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Non-coding genome

80% of the variants associated with diseases (by GWAS) are localized
outside of protein-coding genes (Manolio et al., 2009; Hindorff et al.,
2009).

>60% of the human genome is transcribed into RNAs with only 2%
corresponding to proteins (Human ENCODE Consortium; Djebali et al.,
2012, Mouse ENCODE Consortium, 2015).

Need to identify ncRNAs to better annotate genome
Ease the interpretation of genotype to phenotype relationships.
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Non-coding RNA
Different type of non-coding RNAs.
From GENCODE v27 annotation (Harrow et al., 2012):

Total No of Genes: 58,288;
Protein-coding genes: 19,836 (34%);
Long non-coding RNA genes: 15,778 (27%);
Small non-coding RNA genes: 7,569 (13%);
. . .

coding RNAs

non-coding 
RNAs

small ncRNAslong ncRNAs

...
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Long non-coding RNA characteristics

Definition:
Transcripts without coding potential, longer than 200 nt, polyA+/-
(Derrien et al., 2012).

Functions (non-exhaustive):
Can enhance or repress transcription of targeted mRNA(s);
Can act in cis or in trans;
Sponge for microRNAs;
Make lncRNA - protein complexes.

Examples:
Xist: binds to PRC2 (DNMT3A) → lncRNA-protein complexe;
LncRNA-protein complexe → DNA hypermethylation;
DNA hypermethylation → silencing X chromosome.
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Standard pipeline for RNA-seq analysis: mRNAs + lncRNAs

 fastqc + sickle… 

 Sequences 

 Cleaned sequences 

 Mapped files 

Known and 
 NOVEL transcripts 

Mapping

Cleaning

Transcriptome 
reconstruction

Input files:
Reference genome
Reference annotation

tophat2/STAR/HISAT

Cufflinks2/Stringtie

Djebali et al., 2017

Bottleneck
Lots of novel transcripts.
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How to deal with all assembled transcripts

 Mapped files 

Known and 
 NOVEL transcripts 

Novel transcripts = lncRNAs + mRNAs + spurious transcription

Classical pipeline to annotate new transcripts:

1. Filter: remove short transcripts, smaller than 200 nt long.
2. Discriminate: determine whether the transcript is coding or not.
3. Classify: classify the lncRNAs regarding to nearest RNA genes.
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Why a new tool?

Issues:
The filter (1) and classify (3) steps are made manually;
Only a minimal classification (3) by one of the tool, none for the
others;
No real guideline for non-model organisms.

But some tools exist to discriminate (2) between coding and non-coding
RNAs.
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Tools to discriminate mRNAs and lncRNAs

Alignment-based:
Advantages:

High specificity;
Identify conserved lncRNAs.

Drawbacks:
Depends on the database;
Depends on the alignment;
Slow.

PhyloCSF (Lin, M. et al., 2011), CPC (Kong, L. et al., 2007), ...

Alignment-free:
Advantages:

Usually Fast;
Independent of alignment;
Lineage-specific lncRNAs.

Drawbacks:
Designed for model organisms.

CPAT (Wang, L. et al. 2013), CNCI (Sun, L. et al. 2013), PLEK (Li, A. et al. 2014), ...
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Our Solution

FlExible Extraction of LncRNAs (FEELnc):
All in one: formalized the filtering and classification into modules;
Stringent set of lncRNAs and mRNAs;
Classification regarding all RNAs, useful to get potential functional
relations;
LncRNAs detection is genome reference-free, i.e non-model species;
Available for non-model organisms by replacing lncRNAs.
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FEELnc: FlExible Extraction of LncRNAs

I- FEELnc Filter

II- FEELnc Cod.Pot.

III- FEELnc Classifier

Known and 
 NOVEL transcripts 

Get all lncRNA-like transcripts.

Use a Random Forest to 
discriminate between mRNAs and 
lncRNAs.

Classify the lncRNAs regarding to 
nearest RNA genes (lincRNAs, 
antisense, host lncRNA, ...).

FEELnc, three independent modules:

 Predicted
lncRNAs

Predicted
mRNAs

 Mapped files 

Transcriptome reconstruction
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Filter

Methods:

 Remove short transcripts           
(< 200 nt);

 Flag transcripts overlapping 
known mRNAs;

 Keep or discard monoexonic 
transcripts, antisense or 
intergenic;

I- FEELnc Filter

Next step:
 Defined coding and non-coding 

transcripts.

Aim:
 Filtering out non lncRNA-like.

Known and 
 NOVEL transcripts 

 Annotation 

 Candidate 
lncRNAs and 

mRNAs
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Coding Potential

II- FEELnc Cod.Pot.

Predicted
mRNAs 

Predicted 
lncRNAs

Aim:
 Defines a protein-coding 

score and then a cutoff to 
differentiate mRNAs from 
lncRNAs.

Methods:
 Use features and machine 

learning, a Random Forest.

 Candidate 
lncRNAs and 

mRNAs

Known 
mRNAs 

Known
lncRNAs
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Features for the Random Forest

1. RNA size (Cabili et al., 2011; Derrien et al., 2012)
(high value → mRNA)
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Features for the Random Forest

1. RNA size (Cabili et al., 2011; Derrien et al., 2012)
(high value → mRNA)

2. ORF coverage (ORF defined with respect to 5 modes):
Strict: requires start and stop;
Moderates: requires start or stop;
Relaxed: total RNA sequence.

(high value → mRNA)
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Features for the Random Forest

1. RNA size (Cabili et al., 2011; Derrien et al., 2012)
(high value → mRNA)

2. ORF coverage (ORF defined with respect to 5 modes):
Strict: requires start and stop;
Moderates: requires start or stop;
Relaxed: total RNA sequence.

(high value → mRNA)

3. k-mer scores on ORF for multiple k-mer sizes:
For a specific k-mer, the ratio between mRNA frequency and lncRNA
frequency;
Collaboration with INRIA/Genscale team in Rennes (Fr), KmerInShort
developed by Guillaume Rizk from GATB tools (Drezen et al.);
Very fast and parallel extraction of k-mer profiles up to 15 -mer.

(high value → mRNA)
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k-mer score calculation

Get the k-mer profile for a specific size k:
For all K (e.g. TGC) of size k (e.g. 3);
Get mRNA F m

K and lncRNA F lnc
K observed frequencies;

Calculate a score for each K :

Sk
K =

F m
K

F m
K + F lnc

K
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k-mer score calculation

Get the k-mer profile for a specific size k:
For all K (e.g. TGC) of size k (e.g. 3);
Get mRNA F m

K and lncRNA F lnc
K observed frequencies;

Calculate a score for each K :

Sk
K =

F m
K

F m
K + F lnc

K

Get the k-mer score for a sequence X :
For each ORF X ;
Get occurrences NX

K of all K of size k;
Calculate a score for the size k using all K :

V k
X =

∑4k
K=1 Sk

K × NX
K∑4k

j=1 NX
j
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Features: Illustration
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Features comparison between 5,000 lncRNA sequences and 5,000 mRNA
sequences (GENCODE v24) for the learning and the testing.
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Features: Illustration
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Use these features to make a Random Forest based model.
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Random Forest

The Random Forest is a machine learning method:
Forest:

A set of decision trees.
Random:

Each tree is done on a sampling of the data;
Each node of each tree is done on a subset of the features.

The model:
The forest of the trees made on a sample of the data.

The prediction:
Each input sequences go through each tree;
Each tree vote for a sequence to be coding or non-coding;
Each input sequence got a score representing the number of trees
which vote for the sequence to be coding.
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Random Forest: Illustration

Data:
Rows: transcripts;
Colors: mRNAs;
lncRNAs;
Columns: features;

From Touw et al., 2013
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Random Forest: Illustration

Method:
Each tree is made with a
sampling of rows;
Each tree node is made
with a feature subset;
Chosen feature: the one
which leads to the higher
node purity.

From Touw et al., 2013
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Coding potential score distribution

Coding potential

D
en

si
ty

Get a coding potential score for all input sequences, with for the best case:
lncRNA scores around 0 (blue) and mRNA scores around 1 (red).
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Coding potential score distribution

Coding potential

D
en

si
ty

Issue
Which coding potential cutoff?
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Automatic cutoff

Variation of sensitivity/specificity
with the cutoff on learning dataset. Make a 10-fold cross-validation:

Compute performance on subset
of the learning dataset.
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Automatic cutoff

Variation of sensitivity/specificity
with the cutoff on learning dataset. Make a 10-fold cross-validation:

Compute performance on subset
of the learning dataset;
Use to define an optimal cutoff
(0.367);
Automatically defined as
Sensitivity = Specificity (0.92).
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Automatic cutoff

Variation of sensitivity/specificity
with the cutoff on learning dataset.

X

XX

X

X

X

Make a 10-fold cross-validation:
Compute performance on subset
of the learning dataset;
Use to define an optimal cutoff
(0.367);
Automatically defined as
Sensitivity = Specificity (0.92).

Issue:
Transcripts around the cutoff,
not a high confidence in the
prediction.
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Automatic cutoff

Variation of sensitivity/specificity
with the cutoff on learning dataset.

X

XX

X

X

X

"The (CPS) threshold is (...) some-
what arbitrary, and transcripts that
reside in questionable regions of the
distribution should be annotated as
transcripts of unknown coding poten-
tial (TUCPs)"
J.S. Mattick & J.L. Rinn, 2015.

Implemented FEELnc solution
Defined 2 cutoffs based on specificity.
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User two cutoffs

Variation of sensitivity/specificity
with the cutoff on learning dataset.

X

XX

X

X

X

Implemented FEELnc solution:
A user defined mRNAs and
lncRNAs specificity
(e.g. 0.95,0.95);
Automatically set two cutoffs,
one for mRNAs and one for
lncRNAs (e.g. 0.225, 0.461).
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User two cutoffs

Variation of sensitivity/specificity
with the cutoff on learning dataset.

TUCP

new
mRNAs

new 
lncRNAs

X

XX

X

X

X

Implemented FEELnc solution:
A user defined mRNAs and
lncRNAs specificity
(e.g. 0.95,0.95);
Automatically set two cutoffs,
one for mRNAs and one for
lncRNAs (e.g. 0.225, 0.461).

With two cutoffs, definition of a new
class:

Transcript of Unknown Coding
Potential (TUCP).
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Classifier

Classification

Aim:
 Predict potential functional relationships 

between lncRNA transcripts and RNA 
transcripts.

Method:
 Formalized sub-classes of genomic 

classification genic and intergenic;

 Get direction of the relation;

 Use a sliding window around lncRNAs;

 Get the relations for all RNA inside the 
window.

III- FEELnc Classifier

Annotation
Predicted 
lncRNAs
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Classes

Same strand

5' 3'

Intergenic

5' 3'

3' 5'

Convergent

5' 3'

3' 5'

Divergent

5' 3'

3' 5'

RNA partner lncRNA

  

Genic
5' 3'

3' 5'

Overlapping

5' 3'

3' 5'

Containing

5' 3'

3' 5'

5' 3'

3' 5'

Nested

5' 3'

3' 5'

Antisense
exonic

Antisense
intronic

5' 3'

3' 5'

5' 3'

3' 5'

5' 3' 5' 3' 5' 3'

5' 3'

Sense exonic

Sense intronic
5' 3' 5' 3'

RNA partner lncRNA
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FEELnc: FlExible Extraction of LncRNAs

I- FEELnc Filter

II- FEELnc Cod.Pot.

III- FEELnc Classifier

Known and 
 NOVEL transcripts 

Get all lncRNA-like transcripts.

Use a Random Forest to 
discriminate between mRNAs and 
lncRNAs.

Classify the lncRNAs regarding 
the nearest transcript.

FEELnc, three independent modules:

Need to compare FEELnc 
predictions with state of the art 
methods.

Predicted
lncRNAs

Predicted
mRNAs
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Benchmarking the Coding Potential module

Compare the FEELnc Coding Potential module against 5 methods:
CPAT (Wang et al., 2013);
CNCI (Sun et al., 2013);
PLEK (Li et al., 2014);
CPC (Kong et al., 2007);
PhyloCSF (Lin et al., 2011).

Use 5 performance measures to compare methods:
Sensitivity;
Specificity;
Precision;
Accuracy;
Matthews Correlation Coefficient (MCC): summarizes others
1: good predictions; 0: random predictions; -1: opposed predictions.
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Benchmarking

II- FEELnc Cod.Pot.

Predicted
mRNAs

Predicted
lncRNAs

 GENCODE 
testing lncRNAs 

and mRNAs

GENCODE 
learning 
mRNAs 

GENCODE 
learning 
lncRNAs

Data:
Human GENCODE (v24)
training and testing data;
Only one transcript per gene
was extracted, no common
genes for learning and testing;
5,000 mRNAs and 5,000
lncRNAs on training and testing
datasets.

Methods used with default
parameters.
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Benchmarking results

program sensitivity specificity precision accuracy MCC
FEELnc 0.923 0.915 0.916 0.919 0.838
CPAT 0.899 0.924 0.922 0.912 0.823
CNCI 0.829 0.979 0.975 0.904 0.817
PLEK 0.732 0.985 0.981 0.858 0.741

PhyloCSF* 0.906 0.802 0.820 0.854 0.712
CPC* 0.699 0.739 0.728 0.719 0.438

Best score
*: alignment-based

FEELnc performs similarly or better;
On this benchmark, alignment-free better than alignment-based.
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Incomplete transcripts

RNA-seq or model reconstruction can generate truncated/incomplete
transcript models (Steijger et al., 2013).

Modified the benchmark dataset by removing percentage of transcripts,
either in 5’ or 3’.

0.4
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Percentage of removed sequences
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s Programs
FEELnc
CNCI
CPAT
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Good performance regarding other methods even with modified datasets.
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What about non-model species?

II- FEELnc Cod.Pot.

Predicted
mRNAs

Predicted
lncRNAs

 Candidate 
lncRNAs and 

mRNAs

Known 
mRNAs 

Known
lncRNAs

Classification tools for lncRNAs work
well on species with known lncRNAs.
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What about non-model species?

II- FEELnc Cod.Pot.

Predicted 
mRNAs

Predicted 
lncRNAs

 Candidate 
lncRNAs and 

mRNAs

Known 
mRNAs 

Known
lncRNAs

Classification tools for lncRNAs work
well on species with known lncRNAs.

Issues
What if no lncRNAs are available,
i.e. non model species?

Some solutions
1. Mimic lncRNAs with other

sequences for the learning step;
2. Use lncRNA sequences from

evolutionary related species.
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What about non-model species?

II- FEELnc Cod.Pot.

Predicted 
mRNAs

Predicted 
lncRNAs

 Candidate 
lncRNAs and 

mRNAs

Known 
mRNAs 

Known
lncRNAs

Classification tools for lncRNAs work
well on species with known lncRNAs.

Issues
What if no lncRNAs are available,
i.e. non model species?

Some solutions
1. Mimic lncRNAs with other

sequences for the learning step;
2. Use lncRNA sequences from

evolutionary related species.
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Mimic lncRNA sequences
How to mimic lncRNA sequences?
1. LncRNAs are non-coding → extract non-coding sequences;
2. LncRNAs can result from the pseudogenization of protein coding

genes (Duret et al., 2006) → modify mRNA sequences.

FEELnc methods to mimic lncRNA sequences:
1. Intergenic module: randomly extract genomic intergenic sequences;
2. Shuffle module: shuffle mRNA learning sequences while preserving

the 7 -mer frequencies using Ushuffle (Jiang et al., 2008).
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Mimic lncRNA sequences
How to mimic lncRNA sequences?
1. LncRNAs are non-coding → extract non-coding sequences;
2. LncRNAs can result from the pseudogenization of protein coding

genes (Duret et al., 2006) → modify mRNA sequences.
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Mimic lncRNA sequences
How to mimic lncRNA sequences?
1. LncRNAs are non-coding → extract non-coding sequences;
2. LncRNAs can result from the pseudogenization of protein coding

genes (Duret et al., 2006) → modify mRNA sequences.
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Mimic lncRNA sequences: Results
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Performance on the human testing dataset using as learning lncRNAs
either the GENCODE lncRNAs, the shuffle module or the intergenic
module.
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What about non-model species?

II- FEELnc Cod.Pot.

Predicted 
mRNAs

Predicted 
lncRNAs

 Candidate 
lncRNAs and 

mRNAs

Known 
mRNAs 

Known
lncRNAs

Classification tools for lncRNAs work
well on species with known lncRNAs.

Issues
What if no lncRNAs are available,
i.e. non model species?

Some solutions
1. Mimic lncRNAs with other

sequences for the learning step;
2. Use lncRNA sequences from

evolutionary related species.
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Evolutionary related lncRNA sequences

II- FEELnc Cod.Pot.

Predicted
mRNAs

Predicted
lncRNAs

 GENCODE 
testing lncRNAs 

and mRNAs

GENCODE 
learning 
mRNAs 

NONCODE 
learning 
lncRNAs

Train the Random Forest:
Use mRNAs of the
species;
Use lncRNAs from the
evolutionary related
species.

Apply the model:
On transcript models of
the species.

How to test?
Learning lncRNAs sequences from the NONCODE 2016 database (Zhao et
al., 2016)
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Evolutionary related lncRNA sequences: Results
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FEELnc performance and times of speciation are anti-correlated.
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Evolutionary related lncRNA sequences: Results
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Shuffle module: 0.748 MCC → ~100 Myr.
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Application: Dog

Dog (Wucher et al., 2017):
Collaboration with the European LUPA Consortium (Michel Georges)
and the BROAD institute (Kerstin Lindblad-Toh);
16 tissues;
20 RNA-seq;
~2,500 new lncRNA genes;
~10,000 new lncRNA transcripts.

Dog (Chris Barber, Wikipedia)
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Applications: Others

Chicken (Andrei Niemimäki,
Wikipedia)

Ectocarpus (Akirapeters, Wikipedia)

Chicken (Muret et al., 2017):
With Sandrine Lagarrigue (INRA, Agrocampus,
FR);
Adipose and liver tissues;
16 RNA-seq;
~2,200 new lncRNA genes.

Ectocarpus (algae) (Cormier et al., 2016):
With Mark Cock (CNRS,Roscoff, FR);
Male and femelle gametophytes;
10 RNA-seq;
~700 new lncRNA genes;
First lncRNA catalogue in algae.
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One tool: three applications

FEELnc: from transcript models to lncRNA classifications.

FEELnc Filter

RNA-Seq
models

New transcribed 
loci

Reference 
annotation

Annotated 
transcripts

FEELnc Coding potential

TUCp 
transcripts

mRNA 
transcripts

lncRNA 
transcripts

FEELnc Classifier

lncRNA classes

New reference 
annotation

Input files

Separate lncRNA like versus 
already annotated transcripts

Discriminate between coding and 
non coding transcripts (and TUCps)

Annotate lncRNAs with 
regard to closest RNAs

lncRNA classes

New reference annotation

FEELnc modules

Biotypes files

Final output files

Temporary files
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Conclusion

User friendly:
Automatic threshold;
Easy to use.

Flexible:
Set two specificity thresholds for stringent predictions;
Five ORF type definitions;
Coding potential can be used on FASTA or GTF.

Non-model species compatible:
Mimic lncRNAs by shuffling mRNA sequences;
Coding potential module is alignment- and genome reference-free;
Guideline for species without annotated lncRNAs.

Performs similar or better than other tools.
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Availability

FEELnc on github:
https://github.com/tderrien/FEELnc

A nextflow/docker implementation of STAR/Cufflinks/FEELnc pipeline
has been developed by Evan FLODEN:

https://github.com/skptic/lncRNA-Annotation-nf

Published in Nucleic Acids Research, along with a dog extended
annotation: Wucher et al., 2017.

All data (included benchmarking data), command lines and scripts to
make figures are available through Supplementary:

http://nar.oxfordjournals.org/content/early/2017/01/03/nar.gkw1306/suppl/DC1
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Prospects

Method:
Add new features, e.g transcript expressions or exons number;
Modified the 12-mer score, e.g. translate amino acids;
Predict pseudogenes (can be still reference-free?).

Bioanalyses:
FEELnc used in the FAANG consortium, i.e. farming animals;
Improve lncRNA classification by adding new data, as chromosome
configuration capture (Hi-C);
Use and integrate lncRNA classification with multi-omics data.
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Annexes
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Two-graph ROC curves on 10-fold cross-validation
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Original sequence:
AGACTTAGCA
Original count:

AC AG CA CT TA TT GA GC
1 2 1 1 1 1 1 1

Ushuffle with k-mer size = 2

Permuted sequence:
ACTTAGCAGA
Permuted count:

AC AG CA CT TA TT GA GC
1 2 1 1 1 1 1 1
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From: Cheetham, S. W., Gruhl, F., Mattick, J. S., & Dinger, M. E. (2013). Long
noncoding RNAs and the genetics of cancer. British journal of cancer, 108(12), 2419.
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