

Inférence de réseaux pour les données RNA-seq

Mélina Gallopin

Université Paris Descartes

Séminaire MIAT (INRA, Auzeville) Vendredi 26 mars 2016

1. Les données RNA-seq

2. Modélisation

3. Réduction de dimension

1. Les données RNA-seq

2. Modélisation

3. Réduction de dimension

Mesurer l'expression des gènes

Mesurer l'expression des gènes

Comment?

▶ les puces de ADN (1995) \Rightarrow hybridation des séquences d'ADNc

Mesurer l'expression des gènes

Comment?

▶ les puces de ADN (1995) \Rightarrow hybridation des séquences d'ADNc

▶ la technologie RNA-seq (2008) \Rightarrow lecture des séquences d'ADNc

La technologie de séquencage RNA-seq

Pour un échantillon :

- 1. Extraction de l'ARN
- 2. Retranscription ARN \Rightarrow ADNc
- 3. Lecture des brins d'ADNc, appelés reads

GATTACA, GTTTTTAGCTG, TAATTAG

La technologie de séquencage RNA-seq

Pour un échantillon :

- 1. Extraction de l'ARN
- 2. Retranscription ARN \Rightarrow ADNc
- 3. Lecture des brins d'ADNc, appelés reads

GATTACA, GTTTTTAGCTG, TAATTAG

4. Alignement des reads

génome de référence — TATTTAGCTCTGATTACAATG—

La technologie de séquencage RNA-seq

Pour un échantillon :

- 1. Extraction de l'ARN
- 2. Retranscription ARN \Rightarrow ADNc
- 3. Lecture des brins d'ADNc, appelés reads

GATTACA, GTTTTTAGCTG, TAATTAG

4. Alignement des reads

génome de référence — TATTTAGCTCTGATTACAATG—

La technologie de séquencage RNA-seq

Pour un échantillon :

- 1. Extraction de l'ARN
- 2. Retranscription ARN \Rightarrow ADNc
- 3. Lecture des brins d'ADNc, appelés reads

GATTACA, GTTTTTAGCTG, TAATTAG

4. Alignement des reads

génome de référence —TATTTAGCTCTGATTACAATG—

La technologie de séquencage RNA-seq

Pour un échantillon :

- 1. Extraction de l'ARN
- 2. Retranscription ARN \Rightarrow ADNc
- 3. Lecture des brins d'ADNc, appelés reads

GATTACA, GTTTTTAGCTG, TAATTAG

4. Alignement des reads

read aligné GATTACA génome de référence —TATTTAGCTCTGATTACAATG—

La technologie de séquencage RNA-seq

Pour un échantillon :

- 1. Extraction de l'ARN
- 2. Retranscription ARN \Rightarrow ADNc
- 3. Lecture des brins d'ADNc, appelés reads

GATTACA, GTTTTTAGCTG, TAATTAG

4. Alignement des reads

read aligné TTAGCTC *read* aligné GATTACA génome de référence —TATTTAGCTCTGATTACAATG—

La technologie de séquencage RNA-seq

Pour un échantillon :

- 1. Extraction de l'ARN
- 2. Retranscription ARN \Rightarrow ADNc
- 3. Lecture des brins d'ADNc, appelés reads

GATTACA, GTTTTTAGCTG, TAATTAG

4. Alignement des reads

 read aligné
 GCTCTGAT

 read aligné
 TTAGCTC

 read aligné
 GATTACA

 génome de référence
 —TATTTAGCTCTGATTACAATG—

La technologie de séquencage RNA-seq

Pour un échantillon :

- 1. Extraction de l'ARN
- 2. Retranscription ARN \Rightarrow ADNc
- 3. Lecture des brins d'ADNc, appelés reads

GATTACA, GTTTTTAGCTG, TAATTAG

4. Alignement des reads

<i>read</i> aligné	GCTCTGAT			
<i>read</i> aligné	TTAGCTC			
<i>read</i> aligné	GATTACA			
génome de référence	—TATTTAGCTCTGATTACAATG—			

5. Comptage des reads

 nombre de reads
 45
 17685
 0
 15

 génome de référence
 – gène 1
 —
 gène 2
 – gène 3
 – gène 4
 —

		gène 1	gène 2	gène 3	gène 4	gène 5	
	porcelet 1	4	199	2987	0	65	
ماريم ما م مريسم	porcelet 2	0	189	1806	0	29	
duodenum	porcelet 3	6	201	1752	48	599	
	porcelet 4	4	198	2987	0	65	
	porcelet 1	0	0	1296	0	49	
:	porcelet 2	6	0	2298	0	119	
Jejunum	porcelet 3	4	0	2987	0	651	
	porcelet 4	0	0	1876	0	219	
	porcelet 1	0	19931	1837	0	388	
ileum	porcelet 2	2	18319	8786	0	861	
	porcelet 3	7	23101	2237	0	76	
	porcelet 4	1	34198	9828	0	65	

		gène 1	gène 2	gène 3	gène 4	gène 5	
	porcelet 1	4	199	2987	0	65	
ماريم والمعربية	porcelet 2	0	189	1806	0	29	
uuouenum	porcelet 3	6	201	1752	48	599	
	porcelet 4	4	198	2987	0	65	
	porcelet 1	0	0	1296	0	49	
:	porcelet 2	6	0	2298	0	119	
Jejunum	porcelet 3	4	0	2987	0	651	
	porcelet 4	0	0	1876	0	219	
	porcelet 1	0	19931	1837	0	388	
ileum	porcelet 2	2	18319	8786	0	861	
	porcelet 3	7	23101	2237	0	76	
	porcelet 4	1	34198	9828	0	65	

- \mathbf{y}_i : expression pour l'échantillon *i* pour $i = 1, \ldots, n$
 - \mathbf{y}^j : expression du gène j pour $j = 1, \dots, p$

 \mathbf{y}_{ij} : expression du gène j pour l'échantillon i

		gène 1	gène 2	gène 3	gène 4	gène 5	
	porcelet 1	4	199	2987	0	65	
ماريم ما م مريسم	porcelet 2	0	189	1806	0	29	
duodenum	porcelet 3	6	201	1752	48	599	
	porcelet 4	4	198	2987	0	65	
	porcelet 1	0	0	1296	0	49	
:	porcelet 2	6	0	2298	0	119	
Jejunum	porcelet 3	4	0	2987	0	651	
	porcelet 4	0	0	1876	0	219	
	porcelet 1	0	19931	1837	0	388	
ileum	porcelet 2	2	18319	8786	0	861	
	porcelet 3	7	23101	2237	0	76	
	porcelet 4	1	34198	9828	0	65	

- \mathbf{y}_i : expression pour l'échantillon *i* pour $i = 1, \ldots, n$
 - \mathbf{y}^j : expression du gène j pour $j = 1, \dots, p$
 - \mathbf{y}_{ij} : expression du gène j pour l'échantillon i
 - \mathbf{y}_{ij} est un comptage \rightarrow Modélisations discrètes

		gène 1	gène 2	gène 3	gène 4	gène 5	
	porcelet 1	4	199	2987	0	65	
ماريم والمعربية	porcelet 2	0	189	1806	0	29	
uuouenum	porcelet 3	6	201	1752	48	599	
	porcelet 4	4	198	2987	0	65	
	porcelet 1	0	0	1296	0	49	
:	porcelet 2	6	0	2298	0	119	
Jejunum	porcelet 3	4	0	2987	0	651	
	porcelet 4	0	0	1876	0	219	
	porcelet 1	0	19931	1837	0	388	
ileum	porcelet 2	2	18319	8786	0	861	
	porcelet 3	7	23101	2237	0	76	
	porcelet 4	1	34198	9828	0	65	

 \mathbf{y}_i : expression pour l'échantillon *i* pour $i = 1, \ldots, n$

 \mathbf{y}^j : expression du gène j pour $j=1,\ldots,p$

 \mathbf{y}_{ij} : expression du gène j pour l'échantillon i

 \mathbf{y}_{ij} est un comptage ightarrow Modélisations discrètes

p gènes > 1000 n échantillons < 100

		gène 1	gène 2	gène 3	gène 4	gène 5	
	porcelet 1	4	199	2987	0	65	
ماريم والمعربية	porcelet 2	0	189	1806	0	29	
uuouenum	porcelet 3	6	201	1752	48	599	
	porcelet 4	4	198	2987	0	65	
	porcelet 1	0	0	1296	0	49	
:	porcelet 2	6	0	2298	0	119	
Jejunum	porcelet 3	4	0	2987	0	651	
	porcelet 4	0	0	1876	0	219	
	porcelet 1	0	19931	1837	0	388	
ileum	porcelet 2	2	18319	8786	0	861	
	porcelet 3	7	23101	2237	0	76	
	porcelet 4	1	34198	9828	0	65	

 \mathbf{y}_i : expression pour l'échantillon *i* pour $i = 1, \ldots, n$

 \mathbf{y}^j : expression du gène j pour $j=1,\ldots,p$

 \mathbf{y}_{ij} : expression du gène j pour l'échantillon i

 \mathbf{y}_{ij} est un comptage ightarrow Modélisations discrètes

p gènes > 1000 n échantillons < 100 Technologie RNA-seq couteuse \rightarrow Manque d'échantillons

		gène 1	gène 2	gène 3	gène 4	gène 5	
	porcelet 1	4	199	2987	0	65	
ماريم والمعربية	porcelet 2	0	189	1806	0	29	
uuouenum	porcelet 3	6	201	1752	48	599	
	porcelet 4	4	198	2987	0	65	
	porcelet 1	0	0	1296	0	49	
:	porcelet 2	6	0	2298	0	119	
Jejunum	porcelet 3	4	0	2987	0	651	
	porcelet 4	0	0	1876	0	219	
	porcelet 1	0	19931	1837	0	388	
ileum	porcelet 2	2	18319	8786	0	861	
	porcelet 3	7	23101	2237	0	76	
	porcelet 4	1	34198	9828	0	65	

 \mathbf{y}_i : expression pour l'échantillon i pour $i = 1, \ldots, n$

 \mathbf{y}^j : expression du gène j pour $j = 1, \dots, p$

 \mathbf{y}_{ij} : expression du gène j pour l'échantillon i

 \mathbf{y}_{ij} est un comptage \rightarrow Modélisations discrètes

p gènes > 1000 n échantillons < 100 Technologie RNA-seq couteuse \rightarrow Manque d'échantillons

Analyses statistiques des données d'expression

► Analyse différentielle

Déterminer si un gène est plus ou moins exprimé dans deux conditions

Analyses statistiques des données d'expression

► Analyse différentielle

Déterminer si un gène est plus ou moins exprimé dans deux conditions

Analyse de co-expression

Grouper les gènes ayant des profils d'expression similaires

Analyses statistiques des données d'expression

► Analyse différentielle

Déterminer si un gène est plus ou moins exprimé dans deux conditions

Analyse de co-expression

Grouper les gènes ayant des profils d'expression similaires

► Inférence de réseaux

Reconstituer les réseaux de régulation génique

Analyses statistiques des données d'expression

► Analyse différentielle

Déterminer si un gène est plus ou moins exprimé dans deux conditions

Analyse de co-expression

Grouper les gènes ayant des profils d'expression similaires

Inférence de réseaux Reconstituer les réseaux de régulation génique

Inférence de réseaux

Principe

Reconstruire un graphe G = (V, E) où :

- $V = \{1, \dots, p\}$ ensemble des nœuds représentant les variables
- E ensemble des arrêtes modélisant les dépendances entre les variables

Inférence de réseaux

Principe

Reconstruire un graphe G = (V, E) où :

- ▶ $V = \{1, ..., p\}$ ensemble des nœuds représentant les variables
- E ensemble des arrêtes modélisant les dépendances entre les variables

Objectif

Reconstituer des réseaux de régulation de gènes

Inférence de réseaux

Principe

Reconstruire un graphe G = (V, E) où :

- $V = \{1, \ldots, p\}$ ensemble des nœuds représentant les variables
- E ensemble des arrêtes modélisant les dépendances entre les variables

Objectif

Reconstituer des réseaux de régulation de gènes

Outils

- Les modèles graphiques orientés
- Les modèles graphiques non-orientés

Inférence de réseaux

Principe

Reconstruire un graphe G = (V, E) où :

- $V = \{1, \ldots, p\}$ ensemble des nœuds représentant les variables
- E ensemble des arrêtes modélisant les dépendances entre les variables

Objectif

Reconstituer des réseaux de régulation de gènes

Outils

- Les modèles graphiques orientés
- Les modèles graphiques non-orientés

Les modèles graphiques non-orientés

$$\mathbf{y}^j$$
 : expression du gène j pour $j=1,\ldots,p$

Les modèles graphiques non-orientés

 \mathbf{y}^j : expression du gène j pour $j=1,\ldots,p$

Théorème (Hammersley-Clifford) La densité p des données se factorise ainsi

$$p(\mathbf{y}^1,\ldots,\mathbf{y}^p)=rac{1}{Z}\prod_{\mathcal{C}\in\mathfrak{C}}\psi_{\mathcal{C}}(\mathbf{y}^{\mathcal{C}}).$$

Les modèles graphiques non-orientés

$$\mathbf{y}^j$$
 : expression du gène j pour $j=1,\ldots,p$

Théorème (Hammersley-Clifford) La densité p des données se factorise ainsi

$$p(\mathbf{y}^1,\ldots,\mathbf{y}^p)=rac{1}{Z}\prod_{\mathcal{C}\in\mathfrak{C}}\psi_{\mathcal{C}}(\mathbf{y}^{\mathcal{C}}).$$

 $ssi(y^1,\ldots,y^p)$ vérifie la propriété de Markov par rapport au graphe G :

Les modèles graphiques non-orientés

$$\mathbf{y}^j$$
 : expression du gène j pour $j=1,\ldots,p$

Théorème (Hammersley-Clifford) La densité p des données se factorise ainsi

$$p(\mathbf{y}^1,\ldots,\mathbf{y}^p)=rac{1}{Z}\prod_{\mathcal{C}\in\mathfrak{C}}\psi_{\mathcal{C}}(\mathbf{y}^{\mathcal{C}}).$$

 $\textit{ssi}\left(\mathbf{y}^{1},\ldots,\mathbf{y}^{p}\right)$ vérifie la propriété de Markov par rapport au graphe G :

Exemple : Le modèle graphique gaussien (GGM) $\mathbf{y}_i \stackrel{\text{iid}}{\sim} \mathcal{N}_p(\mathbf{0}, \boldsymbol{\Sigma})$

1. Les données RNA-seq

2. Modélisation

3. Réduction de dimension

1. Les données RNA-seq

2. Modélisation

3. Réduction de dimension

Etat de l'art des méthodes développées

	Données de puces (1995)	Données RNA-seq (2008)
	continues	discrètes
Analyse différentielle	gaussienne: limma	binomiale négative: DESeq; EdgeR
	(Smyth et al., 2005)	(Anders et al., 2010; Robinson et al., 2010),
Analyse de co-expression	gaussienne: Rmixmod	Poisson: HTSCluster
(modèle de mélange)	(Biernacki et al., 2006)	(Rau et al., 2015)
Inférence de réseaux	gaussienne: SIMoNe	
(modèle non-orienté)	(Chiquet et al., 2010)	?

Inférence de réseaux pour les données RNA-seq

Le modèle graphique gaussien (GGM)

$$p(\mathbf{y}^{1},...,\mathbf{y}^{p}) = \exp\left[-\frac{1}{2}\sum_{(j,j')\in E}\theta_{jj'}\mathbf{y}^{j}\mathbf{y}^{j'} - A(\Theta)\right]$$

où $A(\Theta) = -\frac{1}{2}\log\det\left[\frac{\Theta}{2\pi}\right]$
Inférence de réseaux pour les données RNA-seq

Le modèle graphique gaussien (GGM)

$$p(\mathbf{y}^{1},...,\mathbf{y}^{p}) = \exp\left[-\frac{1}{2}\sum_{(j,j')\in E}\theta_{jj'}\mathbf{y}^{j}\mathbf{y}^{j'} - A(\Theta)\right]$$

où $A(\Theta) = -\frac{1}{2}\log\det\left[\frac{\Theta}{2\pi}\right]$

Le modèle graphique de Poisson

$$p(\mathbf{y}^1, \dots, \mathbf{y}^p) = \exp\left[\sum_{j \in V} (\beta_j \mathbf{y}^j - \log\left(\mathbf{y}^j !\right)) + \sum_{(j,j') \in E} \beta_{jj'} \mathbf{y}^j \mathbf{y}^{j'} - \mathbf{A}(\mathbf{\beta})\right]$$

Calcul du terme de normalisation $A(\beta)$ difficile \rightarrow modélise uniquement des dépendances négatives

Inférence de réseaux pour les données RNA-seq

Inférence par sélection de voisinage

$$p(\mathbf{y}^1, \dots, \mathbf{y}^p) = \exp\left[-\frac{1}{2}\sum_{(j,j')\in E} \theta_{jj'} \mathbf{y}^j \mathbf{y}^{j'} - A(\Theta)\right]$$

Meinshausen and Buhlmann (2006):

$$\mathbf{y}^{j} = \sum_{j' \neq j} \eta_{jj'} \mathbf{y}^{j'} + \epsilon_{j}, \ \epsilon_{j} \sim \mathcal{N}(\mathbf{0}, \sigma_{j}), \ \eta_{jj'} = rac{ heta_{jj'}}{ heta_{jj}}$$

Sélection de voisinage pour les modèles discrets

- Basée sur des lois de Poisson (Allen et al., 2013)
- Basée sur des lois de Poisson sur-dispersées (Gallopin et al., 2013)

	Données de puces (1995) continues	Données RNA-seq (2008) discrètes
Analyse différentielle	gaussienne : limma	binomiale négative : DESeq; EdgeR
	(Smyth et al., 2005)	(Anders et al., 2010; Robinson et al., 2010),
Analyse de co-expression	gaussienne : Rmixmod	Poisson : HTSCluster
(modèle de mélange)	(Biernacki et al., 2006)	(Rau et al., 2015)
Inférence de réseaux	gaussienne : SIMoNe	Poisson; Poisson sur-dispersée
(modèle non-orienté)	(Chiquet et al., 2010)	(Allen et al., 2012; Gallopin et al., 2013)

	Données de puces (1995)	Données RNA-seq (2008)
	continues	discrètes
Analyse différentielle	gaussienne : limma	binomiale négative : DESeq; EdgeR
	(Smyth et al., 2005)	(Anders et al., 2010; Robinson et al., 2010),
		ou
		gaussienne <i>sur données transformées</i> :
		limma + "voom" (<i>Law et al., 2014</i>)
Analyse de co-expression	gaussienne : Rmixmod	Poisson : HTSCluster
(modèle de mélange)	(Biernacki et al., 2006)	(Rau et al., 2015)
Inférence de réseaux	gaussienne : SIMoNe	Poisson; Poisson sur-dispersée
(modèle non-orienté)	(Chiquet et al., 2010)	(Allen et al., 2012; Gallopin et al., 2013)

	Données de puces (1995) continues	Données RNA-seq (2008) discrètes
Analyse différentielle	gaussienne : limma	binomiale négative : DESeq; EdgeR
	(Smyth et al., 2005)	(Anders et al., 2010; Robinson et al., 2010),
		ou
		gaussienne <i>sur données transformées</i> :
		limma + "VOOM" (Law et al., 2014)
Analyse de co-expression	gaussienne : Rmixmod	Poisson : HTSCluster
(modèle de mélange)	(Biernacki et al., 2006)	(Rau et al., 2015)
		ou
		gaussienne sur données transformées
Inférence de réseaux	gaussienne : SIMoNe	Poisson; Poisson sur-dispersée
(modèle non-orienté)	(Chiquet et al., 2010)	(Allen et al., 2012; Gallopin et al., 2013)

	Données de puces (1995)	Données RNA-seq (2008)
	continues	discrètes
Analyse différentielle	gaussienne : limma	binomiale négative : DESeq; EdgeR
	(Smyth et al., 2005)	(Anders et al., 2010; Robinson et al., 2010),
		ou
		gaussienne <i>sur données transformées</i> :
		limma + "voom" (<i>Law et al., 2014</i>)
Analyse de co-expression	gaussienne : Rmixmod	Poisson : HTSCluster
(modèle de mélange)	(Biernacki et al., 2006)	(Rau et al., 2015)
		ou
		gaussienne sur données transformées
Inférence de réseaux	gaussienne : SIMoNe	Poisson; Poisson sur-dispersée
(modèle non-orienté)	(Chiquet et al., 2010)	(Allen et al., 2012; Gallopin et al., 2013)
		ou
		gaussienne sur données transformées

	Données de puces (1995)	Données RNA-seq (2008)
	continues	discrètes
Analyse différentielle	gaussienne : limma	binomiale négative : DESeq; EdgeR
	(Smyth et al., 2005)	(Anders et al., 2010; Robinson et al., 2010),
		ou
		gaussienne <i>sur données transformées</i> :
		limma + "voom" (<i>Law et al., 2014</i>)
Analyse de co-expression	gaussienne : Rmixmod	Poisson : HTSCluster
(modèle de mélange)	(Biernacki et al., 2006)	(Rau et al., 2015)
		ou
		gaussienne sur données transformées
Inférence de réseaux	gaussienne : SIMoNe	Poisson; Poisson sur-dispersée
(modèle non-orienté)	(Chiquet et al., 2010)	(Allen et al., 2012; Gallopin et al., 2013)
		ou
		gaussienne sur données transformées

 \rightarrow modélisations gaussiennes sont des alternatives raisonnables aux modélisations discrètes

1. Les données RNA-seq

2. Modélisation

3. Réduction de dimension

Le modèle graphique gaussien

Modèle

$$\mathbf{y}_i \stackrel{\text{iid}}{\sim} \mathcal{N}_{\rho}(\mathbf{0}, \mathbf{\Sigma}) \text{ pour } i = 1, \dots, n$$

Chaque arête du réseau \Leftrightarrow Coefficients non nuls de $\Theta=\Sigma^{-1}$

Le modèle graphique gaussien

Modèle

$$\mathbf{y}_i \stackrel{\text{iid}}{\sim} \mathcal{N}_p(\mathbf{0}, \mathbf{\Sigma}) \text{ pour } i = 1, \dots, n$$

Chaque arête du réseau \Leftrightarrow Coefficients non nuls de $\Theta = \Sigma^{-1}$

Maximisation en Θ par Graphical lasso (Friedman et al., 2008) de

$$\mathcal{L}_{\lambda}(\Theta; \mathcal{S}) \propto \log \det(\Theta) - \mathrm{tr}(\mathcal{S}\Theta) - \lambda ||\Theta||_1$$

avec S matrice de covariance empirique

Le modèle graphique gaussien

Modèle

 $\mathbf{y}_i \stackrel{\text{iid}}{\sim} \mathcal{N}_{\rho}(\mathbf{0}, \Sigma) \text{ pour } i = 1, \dots, n$

Chaque arête du réseau \Leftrightarrow Coefficients non nuls de $\Theta = \Sigma^{-1}$

Maximisation en Θ par Graphical lasso (Friedman et al., 2008) de

 $\mathcal{L}_{\lambda}(\Theta; S) \propto \log \det(\Theta) - \mathrm{tr}(S\Theta) - \lambda ||\Theta||_1$

avec S matrice de covariance empirique

Algorithme Block Diagonal Screening Rule (Mazumder et Hastie, 2012)

Pour un paramètre de régularisation fixé λ Etape 1 Seuillage de |S| au niveau $\lambda \Rightarrow$ structure en blocs Etape 2 Graphical lasso au paramètre λ dans chaque bloc

Le modèle graphique gaussien

Modèle

 $\mathbf{y}_i \stackrel{\text{iid}}{\sim} \mathcal{N}_{\rho}(\mathbf{0}, \Sigma) \text{ pour } i = 1, \dots, n$

Chaque arête du réseau \Leftrightarrow Coefficients non nuls de $\Theta = \Sigma^{-1}$

Maximisation en Θ par Graphical lasso (Friedman et al., 2008) de

 $\mathcal{L}_{\lambda}(\Theta; S) \propto \log \det(\Theta) - \mathrm{tr}(S\Theta) - \lambda ||\Theta||_1$

avec S matrice de covariance empirique

Algorithme Block Diagonal Screening Rule (Mazumder et Hastie, 2012)

Pour un paramètre de régularisation fixé λ Etape 1 Seuillage de |S| au niveau $\lambda \Rightarrow$ structure en blocs Etape 2 Graphical lasso au paramètre λ dans chaque bloc

Modèle graphique gaussien et grande dimension

Phénomène d'ultra-grande dimension (Verzelen, 2012)

$$rac{d\log(rac{p}{d})}{n} \geq rac{1}{2}$$

où d est le degré maximal du réseau

Exemple : $n = 50, p = 200, d \ge 8$

Modèle graphique gaussien et grande dimension

Phénomène d'ultra-grande dimension (Verzelen, 2012)

$$rac{d\log(rac{p}{d})}{n} \geq rac{1}{2}$$

où d est le degré maximal du réseau

Exemple : $n = 50, p = 200, d \ge 8$

Solutions

1. Restreindre le nombre de gènes à l'aide d'informations externes

Modèle graphique gaussien et grande dimension

Phénomène d'ultra-grande dimension (Verzelen, 2012)

$$rac{d\log(rac{p}{d})}{n} \geq rac{1}{2}$$

où d est le degré maximal du réseau

Exemple : $n = 50, p = 200, d \ge 8$

Solutions

- 1. Restreindre le nombre de gènes à l'aide d'informations externes
- 2. Se focaliser uniquement sur les gènes les plus variables

Modèle graphique gaussien et grande dimension

Phénomène d'ultra-grande dimension (Verzelen, 2012)

$$rac{d\log(rac{p}{d})}{n} \geq rac{1}{2}$$

où d est le degré maximal du réseau

Exemple : $n = 50, p = 200, d \ge 8$

Solutions

- 1. Restreindre le nombre de gènes à l'aide d'informations externes
- 2. Se focaliser uniquement sur les gènes les plus variables
- 3. Sélectionner automatiquement les gènes clefs

Modèle graphique gaussien et grande dimension

Phénomène d'ultra-grande dimension (Verzelen, 2012)

$$rac{d\log(rac{p}{d})}{n} \geq rac{1}{2}$$

où d est le degré maximal du réseau

Exemple : $n = 50, p = 200, d \ge 8$

Solutions

- 1. Restreindre le nombre de gènes à l'aide d'informations externes
- 2. Se focaliser uniquement sur les gènes les plus variables
- 3. Sélectionner automatiquement les gènes clefs

Sélection automatique des gènes clefs

Cluster graphical lasso (Tan et al., 2015)

- 1. Détection de K groupes par classification hiérarchique des variables
- 2. Glasso dans chaque groupe avec différents paramètres de régularisation

Sélection automatique des gènes clefs

Cluster graphical lasso (Tan et al., 2015)

- 1. Détection de K groupes par classification hiérarchique des variables \Rightarrow Choix de K par validation croisée
- 2. Glasso dans chaque groupe avec différents paramètres de régularisation

Sélection automatique des gènes clefs

Cluster graphical lasso (Tan et al., 2015)

- 1. Détection de K groupes par classification hiérarchique des variables \Rightarrow Choix de K par validation croisée
- 2. Glasso dans chaque groupe avec différents paramètres de régularisation

Notre procédure (Devijver & Gallopin, soumis)

- 1. Choix automatique des groupes par un critère de sélection de modèles
- 2. Glasso dans chaque groupe avec différents paramètres de régularisation

Détection des groupes de gènes

$$\textbf{Hypothèse: } \mathbf{y}_i \stackrel{\text{iid}}{\sim} \mathcal{N}_p(\mathbf{0}, \boldsymbol{\Sigma}_B) \text{ avec } \boldsymbol{\Sigma}_B = \begin{pmatrix} \boldsymbol{\Sigma}^1 & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \ddots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\Sigma}^K \end{pmatrix}$$

La structure en K blocs de Σ_B définit les groupes de gènes $B = (B_1, \ldots, B_K)$

Détection des groupes de gènes

$$\text{Hypothèse: } \mathbf{y}_i \overset{\text{iid}}{\sim} \mathcal{N}_p(\mathbf{0}, \boldsymbol{\Sigma}_B) \text{ avec } \boldsymbol{\Sigma}_B = \begin{pmatrix} \boldsymbol{\Sigma}^1 & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \ddots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\Sigma}^K \end{pmatrix}$$

La structure en K blocs de Σ_B définit les groupes de gènes $B = (B_1, \ldots, B_K)$

$$F_B = \{ f_B = \mathcal{N}_{\rho}(0, \Sigma_B) \text{ with } \Sigma_B \in S_B \}$$

$$S_B = \left\{ \Sigma_B \in \mathbb{S}_{\rho}^{++}(\mathbb{R}) \left| \Sigma_B = P_{\sigma} \begin{pmatrix} \Sigma^1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \Sigma^K \end{pmatrix} P_{\sigma}^{-1}, \Sigma^k \in \mathbb{S}_{\rho_k}^{++}(\mathbb{R}), \forall k \in 1, \dots, p \right\}$$

Détection des groupes de gènes

$$\text{Hypothèse: } \mathbf{y}_i \overset{\text{iid}}{\sim} \mathcal{N}_{\rho}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathcal{B}}) \text{ avec } \boldsymbol{\Sigma}_{\mathcal{B}} = \begin{pmatrix} \boldsymbol{\Sigma}^1 & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \ddots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\Sigma}^{\mathcal{K}} \end{pmatrix}$$

La structure en K blocs de Σ_B définit les groupes de gènes $B = (B_1, \ldots, B_K)$

$$F_{B} = \{ f_{B} = \mathcal{N}_{p}(0, \Sigma_{B}) \text{ with } \Sigma_{B} \in S_{B} \}$$

$$S_{B} = \left\{ \Sigma_{B} \in \mathbb{S}_{p}^{++}(\mathbb{R}) \left| \Sigma_{B} = P_{\sigma} \begin{pmatrix} \Sigma^{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \Sigma^{K} \end{pmatrix} P_{\sigma}^{-1}, \Sigma^{k} \in \mathbb{S}_{p_{k}}^{++}(\mathbb{R}), \forall k \in 1, \dots, p \right\}$$

Sélection par l'heuristique de pente (Birgé and Massart, 2007)

$$\hat{B} = \underset{B}{\operatorname{argmin}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log(\hat{f}_{B}(\mathbf{y}_{i})) + \operatorname{pen}(B) \right\},$$

 $\operatorname{pen}(B) = \kappa D_{B}.$

Une sous-collection aléatoire de modèle

 $\begin{aligned} \mathcal{B}: \text{ ensemble de toutes les partitions des variables possibles} \\ \Rightarrow & \mathsf{Exploration \ exhaustive \ de \ } \mathcal{B} \text{ impossible} \end{aligned}$

Une sous-collection aléatoire de modèle

- $\mathcal{B} : \text{ ensemble de toutes les partitions des variables possibles}$ $\Rightarrow Exploration exhaustive de <math>\mathcal{B}$ impossible
- \mathcal{B}^{\wedge} : ensemble des partitions obtenues par seuillage de $\mid S \mid$

Une sous-collection aléatoire de modèle

- $\mathcal{B} : \text{ ensemble de toutes les partitions des variables possibles}$ $\Rightarrow Exploration exhaustive de <math>\mathcal{B}$ impossible
- \mathcal{B}^{\wedge} : ensemble des partitions obtenues par seuillage de $\mid S \mid$

$$\hat{B} = \underset{B \in \mathcal{B}^{\Lambda}}{\operatorname{argmin}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log(\hat{f}_{B}(\mathbf{y}_{i})) + \operatorname{pen}(B) \right\},$$
$$\operatorname{pen}(B) = \kappa D_{B}.$$

Une sous-collection aléatoire de modèle

- $\mathcal{B} : \text{ ensemble de toutes les partitions des variables possibles}$ $\Rightarrow Exploration exhaustive de <math>\mathcal{B}$ impossible
- \mathcal{B}^{\wedge} : ensemble des partitions obtenues par seuillage de $\mid S \mid$

$$\hat{B} = \underset{B \in \mathcal{B}^{\Lambda}}{\operatorname{argmin}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log(\hat{f}_{B}(\mathbf{y}_{i})) + \operatorname{pen}(B) \right\},$$
$$\operatorname{pen}(B) = \kappa D_{B}.$$

 \rightarrow Procédure garantie par des résultats non-asymptotiques

Inégalité Oracle : On suppose qu'il existe une constante $\kappa' > 0$ telle que pour chaque partition $B \in \mathcal{B}$,

$$\operatorname{pen}(B) \geq \kappa' \frac{D_B}{n} \left[2c^2 + \rho \log\left(\frac{1}{D_B(\frac{D_B}{n}c^2 \wedge 1)}\right) + (1 \vee \tau) \log\left(\frac{0.792p}{\log(p+1)}\right) \right],$$

où c est une constante. Alors $\hat{f}_{\hat{B}}$ satisfait, pour une constante C :

$$\mathbb{E}(d_{H}^{2}(f^{*},\hat{f}_{\hat{B}})) \leq C\mathbb{E}\left(\inf_{B\in\mathcal{B}^{\Lambda}}\left(\inf_{t\in\mathcal{F}_{B}^{\mathsf{born}\acute{e}}}\mathsf{KL}(f^{*},t)+\operatorname{pen}(B)\right)+(1\vee\tau)\frac{1}{n}\right).$$

Inégalité Oracle : On suppose qu'il existe une constante $\kappa' > 0$ telle que pour chaque partition $B \in \mathcal{B}$,

$$\operatorname{pen}(B) \geq \kappa' \frac{D_B}{n} \left[2c^2 + \rho \log \left(\frac{1}{D_B(\frac{D_B}{n}c^2 \wedge 1)} \right) + (1 \vee \tau) \log \left(\frac{0.792p}{\log(p+1)} \right) \right],$$

où c est une constante. Alors $\hat{f}_{\hat{B}}$ satisfait, pour une constante C :

$$\mathbb{E}(d_{H}^{2}(f^{*},\hat{f}_{\hat{B}})) \leq C\mathbb{E}\left(\inf_{B\in\mathcal{B}^{\Lambda}}\left(\inf_{t\in\mathcal{F}_{B}^{\mathsf{born}\acute{e}}}\mathsf{KL}(f^{*},t)+\operatorname{pen}(B)\right)+(1\vee\tau)\frac{1}{n}\right).$$

Inégalité Oracle : On suppose qu'il existe une constante $\kappa' > 0$ telle que pour chaque partition $B \in \mathcal{B}$,

$$\operatorname{pen}(B) \geq \kappa' \frac{D_B}{n} \left[2c^2 + \rho \log \left(\frac{1}{D_B(\frac{D_B}{n}c^2 \wedge 1)} \right) + (1 \vee \tau) \log \left(\frac{0.792p}{\log(p+1)} \right) \right],$$

où c est une constante. Alors $\hat{f}_{\hat{B}}$ satisfait, pour une constante C :

$$\mathbb{E}(d_{H}^{2}(f^{*},\hat{f}_{\hat{B}})) \leq C\mathbb{E}\left(\inf_{B\in\mathcal{B}^{\Lambda}}\left(\inf_{t\in\mathcal{F}_{B}^{\mathsf{born}\hat{e}}}KL(f^{*},t)+\operatorname{pen}(B)\right)+(1\vee\tau)\frac{1}{n}\right).$$

Borne minimax : Pour tout $B \in \mathcal{B}$, il existe une constante $C_1 > 0$ telle que:

$$\inf_{\hat{f}_B} \sup_{f \in F_B^{\mathsf{borné}}} \mathbb{E}(d_H^2(\hat{f}_B, f)) \geq C_1 \frac{D_B}{n} (1 + \log\left(\frac{C_2}{D_B^2}\right)).$$

Inégalité Oracle : On suppose qu'il existe une constante $\kappa' > 0$ telle que pour chaque partition $B \in \mathcal{B}$,

$$\operatorname{pen}(B) \geq \kappa' \frac{D_B}{n} \left[2c^2 + \rho \log \left(\frac{1}{D_B(\frac{D_B}{n}c^2 \wedge 1)} \right) + (1 \vee \tau) \log \left(\frac{0.792p}{\log(p+1)} \right) \right],$$

où c est une constante. Alors $\hat{f}_{\hat{B}}$ satisfait, pour une constante C :

$$\mathbb{E}(d_{H}^{2}(f^{*},\hat{f}_{\hat{B}})) \leq C\mathbb{E}\left(\inf_{B\in\mathcal{B}^{\Lambda}}\left(\inf_{t\in\mathcal{F}_{B}^{\mathsf{born}\acute{e}}}\mathsf{KL}(f^{*},t)+\operatorname{pen}(B)\right)+(1\vee\tau)\frac{1}{n}\right).$$

Borne minimax : Pour tout $B \in \mathcal{B}$, il existe une constante $C_1 > 0$ telle que:

$$\inf_{\hat{f}_B} \sup_{f \in F_B^{\mathsf{borné}}} \mathbb{E}(d_H^2(\hat{f}_B, f)) \geq C_1 \frac{D_B}{n} (1 + \log\left(\frac{C_2}{D_B^2}\right)).$$

Inégalité Oracle : On suppose qu'il existe une constante $\kappa' > 0$ telle que pour chaque partition $B \in \mathcal{B}$,

$$\operatorname{pen}(B) \geq \kappa' \frac{D_B}{n} \left[2c^2 + \rho \log \left(\frac{1}{D_B(\frac{D_B}{n}c^2 \wedge 1)} \right) + (1 \vee \tau) \log \left(\frac{0.792p}{\log(p+1)} \right) \right],$$

où c est une constante. Alors $\hat{f}_{\hat{B}}$ satisfait, pour une constante C :

$$\mathbb{E}(d_{\mathcal{H}}^2(f^*,\hat{f}_{\hat{\mathcal{B}}})) \leq C\mathbb{E}\left(\inf_{B\in\mathcal{B}^{\Lambda}}\left(\inf_{t\in\mathcal{F}_{\mathcal{B}}^{\mathsf{born}\epsilon}}\mathsf{KL}(f^*,t)+\operatorname{pen}(B)\right)+(1\vee\tau)\frac{1}{n}\right).$$

Borne minimax : Pour tout $B \in \mathcal{B}$, il existe une constante $C_1 > 0$ telle que:

$$\inf_{\hat{f}_B} \sup_{f \in F_B^{\mathsf{borné}}} \mathbb{E}(d_H^2(\hat{f}_B, f)) \geq C_1 \frac{D_B}{n} (1 + \log\left(\frac{C_2}{D_B^2}\right)).$$

 \rightarrow Procédure de sélection de modèles optimale

Inégalité Oracle : On suppose qu'il existe une constante $\kappa' > 0$ telle que pour chaque partition $B \in \mathcal{B}$,

$$\operatorname{pen}(B) \geq \kappa' \frac{D_B}{n} \left[2c^2 + \rho \log \left(\frac{1}{D_B(\frac{D_B}{n}c^2 \wedge 1)} \right) + (1 \vee \tau) \log \left(\frac{0.792p}{\log(p+1)} \right) \right],$$

où c est une constante. Alors $\hat{f}_{\hat{B}}$ satisfait, pour une constante C :

$$\mathbb{E}(d_{\mathcal{H}}^2(f^*,\hat{f}_{\hat{B}})) \leq C\mathbb{E}\left(\inf_{B\in\mathcal{B}^{\Lambda}}\left(\inf_{t\in \mathcal{F}_{\mathcal{B}}^{\mathsf{born}\hat{e}}} KL(f^*,t) + \operatorname{pen}(B)\right) + (1\vee\tau)\frac{1}{n}\right).$$

Borne minimax : Pour tout $B \in B$, il existe une constante $C_1 > 0$ telle que:

$$\inf_{\hat{f}_B} \sup_{f \in F_B^{\mathsf{borné}}} \mathbb{E}(d_H^2(\hat{f}_B, f)) \geq C_1 \frac{D_B}{n} (1 + \log\left(\frac{C_2}{D_B^2}\right)).$$

 \rightarrow Procédure de sélection de modèles optimale

Inégalité Oracle : On suppose qu'il existe une constante $\kappa' > 0$ telle que pour chaque partition $B \in \mathcal{B}$,

$$\operatorname{pen}(B) \geq \kappa' \frac{D_B}{n} \left[2c^2 + \rho \log \left(\frac{1}{D_B(\frac{D_B}{n}c^2 \wedge 1)} \right) + (1 \vee \tau) \log \left(\frac{0.792p}{\log(p+1)} \right) \right],$$

où c est une constante. Alors $\hat{f}_{\hat{B}}$ satisfait, pour une constante C :

$$\mathbb{E}(d_{\mathcal{H}}^2(f^*,\hat{f}_{\hat{\mathcal{B}}})) \leq C\mathbb{E}\left(\inf_{B\in\mathcal{B}^{\Lambda}}\left(\inf_{t\in\mathcal{F}_{\mathcal{B}}^{\mathsf{born}\epsilon}}\mathsf{KL}(f^*,t)+\operatorname{pen}(B)\right)+(1\vee\tau)\frac{1}{n}\right).$$

Borne minimax : Pour tout $B \in \mathcal{B}$, il existe une constante $C_1 > 0$ telle que:

$$\inf_{\hat{f}_B} \sup_{f \in F_B^{\mathsf{borné}}} \mathbb{E}(d_H^2(\hat{f}_B, f)) \geq C_1 \frac{D_B}{n} (1 + \log\left(\frac{C_2}{D_B^2}\right)).$$

 \rightarrow Procédure de sélection de modèles optimale \rightarrow Calibration de la pénalité à partir des données

Inégalité Oracle : On suppose qu'il existe une constante $\kappa' > 0$ telle que pour chaque partition $B \in \mathcal{B}$,

$$\operatorname{pen}(B) \geq \kappa' \frac{D_B}{n} \left[2c^2 + \rho \log \left(\frac{1}{D_B(\frac{D_B}{n}c^2 \wedge 1)} \right) + (1 \vee \tau) \log \left(\frac{0.792p}{\log(p+1)} \right) \right],$$

où c est une constante. Alors $\hat{f}_{\hat{B}}$ satisfait, pour une constante C :

$$\mathbb{E}(d_{\mathcal{H}}^2(f^*,\hat{f}_{\hat{\mathcal{B}}})) \leq C\mathbb{E}\left(\inf_{B\in\mathcal{B}^{\Lambda}}\left(\inf_{t\in \mathcal{F}_{\mathcal{B}}^{\mathsf{born}\epsilon}} \mathsf{KL}(f^*,t) + \operatorname{pen}(B)\right) + (1\vee\tau)\frac{1}{n}\right).$$

Borne minimax : Pour tout $B \in \mathcal{B}$, il existe une constante $C_1 > 0$ telle que:

$$\inf_{\hat{f}_B} \sup_{f \in F_B^{\mathsf{borné}}} \mathbb{E}(d_H^2(\hat{f}_B, f)) \geq C_1 \frac{D_B}{n} (1 + \log\left(\frac{C_2}{D_B^2}\right)).$$

- \rightarrow Procédure de sélection de modèles optimale
- \rightarrow Calibration de la pénalité à partir des données
- \rightarrow Pénalité de la forme pen $(B) = \kappa D_B$
 - à l'aide du package R capushe (Baudry et al.),

Calibration du coefficient κ dans pen $(B) = \kappa D_B$

▶ Illustrations sur données simulées : p = 100, n = 70 et $K^* = 15$
Calibration du coefficient κ dans $pen(B) = \kappa D_B$

- ▶ Illustrations sur données simulées : p = 100, n = 70 et $K^* = 15$
- Méthodes de calibration utilisées en pratique implémentées dans le package R capushe (Baudry et al., 2012)

Calibration du coefficient κ dans $pen(B) = \kappa D_B$

- ▶ Illustrations sur données simulées : p = 100, n = 70 et $K^* = 15$
- Méthodes de calibration utilisées en pratique implémentées dans le package R capushe (Baudry et al., 2012)

Méthode 1 : SHDJ Slope Heuristics Dimension Jump

Calibration du coefficient κ dans $pen(B) = \kappa D_B$

- ▶ Illustrations sur données simulées : p = 100, n = 70 et $K^* = 15$
- Méthodes de calibration utilisées en pratique implémentées dans le package R capushe (Baudry et al., 2012)

Méthode 1 : SHDJ Slope Heuristics Dimension Jump

Méthode 2 : SHRR Slope Heuristics Robust Regression

24/31

Données simulées

p = 100, n = 70 et Σ diagonale par blocs et $K^* = 15$.

Adjusted Rand Index

entre la vraie partition et la partition détectée

Données simulées : p = 100, n = 70 et Σ diagonale par blocs avec $K^* = 15$.

(1) Glasso

graphical lasso sélectionné par BIC sur l'ensemble des variables

Données simulées : p = 100, n = 70 et Σ diagonale par blocs avec $K^* = 15$.

(1) Glasso

graphical lasso sélectionné par BIC sur l'ensemble des variables

(2) Cluster Graphical Lasso (Tan et al., 2015)

Etape 1 : classification hiérarchique des variables, pour $K = K^*$ fixé Etape 2 : $\rho_1, \ldots, \rho_{K^*}$ d'après le corollaire de Tan 2015.

Données simulées : p = 100, n = 70 et Σ diagonale par blocs avec $K^* = 15$.

(1) Glasso

graphical lasso sélectionné par BIC sur l'ensemble des variables

(2) Cluster Graphical Lasso (Tan et al., 2015)

Etape 1 : classification hiérarchique des variables, pour $K = K^*$ fixé Etape 2 : $\rho_1, \ldots, \rho_{K^*}$ d'après le corollaire de Tan 2015.

(3) Notre procédure

Etape 1 : (3a) SHRR partition (3b) SHDJ partition Etape 2 : graphical lassos sélectionnés par BIC

Données simulées : p = 100, n = 70 et Σ diagonale par blocs avec $K^* = 15$.

(1) Glasso

graphical lasso sélectionné par BIC sur l'ensemble des variables

(2) Cluster Graphical Lasso (Tan et al., 2015)

Etape 1 : classification hiérarchique des variables, pour $K = K^*$ fixé Etape 2 : $\rho_1, \ldots, \rho_{K^*}$ d'après le corollaire de Tan 2015.

(3) Notre procédure

Etape 1 : (3a) SHRR partition (3b) SHDJ partition Etape 2 : graphical lassos sélectionnés par BIC

(4) Partition des variables connues

graphical lassos sélectionnés par BIC dans chaque bloc

Performance des stratégies sur données simulées

p = 100, n = 70 et Σ diagonale par blocs avec $K^* = 15$.

Sur 100 jeux de données simulés

Données réelles

- ▶ Pickrell *et al.* (2010) : étude des lymphoblastes chez n = 69 individus
- Présélection des p = 200 gènes les plus variables

Données réelles

- ▶ Pickrell *et al.* (2010) : étude des lymphoblastes chez n = 69 individus
- Présélection des p = 200 gènes les plus variables

 \rightarrow Les partitions SHRR et SHDJ coïncident

Graphical lasso

D = 19900 paramètres à estimer

Graphical lasso

D = 19900 paramètres à estimer

Partition détectée par l'heuristique des pentes \hat{B}

Graphical lasso

▶ D = 19900 paramètres à estimer

Partition détectée par l'heuristique des pentes \hat{B}

• $\hat{K}_{SH} = 150$ blocs

Graphical lasso

D = 19900 paramètres à estimer

Partition détectée par l'heuristique des pentes \hat{B}

- ► D_{Âsн} = 283
- $\hat{K}_{SH} = 150$ blocs
- ▶ 140 blocs de taille 1, 2 blocs de taille 2, 4 blocs de taille 3 et 4 blocs de taille 18, 13, 8 et 5

Conclusion et perspectives

Conclusion

- Une procédure non-asymptotique pour réduire la dimension du problème d'inférence (Devijver et Gallopin, soumis)
- implémentée dans le package shock disponible sur le CRAN, développé sur Github https://github.com/Gallopin/shock

Conclusion et perspectives

Conclusion

- Une procédure non-asymptotique pour réduire la dimension du problème d'inférence (Devijver et Gallopin, soumis)
- implémentée dans le package shock disponible sur le CRAN, développé sur Github https://github.com/Gallopin/shock

Perspectives

- Applications sur des données réelles du département de génétique animale de l'INRA
- Inclusion d'informations externes pour améliorer la sélection des gènes : exemple, les données Hi-C

Merci pour votre attention

Bibliographie

- ► J. Whittaker, *Graphical Models in Applied Multivariate Statistics*, Wiley Publishing, 2009
- ▶ J. Friedman, T. Hastie, R. Tibshirani, *Sparse inverse covariance estimation* with the Lasso, Biostatistics, 2008
- R. Mazumder, T. Hastie, Exact Covariance Thresholding into Connected Components for Large-Scale Graphical Lasso, Journal of Machine Learning Reasearch, 2012
- D. Witten, J. Friedman, N. Simon, New Insights and Faster Computations for the Graphical Lasso, Journal of Computational and Graphical Statistics, 2011
- K. Tan, D. Witten, A. Shojaie, The Cluster Graphical Lasso for improved estimation of Gaussian graphical models, Computation Statistics & Data Analysis, 2015
- L. Birgé, P. Massart, Minimal penalties for Gaussian model selection, Probab. Theory Related Fields, 2007
- P. Massart, Concentration inequalities and model selection, Lecture Notes in Mathematics. Springer, 33, 2003, Saint-Flour, Cantal.