

Modèles graphiques stochastiques et optimisation pour la gestion de systèmes agroécologiques

Nathalie Peyrard et <u>Régis Sabbadin</u> (ainsi que Mathieu Bonneau, Sabrina Gaba, Eve McDonald-Madden, Julia Radoszycki, etc.)

Unité de Mathématiques et Informatique Appliqués, Toulouse (MIAT)

Journée MOABI, Paris, Novembre 2015

Some AI tools for the management of stochastic processes on networks

Tools based on Stochastic graphical models

- Bayesian networks
- Markov Random Fields
- (Factored) Markov Decision Processes
- Plus the use of optimization/approximation methods
 - Dynamic programming
 - Reinforcement learning
 - Continuous optimization
 - Heuristics
- Applications in agroecological systems management
 - Biodiversity conservation
 - Spatial sampling of weeds
 - Management of services / crop health at the landscape scale

Three example case studies/models

Species conservation in food webs

Weeds sampling for map reconstruction

Crop allocation to maximize ecosystem services Modelling/optimisation approaches

- « static node selection » to optimize expectation wrt a Bayesian Network
- « adaptive node observation » to optimize expected MAP in a Markov Random Field
- « policy selection » to maximize

expectation wrt a Dynamic Bayesian Network

Journée MOABI, Paris

Problem I : Conservation of multiple species in food webs

 $P(HS,OF,CF|P_{HS},P_{OF},P_{CF}) = P(HS|OF,CF,P_{HS}) P(OF|,P_{OF}) P(CF|,P_{CF})$

« Which species to protect in a food web to optimize the expected number of present species? »

Problem I : Conservation of multiple species in food webs

Model: Bayesian Network = joint probability distribution over species occurrences.

$$P(S_1,...,S_n) = \prod_{i=1..n} P_i(S_i | \operatorname{Pr} eys(S_i), \operatorname{Pr}_i)$$

Solution:

- Exact (naïve) for small problems
- Heuristics for large problems

E McDonald-Madden, R Sabbadin, P.W.J. Baxter, I Chadès, E.T. Game and H.P. Possingham. Using food webs to manage ecosystems, Nature Communications (to appear).

Problem II: Optimal static/adaptive sampling for weeds map reconstruction

« Where to sample to optimize the expected quality of the returned map? »

Problem II: Optimal static/adaptive sampling for weeds map reconstruction

M. Bonneau, S. Gaba, N. Peyrard and R. Sabbadin. Reinforcement learning-based design of sampling policies under cost constraints in Markov random fields:
Application to weed map reconstruction, CSDA, 2014

>A. Albore, N. Peyrard, R. Sabbadin and F. Teichteil. An Online Replanning Approach for Crop Fields Mapping with Autonomous UAVs, ICAPS, 2015.

Problem III: Optimal crop allocation to maximize ecosystem services provision

Many state variables and action variables (here one for each plot) Factored representation : dynamic bayesian network (DBN)

 $P(S^{t+1}|S^{t}, A^{t}) = \prod_{i=1}^{n} P(S_{i}^{t+1}|pa(S_{i}^{t+1}))$

Approximate resolution

« How to allocate crops in space/time to optimize the expected compromize between Ecosystem services through time? »

Problem III: Optimal crop allocation to maximize ecosystem services provision

Solution: successive evaluation/improvement of policies • Approximate evaluation of δ^t through marginal probs (ex. Loopy BP) • Improvement of δ^t through Gradient Descent

J. Radoszycki, N. Peyrard and R. Sabbadin. Solving F3MDPs: Collaborative Multiagent Markov Decision Processes with Factored Transitions, Rewards and Stochastic Policies. PRIMA, 2015.

General conclusions

Managing ecological networks

- > Networks can be: spatial, causal, ...
- Management can be: control, conservation, sampling ...
- Ecosystems and agricultural systems : management share similarities

Common tools for all these problems

- graphical models, simulation, optimization
- Computing exactly the optimal strategy is out of reach (all problems are at least NP^{PP-hard})

Current research focuses on approximate resolution

Still some challenges!

- Sampling dynamic processes
 - How to sample a system where the underlying process changes through time?
- How to manage processes over an ill-know network?
 - Combine network learning and control/conservation actions optimization

References

Food webs management

W.J.M. Probert, E. Mc Donald-Madden, N. Peyrard and R. Sabbadin. Computational issues surrounding the dynamic optimization of management of an ecological food web. ECAI 2012 Workshop AIGM.
E McDonald-Madden, R Sabbadin, P.W.J. Baxter, I Chadès, E.T. Game and H.P. Possingham. Using food webs to manage ecosystems, Nature Communications, to appear.

Adaptive spatial sampling

▶ N Peyrard, R Sabbadin, D Spring, B Brook and R Mac Nally. Model-based adaptive spatial sampling for occurrence map construction. Statistics and Computing, 1-14, 2011.

➢M. Bonneau, N. Peyrard and R. Sabbadin. A Reinforcement-Learning Algorithm for Sampling Design in Markov Random Fields, ECAI 2012

M. Bonneau, S. Gaba, N. Peyrard and R. Sabbadin. Reinforcement learning-based design of sampling policies under cost constraints in Markov random fields: Application to weed map reconstruction, CSDA, 2014
A. Albore, N. Peyrard, R. Sabbadin and F. Teichteil. An Online Replanning Approach for Crop Fields Mapping with Autonomous UAVs, ICAPS, 2015.

GMDP, FA-FMDP, applications to agro-ecological processes management

➢R Sabbadin, N Peyrard and N Forsell. A framework and a mean-field algorithm for the local control of spatial processes. International Journal of Approximate Reasoning, 2011.

≻J. Radoszycki, N. Peyrard and R. Sabbadin. Solving F3MDPs: Collaborative Multiagent Markov Decision Processes with Factored Transitions, Rewards and Stochastic Policies. PRIMA, 2015.