks to
Pierre Hansen, Sylvain Perron, Gilles Caporossi (GERADCH#ontréal, Canada)
Leo Liberti (Ecole Polytechnique, France)

INRA - Toulouse, March 2012

Sonia Cafieri (ENAC) Clustering on networks by modularity maximization March 2012

1/76



@ Community identification in Networks
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@ Modularity maximization by mixed 0-1 quadratic programmin
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Network Clustering

Networks often used to represent complex systems

A network orgraph G = (V,E)

V = Vertices associated with the entities of the system under study
(people, companies, towns, natural species, ...).
represented by points

E = Edges express that a relation defined on all pairs of verticesoidchot for each
such pair
represented by lines joining vertices
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Network Clustering

Networks often used to represent complex systems

@ social networks

@ telecommunication networks
@ transportation networks

o ...
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Communities

Automatic analysis of complex systems represented as nietwo
4

| identification of communities

community = a subset of vertices such that there are
more edges within the community than edges joining it to thiside
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A community corresponds tosubgraplGs = (S, Es) of a graphG = (V, E):
a graph with vertex se&® C V, edge seEs equal to all edges with both vertices$h

One aims at finding partition ofV into subgraph;duced by nonempty subsets
V1,Va, ..., Vn

such that
VknVi=0 vkel?2,...M

ViuVoUu...UVy =V

How to evaluate a partition?

¢

we need a clustering criterion / definition of community
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Clustering criteria

@ Minimum cut

K
min_ ; links(Cs, V\Cs)
@ Ratio cut (Cheng and Wei, 1991)

n zk: links(Cs, V\Cs)

min
C1,..-,Ck |Cs|

s=1
@ Normalized cut(Shi and Malik, 2000)

Z links(Cs, V\Cs)
degregCs)

@ Min-max cut (Ding et al., 2001)

k .
. links(Cs, V\Cs)
min. > links(Cs, Cs)
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Q Modularity maximization
@ Definition & State of the art

Sonia Cafieri (ENAC) Clustering on networks by modularity maximization March 2012 9/76



Modularity

Newman and Girvan, 2004:

compare the fraction of edges falling within communities
to the expected fraction of such edges J

Modularity:
Q=) las—g]

as = fraction of all edges that lie within moduse

e; = expected value of the same quantity in a graph in which thiices have
the same degrees but edges are placed at random.
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Modularity

Newman and Girvan, 2004:

compare the fraction of edges falling within communities
to the expected fraction of such edges J

Modularity:
Q=) las—g]

as = fraction of all edges that lie within moduse

e; = expected value of the same quantity in a graph in which thiices have
the same degrees but edges are placed at random.

= Q ~ 0: the network is equivalent to a random network (barringtflatons);
= Q ~ 1: the network has a strong community structure;
= in practice, the maximum modularify is often between 0.3 and 0.7.

Maximizing modularity gives an optimal partition with thetimal number of clusters
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Modularity maximization: methods

o Exact algorithms for modularity maximization

o proposed only in a few papers
@ can only solve small instances (with about a hundred eslitrereasonable time
@ provide an optimal solution together with the proof of itgioyality

@ Heuristics for modularity maximization

¢ widely used

o can solve approximately very large instances with up to heshdr thousand entities

o do not have either an a priori performance guarantee
(finding always a solution with a value which is at least a gipercentage of the
optimal one),
nor an a posteriori performance guarantee
(that the obtained solution is at least a computable peagentf the optimal one)
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Modularity maximization: methods

Heuristics based on:

Partitioning schemes
aim at finding the best partition into a given number of cluste

@ simulated annealing,

@ genetic search,

o multistep greedy,

@ avariety of other approaches.

Hierarchical clustering
lead to a set of nested partitions

@ agglomerative schemes
@ divisive schemes
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Modularity literature: successful approaches

@ Clauset, Newman and Moore, 2004
agglomerative hierarchical greedy, for sparse networkshzery low
complexity and is considerably faster than previously psga methods.

@ Newman, 2006
divisive hierarchical heuristic based on spectral gragloti
splitting is done according to the sign of the componentsefirst eigenvector
of the modularity matrix.

@ Noack and Rotta, 2009
heuristic based on a single-step coarsening with a muiétiefinement,
competitive with other methods in the literature.

@ Liu and Murata, 2010
heuristic based on label propagation, gives better rethats previous heuristics
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Criticism to modularity

@ Resolution limit
in the presence of large clusters, some clusters smallereticartain size can be
undetectable=- modular structures like small cliques can be hidden in large
clusters.

o Degeneracy o:
there can be a large number of partitions, even very diftdrem each other,
having high modularity values=- easy to find high-scoring partitions but
difficult to identify the global optimum.

Sonia Cafieri (ENAC) Clustering on networks by modularity maximization March 2012 14/76



Our contribution on modularity maximization

o

Exact algorithms:
row generation, column generation
= raising the size of exact solved problems

Heuristic:
locally optimal hierarchical divisive heuristic

©

Refinement of heuristic results

©

©

Dynamical-Programming based algorithm for modularity imaxation on trees

v
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9 Exact algorithms for modularity maximization
@ Modularity maximization as clique partitioning
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Modularity: another expression

Modularity as a sum of values over all edges of the completpltf,:
kik

Q=3 (aj - Z'_m) 5(6,5)

where:
om =|E|
o ki, k = degrees of verticésand]
o a; =ij component of the adjacency matrix &f
@ J(ci, ) = 1if the communities to whichandj belong are the same,
0 otherwise (Kronecker symbol)

o kikj/2m= expected number of edges between vertigeglj in a null model
where edges are placed at random and the distribution oédsgr

remains the same.
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Modularity maximization as clique partitioning

Introducing binary variables
{ Xi 1 if verticesi,] belong to the same community

0 otherwise
and 1 kik:
Wjj = — (aij - —k‘>

a=1,m=5,d=2,d,=2

Q
9
]
9 d=3
9
]
]
° 10
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Modularity maximization as clique partitioning

modularity maximization can be reformulated as a cliquéifi@ming problem:

Kn complete graph:- it is a cligue and any of its induced subgraphs are cliques.
PartitioningG is thus equivalent to partitioninig, into cliques.

The resulting partition is an equivalence relation:
9 reflexivity: each entity is in the same module as itself: xj = 1
@ symmetry:if i is in the same module gs j is in the same as Vi,j Xj = X

9 transitivity: if i andj are in the same module apdndk are in the same module,
theni andk must be in the same module
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Modularity maximization as clique partitioning

max ZWinij—C _C:_Ziev%
i<jev

St Xj+xk—xk<1l Vi<i<j<k<n
Xi—Xk+xk <1l ViI<i<j<k<n
—Xj +Xk+Xk <1 ViI<i<j<k<n
xj € {0, 1} vVi<i<j<n

(Grotschel and Wakabayashi, 1990)

Linear 0-1 program

-1 — o(n?) variables

3 _ W = O(n®) constraints

w
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Row generation

Typically used in combinatorial applications.

1. the linear continuous relaxation is first solved

2. if the solution of this relaxation is in integers, it is opam
(often the case for modularity maximization)

3. if the solution of the continuous relaxation is fractioredld valid constraints violated by
the fractional solutioncutting planes

4. the number of constraints grows rapidly withthey can be added by batches of unsatisfit
ones.

Our solution of the Linear 0-1 program:
@ CPLEX
@ row generation approach implemented with the “lazy comgsafeature ofCPLEX.
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Example: a social network

Dolphinsnetwork:

bottlenose dolphins studied by Lusseau in Doubtful Souredy Kealand.

Network with 62 vertices corresponding to the dolphins abél &dges joining vertices associ
ated with pairs of dolphins with frequent communicationamthem.

N, A 'S ‘.4;.»_‘
N ‘VI’A‘\"‘A Y5
1 43

partition obtained fodolphinsdataset
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Column generation

It is a powerful technique of linear programming which algolving exactly linear
programs with a number of variables (columns) exponemtigié size of the input.

Basic steps:

1. select a small number of columns and solve the linear progising only these

2. find an unused column which, if included, would most imprdwedbjective value
(with favorablereduced cogtor determine that there is none

3. include the column in the linear program, re-solve it, andaystep 2.

The original problem is split into:
= Master problem
original problem with only a subset of variables being cdaséd
= Subproblem
new problem created to identify a new variable
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Column generation — clique partitioning

Modularity maximizationthe columns correspond to all subset&/of
(all nonempty modules).

ar = 1 ifvertexi belongs to modulé
= 0 otherwise

Master problem

maxz cz—C
et
Zaitztzl Vi=1,....n
teT

z € {0,1} Vte T

Ct = > D_j~i Wi itdit
i.e., the value of the module indexedhyt =1...2" — 1.

@ obj. func.: sum of modularities of all selected modules mithe constant corresponding
to the diagonal terms

@ 1st set of constrains: each entity must belong to one andam#ymodule
@ 2nd set of constraints: modules must be selected entirelptaat all.
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Column generation — clique partitioning

Improving columns are added progressively to relaxatiomeimaster problem.

Reduced cost associated with colutmnc; — > ; Aiaq.

To find a column with positive red. cost, we replace the caeffiisa;; by variablesy;.
Auxiliary problem

max ) wiyiyi — Y A

ij>i i
Quadratic program in 0-1 variables with a 100% dense matrpoefficients

Solved using

- a Variable Neighborhood Search heuristic
(as long as a column with positive reduced cost can be found);

- as exact method, a simple branch and bound algorithm (Mey@)2
(when this is no more the case).
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9 Exact algorithms for modularity maximization

@ Modularity maximization by mixed 0-1 quadratic programmin
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MIQP formulation

Xu, Tsoka and Papageorgiou (2007):

Q=Y le-el=3 l”—n‘:— (Z"—m)]

ms = number of edges in moduge
ds = sum of degreek; of the vertices of module.

Variables used to identify to which module each vertex arutheglge belongs:

vr=212...ms=12...M

X — 1 ifedger belongs to moduls
7| 0 otherwise

v _{ 1 if vertexi belongs to moduls
IS —

0 otherwise. Vi=12...n,s=212...M

ms = Zr er and dS = Ei kIYIS
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MIQP formulation

@ Each vertex belongs to exactly one module:
Y = 1 Vi=12..n
S

9 Any edger = {v;,Vv;} with end vertices indiced biyandj can only belong to modulgif
both of its end vertices belong also to that module:

Xis < Yis vr:{Vi;Vj}EE
Xis < Vs VI‘:{Vi,Vj}GE
@ The number of modules B priori unknown.

Variablesus = 1 if module s is nonempty and 0 otherwiséThen constraintsls < Us—1
express that modukecan be nonempty only is moduse- 1 is so. Consequently:

D Xs>us and > X < (N—s+ 1)us
r r
(n — s+ 1 due to the fact that each of the moduleg,1..s— 1 must be nonempty)

9 Alternative equivalent solutions can be obtained by simphndexing clusters
= symmetry-breaking constraints.
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MIQP formulation

4

Mixed-Integer Quadratic Program

with a convex continuous relaxation

Solved usingCPLEX.

Instances up to 104 vertices are solved.
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MIQP — column generation

Master problemthe same as the first CG approach
Auxiliary problem mixed 0-1 quadratic program, approach similar to that dinélo

etal.: )
Xr d .
max ZE—<§n) —Z:A.y..
st.
d = ) kv
i
< yi vr={w,v}eE
X <y W={uVv}ecE
X = 1 if edger belongs to the module which maximizes the.@bjction
= 0 otherwise
yi = 1 if vertexi belongs to the module which maximizes the.fbjction
= 0 otherwise
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MIQP — column generation

4

Mixed-Integer Quadratic Program

n+ mbinary variables + 1 continuous variable
2m+ 1 linear constraints
a single nonlinear term which is concave, in the objectivefion.

Solved using:

- a Variable Neighborhood Search heuristic
(as long as a column with positive reduced cost can be found);

- CPLEX (when this is no more the case).

Sonia Cafieri (ENAC) Clustering on networks by modularity maximization March 2012 32/76



Computational results

9 clique partitioning row generatiol©PRG

9 clique partionning column generatio@PCG
@ 0-1 mixed integer programmingd |1 QP

@ 0-1 mixed integer column generatiodt| CG

Comparison of CPU time

dataset n m opt M CPRG CPCG MIQP MICG

karate 34 78 04198 4 002 0.62 1.03 1.97
dolphin 62 159 0.5285 5 485 29  197.89 4.13
misérables 77 254 05600 6 149 1.70 55.58 1.63
p53 104 226 05351 7 601.69 280 184431 3.61
polbooks 105 441 05272 5 647.22 139.17 - 35.78

football 115 613 0.6046 10 193.50 - - 204.50

s838 512 819 0.8194 12 - - - 7655.56
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utline

@ Locally optimal hierarchical divisive heuristic
@ Hierarchical schemes
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Hierarchical heuristics

Hierarchical heuristics are in principle devised for
finding a hierarchy of partitions implicit in the given netko
when it corresponds to some situation where hierarchy isrobd or
postulated.

They aim at finding a set of nested partitions.

o Agglomerative heuristics

@ Divisive heuristics
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Agglomerative and Divisive heuristics

@ Agglomerative heuristics
@ proceed from an initial partition with communities each containing 1 entity

¢ iterativelymerge the pair of entitifor which merging increases most the objective
function (e.g., modularity)

A
Agglomerative

) @ ) O )
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Agglomerative and Divisive heuristics

@ Agglomerative heuristics
@ proceed from an initial partition with communities each containing 1 entity

¢ iterativelymerge the pair of entitifor which merging increases most the objective
function (e.g., modularity)

A
Agglomerative

s,t

() (&) () ) (o
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Agglomerative and Divisive heuristics

@ Agglomerative heuristics
@ proceed from an initial partition with communities each containing 1 entity

¢ iterativelymerge the pair of entitifor which merging increases most the objective
function (e.g., modularity)

A
Agglomerative
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Agglomerative and Divisive heuristics

@ Agglomerative heuristics
@ proceed from an initial partition with communities each containing 1 entity

¢ iterativelymerge the pair of entitifor which merging increases most the objective
function (e.g., modularity)

A

Agglomerative
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Agglomerative and Divisive heuristics

@ Divisive heuristics
@ proceed from an initial partition containing all entities

o iterativelydivide a community into twan such a way to increase most the objectiv:
function (or the decrease in the objective value is the ssfiossible).

Divisive
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Agglomerative and Divisive heuristics

@ Divisive heuristics
@ proceed from an initial partition containing all entities

o iterativelydivide a community into twan such a way to increase most the objectiv:
function (or the decrease in the objective value is the ssfiossible).

Divisive
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Agglomerative and Divisive heuristics

@ Divisive heuristics
@ proceed from an initial partition containing all entities

o iterativelydivide a community into twan such a way to increase most the objectiv:
function (or the decrease in the objective value is the ssfiossible).

Divisive
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Agglomerative and Divisive heuristics

@ Divisive heuristics
@ proceed from an initial partition containing all entities

o iterativelydivide a community into twan such a way to increase most the objectiv:
function (or the decrease in the objective value is the ssfiossible).

Divisive
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utline

@ Locally optimal hierarchical divisive heuristic

@ An exact algorithm for bipartition & a new divisive heuristi
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An exact algorithm for bipartition

ms = number of edges in communisy
ds = sum of degreek; of the vertices of community

we aim to find a bipartition— s e {1,2}

Variables used to identify to which module each vertex arutheglge belongs:

Xeg — 1 if edge_r belongs to communitg Wr—12 .. .ms—12

0 otherwise

Vi — 1 if vertexi belongs to community 1
1= 0 otherwise, i.e. if vertekbelongs to community 2

Vi=12...n
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An exact algorithm for bipartition

We expressl, as a function ofl;:
dy=0d—dy
(di = sum of degrees in the community to be bipartitioned).

= Modularity:
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An exact algorithm for bipartition

We impose that any edge= {vi,v;} with end vertices indiced byandj can only
belong to communitg if both of its end vertices belong also to that community:

and

Furthermore:

Sonia Cafieri (ENAC)

Xi1
Xi1

Yii Vr= {Vi,\/j} cE
le Vr = {Vi,\/j} cE

INIA

Xo<1-Yjy WVr Z{Vi,\/j} eE
Xo<1-Yj Wr Z{Vi,\/j} =

m=> Xs Vse{1,2}

d; = Z kiYi1.

ieVy
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An exact algorithm for bipartition

4

Mixed-Integer Quadratic Program

with a single non linear but concave term, in the objectivefion,

which is to be maximized. Hence, its continuous relaxatsoedasy to solve.

Solved usingCPLEX.
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A new locally optimal divisive heuristicdivisive CHL

@ Divisive scheme

o splitting step performed using the above exact algorithnbfpartition

4

the proposed heuristic Iscally optimal
(but not globally optimal)
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Results: comparison witGNM

dataset n m agglomerative O\NM divisive CHL exact

M Q error(%) M Q error(%) M Q
karate 34 78 3 0.38067 | 9.31895 4 0.41880 | 0.23583 4 0.41979
dol phin 62 159 4 0.49549 | 6.24953 4 0.52646 | 0.38977 5 0.52852
| es miserables 77 254 5 0.50060 10.6087 8 0.54676 | 2.36603 6 0.56001
AO0O_nmi n 83 135 7 0.52394 1.31098 7 0.52806 | 0.53494 9 0.53090
p53 protein 104 | 226 8 0.52052 | 2.73018 7 0.52843 | 1.25203 7 0.53513
political _books || 105 | 441 4 0.50197 | 4.79288 4 0.52629 | 0.18018 5 0.52724
f oot bal | 115 613 7 0.57728 | 4.51395 || 10 0.60091 | 0.60539 10 | 0.60457
AO1_nmi n 249 635 12 | 0.59908 | 5.34366 15 0.62877 | 0.65255 14 0.63290
usai r97 332 | 2126 7 0.32039 12.9848 8 0.35959 | 2.33840 6 0.36820
net sci ence_mai n 379 914 19 | 0.83829 1.21494 20 0.84702 | 0.18619 19 0.84860
s838 512 819 | 12 | 0.80556 | 1.68904 || 15 0.81663 | 0.33805 12 | 0.81940
power 4941 | 6594 | 39 | 0.93402 - 40 0.93937 - - -
average 8 0.55125 | 5.52342 9.3 | 0.57525| 0.82540 8.8 | 0.57957
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Results: comparison wittlivisive spectral + KL

dataset n m divisive spectral4+ KL divisive CHL

M Q err_dv(%) | error(%) M Q error(%)
karat e 34 78 4 0.419 0 0.236 4 0.41880 | 0.23583
dol phin 62 159 5 0.508 3.415 3.792 4 0.52646 | 0.38977
| es_ni serabl es 77 254 7 0.538 1.533 3.862 8 0.54676 | 2.36603
AOO_nmi n 83 135 7 0.527 0.199 0.733 7 0.52806 | 0.53494
p53 protein 104 226 6 0.518 1.930 3.158 7 0.52843 | 1.25203
political _books 105 441 4 0.527 -0.081 0.099 4 0.52629 | 0.18018
f oot bal | 115 613 8 0.579 3.638 4.221 10 | 0.60091 | 0.60539
AO01_nmin 249 635 16 0.594 5.463 6.080 15 | 0.62877 | 0.65255
usai r 97 332 | 2126 7 0.358 0.501 2.827 8 0.35959 | 2.33840
net sci ence_mai n 379 914 23 0.820 3.191 3.371 20 | 0.84702 | 0.18619
s838 512 819 13 0.779 4.587 4.910 15 | 0.81663 | 0.33805
power 4941 | 6594 8 0.791 - 40 | 0.93937 -
average 9.09 | 0.56073 2.21592 3.02627 || 9.3 | 0.57525| 0.82540

Sonia Cafieri (ENAC) Clustering on networks by modularity maximization March 2012 52/76



X
S
o
=
3
c
8
O
o
%
©
b
o
S
@©
X
Ll

Football gamaetwork

it describes the schedule of games between American cdbbegjeall teams in the Fall 2000.

613 edges.

m=

115 vertices,

n=
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© Refinement of heuristic results
@ Improving heuristic by merging+splitting
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Improving a partition: basic idea

Given a partition found by a heuristic:

@ act on the reduced networks represented by the commuruties! f

@ merge and split some communities if this is worthwhile inmsrof
increase of modularity

@ In particular:

apply an exact algorithm for bipartitioning to split a commity

= Impact of exact algorithms on heuristic schemes

Sonia Cafieri (ENAC) Clustering on networks by modularity maximization March 2012 55/76



Merging + splitting communities

Post-processing to available heuristics for modularitximézation
= theinitial partition is the solution provided by the coresidd heuristic.

o First: split communities
@ split eachCL; of the original partitiorinto 2 sub-communitie€L;, CL,
by applying the exact algorithm for bipartition
s if Q(CL1) + Q(CL2) > Q(CL;) then
replaceCL; by the 2 new communitieSL;, CL,
else
keep the original communit¢L;.
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Merging + splitting communities

@ Secondmerge pairs of communities
¢ for each pair(CL;, CL«), mergeCL; andCLy into CLy,
o if Q(CLm) > Q(CL;) + Q(CLy) then
replaceCl;, CLx with CLy = CLj U Clx
else
keep the original communities.
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Merging + splitting communities

@ Third: merge + split communities
¢ for each pair(CL;, CL«), mergeCL; andCLy into CLy,
o if Q(CLm) > Q(CL;) + Q(CLy) then
replaceCl;, CLx with CLy = CLj U Clx
else
split CLy into Cli, Clnp
if Q(CLm) + Q(CLmz) > Q(CLm) then
replaceCLny, with CL, Clnp
ese
keepCLm
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Example: a social network

Dolphinsnetwork:

bottlenose dolphins studied by Lusseau in Doubtful Souredy Kealand.

Network with 62 vertices corresponding to the dolphins abél &dges joining vertices associ
ated with pairs of dolphins with frequent communicationamthem.

P .

KN~ K Ao | .
NS : *': ‘.’ original: Q = 0.52377
%::"m!é)\*‘,’/“' PSS

"‘ N
\ﬁ;" 4 \) 7 . split: Q =0.52773

merge+split :Q = 0.52852
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Results: comparison of modularities

dataset n m Qaw Q QR Q' Qopt
dol phin 62 159 0.49549 | 0.51958 || 0.52377 | 0.52852 0.52852
| es mi serabl es 77 254 0.50060 | 0.54039 || 0.56001 | 0.56001 0.56001
p53 protein 104 226 0.52052 | 0.52621 || 0.53216 | 0.53502 || 0.53513
political books 105 441 0.50197 | 0.52724 0.52694 | 0.52724 0.52724
adj noun 112 425 0.29349 | 0.29446 || 0.30729 | 0.30848 —

f oot bal | 115 613 0.57728 | 0.58685 || 0.60028 | 0.60457 0.60457
usair97 332 2126 | 0.32039| 0.36161 || 0.36577 | 0.36605|| 0.3682
s838 512 819 0.80556 | 0.80914 || 0.81624 | 0.81656 || 0.8194
enai | 1133 | 5452 | 0.51169 | 0.53808 || 0.57740| 0.57773 —
power 4941 | 6594 | 0.93402 | 0.93612 | 0.93854 | 0.93870 —
er dos02 6927 | 11850 | 0.78092 | 0.78095 || 0.71552| 0.71570 -

we transform some partitions into optimal ones !
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© Modularity maximization on trees
@ Dynamical-Programming based algorithm
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Algorithm: labeling nodes and edges

The algorithm first proceeds to labeling of its vertices adges:

14

12 13

1 2 3 4 5 6

a center of the tree is found and vertices are given a levallgquhe distance to
the center and labeled accordingly beginning at the lovesst |
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Algorithm: labeling node d edges

The algorithm first proceeds to labeling of its vertices atigles:

edges are labeled with the same label as their lower vertex
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Algorithm: triplets

Lists of triplets are associated with edges
they characterize the situation relative to the edges theyassociated with and to the subtre
rooted at their lower vertices.

A triplet (m, ds, gs):

@ ms = number of edges in the connected component containingaperwertex
of the edge with which the triplet is associated,;

@ ds = sum of degrees of this subtree;

@ (s = sum of modularities of the clusters within the subtree asictontainingy.
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Algorithm: triplets update

Two operations to update the set of triplets:
extension and merging J

@ Extension:
considers the effect of adding or not an edgev) to the subtree rooted at

@ Merging:
considers the effect of combining two at a time, in incregsirder of labels,
two subtrees rooted at the same vertex
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Algorithm: extension

Extension:
considers the effect of adding or not an edgev) to the subtree rooted &t

2 cases:
= the edge is cut

= the edge is not cut
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Algorithm: extension

Extension:
considers the effect of adding or not an edgev) to the subtree rooted at

2 cases:

= the edge is cut

".‘13

= the edge is not cut

Example: edge(7,12)

* if edge is cut— cluster [1,2,7]
with
edges=2, sum_degrees=5,

2
Quer =T —(52)" =3

* if edge is not cut— contribution of the subtregl, 2, 7, 12} to the cluster containing the

root 12: edges 3, sum_degrees= 5+degree of the root

se
e
oe
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Algorithm: triplets update

Extension:

= the edge is cut:
the triplet(ms, ds, gs) is transformed into

d 2
(07 dnewrooB Os + (I’T_n'I: - (ﬁ) ))

= the edge is not cut:
the triplet(ms, ds, gs) is transformed into

(ms + 1, ds + dnewroos QS)

newroot= upper vertex of the edge under consideration
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Algorithm: merging

Merging:

considers the effect of combining two at a time, in incregsirder of labels,
two subtrees rooted at the same vertex

124"

ne
ce
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Algorithm: merging

Merging:

considers the effect of combining two at a time, in incregsirder of labels,
two subtrees rooted at the same vertex

124"

ne "
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Algorithm: triplets update

Merging:

Two triplets are considered:(ms, ds,gs) and (m, d;, o)

S
one in each of the two subtrees with the common ot

and are transformed into

(ms+ mg, ds+dS—dy, gs+ qg)
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Algorithm: dominance rules

o All pendent edges must belong to all optimal solutions
= case cut edge not to be considered in extension

@ Any cut edge induces a subtree not containing the root witkimnam (local)
modularity

— in the list of triplets corresponding to cut edges only tligdt with
maximum modularity needs to be kept
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Algorithm: dominance rules

@ Triplets may be dominated by other triplets.
Let (my, dy, g1) and(my, dz, g2) two triplets in the same list:

(my, d1, g1) dominategmy, dz, 02) if and only if
m > mp, dp <d and gi > gy with at least one strict inequality.

Extension

= edge is cut : in the following extension step there will be tworesponding triplets

(07 Chewroot, 01 + (% - (g—r;)z)) and (0, Chewroot, 02 + (% - (%)2))
my > mp, dh < dz andar > e with at least one strict inequality=- dominance

= edge is not cut : there will be two corresponding triplets
(my + 1, di + dnewroot, G2) and (Mz + 1, d2 + Ohewroot O2)-
my > mp, di < dz andg > g with at least one strict inequality=- dominance
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Algorithm: dominance rules

o Triplets may be dominated by other triplets.
Let (my, ds, 01) and(my, d2, gz) two triplets in the same list:

(my, di, 1) dominategmy, dz, g2) if and only if
m >mp, dp <d, and q; > g2 with at least one strict inequality.

Merging

The two corresponding triplets will be:

(my + Mg, ch + dg — dv, o1 + gs) and(me + i, dz + d§ — dv, G2 + )

where: (g, di, of) is a triplet of the list to merged to the list containing thetisiplets
dy is the degree of the upper vertex of the current edge.

m > mp, di < dz andgs > g with at least one strict inequality=- dominance

By iteration = the second triplet and its descendents are dominated
by the first triplet and its descendent.
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Algorithm: solution

The set of cut edges is complementary to the set of conneghtress
= the optimal partition is given by the connected subtreesded by all cut edges
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Research directions

o Reformulations of the mathematical programming model fpatiitioning.

@ Conditions which must be satisfied by all communities:
combining a criterion for community evaluation with cormstits on each

community.

@ Criteria other than modularity.
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Thank you!
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