
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

International Journal of Approximate Reasoning 53 (2012) 66–86

Contents lists available at SciVerse ScienceDirect

International Journal of Approximate Reasoning

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i j a r

A framework and a mean-field algorithm for the local control of spatial

processes

Régis Sabbadin a,∗, Nathalie Peyrard a, Nicklas Forsell a,b

a
Unité de Biométrie et Intelligence Artificielle UR 875, Département de Mathématiques et Informatique Appliquées, INRA, Centre de Toulouse,

F-31326 Castanet-Tolosan, France
b
Centre for Applied Mathematics, MINES ParisTech, France

A R T I C L E I N F O A B S T R A C T

Article history:

Received 26 March 2010

Received in revised form 23 September 2011

Accepted 23 September 2011

Available online 1 October 2011

Keywords:

Decision-theoretic planning

Factored Markov decision processes

Approximate policy iteration

Mean-field principle

Approximate linear programming

The Markov Decision Process (MDP) framework is a tool for the efficient modelling and

solving of sequential decision-making problems under uncertainty. However, it reaches its

limits when state and action spaces are large, as can happen for spatially explicit decision

problems. Factored MDPs and dedicated solution algorithms have been introduced to deal

with large factored state spaces. But the case of large action spaces remains an issue. In this

article, we define graph-based Markov Decision Processes (GMDPs), a particular Factored

MDP framework which exploits the factorization of the state space and the action space of a

decisionproblem.Both spaces are assumed tohave the samedimension. Transitionprobabil-

ities and rewards are factored according to a single graph structure, where nodes represent

pairs of state/decision variables of the problem. The complexity of this representation grows

only linearly with the size of the graph, whereas the complexity of exact resolution grows

exponentially. We propose an approximate solution algorithm exploiting the structure of a

GMDP and whose complexity only grows quadratically with the size of the graph and expo-

nentially with the maximum number of neighbours of any node. This algorithm, referred to

as MF-API, belongs to the family of Approximate Policy Iteration (API) algorithms. It relies

on amean-field approximation of the value function of a policy and on a search limited to the

suboptimal set of local policies. We compare it, in terms of performance, with two state-of-

the-art algorithms for Factored MDPs: SPUDD and Approximate Linear Programming (ALP).

Our experiments show that SPUDD is not generally applicable to solving GMDPs, due to the

size of the action space we want to tackle. On the other hand, ALP can be adapted to solve

GMDPs. We show that ALP is faster than MF-API and provides solutions of similar quality

for most problems. However, for some problems MF-API provides significantly better poli-

cies, and in all cases provides a better approximation of the value function of approximate

policies. These promising results show that the GMDPmodel offers a convenient framework

for modelling and solving a large range of spatial and structured planning problems, that

can arise in many different domains where processes are managed over networks: natural

resources, agriculture, computer networks, etc.

© 2011 Elsevier Inc. All rights reserved.

∗ Corresponding author. Tel.: +33 (0)5 6128 5476; fax: +33 (0)5 6128 5335.

E-mail addresses: sabbadin@toulouse.inra.fr (R. Sabbadin), peyrard@toulouse.inra.fr (N. Peyrard), nicklas.forsell@mines-paristech.fr (N. Forsell).

0888-613X/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijar.2011.09.007

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 67

1. Introduction

Within Decision Theory, theMarkov Decision Process (MDP) framework [1] is used tomodel and solve sequential decision-

making problems under uncertainty. However, MDPs reach their limits when state and action spaces are factored, which

is the case in domains where spatial aspects are introduced, as in the management of epidemics or invasive/endangered

species. The same limits are obviously present in the fields of operations research or computer science (computer networks

management, information queries on theWorldWideWeb, etc.). A common approach used to circumvent the computational

burden linked to factored state spaces is the Factored MDP (FMDP) framework [2–5].

In this framework, the structure of the state space is exploited to model the decision problem compactly. A state of the

FMDP is described by the value of several state variables. The global transition and reward functions of a FMDP are defined

from local functions depending on a small subset of the state variables: respectively a product of local transition functions

and a sum of local reward functions. Usually, only the state space structure is exploited, not the action space structure.

Standard solution algorithms for MDPs are of limited use for solving FMDPs, since they manipulate a global value function

over thewhole state space, requiring full enumeration of this exponentially large space. Unfortunately, there is no guarantee

that the structure of a factored MDP is reflected in the structure of its global value function, meaning that exact solution of

FMDPs is generally unattainable.

However, solution methods such as Stochastic Programming Using Decision Diagrams (SPUDD) [3] try to retain as much

as possible of the structure of the problem to compute exact (or approximate [4]) optimal policies for FMDPs. On the other

hand, other approaches, such as Approximate Linear Programming (ALP) [6] use parametrised linear approximations of the

value function for approximately solving large MDPs (factored or not). The linear approximation of the value function is a

linear combination of predefined basis functions, defined over small subsets of the state variables. However, one limitation

to the size of problems that can be solved remains the size of the action space of the Factored MDP.

In this article, we adopt an alternative and original approach in order to develop an efficient approximation algorithm

for a subclass of FMDPs where state space and action space are factored: graph-based MDPs (GMDPs). In a GMDP, the state

and action spaces are multidimensional and of identical dimension, n. The global transitions and rewards are assumed

to be decomposable into local transition and reward functions, each depending only on a single action variable and on

few state variables. This decomposition generates a neighbourhood relationship between variables, represented by a graph

where nodes are associated with pairs of state/decision variables and edges between two nodes mean that one of the state

variables is within the scope of the reward or the transition function of the other. The GMDP framework can be used to

model a large range of spatially explicit or structured planning problems where local decisions influence state variable

dynamics.

The approximate solution algorithm we propose belongs to the family of Approximate Policy Iteration (API [7]) algo-

rithms. It relies on an approximation of the value function by a sum of functions of limited scope and on a search limited to

the suboptimal set of local policies, as would be the case for an ALP algorithm. However, here the approximate value func-

tion is derived from a mean-field approximation of the Markov process induced by a fixed policy. The mean-field principle

arises from statistical mechanics [8] and from the study of systems of particles in interaction. It has since been successfully

used in other fields such as image analysis, epidemiology and ecology, for statistical model estimation, graphical model

inference, and analysis of large Ordinary Differential Equation systems.When applied to GMDPs, themean-field approxima-

tion amounts to an approximation of the transition function of the GMDP Markov chain for a fixed policy by n independent

unidimensionalMarkov chain transition functions, chosen tominimise a given distance function to the exact transition func-

tion. The minimum is reached by independent systems obtained by fixing the neighbourhood influence to its mean value.

Note that spatial interaction is not entirely lost with the mean-field approximation since the neighbourhood influence is

taken into account. Furthermore, the approximation results in time-dependent transition functions, allowing to reflect the

propagation of influence between neighbours. Each iteration of the corresponding algorithm, named MF-API, has a time

complexity which is quadratic in n and exponential in the maximum number of neighbours of any node (ν). Representation
of a local policy is also of limited space complexity (exponential in ν and linear in n).

The paper is organised as follows. In Section 2,wedescribe theGraph-basedMarkovDecision Process (GMDP) framework,

and we illustrate the model on two simplified problems, derived from crop disease management and forestry. In Section 3

we give a full description of the MF-API algorithm which constitutes the main contribution of the paper. Then, in Section

4 we discuss existing models and algorithms which can be adapted to solve GMDPs. In particular, after having shown the

inability of the exact SPUDD algorithm to solve GMDPs, we describe an adaptation of the ALP method to GMDPs, which was

proposed by [9]. In Section 5 we provide an experimental comparison of the behaviour of theMF-API and ALP algorithms on

the two illustrative applications, for different problem sizes and graph structures. We discuss more thoroughly the conse-

quences of the main distinction between FMDPs and GMPDs, namely the assumption of a multidimensional action space, in

Section 6.

2. Graph-based Markov Decision Processes

In this section we introduce the key elements of the GMDP framework: the notion of locality in transitions, rewards, and

policy. We show how two classical management problems, in agronomy and forestry, can be modelled as GMDPs.

Author's personal copy

68 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

Fig. 1. Graph representation of a GMDP of dimension n = 4. N(1) = {1}, N(2) = {1, 2, 3}, N(3) = {1, 2, 4} and N(4) = {2}.

2.1. The GMDP model

In its classical formulation [1], an infinite-horizon stationary MDP is described by a four-tuple 〈X ,A, p, r〉 where: X
represents the finite set of states that can be reached by the system,A represents the finite set of actions that can be applied

at each time step, p is a state transition function, and r is an “immediate” reward function. The application of an action may

change the state of the system and the state xt+1 ∈ X at time step t + 1 depends (stochastically) only on state xt ∈ X at

time t, and on the action at ∈ A applied at t (Markov property). The stationary state transition function p can thereby be

expressed as p(x′|x, a), the probability that the system will change from state xt = x to state xt+1 = x′, given that action

at = a has been applied. The reward obtained when action a is applied in state x is r(x, a).
Let us now consider the situationwhere the state of the system is described by a vector x = (x1, . . . , xn) of state variable

values that are not stochastically independent, and where an action is also described by a vector a = (a1, . . . , an) of action
variable values, of the same size n. In a GMDP the state space is a Cartesian product X = X1 × · · · × Xn, and the action

space is A = A1 × · · · × An. Note that the multidimensional nature of the action space of a GMDP makes it different from

and more difficult to solve exactly than a FMDP, in which the state space only is multidimensional. We will come back to

this point in more details in Section 4.

In aGMDP, the global transition p(x|x′, a) is factored into a product of local transition probabilities pi(x
′
i |{xj, j ∈ N(i)}, ai),

where N(i) ∈ {1, . . . , n} is the set of indices of the state variables which actually influence the dynamics of the ith state

variable. 1 The set {xj, j ∈ N(i)} will be denoted xN(i). Then we have the following factorisation assumption:

p(x′|x, a) =
n∏

i=1

pi(x
′
i |xN(i), ai), ∀x ∈ X , ∀x′ ∈ X , ∀a ∈ A.

Similarly, in a GMDP the global reward r(x, a) is assumed to be decomposable:

r(x, a) =
n∑

i=1

ri(xN(i), ai), ∀x ∈ X , ∀a ∈ A.

ri(xN(i), ai) is the local reward obtained when action ai is performed and the local state of the system is xN(i). For some

problems, it can occur that the state variables influencing the dynamics of xi and the ones involved in ri are not identical. In

these cases, N(i) will be defined as the union of these two sets, without loss of generality.

The sets of indices 1, . . . , n and the relationship N(i) can be represented by an oriented graph G = (V, E), where

V = {1, . . . , n} is a set of nodes2 and E ⊆ V2 is a set of oriented edges. An edge (j, i) from j to i indicates that j ∈ N(i),
i.e. the state variable xj influences the dynamics of xi and ri depends on xj . G may contain loops, and in particular self-loops

(i, i) (see Fig. 1) because the transition of a state variable usually depends on its state at the previous time step. Based on

this graphical representation, N(i) will sometimes be referred to as the in-neighbourhood of i. In a GMDP, two variables

are attached to a node i of G: the state variable xi and the action variable ai. Since ai only affects the dynamics of xi, it is

unnecessary to represent ai explicitly in the graph.

Let σ = maxi |Xi|, α = maxi |Ai| and ν = maxi |N(i)|. The spatial complexity of the representation of a GMDP is in

O(nασν+1). The complexity is linear in the number of nodes and exponential in the maximum in-neighbourhood size, ν .
Note that this representation of a structured decision problem is similar to that of [11].

1 The set N(i) is equivalent to the set of indices of the parents of a state variable in a Dynamic Decision Network [10].
2 Here, notations for nodes and indices of nodes coincide.

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 69

Fig. 2. Graph representing the topology of an agricultural area. There is one node per crop field and edges express the fact that two crop fields share a common

border.

Table 1

Local transition probabilities p(x′
i |xN(i), ai), for the disease management problem.

xi = 1 xi = 2 xi = 3 xi = 4

ai = 1

x′
i = 1 1 − P 0 0 0

x′
i = 2 P 1 − P 0 0

x′
i = 3 0 P 1 − P 0

x′
i = 4 0 0 P 1

ai = 2

x′
i = 1 1 q q/2 q/3

x′
i = 2 0 1 − q q/2 q/3

x′
i = 3 0 0 1 − q q/3

x′
i = 4 0 0 0 1-q

Table 2

Local rewards r(xi, ai), for the disease management problem in a crop field.

ai = 1 ai = 2

xi = 1 r 0

xi = 2 r/2 0

xi = 3 r/3 0

xi = 4 r/4 0

2.2. Example GMDPs

The GMDP framework is particularly well adapted for representing planning problems with spatial features. In these

situations, decisions are usually broken down into several spatial decision units and the dynamics of the systemare the result

of local interaction between neighbouring units. We now present two such examples derived from real-world agricultural

problems.

2.2.1. Disease management in crop fields

We illustrate the GMDP framework on a simplified example of disease control in crop fields, a didactic version of a more

realistic application of GMDPs to phoma stem canker management on oil seed rape crops [12]. Let us consider a set of crop

fields in an agricultural area. Each field is susceptible to contamination by a pathogen. Contamination can either be long

range, or over a short distance between neighbouring fields. When a field is contaminated, the yield decreases. Decisions

about crop field management are taken each year and two actions (Ai = {1, 2}) can be applied to each field: a normal

cultural mode (ai = 1) is used or the field is left fallow and treated (ai = 2). The problem is to optimise the choice of a

long-term policy in terms of expected yield. The state and action spaces associated with this problem are multidimensional

since the problem involves managing several fields in interaction.

The topology of the area is represented by a graph G = (V, E) (Fig. 2). There is one node per crop field. An edge is drawn

between two nodes if the fields share a common border. The neighbourhood relationship is symmetric sincewe assume that

infection can spread in any direction. Furthermore, in this example, node i is included in N(i).
Each crop field can be in one of four states: xi = 1 if it is uninfected and xi = 2 to xi = 4 for increasing degrees of

infection. Transition probabilities, pi(x
′
i | xN(i), ai), are parametrised by the following variables: the probability ε of long-

distance contamination, the probability p that a field be contaminated by an infected neighbouring field j (with xj ≥ 2),

and the number ni of neighbouring fields of node i that are infected. The probability that a field moves from state xi to state

xi + 1 when a normal cultural mode is chosen is equal to P = P(ε, p, ni) = ε + (1 − ε)(1 − (1 − p)ni). Finally, q denotes

the probability that the level of infection of a field decreases when it is left fallow. The corresponding transition probability

model is summarised in Table 1. Harvest is affected by the state of the crop field and the chosen action. The maximal yield

(r) can be achieved for an uninfected field with normal treatment. Otherwise, the yield decreases with the level of the attack

(see Table 2). A field left fallow produces no reward.

Author's personal copy

70 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

Fig. 3. A GMDP representing the forest management problem under the assumption of limited wind directions. The nodes represent the stands and the oriented

edges represent potential wind protection.

Table 3

Local transition function for stand i in the forest management problem.

State Action Damage Next state

xi c1 Not damaged x′
i = min(m, xi + 1)

xi c2 Not damaged x′
i = 1

xi c1, c2 Damaged x′
i = 1

2.2.2. Forest management under risk of wind damage

This example is also a didactic version of a more realistic application of GMDPs to forest management [13]. The forest

is divided into stands, and in this model the state of each stand is represented by the value of a state variable xi. The state

variable, modelled as the age of the trees, describes both the timber value of the stand and the protection from wind that

it provides to neighbouring stands. The revenue from a stand, when harvested, also depends on the state. More specifically,

the state space of each state variable is the set Xi = {1, 2, . . . ,m},m ∈ N. If the length of the time period is Y years and

the state of the stand i is xi, then the trees in the stand are between Y(xi − 1) and Yxi − 1 years old. For simplicity, it is

assumed that once a stand is old enough (more than Y(m − 1) years), the state of the stand no longer changes. An action

variable ai represents the action applied locally to a stand. We consider only two management activities: “do not clear-cut"

and “clear-cut", denoted by c1 and c2: Ai = {c1, c2}.
For a specific period of time, the probability of a stand being damaged by wind is dependent on the state of the stand

and the protection provided by other stands. Indeed, a stand can block the wind and thereby reduce the risk of other stands

being damaged. The geographic layout of the forest specifies which stands can provide protection to which. We assume that

the wind can only come from limited directions and we use a directed graph G = (V, E) to specify the pattern of potential

wind protection (see Fig. 3). There is one node per stand in V and there exists a directed edge (j, i) ∈ E if and only if stand j

can give shelter to stand i.

We assume that damage to the stands due to wind always occurs after a decision has been made concerning which

management activities will be performed, and before the decision is implemented. It is also assumed that the state of a

damaged stand changes to x′
i = 1, whatever the management activity chosen. A time period comprises three steps:

1. Management activities are selected according to the management policy and the current state of the stands.

2. Some stands may be damaged due to wind.

3. Management activities selected in step 1 are implemented. Damaged stands are salvage-harvested.

ThewinddamageeventDi is stochastic. Its probabilitydependson the stateof neighbours and is definedby the conditional

probability pi(Di|xN(i)). Table 3 shows the possible state transitions given the action chosen and the wind damage event. In

order to eliminate the wind-damage-event random variable in the expression of the local reward, we define

r̂i(xN(i), ai) = pi(Di = 1|xN(i))ri(xN(i), ai,Di = 1) + p(Di = 0|xN(i))ri(xN(i), ai,Di = 0),

∀xN(i) ∈ XN(i), ∀ai ∈ Ai, i = 1, . . . , n.

This corresponds to the approximation that the wind damage events are independent for all stands, given the states of

the neighbouring stands.

2.3. Global and local GMDPs solution policies

In a MDP, a function δ : X → A assigning an action to every state is called a stationary policy. Once a policy δ is fixed, it

defines a stationary Markov process over X , with transitions pδ(x
′|x) = p(x′|x, δ(x)). The infinite horizon discounted value

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 71

vδ(x) of a policy δ, applied to a MDP with initial state x, is defined as:

vδ(x) = E

[+∞∑
t=0

γ t r(xt, δ(xt))|x0 = x

]
, ∀x ∈ X .

The expectation is taken over all possible trajectories 〈x0, δ(x0), x1, . . . , xt, δ(xt), . . .〉 starting from the initial state x0 and

applying policy δ. The discount factor, 0 ≤ γ < 1, ensures that the above infinite sum converges. The problem of finding

the optimal policy for a stationary MDP can be written as:

Find δ∗,X → A, s.t. vδ∗(x) ≥ vδ(x), ∀x ∈ X , ∀δ ∈ AX .

It has been shown that there is always an optimal policy, and that it can be computed in time polynomial in the size of

X and A, using Stochastic Dynamic Programming algorithms such as Policy Iteration, Value Iteration or Linear Programming

algorithms [1].

However, for structured problems, such as GMDPs, the sizes of the state and action spaces of the underlying MDP are

exponential in thenumberof variables of theGMDP. Thus, the time (and space) complexity of dynamicprogrammingor linear

programming algorithms applied to GMDPs is exponential in n. The size of GMDP problems that can be solved efficiently by

these methods (as for any factored MDP) is therefore considerably limited.

In order to reduce this complexity, we adopt an approach in which the search space is limited to a subset of policies

that make best use of the graph structure. A policy δ in a GMDP can be defined by a set of functions (δ1, . . . , δn), where

δi : X → Ai. Such policies will be referred to as global policies and may require space in O(nσ n) to be represented. We

will consider the particular class of local policies: a policy δ : X → A is said to be local if and only if δ = (δ1, . . . , δn)
where δi : XN(i) → Ai. The main advantage of local policies is that they can be concisely expressed when ν is small: they

only require space in O(nσν) to be represented. However, as local polices only form a subset of the set of global policies,

there is no guarantee that an optimal policy of a GMDP exists which is local, even though this result was wrongly claimed

in [11]. In Appendix A we present an example of GMDP in which no local policy is optimal. However, in general, GMDPs

globally optimal policies cannot be represented efficiently, even for small problems (10–20 nodes). Thus, local policies offer

a trade-off between complexity and optimality. We will see later that they can perform well in practice.

3. Mean-field approximate policy iteration algorithm for GMDPs

The Policy Iteration (PI) algorithm [1] computes an optimal policy for a MDP. This iterative algorithm alternates two

steps, an evaluation phase of the current policy and an improvement phase of this policy. When the current policy cannot be

improved further, its optimality is guaranteed. Generally, this algorithm converges after a small number of iterations, but

each iteration is costly since policy evaluation requires resolution of a system of linear equations (complexity O(|X |3)) and
the complexity of the policy improvement phase is O(|A|.|X |2).

When state and action spaces are factored, only approximate evaluation and improvement of the current policy are

possible. This leads to the family ofApproximate Policy Iteration (API) algorithms [7], providing a trade-off between optimality

of the result and computational efficiency. The complexity of API algorithms remains in general exponential in the number

of action variables, therefore they can hardly be applied to GMDP problemswithmore than a few tens of nodes. To copewith

this limitation, we now present an original algorithm that can be used to compute an approximate solution of any GMDP.

The originality of the approach, which was initially proposed in [14], is the approximation of the Markov process induced

by a fixed policy by one with a simpler dependence structure, instead of a direct approximation of the value function as

would be classically done with API. Namely, we consider themean-field approximation of the process. When applied to the

GMDP, the mean-field approximation amounts to an approximation of the Markov chain with n state variables by its best

representative among the family of n independent unidimensional, non-stationnary Markov chains. We will see that this

best representent is derived from the exact spatio-temporal process by fixing the influence of neighbouring state variables

to its mean value, thus preserving some part of the spatial information. Furthermore, the approximate transition function is

time dependent, in order to reflect influence propagation between neighbours. Applying this principle enables us to derive

an approximate solution algorithm for GMDPs: theMF-API algorithm.

3.1. Expressing the occupation measure of a local policy value function

For an infinite-horizon problem the value function vδ of policy δ is defined as:

vδ(x) = E

[+∞∑
t=0

γ t r(xt, δ(xt))|x0 = x

]
, ∀x ∈ X .

The value of a policy can be computed by an iterative successive approximations algorithm [1]. It can also be computed by

methods based on the occupation measure [15]. If δ : X → A is a policy and x ∈ X an initial state, the occupation measure

Px,δ : X → [0, 1] is a probability distribution defined by:

Author's personal copy

72 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

Px,δ(y) = (1 − γ)
+∞∑
t=0

γ tPδ(X
t = y|X0 = x), ∀ y ∈ X .

The conditional probability Pδ(X
t = y|X0 = x) is the probability that Xt = y, given that X0 = x and policy δ is applied. It

can be evaluated from the transition probabilities as follows

Pδ(X
t = xt|X0 = x0) = ∑

x1,...,xt−1

t−1∏
t′=0

p(xt
′+1|xt′ , δ(xt′)).

Intuitively (ignoring the discount factorγ), Px,δ measures the proportion of time spent in state y by the processwhen starting

in state x and applying δ. The value function vδ of any policy can be computed from the occupation measure Px,δ as follows:

vδ(x) = 1

1 − γ

∑
y∈X

Px,δ(y)r(y, δ(y)), ∀δ : X → A, ∀x ∈ X .

This expression of the value function avoids having to solve a fixed-point equation, but the difficulty is to compute the

occupation measure Px,δ(y). The exact computation of the conditional distribution Pδ(X
t = y|X0 = x) is too difficult. Let us

consider the specific case of a local policy δ = {δ1, . . . , δn}. The value of δ can be decomposed exactly as follows:

vδ(x) =
n∑

i=1

viδ(x), ∀x ∈ X ,

where

viδ(x) =
+∞∑
t=0

γ t
∑
y∈X

Pδ(X
t = y|X0 = x)ri(yN(i), δi(yN(i))), ∀x ∈ X , i = 1, . . . , n. (1)

This decomposition takes n times asmuch space to represent than the exact value function, and as such is not appropriate

for the efficient computation of optimal policies. However, we propose to look for an approximation Qt
δ of the conditional

probability Pδ(X
t = y|X0 = x) which has a simple structure and will allow an approximation of viδ(x) by a function v̂iδ

depending only on xN(i). We will establish that if Qt
δ is the mean-field approximation, we get viδ(x) ≈ v̂iδ(xN(i)), where:

v̂iδ(xN(i)) =
+∞∑
t=0

γ t
∑
yN(i)

⎛⎝ri(yN(i), δi(yN(i)))
∏

j∈N(i)

Q
t,j
δ (yj|xj)

⎞⎠ .

3.2. Mean-field approximation of a structured Markov chain

Themain idea of the mean-field principle is to approximate a system of interacting variables by a system of independent

ones, by approximating the influence of the neighbourhood by its mean value. The mean-field approximation of a multidi-

mensional distribution P(u1, . . . , um) is defined as the joint distribution Q of m independent variables u1, . . . , um, which

is as close to P as possible, according to the Kullback–Leibler divergence, KL(Q |P) = EQ [log(Q/P)]. KL(Q |P) is a positive

quantity 3 and is equal to zero if and only if P = Q . Theminimumof KL(Q |P) is sought among joint distributionsQ satisfying

Q(u1, . . . , um) = ∏m
i=1 Qi(ui).

Within the framework of GMDPs, the difficulty in computing the conditional distribution Pδ(X
t = y|X0 = x) comes from

the spatio-temporal dependence between nodes. Indeed, for a given policy δ, each variable Xt
i depends on the state of all

neighbour variables at the previous time step, X
t−1
N(i) . If t is large enough, Xt

i may depend on all variables X0
i . We propose to

limit this influence by applying themean-field principle to the joint probability distribution of Xt−1 and Xt , fully determined

by the distribution of Xt−1, Pδ(X
t−1 = x), and the transition probability of Xt given Xt−1, pi(x

t
i | xt−1

N(i), δi(x
t−1
N(i))).

The approximation procedure is iterative. In the following, P will denote the exact distribution and Q a distribution of n

independent random variables. Let us first consider the joint probability at time t = 1. Since usually no a priori information

is available, we will assume that at t = 0 the state variables X0
i are independent (for the sake of simplicity but also to ensure

the repeatability of the approximation method from one time step to the next). Exact and approximate distributions have

the following form:

P0(x0) =
n∏

i=1

P0,i(x0i), pδ(x
1|x0) =

n∏
i=1

pi

(
x1i |x0N(i), δi

(
x0N(i)

))
,

3 KL(P|Q) = EP [log(P/Q)] is also well defined but is not considered for building the mean-field approximation since its evaluation is intractable.

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 73

Q0
δ (x0) = P0(x0), q1δ(x

1|x0) =
n∏

i=1

q
1,i
δ (x1i |x0i). (2)

In the approximate model, X1
i only depends on X0

i . Let us denote by Q the set of all joint distributions of Xt−1 and Xt that

can be decomposed according to (2). Among all the elements in Q, we need to look for the closest one to the exact joint

distribution, according to the Kullback–Leibler divergence. Since Q0
δ = P0, the only approximation in the computation of

the joint distribution arises from the computation of q1δ .

Proposition 1 (Mean-field approximation of the conditional distribution). The mean-field approximation q1δ defined as the

solution of

q1δ = arg min
q1δ∈Q

KL
(
q1δ(X

1|X0)P0(X0) | pδ(X
1|X0)P0(X0)

)
, is

q
1,i
δ (x1i |x0i) ∝ exp

(
EP0

[
log pi

(
x1i |x0i , X0

N(i)\i, δi
(
x0i , X

0
N(i)\i

))])
∀x0i ∈ Xi, x

1
i ∈ Xi, i = 1, . . . , n. (3)

The expectation is taken over the distribution of X0
N(i)\i. The proof is in Appendix B.

Expression (3) is not normalized. The classical procedure is instead to consider the simplified and normalized version

obtained by switching expectation and logarithm operators:

q
1,i
δ (x1i |x0i) = EP0

[
pi

(
x1i |x0i , X0

N(i)\i, δi
(
x0i , X

0
N(i)\i

))]
.

We will use this mean-field approximation of the transition probabilities in the following. This approximation is easy to

interpret: the transition probability is replacedwith the expectation of the transition probabilities for all possible configura-

tions of the neighbourhood. Given the approximate transition probabilities between time 0 and time 1, and given the initial

joint distribution P0, we can derive the mean-field approximation of the probability distribution of X1 for a given policy δ:

Q1
δ (x1) = ∑

x0

q1δ

(
x1|x0

)
P0(x0) =

n∏
i=1

⎛⎜⎝∑
x0i

q
1,i
δ |

(
x1i |x0i

)
P0,i

(
x0i

)⎞⎟⎠ .

The distribution at time 1, under the mean-field approximation, is also a distribution of n independent variables. Thus, we

can iterate the procedure (minimisation of the Kullback–Leibler divergence) and obtain for each time step t ≥ 2 amean-field

approximation of the transition probabilities:

q
t,i
δ

(
xti |xt−1

i

)
= E

Q
t−1
δ

[
pi

(
xti |xt−1

i , X
t−1
N(i)\i, δi

(
x
t−1
i , Xt−1

N(i)\i
))]

. (4)

One should note that the approximate transition probabilities qtδ(x
t|xt−1)depend on twhile the exact ones donot. Finally,

for all t ≥ 2, a mean-field approximation of the conditional probability of Xt , given X0 = x0 and δ, can be obtained as:

Qt
δ

(
xt|x0

)
= ∑

xt−1

qtδ

(
xt|xt−1

)
Q

t−1
δ

(
xt−1|x0

)

=
n∏

i=1

⎛⎜⎝∑
x
t−1
i

q
t,i
δ (xti |xt−1

i)Q
t−1,i
δ

(
x
t−1
i |x0i

)⎞⎟⎠ .

The result is an expression of the form

Qt
δ

(
xt|x0

)
=

n∏
i=1

Q
t,i
δ

(
xti |x0i

)
, ∀t.

with, by definition,

Q
t,i
δ

(
xti |x0i

)
= ∑

x
t−1
i

q
t,i
δ

(
xti |xt−1

i

)
Q

t−1,i
δ

(
x
t−1
i |x0i

)
.

Exact and approximate expressions of the different probability distributions involved here are summarised in Table 4. The

recursive definition is initialised with Q1
δ (x1|x0) = q1δ(x

1|x0). This procedure provides an approximation of the conditional

probability Pδ(X
t = y|X0 = x), which simplifies the evaluation of (1).

Author's personal copy

74 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

Table 4

Mean-field approximations of the conditional, transition and joint probabilities at time t of a GMDP.

GMDP Approximation

Conditional probability Pδ

(
Xt = xt | X0 = x0

) ∏n
i=1 Q

t,i
δ

(
xti | x0i

)
Transition probabilities pi

(
xti | xt−1

N(i), δ
(
x
t−1
N(i)

))
q
t,i
δ

(
xti | xt−1

i

)
Joint probability Pδ

(
Xt = xt

) ∏n
i=1 Q

t,i
δ

(
xti

)

Data : {G = (V, E), {pi(xti | xt−1
N(i), ai)}, {ri(xN(i), ai)}, {δi(xN(i))}, P0, γ, Tmax}

Result : {v̂iδ(xN(i))}
% Initialization ;

compute pδ = {pi(xti | xt−1
N(i), δ(x

t−1
N(i)))} ;

Q0
δ = P0 ;

for all nodes i, all states x0N(i) do

v̂iδ(x
0
N(i)) = 0;

end

t = 1 ;

% Main loop (over time) ;

while t ≤ Tmax do

% Computation of MF transition, conditional and joint probabilities ;

for all nodes i, all states xti , x
t−1
i , x0i do

q
t,i
δ (xti | xt−1

i) = pseudominKL(Qt−1
δ , pδ) ;

if t=1 then Q
1,i
δ (x1i | x0i) = q

1,i
δ (x1i | x0i) else

Q
t,i
δ (xti | x0i) = ∑

x
t−1
i

q
t,i
δ (xti | xt−1

i)Q
t−1,i
δ (xt−1

i | x0i) ;
Q

t,i
δ (xti) = ∑

x0i
Q

t,i
δ (xti | x0i)Q0,i

δ (x0i);

end

% Update of MF value function ;

for all nodes i, all states x0N(i) do

v̂iδ(x
0
N(i)) = v̂iδ(x

0
N(i)) + γ t ∑

xtN(i)

(
ri(x

t
N(i), δi(x

t
N(i)))

∏
j∈N(i) Q

t,j
δ (xtj |x0j)

)
;

end

t = t + 1 ;

end

Algorithm 1: Pseudo code for mean-field policy evaluation.

3.3. Mean-field approximate policy evaluation

Themean-field approximation can now be exploited to perform the evaluation step of the MF-API algorithm. An approx-

imation of each term viδ(x) of the value function is derived in a straightforward way:

viδ(x) ≈ v̂iδ(xN(i)) =
+∞∑
t=0

γ t
∑
yN(i)

⎛⎝ri(yN(i), δi(yN(i)))
∏

j∈N(i)

Q
t,j
δ (yj|xj)

⎞⎠ .

The important point is that each term v̂iδ only depends on xN(i).

Proposition2 (Complexityofapproximatepolicyevaluation). Thecomplexityof theevaluationof v̂iδ isO
(
log(1/ε)nσ 3ν+1ν2

)
,

where ε is the required precision for the computation of v̂iδ .

See Appendix C for a proof. Algorithm 1 provides the pseudo code of the mean-field policy evaluation step. Note that the

infinite sum
∑∞

t=0 is replaced with a finite sume
∑Tmax

t=0 , where Tmax is an input parameter. By increasing Tmax , the finite sum

can bemade arbitrarily close to the infinite sum (the infinite sum
∑∞

t=Tmax+1 can be easily upper-bounded). In this algorithm

the function pseudominKL evaluates (4).

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 75

3.4. Mean-field approximate Policy Improvement

The improvement phase of the policy iteration algorithm improves the current policy δ into a policy δ′ by applying for all

x ∈ X :

δ′(x) = arg max
a∈A

{
r(x, a) + γ

∑
x′∈X

p(x′|x, a)vδ(x
′)

}
.

It is guaranteed that vδ′(x) ≥ vδ(x), ∀x ∈ X after the improvement phase and that δ is optimal once vδ′(x)= vδ(x), ∀x∈X
[1].

We propose an approximate policy improvement step in order to reduce its complexity. To restrict the search space, we

limit the search for approximately optimal policies to local ones. This allows a reduction in space and time complexity. Using

the mean-field approximation, vδ(y) = ∑
i∈V v̂iδ(yN(i)) and the local properties of rewards and transition probabilities, the

exact maximisation can be replaced with the maximisation of the following expression:

δ′(x) = arg max
a∈A

⎧⎨⎩∑
i

ri(xN(i), ai) + γ
∑
yN(i)

(∏
j∈N(i)

pj(yj|xN(j), aj)v̂
i
δ(yN(i))

)⎫⎬⎭ .

Let us consider a particular node i. The terms which depend on ai are

ri(xN(i), ai) + γ
∑

k∈N−1(i)

∑
yN(k)

(∏
j∈N(k)

pj(yj|xN(j), aj)v̂
k
δ(yN(k))

)
.

Thus, even if δ is local, the resulting policy δ′ after improvement is no longer local. δ′
i is a function of all the variables

associated with the nodes in N2(N−1(i)) ∪ N(i) 4 because of the terms

pk

(
yN(k)|xN(N(k)), aN(k)

)
= ∏

j∈N(k)

pj(yj|xN(j), aj), ∀k ∈ N−1(i)

in the update formula. That is,

δ′(x) = arg max
a∈A

⎧⎨⎩∑
i

φi

(
xN2(N−1(i))∪N(i), aN(N−1(i))∪{i}

)⎫⎬⎭ .

Thismaximisation ishard toperformexactly and,more importantly, the resultingpolicy isno longer local. Inorder to compute

a local policy,we approximate all terms pk(yN(k)|xN(N(k)), aN(k))by terms p̂k(yN(k)|xN(i), ai). First,we adopt a parallel scheme,

in order to compute each component δ′
i of the updated policy. Then, the idea behind the approximate improvement phase

is again to use an approximation of each pk , which averages over undesirable variables in N2(N−1(i)) (those that are not in

N(i)). For a given k ∈ N−1(i) and j ∈ N(k), if j = i, pj

(
yj|xN(j), aj

)
is taken exactly. If j ∈ N(i) ∩ N(k), j �= i, pj

(
yj|xN(j), aj

)
is approximated by

p̂j(yj|xj, δj) =
∑

xN(j)\j pj(yj|xN(j), δj(xN(j)))

card(XN(j)\j)
,

where the function card counts the number of elements of a set. If j ∈ N(k) ∩ N(i), j �= i, the same transition probability is

approximated by

p̂j(yj|δj) =
∑

xN(j)
pj(yj|xN(j), δj(xN(j)))

card(Xj)
.

Finally, ∀k ∈ N−1(i), pk(yN(k)|xN(N(k)), aN(k)) is replaced with

p̂k(yN(k)|xN(i), ai) = pi(yi|xN(i), ai)

⎛⎝ ∏
j∈N(i)∩N(k),j �=i

p̂j(yj|xj, δj)
⎞⎠

⎛⎜⎝ ∏
j∈N(k)∩N(i),j �=i

p̂j(yj|δj)
⎞⎟⎠ . (5)

Proposition 3 (Complexity of Approximate Policy Improvement). The Approximate Policy Update step is of complexity

O(n2ανσ 2ν).

4 Where N−1(i) = {j, i ∈ N(j)} and N2(i) = N(N(i)).

Author's personal copy

76 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

Data : {G = (V, E), {pi(xti | xt−1
N(i), ai)}, {ri(xN(i), ai)}, {δoldi (xN(i))}, γ, Smax}

Result : {δnewi (xN(i))}
% Iterative and parallel updates of all δi ;
for step = 1 to step = Smax do

% Update of δi ;
for all nodes i, all states xN(i) do

% Approximation of pk(yN(k)|xN(N(k)), aN(k)) ;

for all k ∈ N−1(i) do
for all j ∈ N(k) do

if j ∈ N(k) ∩ N(i), j �= i then

Compute p̂j(yj|xj, δj) ;
end

if j ∈ N(k) ∩ N(i), j �= i then

Compute p̂j(yj|δj) ;
end

end

p̂k(yN(k)|xN(i), ai) = F(pi, {p̂j}, ai) ;
end

δ
temp
i (xN(i)) = arg maxai H(ri, v̂δ, {p̂k}, xN(i), ai) ;

end

if (δtemp = δold) then break else δold = δtemp ;

end

δnew = δtemp ;

Algorithm 2: Pseudo code for mean-field policy improvement.

See Appendix C for a proof. Algorithm 2 provides the pseudo code of the mean-field policy improvement step. Since API

algorithms are not guaranteed to converge in general (theymay cycle over policies), the number of updates is upper bounded

by Smax . In this way, termination of the algorithm is ensured. In the algorithm, function F evaluates (5) and function H is

defined as

H(ri, v̂δ, {p̂k}, xN(i), ai) = ri(xN(i), ai) + γ
∑

k∈N−1(i)

∑
yN(k)

(
p̂k(yN(k)|xN(i), ai)v̂

k
δ(yN(k))

)
.

3.5. Mean-field approximate Policy Iteration

Themean-field approximate policy iteration algorithm can now be defined by the alternation of the approximate evalua-

tion andupdate phases. Note that, as formost API algorithms, there is no guarantee that the improvement phase, limited here

to local policies, actually improves the current policy everywhere. A local policy dominating all local policies may not even

exist. The stopping criterion in the MF-API algorithm is the equality of two successive policies, with a maximum number of

iterations allowed, to avoid possibly infinite cycles over local policies.

Overall, theMF-API algorithm comeswith no theoretical guarantee on the performance of the computed policies, relative

to the optimal, global or local, policy of the GMDP. This is the classical drawback of mean-field methods, which are never-

theless largely and successfully used, due to their good empirical behavior. As shown in Appendix A, there is no hope to get

any performance guarantee relative to the global optimal policy: We can build pathological GMDPs instances for which the

optimal local policy performance is arbitrarily far from that of the optimal global policy. One question which remains open

is whether we can provide bounds on the quality of the policies computed by theMF-API algorithm, relative to optimal local

policies. 5 While this question has no answer yet, the experiments we performed on realistic problems (Section 5) show that

the MF-API approach performs well. For the considered problems, even though we could not compute the exact value of the

global optimal policy, we could compute an upper bound on this value, and we checked empirically, by Monte-Carlo simu-

lation, that the expected value of the MF-API policies remained close to this upper-bound, thus giving empirical evidence of

the performance of the algorithm.

5 Since theremay not exist a local policywhich dominates all other local policies in every starting states, the notion of optimalitywould be definedwith respect

to a single starting state.

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 77

Table 5

Local transition probabilities p(x′
i |xN(i), ai), for the problem of disease management in a crop field.

xi = 1 xi = 2

ai = 1

x′
i = 1 1 − P 0

x′
i = 2 P 1

ai = 2

x′
i = 1 1 q

x′
i = 2 0 1 − q

Table 6

Local rewards r(xi, ai), for the problem of disease management in a crop field.

ai = 1 ai = 2

xi = 1 r 0

xi = 2 r/2 0

4. Applying FMDP algorithms to GMDPs

The question we deal with in this section is the feasibility of designing FMDP-inspired exact and approximate solution

algorithms for GMDPs. There are two main families of algorithms for solving Factored MDPs6 :

• Exact or approximate approaches, based on dynamic programming algorithmsmanipulating factored representations of

value functions and policies, either as trees [2] or as Algebraic Decision Diagrams [3,4].
• Approximate Linear Programming approaches, based on the use of parameterised value functions in MDP solution algo-

rithms [5,17]. In this second family [18,9] have extended the approach to the case of factored action spaces.

In general, the usual solution methods for FMDPs fail for solving GMDPs because of their assumption of flat action space.

In the following, we first describe an exact solution approach for GMDPs, based on a Algebraic Decision Diagrams (ADD)

and implemented in the software SPUDD [3]. This approach is the state-of-the art method from the first family. We show

that this approach is only applicable to GMDPs of very small size (less than 10 nodes). We then describe a second approach,

proposed by Forsell and Sabbadin [9], based onApproximate Linear Programming (ALP). This second approach,which provides

approximate solution policies, is applicable to GMDP problems of very large size. In Section 5, we will propose an empirical

comparison of the ALP approach with the MF-API approach described in Section 3. Finally, in Section 6 we will specifically

discuss the multidimensional action space hypothesis.

4.1. Stochastic programming using decision diagrams

The first family of approaches we consider use concise tree-structured (or ADD-structured) representations of the tran-

sition and reward functions of the FMDP for computing more compact policies and value functions (these can still be of

exponential size, though). Structured policy iteration or structured value iteration algorithms [2] can be used to compute tree-

structured solutions of a FMDP. The SPUDD [3] and APPRICOD [4] approaches implement respectively the ADD exact and

approximate solution approaches. A limit of these approaches is that they handle only flat action space, while the action

space of a GMDP is multidimensional. However, it remains possible to apply SPUDD or APPRICOD to GMDPs by using, for

each action, a decision diagram description of the transitions and rewards. The SPUDD/APPRICOD representation grows

exponentially in the number of vertices, while the corresponding GMDP description is concise.

In order to evaluate this approach, we applied SPUDD to a simplified version of the disease management example, with

Ai = {1, 2} and Xi = {1, 2}, where xi = 1 means “uninfected" and xi = 2 means “infected". The corresponding local

transitions and rewards are expressed in Tables 5 and 6. They can be expressed in decision diagram form (Fig. 4).

Table 7 shows the size of the optimal (tree- and ADD-structured) policies computed by SPUDD for grids of size 2 × 1 to

3 × 3, as well as the corresponding computation times.

Note that for a grid problem of size 3 × 3, the action space size limit of SPUDD (256 actions) is exceeded. Even when

this limit is increased, the size of the computed decision trees exceeds the available memory after few iterations of the

algorithm.We therefore had to limit the action space to 256 actions (by arbitrarily fixing a1 = 1) to obtain a problemwhich

could be solved using SPUDD. So, clearly, the (exact) structured dynamic programming approach does not scale to the size

of problems we wish to tackle.

One could argue that approximate solutionmethods based on similar principles, such as theAPPRICODapproach [4] could

allow to solve larger problems, albeit approximately. This is only partially true, however. The APRICODD algorithm handles

ADD approximations of the value function of a factored MDP, within a value iteration algorithm. These ADD approximations

have a reasonable size, which allows the application of the approach toMDPs with factored state spaces. However, the value

6 Here, we only mention references to Factored MDPs solution methods, and deliberately omit multiagent resolution approaches developped for the close

framework of DEC-POMDPs (see [16] for a recent reference on this family of approaches).

Author's personal copy

78 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

Fig. 4. Transitions and rewards in decision diagram form for a vertex iwith three neighbours, j1, j2 and j3. P(k) is the probability that uninfected vertex i becomes

infected when it has k infected neighbours.

Table 7

Optimal ADD policy representation size and computation time for problems with up to 9 vertices.

Grid size 2 × 1 2 × 2 3 × 2 3 × 3

|Action tree| 5 17 73 521

|Action ADD| 4 13 47 205

|Value tree| 31 511 8191 524287

|Value ADD| 25 281 2407 36836

Time (in s) 0.03 0.71 58.4 262.01

iteration algorithm updates involve a maximum operation over all elementary actions. In the GMDP framework, the action

space is factored, meaning that the set A has exponential size (in n). Thus, the time complexity of APPRICOD would remain

exponential in n, even though its space complexity could be kept polynomial, at the price of an approximation of the optimal

policy. We therefore turned to a second approach, based on linear programming.

4.2. An approximate linear programming approach for GMDPs

In theALP approach, the optimal value function of the problem is approximated by a linear combination of basis functions,

each of which is of smaller scope than the optimal value function. The manipulation of a value function has thereby been

transformed into the problem of computing weights of the different basis functions. Guestrin et al. [5] built on this idea

and presented two approximate solution algorithms: one algorithm is based on linear programming and the other is based

on dynamic programming. However, the running time of the algorithms and the quality of the computed solution are

dependent on the basis functions, which are fixed and predefined by the designer. Poupart et al. [19] proposed an approach

that automatically selects and modifies the basis functions. These algorithms, however, mainly focus on exploiting the

factorisation of the state space of the MDP and do not consider the case where the action space is factored. Some algorithms

based on the ALP approach have been suggested for the computation of policies for collaborative multiagent MDPs, in which

the action space is also factored. Guestrin et al. [20] devised amodel-dependent ALP approach, based on the same principles

as [5] for computing approximate policies. The number and structure of the basis functions are selected by the user, and the

solution and running time of the algorithm is thereby dependent on this selection. de Farias and Van Roy [17] proposed a

constraint-sampling approach for handling problems with a large action space. However, they noted that for the algorithm

to perform efficiently, it might need quite a large number of basis functions.

Forsell and Sabbadin [9] have shown how the structure of GMDPs can be used to design an efficient Approximate Linear

Programming (ALP) algorithm. The model is inspired from and very close to that of [20,5], the GMDP structure determining

the choice of the features of the ALP model. The chosen approach approximates the value function as a sum of n local value

functions, one for each node of the graph G. The local value function vi depends on xi only, when it depends on xN(i) in the

MF-API approach. Each local value function is computed independently by solving a LP system of small size. In the following

section we briefly describe the approach adopted by Forsell and Sabbadin [9]. In the experimental study section, it will be

compared to the mean-field approach.

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 79

4.2.1. Parameterised value functions

The Approximate Linear Programming (ALP) approach [6,17] uses a parametrisation vw of the value function to compute

an approximation of the value function of the optimal policy vδ∗ . The underlying idea is to define vw as a linear combination

of a set of predefined basis functions H = {h1, . . . , hk}:

vw(x) =
k∑

i=1

wihi(x), ∀x ∈ X ,

where hi : X → R and wi ∈ R. Solving a MDP can be seen as the problem of selecting the value of the parameters

w = (w1, . . . ,wk) such that the parameterised value function vw approximates the optimal value function as closely as

possible:

Find w∗ = arg min
w∈W

||vδ∗ − vw||∞,

where w∗ = (w∗
1 , . . . ,w

∗
k),W = Rk . Now, let εw denote the worst-case distance in quality between vδ∗ and vw:

εw = ||vδ∗ − vw||∞ = max
x∈X |vδ∗(x) − vw(x)|.

Solving a MDP comes down to the problem of selecting the value of w, such that εw is as small as possible. However, as vδ∗
is unknown, it is impossible to computew∗ in this way without first solving the MDP. Instead, an upper bound of εw can be

used [21].

εw = max
x∈X |vδ∗(x) − vw(x)| ≤ β = 2γ

1 − γ

(
max
x∈X |vw(x) − B(vw)(x)|

)
.

where B is the Bellman operator, defined as:

B(v)(x) = max
a∈A

{
r(x, a) + γ

∑
x′∈X

p(x′|x, a)v(x′)
}
, ∀x ∈ X , ∀v : X → R.

The problem of selecting the value of w that minimises εw can then be solved approximately by solving the following

non-linear programming problem (NLP):

min ε

s.t. ε ≥ vw(x) − B(vw)(x) ∀x ∈ X
ε ≥ B(vw)(x) − vw(x) ∀x ∈ X
w = (w1, . . . ,wk) free, εfree.

(6)

4.2.2. ALP model in the GMDP case

In [9], the ALP approach was applied in order to provide approximate solution policies for GMDPs. The method is based

on the following choice of basis functions: H = {h11, . . . , hn|Xn|}, where:

hij(xi) =
⎧⎨⎩ 1, if xi = j,

0, otherwise,

where i = 1, . . . , n, and j = 1, . . . , |Xi|. There are thus
∑n

i=1 |Xi| basis functions.
With this choice of basis functions, the Bellman operator can be decomposed as follows:

B(vw)(x) =
n∑

i=1

Bi(viw)(xN(i)), ∀x ∈ X , where

Bi(viw)(xN(i)) = max
ai∈Ai

{
ri(xN(i), ai) + γ

∑
x′i∈Xi

pi(x
′
i |xN(i), ai)v

i
w(x′

i)
}
, ∀xN(i) ∈ XN(i).

However, even with this choice, problem (6) remains non-linear and still has a number of constraints which is exponen-

tial in the number of variables. Using two further relaxations enables to compute approximate local policies by solving

n independent linear programs, one for each vertex, with |Xi| + 1 variables and |Ai| × |XN(i)| constraints. The author is

referred to [9] for more details about the method. Note that the approximation is based on the fact that basis functions hij

Author's personal copy

80 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

have scopes of size one. The approach of [9] could not be applied with basis functions with larger scope. In particular, if

it is theoretically possible to approximate the value function using features hi(xN(i)) and effectively build this approxima-

tion, the computation of a greedy policy with respect to this value function would be difficult (and it would certainly be

global).

Finally, note also that even though the ALP approach comes with an upper bound on the error on the value function vw ,

this bound is in general not very informative. For instance, in the upper bound β , note that 2γ /(1 − γ) is high when γ is

close to 1 and since computing exactly maxx∈X |vw(x) − B(vw)(x)| is too hard, this expression is upper-bounded in [9] by

a sum of local upper bounds
∑n

i=1 maxxN(i)
|viw(xN(i)) − Bi(viw)(xN(i))|. In most case, this upper bound is really loose, and

even sometimes trivial.

5. Experimental comparison of the MF-API and ALP approaches

In this section, we present the performance of the MF-API and ALP algorithms on the two examples described in Section

2.2: forest management under risk of wind damage and disease management in crop fields. We compare their performance

regarding three criteria:

(i) Running time of the algorithms for problems consisting of hundreds of variables.

(ii) Values (estimated by Monte-Carlo, MC) of the policies δAPI and δALP returned by the MF-API and ALP algorithms:

vMC(δAPI) and vMC(δALP).
(iii) Quality of the approximations of the value functions of δAPI and δALP, provided by the algorithms: ṽMF−API and ṽALP.

These are respectively compared to the MC estimations, vMC(δAPI) and vMC(δALP).

Monte-Carlo estimations were computed as the average over 40 starting points, where the value for a specific start point

was averaged over a hundred 44-step runs. The start points were randomly generated without repetition, together with a

constraint of even distribution in order to avoid over-representation of a specific state of the nodes. In all experiments, a

periodic discount rate γ = 0.9 was used. The algorithms were implemented in Scilab and the tests were run on an Intel

Pentium 3.6 GHz machine with 1 GB of internal memory.

5.1. Benchmark of GMDP problems

In order to explore the influence of the different characteristics of forest and disease management problems, the perfor-

mances were tested for problems of different sizes, different graph structures and different short-distance contamination

probabilities (for the disease management problem), as described below.

5.1.1. Forest management under risk of wind damage

The graph topology considered for the forest management problem was that of Fig. 3, with an increasing number of

stands (up to 700). For each test, an upper bound of the value of the optimal policy was computed by replacing the ac-

tual protection provided by neighbouring stands with a fixed protection effect corresponding to the maximal protection

that neighbouring stands could provide. The resulting problem is fully decomposable and an exact solution could be com-

puted, whose value function overestimates that of the solution of the original one. This upper bound was thus termed

Utopic.

5.1.2. Disease management in crop fields

Here, we considered a constant “wheel” graph topology: an even number of nodes distributed on a circle. Each node

formed part of a group of four neighbours: itself, the two closest nodes on the circle and the node diametrically opposed

to it. An example of this structure for eight nodes is shown in Fig. 5. For this problem, the utopic upper bound on the

value of the optimal policy was defined as the expected value when short-distance contamination is not possible (p = 0).
This, again, leads to a fully decomposable problem (which is thus easily solvable) and whose solution overestimates that

of the original problem. The parameters of the GMDP model for the disease management problem were set as follows:

ε = 0.01, p = 0.2, q = 0.9, r = 100, and we solved it for an increasing number of nodes (up to 1600 nodes). We

then considered a graph with sixteen nodes and we tested the influence of the probability of short-distance contamination

(parameter p) on the performances. This parameter is particularly worthy of study as it is strongly linked to the capacity for

a disease to spread across the whole area.

Finally, in order to evaluate the influence of the graph connectivity, we considered an initial wheel graph with sixteen

nodes and a neighbourhood of size three for each node (each node had three neighbours: itself and the two closest nodes

on the circle), and then applied a sequential procedure to build graphs with larger neighbourhood size. The graph with

neighbourhood size ν was obtained from the graph with neighbourhood size ν − 1 by adding edges between randomly

selected nodes. We considered increasing connectivity up to ν = 5. The parameters of the model were set to ε = 0.01, p =
0.2, q = 0.9, r = 100.

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 81

Fig. 5. Disease management problem: graph with wheel structure used to test the performance of ALP and MF-API for an increasing number of nodes.

5.2. Results of the experimental comparison

5.2.1. Forest management problems

We observed that the forest management problem was close to being decomposable and both MF-API and ALP policies

had empirical values close to that of the utopic policy (Fig. 6(b)). However, this does not make the problem “easy”, since

random and greedy policies perform rather poorly in comparison (Fig. 6(a)). As expected, the running time for ALP increased

linearly with the number of stands, while it increased polynomially for MF-API (Fig. 6(c)). A third-order polynomial function

was fitted to the running time of MF-API: time = 36.2258+1.1831n+0.0727n2 +0.000007n3. The third-order coefficient
was considerably smaller than the others. We also observed that the approximation of the value function computed using

MF-API was considerably closer to the value of the optimal policy than that computed using ALP (Fig. 6(d)).

5.2.2. Disease management problems

For the first set of parameters of the disease management problem and the graph of Fig. 5, the conclusion was very

similar to that of the forest management comparison: the quality of the policies returned by both methods where close to

the “utopic” value, very close to each other and far better than that of random or greedy policies (Fig. 7 (a) and (b)). Once

again, ALP ran in linear time, and MF-API in polynomial time: time = 2.6980 + 0.7700n + 0.0152n2 + 0.0n3 (Fig. 7 (c)).

Again, this difference in time complexity corresponds to a difference in quality of the approximation of the expected values of

the solution policies: the relative difference between ṽMF−API and vMC(δAPI)was less than 5%, while it reached 60% between

ṽALP and vMC(δALP) (Fig. 7 (d)).

5.2.3. Influence of connectivity in the disease management problem

Graphs of increasing connectivity were generated (10 for each value of ν), for which policies were computed and their

average expected values compared empirically (Fig. 8 (a)). Once again, MF-API and ALP policies were of similar quality

and outperformed the greedy and random ones. The empirical value decreased when the connectivity increased, which is

explained by the fact that a higher connectivity results in faster propagation of the disease and greater damages. Of course,

this fact is not captured by the “utopic” approximation, which neglects propagation (Fig. 8(a)). We observed a non-linearity

in the variation of the running time of ALP and MF-API with respect to the neighbourhood size (Fig. 8 (b)), coherent with

the theoretical “exponential” increase (with ν) in time complexity. We also observed that the MF-API approximation of the

value function, which was already good, increased with the connectivity of the graph (Fig. 8 (c)). This is due to the fact that

the mean-field approximation of a spatial process is better when the graph is well connected.

5.2.4. Influence of the short-distance contamination parameter in the disease management problem

In order to check the variability of the results, we generated 50 graphs for a configuration with ν = 4 and observed

a variation in the average expected values of the policies of less than 1% (Fig. 9 (a)). More importantly, we observed a

divergence in the value (evaluated empirically by Monte-Carlo simulations) of the policies provided by ALP and by MF-API

when p increases (Fig. 9 (b)). Indeed,when p = 0 both algorithms compute exact policies. Then,when p starts to increase, the

increasing spread of the disease makes the value of the optimal policy decrease, and of course MF-API and ALP policy values

move further from the “utopic” value which increasingly overestimates the optimal policy value. There is then a threshold,

around p = 0.5, where ALP performance continues to decrease while the MF-API performance starts to increase, becoming

very close to optimal as p approaches 1. This behaviour of the mean field approximation is well known for uncontrolled

stochastic processes: a phase transition is observed and, when close to the critical value the mean-field approximation is of

poor quality while for low or high values of the parameter p the MF approximation improves.

Author's personal copy

82 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

Fig. 6. Forest management problem: running times and expected values of the local policies for increasing sizes of forest. (a) Expected values of the computed

policies and utopic upper bound. (b) Difference (in percentage) between vMC(δALP) or v
MC(δAPI) and the utopic upper bound. (c) Running times of ALP andMF-API.

(d) Difference (in percentage) between ṽALP and vMC(δALP) or ṽ
MF−API and vMC(δAPI).

5.3. Comparison with a naive GMDP approximation by a system of independent MDPs

Throughout this paper,wehave argued that eventhough theGMDPMean Field approximate solutionmethoddecomposes

the GMDP dynamics into independent unidimensionalMarkov chains, neighbourhood influencewas retained, resulting into

non-stationnarity of the Markov chains. In this section we propose a comparison with a naive approximation of the original

GMDP problem by a system of n independent MDP where the transition probabilities pi(x
′
i |xN(i), ai) and reward functions

ri(xN(i), ai) are replaced with their simplest non spatial approximation,

p̂i(x
′
i |xi, ai) = 1

|XN(i)\i|
∑
xN(i)\i

pi(x
′
i |xN(i), ai) and r̂i(xi, ai) = 1

|XN(i)\i|
∑
xN(i)\i

ri(xN(i), ai).

We computed the optimal policy (namedNaive Non Spatial policy, δNNS) corresponding to the union of the n optimal policies

for each non spatial MDP problem and compared its (estimated value) to that of the MF-API policy δAPI . We performed this

comparison on the diseasemanagement problem, for the graph structure of Fig. 5with same parameters settings than above.

When changing the value of the short-distance contamination parameter p from 0.2 to 0.6, i.e. from a problem with low to

high spatial structure, the results confirm the superiority of theMF-API policy (see Fig. 10). This study confirms the interest of

theMF approach, as a trade-off between a fully spatial problem of size n (which resolution is intractable) and n independent

problems (which completely neglect spatial dependencies).

6. From flat to multidimensional action space

Throughout this article,wehaveemphasized the fact that, unlike existing factoredMDPapproaches, theGMDP framework

together with the mean-field solution method, is able to handle multidimensional action spaces in Factored MDPs. We now

come back to this point in order to point out where the GMDP framework and algorithms can be improved.

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 83

Fig. 7. Diseasemanagement problem: running times and expected values of the local policies for increasing number of fields. (a) Expected values of the computed

policies and utopic upper bound. (b) Difference (in percentage) between vMC(δALP) or v
MC(δAPI) and the utopic upper bound. (c) Running times of ALP andMF-API.

(d) Difference (in percentage) between ṽALP and vMC(δALP) or ṽ
MF−API and vMC(δAPI).

As far as the action space is concerned, we can distinguish three different cases, which we can illustrate on the famous

SysAdmin problem [5], where actions correspond to rebooting any of n computers which can become “faulty” (depending

on the status of neighbour computers, in the network):

P1 In its original version [5], only one computer at a time can be rebooted, which amounts to define a flat action space of

size |A| = n.

P2 In the GMDP framework, we would model the problem (certainly in a more realistic way if the time step considered is

not too small) where we can reboot any subset of computers, thus leading to an action space A = {0, 1}n of size 2n.

P3 The intermediate case is the one in which only k (k fixed) out of n computers at most can be rebooted at each time step,

(for example because time constraints are involved).

These problems are of different nature. Problem P1 cannot be modelled in the GMDP framework, since the GMDP frame-

work assumes independent action choices for all machines. On the other hand, even though modelling problem P2 in the

factored MDP framework would be possible, FMDP solution methods would be impractical, as shown in Section 4. Finally,

the intermediate case P3, with the global constraint that exactly k ≤ nmachines can be rebooted, can neither be dealt with

practically in the framework of [5], when k becomes large, nor be modelled within the current GMDP framework: even

though the action space has smaller size (|A| = Ck
n) than in the independent case (|A| = 2n), the global constraint makes

the local policies interdependent. We would have to consider only local policies which allow to satisfy the global constraint

for all possible states of the world. The MF approximate policy improvement phase we suggest does not allow to compute

policies satisfying these requirements. On the other hand, the MF approximate policy evaluation phase would not have to

be modified to adapt to this case.

Author's personal copy

84 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

Fig. 8. Disease management problem: running times and expected values of the local policies for increasing connectivity. (a) Expected values of the computed

policies and utopic upper bound. (b) Running times of ALP and MF-API. (c) Difference (in percentage) between ṽALP and vMC(δALP) or ṽ
MF−API and vMC(δAPI).

Fig. 9. Disease management problem: (a) Variability in the expected values of the local policy solutions of ALP and MF-API, for randomly generated graphs with

a neighbourhood size of three. (b) Influence of the probability of short-distance contamination (p).

To conclude, available approximate solution algorithms for FMDPs enable only to deal with problems of type P1. The

contribution of the GMDP framework proposed in this article is to provide an approximate solution method for problems

of type P2. The challenge is now to propose methods which can solve problems of type P3. In the GMDP framework, the

deadlock is the policy update step. However, the mean-field evaluation can be applied to any local policy, in particular those

satisfying global constraints. Thus, the MF principle could be extended to be applied to problem P3.

7. Conclusion and further work

In this article, we have presented a graph-based Markov Decision Process (GMDP) framework for the control of spatio-

temporal processes, which forms a special case of factored MDP. Optimal policies can only be computed for GMDPs of very

Author's personal copy

R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86 85

Fig. 10. Diseasemanagement problem: relative error ε between δMF−API and δNNS . ε = 100∗ vMC(δMF−API)−vMC(δNNS)
δNNS

for low and high short-distance contamination

rate.

small size. Therefore, we have proposed an approximate solution algorithm for larger problems, based on the mean-field

approximationof a structuredMarkovprocess. Theperformanceof theproposedalgorithmwasevaluatedon twoagricultural

problems andwas compared to anApproximate Linear Programming algorithmadapted to theGMDP framework. Experiments

highlight the efficiency of the algorithm for solving large-scale GMDPs, as well as its ability to compute close-to-optimal

policies for these problems. While this algorithm takes quadratic time to run when the ALP algorithm takes linear time in

practice, this is balanced by a far better estimation of the value function of the returned policy. Furthermore, even though in

most problems the policies returned by the ALP andMF-API approaches are of similar quality, wewere able to find situations

where the policies returned by theMF-API approach become significantly better. The work presented here has been applied

to two different settings. First, in forestry where [13] considered a real forest estate in southern Sweden, and in plant disease

management where [12] studied the case of phoma stem canker disease propagation in canola crops.

Among the hypotheses that were made in this work, the more questionable is perhaps that we assumed that there were

no constraints on the admissible set of factored actions. It would certainly be an important gain if it were possible to extend

the GMDP framework so as to be able to handle constraints on the action space. Note that the MF approximation applies to

evaluate policies satisfying constraints over the action set. The policy improvement phase is the crucial difficulty that must

be tackled in order to extend our approach.

Othermethodological developmentsmay concern the construction of solution algorithms for GMDPs based on Reinforce-

ment Learning (RL) [7]. The advantage of RL algorithms is that they do not require explicit knowledge of the transitionmodel,

but can do with a simulation of it. They can thereby be used together with the large existing body of agricultural or envi-

ronmental simulation-based models, for example [22,23]. In [24] we showed how a set of simple RL algorithms, suggested

for solving factored MDPs and collaborative multiagent MDPs, could be adapted for solving a GMDP. This preliminary work

seemed promising but needs further work in order to be evaluated.

Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ijar.2011.09.007.

References

[1] M.L. Puterman, Markov Decision Processes, JohnWiley and Sons, New York, 1994, pp.

[2] C. Boutilier, R. Dearden, M. Goldszmidt, Stochastic dynamic programming with factored representations, Artificial Intelligence 121 (1) (2000) 49–107.
[3] J. Hoey, R. St-Aubin, A. Hu, C. Boutilier, SPUDD: Stochastic planning using decision diagrams, in: Proceedings of UAI’99, Stockholm, Sweden, 1999.

[4] R. St-Aubin, J. Hoey, A. Hu, C. Boutilier, APRICODD: Approximate policy construction using decision diagrams, in: Proceedings of NIPS’00, Denver, CO, 2000.

[5] C. Guestrin, D. Koller, R. Parr, S. Venkataraman, Efficient solution algorithms for factoredMDPs, Journal of Artificial Intelligence Research 19 (2003) 399–468.
[6] D.-P. de Farias, B. Van Roy, The linear programming approach to approximate dynamic programming, Operations Research 51 (6) (2003) 850–865.

[7] D.P. Bertsekas, J.N. Tsitsiklis, Neuro-Dynamic Programming, Massachussetts, Athena Scientific, Belmont, 1996.
[8] M. Opper, D. Saad (Eds.), Advanced Mean-Field Methods: Theory and Practice, Massachussetts Institute of Technology, 2001.

[9] N. Forsell, R. Sabbadin, Approximate linear-programming algorithms for graph-basedMarkov decision processes, in: Proceedings of ECAI06, Riva Del Garda,
Italy, 2006, pp. 590–594.

[10] N.L. Zhang, R. Qi, D. Poole, A computational theory of decision networks, International Journal of Approximate Reasoning 11 (2) (1994) 83–158.

[11] R.K. Chornei, H. Daduna, P.S. Knopov, Control of Spatially Structured Random Processes and Random Fields with Applications, Springer, 2006.
[12] N. Peyrard, R. Sabbadin, E. Lô-Pelzer, J.N. Aubertot, A graph-based Markov decision process framework for optimising integrated management of diseases

in agriculture, in: Proceedings of MODSIM’07, Christchurch, New-Zealand, 2007, pp. 2175–2181.
[13] N. Forsell, L.O. Eriksson, F. Garcia, R. Sabbadin, P. Wikström, Management of the risk of wind damage in forestry: a graph-based markov decision process

approach, Annals of Operations Research, Published online: 09 February 2009, 2009.
[14] N. Peyrard, R. Sabbadin, Mean field approximation of the policy iteration algorithm for graph-based Markov decision processes, in: Proceedings of ECAI06,

Riva Del Garda, Italy, 2006, pp. 595–599.

[15] E. Altman, Constrained Markov Decision Processes, Chapman & Hall/CRC, 1999.

Author's personal copy

86 R. Sabbadin et al. / International Journal of Approximate Reasoning 53 (2012) 66–86

[16] Y.Xiang, F.Hanshar, Comparisonof tightlyand loosely coupleddecisionparadigms inmultiagentexpedition, International JournalofApproximateReasoning
51 (2010) 600–613.

[17] D.P. de Farias, B. Van Roy, On constraint sampling in the linear programming approach to approximate dynamic programming, Mathematics of Operations
Research 29 (3) (2004) 462–478.

[18] B. Kveton, M. Hauskrecht, C. Guestrin, Solving factored MDPs with hybrid state and action variables, Journal of Artificial Intelligence Research (27) (2006)

153–201.
[19] P. Poupart, C. Boutilier, R. Patrascu, D. Schuurmans, Piecewise linear value function approximation for factored MDPs, in: Proceedings of AAAI’02, 2002, pp.

292–299.
[20] C. Guestrin, D. Koller, R. Parr, Multiagent planning with factored MDPs, in: Proceedings of NIPS’01, 2001, pp. 1523–1530.

[21] R.J. Williams, L.C.I. Baird, Tight performance bounds on greedy policies based on imperfect value functions, Technical report, College of Computer Science,
Northeastern University, Boston, MA, 1993.

[22] K. Blennow, O. Sallnäs, Winda – a system of models for assessing the probability of wind damage to forest stands within a landscape, Ecologival Modelling

175 (2004) 87–99.
[23] M.A. Finney, Modeling the spread and behavior of prescribed natural fires, in: Proceedings of the 12th Conference on Fire and Forest Meterology, 1994, pp.

138–143.
[24] N. Forsell, F. Garcia, R. Sabbadin, Reinforcement learning for spatial processes, in: R.S. Anderssen, R.D. Braddock, L.T.H. Newham (Eds.), Proceedings of

MODSIM’09, July 2009, pp. 755–761.

