
Techniques for de novo
genome and metagenome

assembly

Rayan Chikhi

Univ. Lille, CNRS

séminaire INRA MIAT, 24 novembre 2017

1

short bio

@RayanChikhi
http://rayan.chikhi.name

- compsci/math background

- algorithms and data structures related to DNA sequencing
- software tools around de novo assembly:

▸ Minia, DSK, Bcalm, KmerGenie, GATB

- actual assemblies: giraffe, gorilla Y

2

http://rayan.chikhi.name

Genome assembly

sequenced
reads:
overlapping
sub-sequences,
covering
the genome
redundantly

genome
(unknown)

assembly
hypothesis of
the genome

read

contig

3

Why assemble

▸ Create
genome/transcriptome

▸ Novel insertions
▸ make sense of un-mapped

reads
▸ SNPs in non-model

organisms
▸ Find SVs
▸ Regions of interest

same techniques as:

▸ DNA variants detection
▸ Transcript quantification
▸ Alternative splicing detection

4

Graphs for assembly

Overlaps between reads is the basic information used to
assemble.
Graphs are used to represent reads (or k-mers) and overlaps.

2 types:
- de Bruijn graphs for Illumina data

- string graphs for PacBio/Nanopore data

5

Overlap graphs

First, agree on some definition of "what is an overlap".

1. Nodes = reads.
2. Edges = overlap between two reads.

In this example, let’s say that an overlap needs to be:
- exact
- and over at least 3 characters.

ACTGCT

CTGCT (overlap of length 5)
GCTAA (overlap of length 3)

ACTGCT CTGCT GCTAA

6

String graphs

A string graph is obtained from an overlap graph by removing
redundancy:

- redundant reads (those fully contained in another read)
- transitively redundant edges (if a→ c and a→ b → c, then

remove a→ c)

Example:
ACTGCT

CTGCT (overlap length 5)
GCTAA (overlap length 3)

ACTGCT GCTAA

Let’s have inexact overlaps here
ACTGCT

CTACT

GCTAA

ACTGCT CTACT GCTAA

7

de Bruijn graphs
A de Bruijn graph for a fixed integer k :

1. Nodes = all k-mers (substrings of length k) in the reads.
2. There is an edge between x and y if the (k − 1)-mer prefix

of y matches exactly the (k − 1)-mer suffix of x .

AGCCTGA

AGCATGA

dBG, k = 3:

AGC

GCC

GCA

CCT

CAT

CTG

TGA

ATG

TGA

8

de Bruijn graphs
A de Bruijn graph for a fixed integer k :

1. Nodes = all k-mers (substrings of length k) in the reads.
2. There is an edge between x and y if the (k − 1)-mer prefix

of y matches exactly the (k − 1)-mer suffix of x .

ACTG

CTGC

TGCT

GCTG

CTGA

TGAT

dBG, k = 3:

ACT CTG TGC

GCTTGAGAT

9

Data is messy

dBG of S. aureus, uncleaned (SRR022865) – it’s a SMALL genome

10

Effect of k -mer size

Salmonella genome, cleaned assembly (Velvet), 100 bp
Illumina reads. k = 51

https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

11

Effect of k -mer size

Salmonella genome, cleaned assembly (Velvet), 100 bp
Illumina reads. k = 61

https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

11

Effect of k -mer size
Salmonella genome, cleaned assembly (Velvet), 100 bp
Illumina reads. k = 71

https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

11

Effect of k -mer size
Salmonella genome, cleaned assembly (Velvet), 100 bp
Illumina reads. k = 81

https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size
11

Effect of k -mer size
Salmonella genome, cleaned assembly (Velvet), 100 bp
Illumina reads. k = 91

https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size 11

How an assembler works
[SPAdes, Velvet, ABySS, SOAPdenovo, SGA, Megahit, Minia, .., FALCON, Canu]

1) Maybe correct the reads. (SPAdes, SGA, FALCON, Canu)
2) Construct a graph from the reads.

Assembly graph with variants & errors

3) Likely sequencing errors are removed. (not in FALCON and Canu)

3) Known biological events are removed. (not in FALCON and Canu)

4) Finally, simple paths (i.e. contigs) are returned.

1 1 1 1
2

3

2

3

2

3

2

3

12

Steps of Illumina-specific assemblers

k-mer counting

graph compaction

graph cleaning

Recent progress,
Stand-alone software

High-memory or slow

1.1 TB
reads.gz

20 Gbp spruce
[Birol 2013]

Heuristics

700 GB
k-mers

30 GB
unitigs

.....

- computational bottlenecks at early stages
- qualitative choices at later stages

13

Graph formats

- FASTG
- GFA
- GFA2

H VN:Z:1.0

S 11 ACCTT

S 12 TCAAGG

S 13 CTTGATT

L 11 + 12 - 4M

L 12 - 13 + 5M

L 11 + 13 + 3M

P 14 11+,12-,13+ 4M,5M

ACCTT

TCAAGG

CTTGATT

+- -+

++

14

Outline

3 technical focuses:
- graph compaction
- graph cleaning
- multi-k assembly

15

Compacted de Bruijn graph

Compacted de Bruijn graph:

TCATTG
TGGTAA

TGCGAA
AACCG

Each non-branching path becomes a single node (unitig).

- no loss of information
- less space
- actually an assembly (very conservative, preserves all

variants)

16

Compaction: BCALM2 (ISMB’16)

Input nodes
partitioned
on disk, based
on minimizers

1 thread
compaction

minimizer of s:
smallest `-mer in s

[Roberts et al, 2004]

e.g. (` = 2, lexicographical
order)

TGACGGG

GACGGGT

ACGGGTC

CGGGTCA

GGGTCAG

GGTCAGA

Frequency ordering
→ better repartition.
[RECOMB’14]

17

Compaction of partitions

GTGAT

TGATG

GATGA

ATGAC

AT
partition

TGACC

ATGAA

TGAAC

GAACT

 AC
partition

 AA
partition

Unitigs:

GTGATGA
ATGACC
ATGAACT

k -mers are partitioned w.r.t minimizer.
In this case, compacting all partitions returns exactly all the
unitigs.

18

Can’t just compact partitions

GTGAT

TGATG

GATGA

ATGAC

AT
partition

TGACC
 AC
partition

Real unitig:
GTGATGACC

GTGAC

TGACG

GACGA

ACGAA

ACGAC

CGAAG

 AC
partition

AA partition

Real unitigs:
GTGACGA
ACGAC
ACGAAG

Left: 1 unitig = multiple partitions. (Merge them?)
Right: 1 partition = multiple unitigs. (Split them?)

19

Strategy

- Put certain k -mers into two partitions.
- x is a doubled kmer when

minimizer(x[1..k − 1]) ≠
minimizer(x[2 . . .k]).

GACTGAA

20

Partitions with doubled k -mers

GTGAT

TGATG

GATGA

ATGAC

AT
partition

TGACC
 AC
partition

GTGAC

TGACG

GACGA

ACGAA

ACGAC

CGAAG

 AC
partition

AA partition

Compacted partitions:
GTGATGAC
 ATGACC

Compacted partitions:
GTGACGA
 ACGAC
 ACGAA
 ACGAAG

21

BCALM 2’s partial compaction module

Doubled kmers
are inserted in
two partitions

1-thread
classical
compaction

Lemma 1:
doubled k -mers
appear as
prefixes or
suffixes of
compacted
strings.

Lemma 2:
Gluing together
strings with
matching
doubled k -mers
yield unitigs.

22

Big picture

Parallel
glue
algorithm

Parallel
partial
compac-
tion
algorithm

Intermediate
sequences

Input k-mers Unitigs

23

BCALM2 performance

BCALM 2 Spruce (1.1 TB reads, k = 61)

Unitigs 56.0 Gbp

Time 8 h 52 m

Memory 31 GB
Previousa assembly of a 20 Gbp tree: 4 months, 0.8 TB RAM in [Zimin 2014]

Human NA18507 Bcalm 2 Bcalm 1 ABySS-P 1.9

Time 2 h 13 h 6.5 h

Memory 2.8 GB 43 MB 89 GB

24

32 Gbp axolotl genome

full assembly memory 140 GB

full assembly time ≈ 8 days

Contigs 21 Gbp

47 M

N50 1.3 kb

25

the Minia pipeline

BESST 2

Bloocoo
error-correction

scaffolding

BCALM 2.1

Minia 3

unitigs assembly

contigs assembly

DSK 3
k-mer counting .h5

.fa/.gfa

.fa/.gfa

.fq.gz

.fa

multi-k
contigs
assembly

Input reads .fq.gz
or, direct
assembly of
raw reads

Contigs

Scaffolds

.fa

.fa

26

Graph simplifications (SPAdes-inspired)

Tip removal:
 lentip ≤ 3.5k
or
 lentip ≤ 10k
 2covtip ≤ covneighbors

Bulge removal:

 lenbulge ≤ max(3k, 100)
 covbulge ≤ 1.1covaltpath
 lenaltpath = lenbulge ± delta
 delta = max(0.1lenbulge, 3)

 Erroneous connection removal:
 lenEC ≤ 10k
 4covEC ≤ covneighbors

27

Metagenome assembly

1. closely related strains
2. uneven depths, & low depths
3. inter-species repeats
4. large size of datasets
5. lack of long reads

(adapted from A. Korobeynikov)

28

Multi-k

Assembler
k=21

Input reads

Assembler
k=55

Assembler
k=77

Final assembly

Enables to include low-coverage (short) k-mers as well as
repeat-resolving (longer) k-mers.

29

Visualization of multi-k graphs
Salmonella genome, cleaned assembly (SPAdes), MiSeq
reads.

k = 21
30

Visualization of multi-k graphs

Salmonella genome, cleaned assembly (SPAdes), MiSeq
reads.

k = 55

30

Visualization of multi-k graphs

Salmonella genome, cleaned assembly (SPAdes), MiSeq
reads.

k = 99

30

the SPAdes assembler

SPAdes: multi-k de Bruijn graph assembler, no graph coverage
cut-off, graph simplifications.

exSPAnder: universal module for repeat resolution and
scaffolding

metaSPAdes1:
- performance enhancements
- coverage-aware utilization of paired reads in repeat

resolution
- some tuning in graph simplifications

1from A. Korobeynikov slides
31

metaSPAdes

figure from A. Korobeynikov

32

the MEGAHIT assembler

MEGAHIT: HKU metagenomic assembler. Steps:

1. memory-intensive k -mer counting
2. succinct de Bruijn graph (SDBG) construction
3. mercy k-mers
4. graph simplifications (now using IDBA’s)
5. metagenome-tuned scaffolding
6. multi-k iterations

33

CAMI metagenomics assembly

34

Assembly “debugging”

Investigating long-read genome assemblies using string graph
analysis

Canu assembled contigs
projected onto minimap’s
overlap graph

P. Marijon

35

Conclusion

Research directions in assembly:
1. Improving quality of large genome/metagenome Illumina

assemblies
2. accurate consensus (3rd gen)
3. haplotype-resolution (3rd gen)
4. performance (3rd gen)

What I didn’t talk about:
- BBHash: minimal perfect hashing (for k-mers or anything)
- GATB library: C++ library for creating NGS tools
- DE-kupl: differential expression on k-mers

36

BCALM 2’s glue module

1
2
3
4
5

Minimal perfect
hash table

Union-find
of doubled kmers

A B

C
B
C
B
A

Input sequences

C

Cannot load all sequences in memory. Need again to partition.
Would like to have , and in the same partition.

Sequences of
each U-F class
are loaded
and glued
in parallel.

CBA

37

BCALM 2’s glue module

1
2
3
4
5

Minimal perfect
hash table

Union-find
of doubled kmers

A B

C
B
C
B
A

Input sequences

C

Cannot load all sequences in memory. Need again to partition.
Would like to have , and in the same partition.

Sequences of
each U-F class
are loaded
and glued
in parallel.

CBA

38

