Goodness of fit of logistic models for random graphs: a variational Bayes approach

S. Robin

Joint work with P. Latouche and S. Ouadah

 $\mathsf{INRA} \ / \ \mathsf{AgroParisTech}$

INRA

MIAT Seminar, Toulouse, November 2016

S. Robin (INRA / AgroParisTech)

Motivating example

Data: n = 51 tree species, Y_{ij} = number of common parasites [23].

Motivating example

Data: n = 51 tree species, Y_{ij} = number of common parasites [23].

_	$\hat{\lambda}_{k\ell}$	T1	T2	Т3	T4	T5	Т6	T7
_	T1	14.46	4.19	5.99	7.67	2.44	0.13	1.43
	T2		14.13	0.68	2.79	4.84	0.53	1.54
	Т3			3.19	4.10	0.66	0.02	0.69
	T4				7.42	2.57	0.04	1.05
	T5					3.64	0.23	0.83
	T6						0.04	0.06
_	T7							0.27
=	$\hat{\pi}_k$	7.8	7.8	13.7	13.7	15.7	19.6	21.6

Valued stochastic block model. If $i \in C_k$, $j \in C_\ell$:

 $Y_{ij} \sim \mathcal{P}(\lambda_{k\ell}),$

 $\lambda_{k\ell}$ = mean number of shared parasites.

Pseudo-BIC: K = 7 groups

Motivating example

Data: n = 51 tree species, Y_{ij} = number of common parasites [23].

$\hat{\lambda}_{k\ell}$	T1	T2	Т3	T4	T5	Т6	T7
T1	14.46	4.19	5.99	7.67	2.44	0.13	1.43
T2		14.13	0.68	2.79	4.84	0.53	1.54
Т3			3.19	4.10	0.66	0.02	0.69
T4				7.42	2.57	0.04	1.05
T5					3.64	0.23	0.83
Т6						0.04	0.06
T7							0.27
$\widehat{\pi}_k$	7.8	7.8	13.7	13.7	15.7	19.6	21.6

Valued stochastic block model. If $i \in C_k$, $j \in C_\ell$:

$$Y_{ij} \sim \mathcal{P}(\lambda_{k\ell}),$$

 $\lambda_{k\ell}$ = mean number of shared parasites.

Pseudo-BIC: K = 7 groups

Accounting for the taxonomic distance d_{ij}

Model: [19]

 $Y_{ij} \sim \mathcal{P}[\lambda_{k\ell} \ e^{\beta d_{ij}}].$

Accounting for the taxonomic distance d_{ij}

$\hat{\lambda}_{k\ell}$	T'1	T'2	Т'3	T'4	
T'1	0.75	2.46	0.40	3.77	
T'2		4.30	0.52	8.77	
T'3			0.080	1.05	
T'4				14.22	
$\hat{\pi}_k$	17.7	21.5	23.5	37.3	
$\hat{\beta}$	-0.317				

Model: [19]

 $Y_{ij} \sim \mathcal{P}[\lambda_{k\ell} \ e^{\beta d_{ij}}].$

Results: $\hat{\beta} = -0.317$.

Pseudo-BIC: K = 4 groups.

Accounting for the taxonomic distance d_{ij}

$\hat{\lambda}_{k\ell}$	T'1	T'2	T'3	T'4	
T'1	0.75	2.46	0.40	3.77	
T'2		4.30	0.52	8.77	
T'3			0.080	1.05	
T'4				14.22	
$\hat{\pi}_k$	17.7	21.5	23.5	37.3	
β	-0.317				

Model: [19]

 $Y_{ij} \sim \mathcal{P}[\lambda_{k\ell} \ e^{\beta d_{ij}}].$

Results:
$$\hat{\beta} = -0.317$$
.

Pseudo-BIC: K = 4 groups.

Problem

Ecological network $Y = (Y_{ij})_{1 \le i,j \le n}$: interactions between *n* tree species:

 $Y_{ij} = \mathbb{I}\{i \sim j\} = \mathbb{I}\{i \text{ and } j \text{ share some fungal parasite}\}$

 \rightarrow in this talk, binary networks only.

Problem

Ecological network $Y = (Y_{ij})_{1 \le i,j \le n}$: interactions between *n* tree species:

 $Y_{ij} = \mathbb{I}\{i \sim j\} = \mathbb{I}\{i \text{ and } j \text{ share some fungal parasite}\}$

 \rightarrow in this talk, binary networks only.

+ Edge covariates
$$x = (x_{ij})_{1 \le i,j \le n}$$
:

- x_{ii}^1 = phylogenetic distance between *i* and *j*,
- x²_{ij} = geographic distance between the typical habitat of *i* and *j*,
 ...

Problem

Ecological network $Y = (Y_{ij})_{1 \le i,j \le n}$: interactions between *n* tree species:

 $Y_{ij} = \mathbb{I}\{i \sim j\} = \mathbb{I}\{i \text{ and } j \text{ share some fungal parasite}\}$

 \rightarrow in this talk, binary networks only.

+ Edge covariates
$$x = (x_{ij})_{1 \le i,j \le n}$$
:

- x_{ii}^1 = phylogenetic distance between *i* and *j*,
- x²_{ij} = geographic distance between the typical habitat of *i* and *j*,
 ...

Questions:

- Can we explain the topology of Y based on x?
- ▶ Is there a residual heterogeneity in the network Y?

Problem

Ecological network $Y = (Y_{ij})_{1 \le i,j \le n}$: interactions between *n* tree species:

 $Y_{ij} = \mathbb{I}\{i \sim j\} = \mathbb{I}\{i \text{ and } j \text{ share some fungal parasite}\}$

 \rightarrow in this talk, binary networks only.

+ Edge covariates
$$x = (x_{ij})_{1 \le i,j \le n}$$
:

- x_{ii}^1 = phylogenetic distance between *i* and *j*,
- x²_{ij} = geographic distance between the typical habitat of *i* and *j*,
 ...

Questions:

- ▶ Can we explain the topology of Y based on x? \rightarrow logistic regression
- ▶ Is there a residual heterogeneity in the network Y? \rightarrow W-graph

Outline

Reminder of variational Bayes inference

Logistic regression

W-graphs and graphon

Goodness-of-fit

Illustrations

Outline

Reminder of variational Bayes inference

Logistic regression

W-graphs and graphon

Goodness-of-fit

Illustrations

S. Robin (INRA / AgroParisTech)

Variational Bayes inference: General principle

Y = observed data, Z = latent variable, $\theta =$ parameter.

Frequentist or Bayesian inference requires

$$p(Z|Y), \quad p(\theta|Y), \quad p(\theta, Z|Y).$$

Variational Bayes inference: General principle

Y = observed data, Z = latent variable, $\theta =$ parameter.

Frequentist or Bayesian inference requires

$$p(Z|Y), \quad p(\theta|Y), \quad p(\theta, Z|Y).$$

Variational inference:

find
$$\widetilde{p}(\cdot) \approx p(\cdot|Y)$$

Variational Bayes inference: General principle

Y = observed data, Z = latent variable, $\theta =$ parameter.

Frequentist or Bayesian inference requires

$$p(Z|Y), \quad p(\theta|Y), \quad p(\theta, Z|Y).$$

Variational inference:

find
$$\widetilde{p}(\cdot) \approx p(\cdot|Y)$$

Typically [11,21,25]

$$\widetilde{p} = \arg\min_{q \in Q} D[q(\cdot) \parallel p(\cdot|Y)]$$

$$D[q \parallel p] = KL[q \parallel p]; \qquad \widetilde{p}(Z) = \prod_{i} q_{i}(Z_{i}); \qquad \widetilde{p}(\theta) = \mathcal{N}; \qquad \widetilde{p}(\theta, Z) = \widetilde{p}(\theta)\widetilde{p}(Z).$$

S. Robin (INRA / AgroParisTech)

Reminder of variational Bayes inference

Variational Bayes inference: Some tools

Latent variable models: mean field approximation

$$\widetilde{p}(\theta, Z) := \widetilde{p}(\theta) \times \widetilde{p}(Z),$$

The VBEM algorithm [1] achieves

 $\min_{\widetilde{\rho}} \ \mathsf{KL}[\widetilde{\rho}(\theta, Z) \parallel p(\theta, Z|Y)] \quad \Leftrightarrow \quad \max_{\widetilde{\rho}} \ \log p(Y) - \mathsf{KL}[\widetilde{\rho}(\theta, Z) \parallel p(\theta, Z|Y)]$

Variational Bayes inference: Some tools

Latent variable models: mean field approximation

$$\widetilde{p}(\theta, Z) := \widetilde{p}(\theta) \times \widetilde{p}(Z),$$

The VBEM algorithm [1] achieves

 $\min_{\widetilde{p}} \ \mathsf{KL}[\widetilde{p}(\theta, Z) \parallel p(\theta, Z|Y)] \quad \Leftrightarrow \quad \max_{\widetilde{p}} \ \log p(Y) - \mathsf{KL}[\widetilde{p}(\theta, Z) \parallel p(\theta, Z|Y)]$

Bayesian model averaging (BMA) [8]: Consider models M_1, \ldots, M_K, \ldots

$$\mathbb{E}[h(\theta)|Y] = \sum_{K} p(K|Y) \mathbb{E}[h(\theta)|Y,K]$$

Variational Bayes inference: Some tools

Latent variable models: mean field approximation

$$\widetilde{p}(\theta, Z) := \widetilde{p}(\theta) \times \widetilde{p}(Z),$$

The VBEM algorithm [1] achieves

$$\min_{\widetilde{p}} \ \mathcal{KL}[\widetilde{p}(\theta, Z) \parallel p(\theta, Z|Y)] \quad \Leftrightarrow \quad \max_{\widetilde{p}} \ \log p(Y) - \mathcal{KL}[\widetilde{p}(\theta, Z) \parallel p(\theta, Z|Y)]$$

Bayesian model averaging (BMA) [8]: Consider models M_1, \ldots, M_K, \ldots

$$\mathbb{E}[h(\theta)|Y] = \sum_{K} p(K|Y) \mathbb{E}[h(\theta)|Y,K]$$

Variational approximation of p(K|Y) [24]:

$$\widetilde{p}(K) \propto p(K|Y) e^{-KL_K^*} \propto p(K) e^{\log p(Y|K) - KL_K^*}$$

where KL_{K}^{*} = minimized KL divergence for model M_{K} .

S. Robin (INRA / AgroParisTech)

GOF for graph models

Outline

Reminder of variational Bayes inference

Logistic regression

W-graphs and graphon

Goodness-of-fit

Illustrations

Logistic regression

Forget about the network structure: (Y_{ij}) are independent

 $Y_{ij} \sim \mathcal{B}[g(x_{ij}^{\mathsf{T}}\beta)], \qquad g(u) = 1/(1+e^{-u})$

Logistic regression

Forget about the network structure: (Y_{ij}) are independent

$$Y_{ij} \sim \mathcal{B}[g(x_{ij}^{\mathsf{T}}\beta)], \qquad g(u) = 1/(1+e^{-u})$$

Bayesian inference. Prior on β :

 $\beta \sim \mathcal{N}(m, G^{-1})$

Posterior distribution:

 $p(\beta|Y) \propto p(\beta)p(Y|\beta)$

- ▶ No nice conjugacy holds for the normal prior / logistic regression model.
- No close form for the posterior $p(\beta|Y)$.

Variational Bayes inference

Nasty term in log $p(Y|\beta)$:

$$-\log(1+e^{-x_{ij}eta}).$$

Variational Bayes inference

Nasty term in log $p(Y|\beta)$:

$$-\log(1+e^{-x_{ij}eta}).$$

[12]: quadratic lower bound of log $p(\beta, Y)$ to get

$$p(\beta|Y) \approx \widetilde{p}(\beta) = \mathcal{N}(\beta; \widetilde{m}, \widetilde{G}^{-1}).$$

Variational Bayes inference

Nasty term in log p(Y|eta): $-\log(1+e^{-x_{ij}eta}).$

[12]: quadratic lower bound of log $p(\beta, Y)$ to get

$$p(\beta|Y) \approx \widetilde{p}(\beta) = \mathcal{N}(\beta; \widetilde{m}, \widetilde{G}^{-1}).$$

Example: Tree network. n = 51 tree species, (N = 1275 pairs), 3 distances:

	intercept	genetic	geographic	taxonomic
μ_{eta}	0.221	0.060	-0.337	-0.811
σ_{eta}	0.058	0.062	0.059	0.060

Outline

Reminder of variational Bayes inference

Logistic regression

W-graphs and graphon

Goodness-of-fit

Illustrations

S. Robin (INRA / AgroParisTech)

Latent space models

Generic framework [2]:

- Latent variable for node *i*: $Z_i \sim \pi$.
- Edges Y_{ij} conditionally independent:

 (Z_i) iid $\sim \pi$, $Y_{ij} \mid (Z_i) : Y_{ij} \sim \mathcal{B}[\gamma(Z_i, Z_j)]$

Latent space models

Generic framework [2]:

- Latent variable for node *i*: $Z_i \sim \pi$.
- Edges Y_{ii} conditionally independent:

 $(Z_i) \text{ iid } \sim \pi, \qquad Y_{ij} \mid (Z_i) : Y_{ij} \sim \mathcal{B}[\gamma(Z_i, Z_j)]$

Includes [20]:

- stochastic block-model [5],
- latent position models [9,7,3],
- ► W-graph [18,4]

 \rightarrow 'limit' model of most of these models.

Latent space models

Generic framework [2]:

- Latent variable for node *i*: $Z_i \sim \pi$.
- Edges Y_{ij} conditionally independent:

 $(Z_i) ext{ iid } \sim \pi, extsf{Y}_{ij} \mid (Z_i) : Y_{ij} \sim \mathcal{B}[\gamma(Z_i, Z_j)]$

Includes [20]:

- stochastic block-model [5],
- latent position models [9,7,3],
- ► W-graph [18,4]

 \rightarrow 'limit' model of most of these models.

Intricate dependency structure: sampling and/or approximation is required for the inference of $p(Z, \theta|Y)$

S. Robin (INRA / AgroParisTech)

W-graph (graphon) model

Latent variables:

$$(U_i)$$
 iid $\sim \mathcal{U}_{[0,1]},$

Graphon function γ :

 $\gamma(u,v):[0,1]^2\mapsto [0,1]$

Edges:

$$P(Y_{ij} = 1 | U_i, U_j) = \gamma(U_i, U_j)$$

Graphon function $\gamma(u, v)$

Some typical graphon functions

Graphon function γ : a global picture of the network's topology.

Some typical graphon functions

Graphon function γ : a global picture of the network's topology.

Remark: $\gamma(\cdot, \cdot) = \mathsf{cst} \to \mathsf{ER} \mathsf{ model}$

Variational Bayes inference of the graphon (1/3)

Stochastic Block-model (SBM) is a W-graph model.

Latent variables:

$$(Z_i)$$
 iid $\sim \mathcal{M}(1,\pi)$

Blockwise constant graphon:

$$\gamma(z,z')=\gamma_{k\ell}$$

Edges:

$$P(Y_{ij} = 1 | Z_i, Z_j) = \gamma(Z_i, Z_j)$$

Variational Bayes inference of the graphon (1/3)

Stochastic Block-model (SBM) is a W-graph model.

Latent variables:

$$(Z_i)$$
 iid $\sim \mathcal{M}(1,\pi)$

Blockwise constant graphon:

$$\gamma(z,z')=\gamma_{k\ell}$$

Edges:

$$P(Y_{ij} = 1 | Z_i, Z_j) = \gamma(Z_i, Z_j)$$

Variational Bayes inference of the graphon (1/3)

Stochastic Block-model (SBM) is a W-graph model.

Latent variables:

 (Z_i) iid $\sim \mathcal{M}(1,\pi)$

Blockwise constant graphon:

$$\gamma(z,z')=\gamma_{k\ell}$$

Edges:

$$P(Y_{ij} = 1 | Z_i, Z_j) = \gamma(Z_i, Z_j)$$

Graphon function of SBM_K

 \rightarrow block widths = π_k , block heights $\gamma_{k\ell}$

S. Robin (INRA / AgroParisTech)

Variational Bayes inference of the graphon (2/3)

VBEM for SBM: conjugate priorexponential family setting [13].
Variational Bayes inference of the graphon (2/3)

VBEM for SBM: conjugate priorexponential family setting [13].

Approximate posteriors

$$\begin{split} \widetilde{p}(\pi) &= \mathcal{D}(\widetilde{\pi}) \ \widetilde{p}(\gamma_{k\ell}) &= \mathsf{B}(\widetilde{\gamma}^0_{k\ell},\widetilde{\gamma}^1_{k\ell}) \ \widetilde{p}(Z_i) &= \mathcal{M}(1;\widetilde{\tau}_i) \end{split}$$

Variational Bayes inference of the graphon (2/3)

VBEM for SBM: conjugate priorexponential family setting [13].

Approximate posteriors

$$\begin{aligned} \widetilde{p}(\pi) &= \mathcal{D}(\widetilde{\pi}) \\ \widetilde{p}(\gamma_{k\ell}) &= \mathsf{B}(\widetilde{\gamma}_{k\ell}^0, \widetilde{\gamma}_{k\ell}^1) \\ \widetilde{p}(Z_i) &= \mathcal{M}(1; \widetilde{\tau}_i) \end{aligned}$$

Posterior mean $\widetilde{\mathbb{E}}_{K}^{SBM}[\gamma(u, v)]$

Variational Bayes inference of the graphon (3/3)

Variational Bayes model averaging.

• Each auxiliary model SBM_K provides an estimates of γ as:

$$\widehat{\gamma}_{\mathcal{K}}(u,v) = \widetilde{\mathbb{E}}_{\mathcal{K}}^{SBM}[\gamma(u,v)].$$

► VB inference also provides an approximation of the posterior probability of each auxiliary model SBM_K:

$$\widetilde{p}(K) \approx p(K|Y)$$

• A averaged estimate of γ is given by [15]:

$$\widetilde{\mathbb{E}}[\gamma(u,v)] = \sum_{K} \widetilde{\rho}(K) \ \widetilde{\mathbb{E}}_{K}^{SBM}[\gamma(u,v)].$$

Example: Tree network

n = 51 tree species. Inferred graphon function:

Example: Political blog network

n = 196 blogs. Inferred graphon function:

Example: Political blog network

n = 196 blogs. Inferred graphon function:

- Graphical representation of the network.
- Interpretability...

Outline

Reminder of variational Bayes inference

Logistic regression

W-graphs and graphon

Goodness-of-fit

Illustrations

S. Robin (INRA / AgroParisTech)

Back to the original problem

Data:

- ▶ Y = observed (binary) network
- ► x = covariates

Questions:

- Does x explain the topology of Y?
- Residual (wrt x) heterogeneity in Y?

Combined model

Logistic regression:

$$\mathsf{logit} \; \mathsf{P}(\mathsf{Y}_{ij}=1) = eta_0 + \sum_k eta_k x_{ij}^k$$

Combined model

Logistic regression:

$$\mathsf{logit} \; \mathsf{P}(Y_{ij} = 1) = eta_0 + \sum_k eta_k x_{ij}^k$$

Logistic regression + graphon residual term: (U_i) iid ~ $\mathcal{U}[0,1]$,

logit
$$P(Y_{ij} = 1 | U_i, U_j) = \phi(U_i, U_j) + \sum_k \beta_k x_{ij}^k$$

Goodness-of-fit

Combined model

Logistic regression:

$$\mathsf{logit} \; \mathsf{P}(Y_{ij} = 1) = eta_0 + \sum_k eta_k x_{ij}^k$$

Logistic regression + graphon residual term: (U_i) iid ~ $\mathcal{U}[0,1]$,

logit
$$P(Y_{ij} = 1 | U_i, U_j) = \phi(U_i, U_j) + \sum_k \beta_k x_{ij}^k$$

Goodness of fit [16]: Check if

$$\phi(u,v) = \operatorname{cst} \quad (=\beta_0)$$

S. Robin (INRA / AgroParisTech)

Goodness-of-fit as model comparison

Auxiliary model M_K :

$$\text{logit } P(Y_{ij} = 1 | U_i, U_j, K) = \phi_K^{SBM}(U_i, U_j) + \sum_k \beta_k x_{ij}^k.$$

Goodness-of-fit as model comparison

Auxiliary model M_K :

$$\text{logit } P(Y_{ij} = 1 | U_i, U_j, K) = \phi_K^{SBM}(U_i, U_j) + \sum_k \beta_k x_{ij}^k.$$

Goodness of fit:

$$H_0 = \{ \text{logistic regression is sufficient} \} = M_1$$

 $H_1 = \{ \text{logistic regression is not sufficient} \} = \bigcup_{K>1} M_K$

GOF is a assessed if

$$p(H_0|Y) = p(M_1|Y)$$
 is large.

S. Robin (INRA / AgroParisTech)

Variational Bayes inference

VBEM: A global variational Bayes EM algorithm can be designed to obtain all needed (approximate) posteriors:

$$p(\theta, Z, K|Y) \approx \widetilde{p}(\theta, Z, K) = \widetilde{p}(K) \ \widetilde{p}(\theta|K) \times \widetilde{p}(Z|K)$$
$$= \widetilde{p}(K) \ (\widetilde{p}(\alpha|K) \ \widetilde{p}(\beta|K) \ \widetilde{p}(\pi|K)) \times \left(\prod_{i} \ \widetilde{p}(Z_{i}|K)\right)$$

Variational Bayes inference

VBEM: A global variational Bayes EM algorithm can be designed to obtain all needed (approximate) posteriors:

$$p(\theta, Z, K|Y) \approx \widetilde{p}(\theta, Z, K) = \widetilde{p}(K) \ \widetilde{p}(\theta|K) \times \widetilde{p}(Z|K)$$
$$= \widetilde{p}(K) \ (\widetilde{p}(\alpha|K) \ \widetilde{p}(\beta|K) \ \widetilde{p}(\pi|K)) \times \left(\prod_{i} \widetilde{p}(Z_{i}|K)\right)$$

Posterior quantities of interest:

• Goodness of fit criterion:

$$p(H_0|Y) \approx \widetilde{P}(K=1)$$

Residual graphon:

$$\widehat{\phi}(u,v) = \sum_{K} \widetilde{p}(K) \ \widetilde{\mathbb{E}}[\phi_{K}^{SBM}(u,v)]$$

S. Robin (INRA / AgroParisTech)

Outline

Reminder of variational Bayes inference

Logistic regression

W-graphs and graphon

Goodness-of-fit

Illustrations

S. Robin (INRA / AgroParisTech)

Some examples

network	size (n)	nb. covariates (<i>d</i>)	density	$\hat{p}(H_0 Y)$
Blog	196	3	0.075	3e-172
Tree	51	3	0.54	2e-115
Karate	34	8	0.14	3e-2
Florentine (marriage)	16	3	0.17	0.995
Florentine (business)	16	3	0.125	0.991
Faux Dixon High	248	17	0.02	1
CKM	219	39	0.015	1
AddHealth 67	530	21	0.007	2e-25

Political blog network

n = 196 blogs (N = 19110 pairs), 3 covariates, density = .075

Inferred graphon (no covariate)

Residual graphon (3 covariates)

 $\widetilde{P}(H_0) \simeq 10^{-172}$

Tree network

n = 51 species (N = 1275 pairs), 3 covariates, density = .54

Inferred graphon (no covariate)

Residual graphon (3 covariates)

 $\widetilde{P}(H_0) \simeq 10^{-115}$

Florentine business

n = 16 families (N = 120 pairs), 3 covariates, density = .12

Inferred graphon (no covariate)

Residual graphon (3 covariates)

 $\widetilde{P}(H_0) = .991$

Physicians' friendship network

n = 219 individuals, 24 covariates (39 df), density = .015

Contribution:

- ▶ Generic logistic regression model with a network-oriented residual term.
- ► Detour through SBM provides a natural goodness-of-fit criterion.
- R package on github.com/platouche/gofNetwork (soon on CRAN)

Contribution:

- ▶ Generic logistic regression model with a network-oriented residual term.
- Detour through SBM provides a natural goodness-of-fit criterion.
- R package on github.com/platouche/gofNetwork (soon on CRAN)

Comments:

- Strongly relies on variational Bayes approximation of the posteriors.
- ▶ VBEM asymptotically accurate for logistic regression and SBM separately.
- ► No clue about accuracy in the combined model.

Contribution:

- ▶ Generic logistic regression model with a network-oriented residual term.
- Detour through SBM provides a natural goodness-of-fit criterion.
- R package on github.com/platouche/gofNetwork (soon on CRAN)

Comments:

- Strongly relies on variational Bayes approximation of the posteriors.
- ▶ VBEM asymptotically accurate for logistic regression and SBM separately.
- ► No clue about accuracy in the combined model.

On-going work:

- Relevant edge covariates made of node covariates [10].
- Efficient sampling in the true posterior using sequential importance sampling: \rightarrow Move from $\widetilde{p}(\cdot)$ to $p(\cdot|Y)$ using a tempering scheme.

S. Robin (INRA / AgroParisTech)

References I

J. Beal, M. and Z. Ghahramani.

The variational Bayesian EM algorithm for incomplete data; with application to scoring graphical model structures. Bayes. Statist., 7:543-52, 2003.

B. Bollobás, S. Janson, and O. Riordan.

The phase transition in inhomogeneous random graphs. Rand. Struct. Algo., 31(1):3-122, 2007.

J.-J. Daudin, L. Pierre, and C. Vacher,

Model for heterogeneous random networks using continuous latent variables and an application to a tree-fungus network.

P. Diaconis and S. Janson

Graph limits and exchangeable random graphs. Rend. Mat. Appl., 7(28):33-61, 2008.

O. Frank and F. Harary.

Cluster inference by using transitivity indices in empirical graphs. J. Amer. Statist. Assoc., 77(380):835-840, 1982.

Steven Gazal, Jean-Jacques Daudin, and Stéphane Robin.

Accuracy of variational estimates for random graph mixture models. Journal of Statistical Computation and Simulation, 82(6):849-862, 2012.

M. S. Handcock, A. E. Raftery, and J. M. Tantrum.

Model-based clustering for social networks.

Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(2):301-354, 2007. doi: 10.1111/j.1467-985X.2007.00471.x.

References II

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky.

Bayesian model averaging: A tutorial. Statistical Science, 14(4):382-417, 1999.

P. D. Hoff, A. E. Raftery, and M. S. Handcock.

Latent space approaches to social network analysis. J. Amer. Statist. Assoc., 97(460):1090–98, 2002.

D. R. Hunter, S. M. Goodreau, and M. S. Handcock.

Goodness of fit of social network models. Journal of the American Statistical Association, 103(481):248–258, 2008.

T. Jaakkola.

Advanced mean field methods: theory and practice, chapter Tutorial on variational approximation methods. MIT Press, 2000.

T. S. Jaakkola and M. I. Jordan.

Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1):25–37, 2000.

P. Latouche, E. Birmelé, and C. Ambroise.

Variational bayesian inference and complexity control for stochastic block models. *Statis. Model.*, 12(1):93–115, 2012.

P. Latouche and S Robin.

Bayesian model averaging of stochastic block models to estimate the graphon function and motif frequencies in a W-graph model. Technical report, arXiv:1310.6150, 2013. to appear in Stat. Comput.

P. Latouche and S. Robin.

Variational bayes model averaging for graphon functions and motif frequencies inference in W-graph models. Statistics and Computing, pages 1–13, 2015.

References III

P. Latouche, S. Robin, and S. Ouadah.

Goodness of fit of logistic models for random graphs. Technical report, arXiv:1508.00286, 2015.

S.L. Lauritzen.

Graphical Models. Oxford Statistical Science Series. Clarendon Press, 1996.

L. Lovász and B. Szegedy.

Limits of dense graph sequences. Journal of Combinatorial Theory, Series B, 96(6):933 – 957, 2006.

M. Mariadassou, S. Robin, and C. Vacher.

Uncovering structure in valued graphs: a variational approach. Ann. Appl. Statist., 4(2):715–42, 2010.

C. Matias and S. Robin.

Modeling heterogeneity in random graphs through latent space models: a selective review. ESAIM: Proc., 47:55–74, 2014.

Tom Minka.

Divergence measures and message passing. Technical Report MSR-TR-2005-173, Microsoft Research Ltd, 2005

F. Picard, J.-J. Daudin, M. Koskas, S. Schbath, and S. Robin.

Assessing the exceptionality of network motifs, J. Comp. Biol., 15(1):1–20, 2008.

C. Vacher, D. Piou, and M.-L. Desprez-Loustau.

Architecture of an antagonistic tree/fungus network: The asymmetric influence of past evolutionary history. PLoS ONE, 3(3):1740, 2008. e1740. doi:10.1371/journal.pone.0001740.

References IV

S. Volant, M.-L. Martin Magniette, and S. Robin.

Variational bayes approach for model aggregation in unsupervised classification with markovian dependency. Comput. Statis. & Data Analysis, 56(8):2375 – 2387, 2012.

M. J. Wainwright and M. I. Jordan.

Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn., 1(1–2):1–305, 2008.

Variational Bayes for heterogeneous network models

Graphical model formalism [17].

Variational Bayes for heterogeneous network models

Graphical model formalism [17].

'Frequentist' setting $(p(\cdot|\theta))$:

▶ iid Z_i's,

Variational Bayes for heterogeneous network models

Graphical model formalism [17].

'Frequentist' setting $(p(\cdot|\theta))$:

- ▶ iid Z_i's,
- $p(Y_{ij}|Z_i, Z_j)$,

Variational Bayes for heterogeneous network models

Graphical model formalism [17].

'Frequentist' setting $(p(\cdot|\theta))$:

- ▶ iid Z_i's,
- $p(Y_{ij}|Z_i, Z_j)$,
- $p(Z_i, Z_j | Y)$: graph moralization,

Variational Bayes for heterogeneous network models

Graphical model formalism [17].

'Frequentist' setting $(p(\cdot|\theta))$:

- ▶ iid Z_i's,
- $p(Y_{ij}|Z_i,Z_j)$,
- $p(Z_i, Z_j | Y)$: graph moralization,
- this holds for each pair (i, j),

Variational Bayes for heterogeneous network models

Graphical model formalism [17].

'Frequentist' setting $(p(\cdot|\theta))$:

- ▶ iid Z_i's,
- $p(Y_{ij}|Z_i,Z_j)$,
- $p(Z_i, Z_j | Y)$: graph moralization,
- ▶ this holds for each pair (*i*, *j*),

Dependency graph of $p(Z|Y, \theta) = \text{clique}$.

→ No factorization can be hoped (unlike for HMM). → $p(Z|Y, \theta)$ can not be computed (efficiently).

Variational Bayes for heterogeneous network models

Graphical model formalism [17].

'Frequentist' setting $(p(\cdot|\theta))$:

- ▶ iid Z_i's,
- $p(Y_{ij}|Z_i,Z_j)$,
- $p(Z_i, Z_j | Y)$: graph moralization,
- ▶ this holds for each pair (*i*, *j*),

Dependency graph of $p(Z|Y, \theta) = \text{clique}$.

→ No factorization can be hoped (unlike for HMM). → $p(Z|Y, \theta)$ can not be computed (efficiently). Bayesian setting. Things get worst.

Accuracy of VBEM estimates for SBM: Simulation study Credibility intervals: π_1 : +, γ_{11} : \triangle , γ_{12} : \circ , γ_{22} : •

Accuracy of VBEM estimates for SBM: Simulation study Credibility intervals: π_1 : +, γ_{11} : \triangle , γ_{12} : •, γ_{22} : •

Width of the posterior credibility intervals. π_1 , γ_{11} , γ_{12} , γ_{22}

[6]

S. Robin (INRA / AgroParisTech)

A first criterion for goodness-of-fit: Motifs frequency

 Network motifs have a biological or sociological interpretation in terms of building blocks of the global network

 \rightarrow Triangles = 'friends of my friends are my friends'.

Latent space graph models only describe binary interactions, conditional on the latent positions

 \rightarrow Goodness of fit criterion based on motif frequencies? [15].

Moments of motif counts

First moments $\mathbb{E}N(m)$, $\mathbb{V}N(m)$ known for exchangeable graphs (incl. SBM) [22]:

 $\mathbb{E}_{SBM}N(m) \propto \mu_{SBM}(m), \qquad \mu_{SBM}(m) = ext{motif} ext{ occurrence probability}.$

 $\mathbb{V}N(m)$ depends on the frequency of super-motifs:

Moments under *W*-graph: Motif probability under the *W*-graph can be estimated as $\overline{W} = \overline{W} = \overline{W}$

$$\widehat{\mu}(m) = \sum_{k} \widetilde{P}(K) \widetilde{\mathbb{E}}(\mu_{SBM}^{K}(m))$$

Estimates of $\mathbb{E}_W N(m)$ and $\mathbb{V}_W N(m)$: see [14].

Network frequencies in the blog network

Motif	Count	Mean	Std. dev.	Rel. diff.
	(×10 ³)	(×10 ³)	(×10 ³)	$(N-\mathbb{E})/\sqrt{\mathbb{V}}$
	29.7	39.7	8.3	-1.20
\triangleleft	3.8	4.6	1.3	-0.62
	608.7	968.3	336.8	-1.07
\prec	279.8	428.9	154.0	-0.97
\square	47.4	74.5	35.1	-0.77
\square	270.5	397.0	177.0	-0.71
\square	62.1	87.8	47.4	-0.54
\bowtie	6.5	8.8	5.4	-0.43

No specific structure seems to be exceptional wrt the model's expectations.