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This talk intends to give you an overview of this study, with particular attention to the
methods that we developed for data-analysis.



Systematic exploration of B. subtilis transcriptional landscape

m 1 “wild-type” strain, maybe better called “prototype” strain.

m 1 array design (Basysbio tiling array, Nimblegen technology) : strand-specific
expression signal with a 22-bp step.

m 269 hybridizations sampling a maximum variety of lifestyles,

m 104 different biological conditions, most with 2-3 biological replicates
(experiments).

Growth on various media (rich/poor, solid/liquid, aerobic/anaerobic), variety of stresses
(including ethanol, salt, temperature, oxidative), landmark adaptations (sporulation,
germination, competence) ...



Outline

Transcriptional landscape estimation from a single tiling array
hybridization

Building the B. subtilis transcriptional “parts list” from a
collection of tiling array hybridizations

Relating transcriptome dynamics to the genome sequence

A focus on antisense transcription
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BaSysBio tiling array

22 bp

22 bp

m = 380, 000 probes tiling the 4.2 Mbp Bacillus subtilis genome.

m Long probes (45-65 nt), lengths adjusted to achieve relative homogenous affinity
(Tm).



Expression data — log-transformed signal on 50Kbp
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— probe affinity is variable, despite the adjustment of probe lengths.



Models for transcriptional landscape reconstruction

Piecewise-constant linear regression (Picard et al., 2005).

Proposed Criterion Jong Criterion
= o1
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where S is the number of segments (given), es is the end of segment s and x; is the
signal at probe t.



Motivations for an alternative method

Confidence interval construction.
m signal level with given breakpoints (easy!)
m breakpoint position (see Huber et al., 2006)

m confidence band for the underlying signal accounting for uncertainty on
breakpoints?

Choice of the number of breakpoints.
Model selection problem (non-trivial, see Picard et al., 2005).

Hypothesis of piecewise-constant signal. Shift and drift?

Normalization: how to use the gDNA signal ?
Huber et al., 2006 proposed the following preprocessing step

;. yr—byn)
Y&© = T ANa
gDNA,

with y; original data (non-log), b(y:) an estimate of the contribution of background
noise.



Our approach

To model not only the noise but also the variations of the underlying signal.

m can solve the problem of confidence band construction (at least conceptually).

m alleviates the problem of choosing the number of breakpoints (at least in principle)
a parameter -to be estimated- corresponds to the rate of breakpoints.

Accounting for the correlation between the underlying signal at adjacent probes
naturally leads to HMMs.

Other HMMs in related contexts

m CGH data, small number of hidden states (Fridlyand et al., 2004; Marioni et al.,
20086, Stjernqvist et al., 2007)

m Classification expressed vs. non-expressed regions (Munch et al., 2006; Du et al.,
2006)

Here we aim at “denoising” the data via the modeling of a continuous-valued
underlying signal.



Hidden Markov Models

Let x; denote the log-transformed data and u; the underlying signal.

Simplest “Emission” model (a more sophisticated model is implemented)

Xt | ug o~ N(U(,O’z).

Transition kernel
Uppr | Ur ~  m(Upyeq, Ur)

Difficulty: (ut) is continuous-valued whereas the HMM machinery works well for
discrete and typically small number of hidden states (Forward-Backward, Viterbi, . . .
have complexity O(nK?) in their general form).

— Use a transition matrix structure that allows algorithms in O(nK’) and choose a
discretization-step h small enough.



A transition kernel accounting for shift and drift

Hidden state space: grid with K points

Umax — Umin
K = —/—+1.
h +
Mixture of 4 types of moves
m(U, U1) = anlpy, =y} + osn(Ue1)
Yt Ut
+O‘”H{Ut+1>ur})‘u " (1—2)
ol e 5 I

+adH{ut+1<u,})‘d g (1= Xd)s
with 0 < ap,as,au,ag < 1l,an+as+ay+ag=1et0 < Ay, A\g < 1.

B «ap, probability of not moving,
B s, probability of shift,

® oy and ag, probabilities of upward and downward drifts.

— When h — 0 and h/(1 — X\) — ~ the discrete kernel converges towards a
continuous kernel (HMM with continuous-valued underlying process).



Transcriptional landscape reconstruction
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Transcriptional landscape estimation from tiling array data using a model of signal shift and drift. P. Nicolas, A. Leduc, S. Robin, S.

Rasmussen, H. Jarmer and P. Bessiéres. Bioinformatics. 2009. 25. 2341-2347



Ongoing work on RNA-Seq

Bogdan Mirauta (PhD student) and Hugues Richard (Laboratoire de Génomique des
Microorganismes — UP6).

m A framework alleviates the need for discretization of the hidden state space.

m A generative State Space Model fitted by Sequential Monte Carlo algorithms.
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Building catalogs of breakpoints - Method

m The confidence of a breakpoint is computed as the sum of the probability of
upward (or downward) shift over two adjacent probes.

m A cutoff is applied on the confidence value
m Adjacent breakpoints across the hybs are merged
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Building catalogs of breakpoints - Results

Upward shifts

cutoff p # DBTBS prom. > 2 probes single hyb. within CDS E(FP)
0.9975 2983 613/733 323 4 431 0.2
0.9950 3086 620 345 6 471 0.6
0.9900 3240 626 381 17 534 1.7
0.9800 3432 631 438 34 619 46
0.9600 3711 638 518 61 744 12.8
0.9200 4102 644 635 125 934 36.8
Downward shifts
cutoff p # Petrin term. > 2 probes single hyb. within CDS E(FP)
0.9975 1850 1411/3510 216 5 129 0.2
0.9950 1958 1462 256 8 152 0.6
0.9900 2123 1517 292 18 192 1.9
0.9800 2327 1564 353 28 250 4.9
0.9600 2614 1613 422 56 352 13.6
0.9200 3003 1666 522 106 484 375

Catalog: 3240 putative promoters (upward shifts), 2123 putative terminators (down

shifts).



Building a catalog of new transcripts - Method

The local 95% confidence interval is compared to the overall median of the signal on
the array (we expect less than 50% of a single strand to be expressed).

m We search for regions where the lower bound of this Cl is 10x above the median
in at least one hyb. 90.8% of the annotated CDSs are called with this cutoff.

m Regions are extended on the left and on the right as far as the Cl is 5x above the
median.

m Probes outside annotated CDS or RNA genes define unannotated transcribed
regions.

m Regions without a single probe satisfying the 10x criterion are discarded.



Building a catalog of new transcripts - Results
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Antisense artifacts
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Trimming the artifacts

Based on p-value assessing the statistical significance of variations between biological
conditions, 268 regions were proposed to be discarded (cutoff set to 10—39). Final
manual validation (+18 -42 and 15 merged into 6) lead to 1583 regions.

500
|

400
1

Frequency
300
1

200
1

100
1

[ T T 1
-150 -100 -50 0

log10 of p-value



After trimming
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Structural classification of transcriptional contexts

5

m 3'UTR, 3'NT (no termination), 3'PT (partial termination)
m indep, indep-NT

m inter, intra
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Summary of new regions

In addition to transcriptional context, we flagged antisenses and short unannotated

CDSs.
50 bp < length < 150 bp length > 150 bp
Type # bp u-CDS AS # bp u-CDS AS
3UTR 64 5,955 0 5 61 25,993 5 26
3INT 2 180 0 0 44 48,060 1 40
3'PT 4 316 0 1 74 60,294 0 69
5 462 44,310 2 5| 214 90,165 13 85
indep 17 1,985 2 3 62 28,573 14 21
indep-NT 2 256 0 0 72 68,187 1 64
inter 182 17,770 0 3 | 137 84,103 3 86
intra 132 12,555 1 0 54 18,101 2 15
total 865 83,327 5 17 | 718 423,476 39 406




Identifying Transcription Units
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A transcriptional context for almost every gene

4230

cumulated # of CDSs

m Only 186 (<5%) annotated CDSs never seen expressed (below 5x background).
m 85% of the CDSs highly-expressed in at least one experiment.
m Only 144 genes highly expressed in all the conditions.



Highly coordinated changes of gene expression levels

Sporulation

PC1 (36%)

PC2 (14%)

minimal medium



Regulation of gene expression (simplified!)

Genome

Experiment  Active Sigma

Questions
m Which promoter is dependent of which Sigma factor ?
m Which Sigma factor is active in which experiment ?
m How much of the promoter expression variance is explained by this basic model ?

Steps
m To measure promoter activities
m To identify motifs in promoter sequences, taking into account the promoter activity
m To quantify the explained variance



Measuring promoter activities

Promoters "parts list" built using all hybridizations
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Example of activity of one promoter across experiments
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Data on promoter activity are censored
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Computing correlation between promoters

The Pearson correlation coefficient between x and y writes

;o 2 Xy — nXy
VEXE—nx2\/3y? — ny?
Cov(X, Y)
VOO V(Y)

To account for censored data we fit the bivariate Gaussian distribution with covariance
matrix X using a likelihood approach

(X.Y) ~ N(pX)
and we compute

X2
r =

VX112



Summarizing correlations between promoter activities

Cluster Dendrogram
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A ’promoter tree’ is built by hierarchical clustering using average linkage on the
dissimilarity matrix d; ; = (1 — r; ;)/2 € [0, 1] where r; ; is the correlation between
activities of promoters i and j.



Identifying sequence motifs

Sequence modeling

m the model expresses P(x; | U; = k), the probability of sequence x; given the
presence of a motif of type U; = k.

TSS
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12 S il D

m a probability is associated to each motif P(U; = k) = oy, >4 a,’f:1 =1.

Searching for binding sites in a set of n sequences
m motif finding based on parameter estimation

m binding site predictions based on computation of
P(U; = k | x;) < P(x; | U; = k) for each sequence i € {1,...,n}.

Sequence model and transdimensional MCMC algorithm adapted from
P. Nicolas, A.-S. Tocquet, V. Miele, F. Muri (2006) A reversible jump Markov chain Monte Carlo algorithm for bacterial promoter motifs
discovery. J Comput Biol. 13. 651-67.



Identifying sequence motifs: taking into account the correlation tree

We introduce a joint model where the motif allocations U = (Uy, Us, . . ., Un) result
from an “evolution” along the tree.
m Change-points follow a Poisson process with rate A along the branches of the tree.
m At each change-point the new value of the allocation variable is drawn according
to the proportions o = (av, . . ., ak).
m Allocation is allowed to change at the leaf level with probability e.

P(Uf = u?) = Z |:7"a(‘/root) H TfA.a(Val- — V/) H ﬂsﬁa(vai — u,-)i|

v) j€nodes i€leaves

where v; is the motif allocation variable associated with internal node j of the tree, &; is the ancestor
of node j.

Ad;
‘ﬂ'A,a(Vaj lOtvj

Te,a(Va, = U)) = (1 —e)l{ui = va } + ey,

—v) = (-e Ny =vy}+e

All parameters are estimated jointly with the MCMC alogrithm. Only two additional
parameters compared to the classical mixture model A and e.

The approach is very different from the “regression” perspective adopted by others to
identify motifs that explain the expression patterns (REDUCE, FIRE, .. .).



Behavior of the MCMC algorithm, with K = 20 motifs

bum-in (25,000 sweeps) recording (25,000 sweeps)

promoter activity
correlation tree 50,000 sweeps of the MCMC algorithm

allocation of moif types to promoter sequences

across sweeps



Model comparison

Loglikelihood
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Comparison with known Sigma factor binding sites

DBTBS: a database of transcriptional regulation in Bacillus subtilis

DBTBS M19 M14 M4 M3 M7 M5 Mi6 M8 Mi11 M13 M17 M9 M1 M15 M10 - M2 M18 M20 M6 M12
- 401 369 349 213 218 170 170 134 127 113 80 43 63 72 48 44 16 11 12 4 5
SigA 59 90 49 1 33 1 22 0 1 0 19 0 1 0 1 1 0 0 0 7 0
SigB 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0
SigD 0 0 0 0 1 0 0 0 0 0 1 0 0 0 23 0 0 0 0 0 0
SigE 0 0 1 54 0 4 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
SigF 0 0 0 8 0 0 0 10 1 0 0 0 0 1 0 0 0 0 0 0 0
SigG 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0
SigH 0 0 0 1 0 0 1 1 0 0 0 1 12 0 0 0 0 0 0 0 0
Sigl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
SigK 1 0 0 1 0 38 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
SigL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0
SigM 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
SigW 0 0 1 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0
SigX 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
SigY 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
Sequence logos to represent motifs
l Tc T T TAATT
ALz ATCT cYxoadllceS|T (GRS




Average activity of the promoters for each motif

Promoter tree Clustering of Sigma Activity of promoter clusters
factor binding sites
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Summarizing the activity of each individual promoter

The activity y; ; of promoter i in experiment ¢ is modeled as a linear function of the
mean activity ay ; of all the promoters with the same motif k

Vit = oi+Biakite e~N(0,0?).
To be compared with

Yit = aj+¢€, 6/~./\/'(O,T,-2).

The activity of each promoter i can be summarized with three numbers

m «; and 3; quantify the “strength” of the promoter and its “sensitivity” to the activity
of the Sigma factor.

ml— a,?/rl? the fraction of variance that is explained by the activity of the Sigma
factor.



Fraction of explained variance
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66% of the total variance can be linked to direct regulation by Sigma factors.
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AS transcription before the whole-transcriptome area

Only a very limited number of cases of regulation by AS transcription were known
before genome-wide transcriptome studies.

JOURNAL OF BACTERIOLOGY, Oct. 2005, p. 6641-6650 Vol. 187, No. 19
0021-9193/05/308.00+0 doi: 10.1128/JB.187.19.6641-6650.2005
Copyright © 2005, American Society for Microbiology. All Rights Reserved.
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Extracytoplasmic Function o Factors Regulate Expression of the
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Bacillus subtilis yabE encodes a predicted itati i i phase survival (Rpf/Sps)
family autolysin. Here, we demonstrate that yabE is negatively regulated by a cis- acting antisense RNA which,
in turn, is regulated by two extracytoplasmic function o factors: o and o

m AS regulation has been demonstrated for the toxin txpA and for the autolysin
yabE. In the second case, the biological role of this regulation is unknown.

m Other AS transcripts have been described but regulation still needs to be
demonstrated (surA).



AS regulation in the whole-transcriptome area: a new paradigm?

This and previous genome-wide transcriptome profiling studies have revealed
widespread AS transcription.

The recent review by Thomason and Storz (2010) lists mechanisms by which AS RNAs
act.
AS-mediated regulation can virtually affect all the aspects of mRNA life:

m transcription interference (transcription initiation and elongation)
m transcription attenuation (transcription termination)
m endonucleases and exonucleases (RNA degradation)
m ribosome binding (RNA activity)
Any AS RNA found is presumed to be cis-encoded regulatory RNAs.

Lead to the well-shared idea that AS RNAs constitute an important but overlooked
class of regulatory molecules.



What have we learned on ASs in our study?

Using stringent cut-offs for calling a region “transcribed”, we mapped 423 unannotated
transcription segments with a significant overlap with an annotated gene on the
opposite direction (>100bp or 50% of the transcript length).

423 1

Of note, ratA (the antitoxin) and surA are detected but do not fulfill our overlap criterion.
This number may thus underestimate the full repertoire of transcripts involved in AS
regulation.



The patterns of AS transcription

Numerous AS with different coordinated expression profiles that may even suggest
functional niches for AS regulations (such as during the sporulation or in some stress
responses).

As many as 597 pairs of sense-antisense transcripts with documented expression
contexts have been listed. For a number of these pairs nice biological stories could be
imagined. Testing them individually would require a formidable amount of experimental
work . ..

The fact is that no global story emerged from the analysis of the sense-antisense pairs.

We will thus now describe a few facts on the global pattern of AS transcription:
m Where and when AS transcription arises on the chromosome ?
m Are the amounts of the sense and AS transcripts correlated ?
m What are the expression levels of the AS transcripts ?



The transcriptional contexts of AS transcription

50 bp < length < 150 bp length > 150 bp
Type # bp u-CDS AS # bp u-CDS AS
3'UTR 64 5,955 0 5 61 25,993 5 26
3NT 2 180 0 0 44 48,060 1 40
3'PT 4 316 0 1 74 60,294 0 69
5 462 44,310 2 5 | 214 90,165 13 85
indep 17 1,985 2 3 62 28,573 14 21
indep-NT 2 256 0 0 72 68,187 1 64
inter 182 17,770 0 3 | 137 84,103 3 86
intra 132 12,555 1 0 54 18,101 2 15
total 865 83327 5 17 | 718 423476 39 406

Many AS transcripts (62%) arise in transcriptional contexts corresponding to
incomplete termination of the transcription (categories 3'PT, 3'NT, Indep-NT and Inter).



AS transcription: The role of Rho

We also found that the protein Rho plays a key role in limiting ASRNAs by preventing
transcription beyond the 3’ boundaries of a subset of TUs.

2 995 501 3 007 500




Contexts of AS transcription (continued): the 5’-end

[data not shown]

The prevalence of SigA-dependent transcription is much lower for AS RNAs than for
protein coding genes: only 52% of the AS RNAs are predicted to be transcribed from a
SigA promoter whereas this fraction is 74% for protein coding genes.

This trend is most pronounced for the classes of AS RNAs that have their own
promoters (Indep and Indep-NT) as only a small minority (23%) is predicted to be
SigA-dependent.

Overall, 82% (347/423) of the AS transcripts are accounted for by incomplete
termination of transcription or by initiation of transcription from promoter controlled by
alternative Sigma factors



Pairwise correlation patterns between sense and AS expression

Correlation cannot be directly related to a particular mechanism but is relevant to
describe the data and most people would interpret it as an indication of interaction.

Correlation is statistically significant for most (77%) sense-antisense pairs. The
correlation is more often negative (47%) than positive (30%).

This however needs to be compared with the expected correlation patterns between
random pairs of transcripts . ..
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Levels of AS transcription
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The maximum and median expression level across conditions tend to be lower for AS
segments than for protein coding genes, this is true for SigA and non-SigA dependent
AS RNAs. The expression of the CDSs facing AS RNAs is also less likely to reach a
very high expression level.



Main facts about ASs and a possible explanation

m Most ASs arise apparently from incomplete or missing transcription termination
m Most of the ASs that have their own promoter are not SigA-regulated

m Sense and AS transcripts tend to display a small excess of negative correlation
but most of this excess is linked to non-SigA ASs facing SigA transcripts.

m ASs are expressed at lower levels than typical sense transcripts.

All these facts are compatible with the idea that the bulk of AS transcription may arise
from imperfect transcriptional control both in 3’ and 5’ transcript ends.

m 3’-ends: missing and imperfect terminators

m 5’-ends: promoters may appear randomly in the course of evolution. This would
be more difficult to avoid and less detrimental (cost and interference) for
alternative Sigma factors.



Conservation analysis of AS generating promoters

We tried to find additional data that could support the idea that AS generating
promoters (99 that are responsible for “Indep” and “Indep-NT” AS) may not have a
biological role.
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The imperfect transcriptional control hypothesis

The hypothesis is indeed very difficult to test experimentally.
m |t is difficult to show that something does not have a role.
m A number of ASs may even interfere and thus “regulate” the sense transcripts but
this would not strictly contradict the hypothesis as long as the roles of these
regulations cannot be exhibited.

m The finding that a fraction of the AS may be involved in biologically meaningful
transcriptional regulation would not invalidate the hypothesis.

This hypothesis is different from -but not incompatible with- the idea that ASs may also
arise from pervasive transcription starting randomly along the genome generating a
“background transcriptional noise”. Here ASs are seen expressed above background in
particular biological contexts (conditions, promoters, terminators).



