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We investigate the prediction consistency and support recovery of L2 Boosting. 

We extend these results to a high dimensional statistical framework. 

We investigate the behaviour of such algorithms in a multivariate settings. 
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Abstract

This paper focuses on the analysis of L2-Boosting algorithms for linear regressions. Con-
sistency results were obtained for high-dimensional models when the number of predictors
grows exponentially with the sample size n. We propose a new result for Weak Greedy Al-
gorithms that deals with the support recovery, provided that reasonable assumptions on the
regression parameter are fulfilled. For the sake of clarity, we also present some results in the
deterministic case. Finally, we propose two multi-task versions of L2-Boosting for which we
can extend these stability results, provided that assumptions on the restricted isometry of
the representation and on the sparsity of the model are fulfilled. The interest of these two
algorithms is demonstrated on various datasets.

Keywords Boosting, regression, sparsity, high-dimension.

1 Introduction

Context of our work This paper presents a study of Weak Greedy Algorithms (WGA) and
statistical L2-Boosting procedures derived from these WGA. These methods are dedicated to the
approximation or estimation of several parameters that encode the relationships between input
variables X and any response Y through a noisy linear representation Y = f(X) + ε, where
ε models the amount of noise in the data. We assume that f may be linearly spanned on a
predefined dictionary of functions (gj)j=1...p:

f(x) =
p∑

j=1

ajgj(x). (1)

We aim at recovering unknown coefficients (aj)j=1...p

when one n-sample (Xk, Yk)k=1...n is observed in the high-dimensional paradigm. Moreover,
we are also interested in extending the boosting methods to the multi-task situation described
in [HTF09]: Y is described by m coordinates Y = (Y 1, . . . , Y m), and each one is modelled by
a linear relationship Y i = f i(X) + εi. These relationships are now parametrised through the
family of unknown coefficients (ai,j)1≤i≤m,1≤j≤p. In both univariate or multivariate situations,
we are primarily interested in the recovery of the structure (i.e. non-zero elements) of the matrix
A = (ai,j)1≤i≤m,1≤j≤p, when a limited amount of observations n is available compared to the
large dimension p of the feature space. In brief, the goal is to identify significant relationships
between variables X and Y . We formulate this paradigm as a feature selection problem: we seek
relevant elements of the dictionary (gj(X))j=1...p that explain (in)dependencies in a measured
dataset.
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Feature selection algorithms can be split into three large families: exhaustive subset ex-
ploration, subspace methods, and forward algorithms with shrinkage. The exhaustive search
suffers from an obvious hard combinatorial problem (see [Hoc83]), and subspace methods such as
[Gad08] are generally time-consuming. In contrast, forward algorithms are fast, and shrinkage of
greedy algorithms aims to reduce overfitting in stepwise subset selection (see [HTF09]). However,
as pointed out by [ST07], collinearities may confuse greedy stepwise algorithms and subsequent
estimates, which is not the case for the two other families of methods. Another main difficulty in
our setting is that we often cope with high-dimensional situations where thousands of variables
can be measured and where, at most, only a few hundred measures are manageable. For example,
this is the case when dealing with biological network reconstruction, a problem that can be cast
in a multivariate variable selection framework to decipher which regulatory relationships between
entities actually dictate the evolution of the system [VVA+11, OM12]. Several strategies were
proposed to circumvent these hindrances in a statistical framework. Among them, in addition to
a control on the isometry effect of the matrix X, the leading assumption of the sparsity of the
solution A leads to satisfactory estimations. All the more, it is a quite reasonable hypothesis in
terms of the nature of some practical problems. We clarify this notion of sparsity and give bounds
for the applicability of our results. Note that Wainwright [Wai09] and Verzelen [Ver12b] estab-
lished the limit of the statistical estimation feasibility of latent structures in random matrices
with Gaussian noise and Gaussian Graphical Model frameworks, respectively.

Related works Among the large number of recent advances on linear regression within a
sparse univariate setting, we focused our point of view and investigate the use of Weak Greedy
Algorithms for estimating regression parameters of Equation (1). Since the pioneering works
of Schapire [Sch90] and Schapire and Freund [SF96], there has been an abundant literature on
Boosting algorithms (as an example, see [BY10] for a review). Friedman [FHT00] gave a statis-
tical view of Boosting and related it to the maximisation of the likelihood in a logistic regression
scenario (see [Rid99]). Subsequent papers also proposed algorithmic extensions (e.g., a func-
tional gradient descent algorithm with L2 loss function, [BY03]). For prediction or classification
purposes, boosting techniques were shown to be particularly suited to large dataset problems.
Indeed, just like the Lasso [Tib96] and the Dantzig Selector [CT07], which are two classical meth-
ods devoted to solving regression problems, Boosting uses variable selection, local optimisation
and shrinkage. Even though Lasso, Dantzig and Elastic net ([ZH05]) estimators are inspired by
penalised M-estimator methods and appear to be different from the greedy approach, like boost-
ing methods, it is worthwhile to observe that, from an algorithmic point of view, these methods
are very similar in terms of their practical implementation. Their behaviour is stepwise and
based on correlation computed on the predicted residuals. We refer to [MRY07] for an extended
comparison of such algorithms.

In a multivariate setting, some authors such as [LPvdGT11] or [OWJ11] use the geometric
structure of an L1 ball derived from the Lasso approach . Others adopt a model selection strategy
(see [SAB11]). Some authors also propose to use greedy algorithms such as Orthogonal Matching
Pursuit developed in ([ER11]) or Basis Pursuit ([GN06]). More recently, due to their attractive
computational properties and to their ability to deal with high-dimensional predictors, Boosting
algorithms have been adapted and applied to bioinformatics for microarray data analysis as well
as for gene network inference ([Büh06] and [ADH09]).

Organisation of the paper The works of [Tem00] and [TZ11] provide estimates of the rate of
the approximation of a function by means of greedy algorithms, which inspired our present work.
Section 2 is dedicated to Weak Greedy Algorithms. We first recall some key results needed for
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our purpose. Section 2.1 may be omitted by readers familiar with such algorithms. In Section
2.2, we then provide a description of the behaviour of the L2-Boosting algorithm in reasonable
noisy situations and in Section 2.3, we obtain a new result on support recovery. In Section 3, we
describe two new extensions of this algorithm, referred to as Boost-Boost algorithms, dedicated
to the multi-task regression problem. We also establish consistency results under some mild
sparsity and isometry conditions. Section 4 is dedicated to a comparison of the performances
of the Boosting methodology we propose with several approaches (Bootstrap Lasso [Bac08],
Random Forests [Bre01] and remMap [PZB+10] on several simulated datasets. The features
of these datasets allow us to conclude that the two new Boosting algorithms are competitive
with other state-of-the art methods, even when the theoretical assumptions of our results are
challenged. For the sake of clarity, driving components of the proofs are given in the main text,
whereas detailed proofs of theoretical results are presented in the Appendix of the paper.

2 Greedy algorithms

In this section, we describe some essential and useful results on greedy algorithms that build
approximations of any functional data f by stepwise iterations. In the deterministic case (i.e.,
noiseless setting), we will refer to ’approximations’ of f . In the noisy case, these approximations
of f will be designated as ’sequential estimators’. Results on Weak Greedy Algorithms in this
section are derived from those of Temlyakov [Tem00] and adapted to our particular setting. We
slightly enrich the presentation by adding some supplementary shrinkage parameters, which offers
additional flexibility in the noisy setting. It will in fact be necessary to understand the behaviour
of the WGA with shrinkage to show the statistical consistency of the Boosting method.

2.1 A review of the Weak Greedy Algorithm (WGA)

Let H be a Hilbert space and ‖.‖ denote its associated norm, which is derived from the inner
product 〈, 〉 on H. We define a dictionary as a (finite) subset D = (g1, . . . , gp) of H, which
satisfies:

∀gi ∈ D, ‖gi‖ = 1 and SpanD = H.

Greedy algorithms generate iterative approximations of any f ∈ H, using a linear combination
of elements of D. Consistent with the notations of [Tem00], let Gk(f) (as opposed to Rk(f))
denote the approximation of f (as opposed to the residual) at step k of the algorithm. These
quantities are linked through the following equation:

Rk(f) = f −Gk(f).

At step k, we select an element ϕk ∈ D, which provides a sufficient amount of information
on residual Rk−1(f). The first shrinkage parameter ν stands for a tolerance towards the optimal
correlation between the current residual and any dictionary element. It offers some flexibility
in the choice of the new element plugged into the model. Though the elements ϕk selected by
(2) along the algorithm may not be uniquely defined, the convergence of the algorithm is still
guaranteed by our next results. The second shrinkage parameter γ is the standard step-length
parameter of the Boosting algorithm. It avoids a binary add-on, and actually smoothly inserts the
new predictor into the approximation of f . Refinements of WGA, including an adaptive choice
of ν or γ with the iteration k, or a barycentre average between Gk−1(f) and 〈Rk−1(f), ϕk〉ϕk,
may improve the algorithm convergence rate. However, we decided to only consider the simplest
version of WGA, because these improvements generally disappear in the noisy framework from
a theoretical point of view (see [Büh06]).
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Algorithm 1 Weak Greedy Algorithm (WGA)
Require: function f , (ν, γ) ∈ (0, 1]2 (shrinkage parameters), kup (number of iterations.)

Initialisation: G0(f) = 0 and R0(f) = f .
for k = 1 to kup do

Step 1 Select ϕk in D such that:

|〈ϕk, Rk−1(f)〉| ≥ ν max
g∈D

| 〈g,Rk−1(f)〉| , (2)

Step 2 Compute the current approximation and residual:

Gk(f) = Gk−1(f) + γ〈Rk−1(f), ϕk〉ϕk and Rk(f) = Rk−1(f)− γ〈Rk−1(f), ϕk〉ϕk. (3)

end for

Following the arguments developed in [Tem00], we can extend their results and obtain a
polynomial approximation rate:

Theorem 2.1 (Temlyakov, 2000) Let B > 0 and assume that f ∈ A(D, B), where

A(D, B) =



f =

p∑

j=1

ajgj , with
p∑

j=1

|aj | ≤ B



 ,

then, for a suitable constant CB that only depends on B:

‖Rk(f)‖ ≤ CB(1 + ν2γ(2− γ)k)−
ν(2−γ)

2(2+ν(2−γ)) .

2.2 Stability of the Boosting algorithm in the noisy regression framework

This section aims at extending the previous results to several noisy situations. We present a noisy
version of WGA, and we clarify the consistency result of [Büh06] by careful considerations on
the empirical residuals instead of the theoretical ones (which are in fact unavailable; see Remark
1).

2.2.1 Noisy Boosting algorithm

We consider an unknown f ∈ H, and we observe some i.i.d. real random variables (Xi, Yi)i={1...n},
with arbitrary distributions. We cast the following regression model on the dictionary D:

∀i = 1 . . . n, Yi = f(Xi) + εi, where f =
pn∑

j=1

ajgj . (4)

The Hilbert space, L2(P ) := {f, ‖f‖2 =
∫
f2(x)dP (x) <∞}, is endowed with the inner product

〈f, g〉 =
∫
fT (x)g(x)dP (x), where P is the unknown law of the random variables X. Let us

define the empirical inner product 〈, 〉(n) as:

∀(h1, h2) ∈ H, 〈h1, h2〉(n) :=
1
n

n∑

i=1

h1(Xi)h2(Xi) and ‖h1‖2(n) :=
1
n

n∑

i=1

h1(Xi)2.

The empirical WGA is analogous to the coupled Equations (2) and (3), replacing 〈, 〉 by the
empirical inner product 〈, 〉(n).
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Algorithm 2 Noisy Weak Greedy Algorithm
Require: Observations (Xi, Yi)i={1...n}, γ ∈ (0, 1] (shrinkage parameter), kup (number of itera-

tions).
Initialisation: Ĝ0(f) = 0.
for k = 1 to kup do

Step 1: Select ϕk ∈ D such that:

|〈Y − Ĝk−1(f), ϕk〉(n)| = max
1≤j≤pn

|〈Y − Ĝk−1(f), gj〉(n)|. (5)

Step 2: Compute the current approximation and residual:

Ĝk(f) = Ĝk−1(f) + γ〈Y − Ĝk−1(f), ϕk〉(n)ϕk. (6)

end for

Remark 1 The theoretical residual R̂k(f) = f− Ĝk(f) cannot be used for the WGA (see Equa-
tions (5) and (6)) even with the empirical inner product, since f is not observed. Hence, only
the observed residuals at step k, Y − Ĝk, can be used in the algorithm. This point is not so clear
in the initial work of [Büh06], since notations used in its proofs are read as if R̂k(f) = f − Ĝk(f)
was available. More explicit proofs are provided in Section A.2.

2.2.2 Stability of the Boosting algorithm

We will use the following two notations below: for any sequences (an)n≥0 and (bn)n≥0 and
a random sequence (Xn)n≥0, an = O

n→+∞
(bn) means that an/bn is a bounded sequence, and

Xn = oP
n→+∞

(1) means that ∀ε > 0, lim
n→+∞

P(|Xn| ≥ ε) = 0. We recall here the standard

assumptions on high-dimensional models.
Hypothesis Hdim

Hdim−1 For any gj ∈ D: E[gj(X)2] = 1 and sup
1≤j≤pn,n∈N

‖gj(X)‖∞ <∞.

Hdim−2 The number of predictors pn satisfies pn = O
n→+∞

(
exp(Cn1−ξ)

)
, where ξ ∈ (0, 1) and

C > 0.

Hdim−3 (εi)i=1...n are i.i.d centred variables in R, independent from (Xi)i=1...n, satisfying E|ε|t <∞,
for some t > 4

ξ , where ξ is given in H1−2.

Hdim−4 The sequence (aj)1≤j≤pn satisfies: sup
n∈N

pn∑

j=1

|aj | <∞.

Assumption Hdim−1 is clearly satisfied for compactly supported real polynomials or Fourier
expansions with trigonometric polynomials. Assumption Hdim−2 bounds the high dimensional
setting and states that log(pn) should be, at the most, on the same order as n. Assumption
Hdim−3 specifies the noise and especially the size of its tail distribution. It must be centred
with at least a bounded second moment. This hypothesis is required to apply the uniform law of
large numbers and is satisfied by a great number of distributions, such as Gaussian or Laplace
ones. The last assumption Hdim−4 is a sparsity hypothesis on the unknown signal. It is trivially
satisfied when the decomposition (aj)j=1...pn of f is bounded and has a fixed sparsity index:
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Card {i|ai 6= 0} ≤ S. Note that it could be generalised to
∑pn

j=1 |aj | −→n→+∞
+∞ at the expense

of additional restrictions on ξ and pn (see Equation (19) in Appendix A.2).
We then formulate the first important result of the Boosting algorithm, obtained by [Büh06],

which represents a stability result.

Theorem 2.2 (Consistency of WGA) Consider Algorithm 2 presented above and assume that
Hypotheses Hdim are fulfilled. A sequence kn := C log(n) then exists, with C < ξ/4 log(3), so
that:

E‖f − Ĝkn(f)‖2(n) = oP
n→+∞

(1).

We only give the outline of the proof here. Details can be found in the Appendix. A
straightforward calculation shows that the theoretical residuals are updated as:

R̂k(f) = R̂k−1(f)− γ〈R̂k−1(f), ϕk〉(n)ϕk − γ〈ε, ϕk〉(n)ϕk. (7)

The proof then results from the study of a phantom algorithm, which reproduces the behaviour
of the deterministic WGA. In this algorithm, the inner product 〈, 〉 replaces its empirical coun-
terpart, and the (random) sample-driven choice of dictionary element (ϕk)k≥0 is governed by
Equation (5) of Algorithm 2. The phantom residuals are initialised by R̃0(f) = R̂0(f) = f and
satisfy the following equation at step k:

R̃k(f) = R̃k−1(f)− γ〈R̃k−1(f), ϕk〉ϕk, (8)

where ϕk is chosen using Equation (5). On the one hand, we establish an analogue of Equation
(2) for ϕk, which allows us to apply Theorem 2.1 to the phantom residual R̃k(f). On the other
hand, we provide an upper bound for the difference between R̂k(f) and R̃k(f). The proof then
results from a careful balance between these two steps.

2.3 Stability of support recovery

2.3.1 Ultra-high dimensional case

This paragraph presents our main results in the univariate case for the ultra-high dimensional
case. We prove the stability of the support recovery with the noisy WGA. Provided that as-
sumptions on the amplitude of the active coefficients of f and the structure of the dictionary
are fulfilled, the WGA exactly recovers the support of f with high probability. This result is
related to the previous work of [Tro04] and [Zha09] for recovering sparse signals using Orthogonal
Matching Pursuit.

To state the theorem, we denote D as the n × p matrix whose columns are the p elements
(g1, ..., gp) of the dictionary D. In the following text, DS will be the matrix D restricted to the
elements of D that are in S ⊂ J1, pK. Since DS is not squared and therefore not invertible, D+

is written as its pseudo-inverse. If we denote S as the support of f and S as its cardinality, we
can then make the following assumptions.

Hypothesis HS: The matrix DS satisfies:

max
j /∈S
‖D+
S gj‖1 < 1.

This assumption is also known as the exact recovery condition (see [Tro04]). It will ensure
that only active coefficients of f can be selected along the iterations of Algorithm 2 (noisy
Boosting algorithm).
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Hypothesis HRE−: A λmin > 0 independent of n exists so that:

inf
β,Supp(β)⊂S

‖Dβ‖2/‖β‖2 ≥ λmin.

λmin of Assumption HRE− is the smallest eigenvalue of the restricted matrix tDSDS . As-
sumption HRE− stands for the restricted isometry condition [CT05] or the sparse eigenvalue
condition (e.g., [Zha09] and [ZY06]). Remark that our assumption is different from that of
[Zha09] since we assume that ∀j, ‖gj‖ = 1. For more details about this assumption, see Section
3.2.
Hypothesis HSNR: Elements (aj)1≤j≤pn satisfy:

∃κ ∈ (0, 1),∀j ∈ S, |aj | ≥ log(n)−κ.

Note that the greater the number of variables is, the larger the value of active coefficients of
f are and the more restrictive Assumption HSNR is (see Section 2.3.2 below).

Theorem 2.3 (Support recovery) (i) Assume that Hypotheses Hdim and HS hold. Then,
with high probability, only active coefficients are selected by Equation (5) along iterations of
Algorithm 2.

(ii) Moreover, if Hypotheses HRE− and HSNR hold with a sufficiently small κ < κ∗ (κ∗ only
depending on γ), then Algorithm 2 fully recovers the support of f with high probability.

Similar results are already known for other algorithms devoted to sparse problems (see [GN06]
for Basis Pursuit algorithms, and [Tro04], [CJ11] or [Zha09] for Orthogonal Matching Pursuit
(OMP)). It is also known for other signal reconstruction algorithms [OWJ11], [CW11], [Zha09],
which also rely on a sparsity assumption. Our assumption is stronger than the condition obtained
by [Zha09] since active coefficients should be bounded from below by a power of log(n)−1 instead
of log(p)1/2n−1/2 in Theorem 4 of [Zha09]. However, obtaining optimal conditions on active
coefficients is not straightforward and beyond the scope of this paper. The weak aspect of WGA
seems harder to handle compared to the treatment of OMP (for example) because the amplitude
of the remaining coefficients on active variables has to be recursively bound from one iteration
to the next, according to the size of shrinkage parameters.

Let ρ := max
1≤i 6=j≤n

|〈gi, gj〉| be the coherence of the dictionary D. For non-orthogonal dictio-

naries, which are common settings of real high-dimensional datasets, the coherence is non-null.
A sufficient condition to obtain the support recovery result would then be ρ(2S − 1) < 1, where
S := |S| is the number of non-null coordinates of f , combined with HSNR. However, it should
be observed that this assumption is clearly more restrictive than HRE− when the number of
predictors pn becomes large.

In summary, a trade-off between signal sparsity, dimensionality, signal-to-noise ratio and sam-
ple size has to be reached. We provide explicit constant bounds for results on similar problems.
Very interesting discussions can be found in [Wai09] (see their Theorems 1 and 2 for sufficient
and necessary conditions for an exhaustive search decoder to succeed with high probability in
recovering a function support) and in the section on Sparsity and ultra-high dimensionality of
[Ver12b].

2.3.2 High dimensional case

In this paragraph, we restrict our study to high-dimensional models, where the number of pre-
dictors should be, at the most, on the same order of n: pn = O

n→+∞
(na) with a > 0. Then,

provided that Assumption H+
SNR below is fulfilled, Theorem 2.3 still holds.

7



Hypothesis H+
SNR: Elements (aj)1≤j≤pn satisfy:

∃κ ∈ (0, 1),∀j ∈ S, |aj | ≥ n−κ.

Indeed, following the proof of Theorems 2.2 and 2.3, our assumption about the size of pn
implies that ζn = OP (exp(−n1−ξ)) in the uniform law of large numbers (Lemma A.1), where ξ
is given by Hdim−3 . The number of iterations of Algorithm 2 is then allowed to grow with n
since kn := Cnβ , with β < 1 − ξ, which ensures that

(
5
2

)kn ζn is small enough. The decrease
of the theoretical residuals (‖R̂k‖2)k is finally on the order of Cn−βα, where C depends on the
shrinkage parameters γ and ξ, although α depends on the rate of approximation of the boosting
(α = (2− γ)/(2(6− γ))). Now Theorem 2.3 follows with κ < κ∗ := βα/2.

As a consequence, in the high-dimensional case, Assumption H+
SNR is less restrictive than

Assumption HSNR and Algorithm 2 converges faster and can easily recover even small active
coefficients of the true function f .

3 A new L2-Boosting algorithm for multi-task situations

In this section, our purpose is to extend the above algorithm and results to the multi-task
situation. The main focus of this work lies in the choice of the optimal task to be boosted. We
therefore propose a new algorithm that follows the initial spirit of iterative Boosting (see [Sch99]
for further details) and the multi-task structure of f . We first establish an approximation result
in the deterministic setting and we then extend the stability results of Theorems 2.2 and 2.3 to
the so called Boost-Boost algorithm for noisy multi-task regression.

3.1 Multi-task Boost-Boost algorithms

Let Hm := H⊗m denote the Hilbert space obtained by m-tensorisation with the inner product:

∀(f, f̃) ∈ H2
m, 〈f, f̃〉Hm =

m∑

i=1

〈f i, f̃ i〉H .

Given any dictionary D on H, each element f ∈ Hm will be described by its m coordinates
f = (f1, . . . fm), where each f i is spanned on D, with unknown coefficients:

∀i ∈ J1,mnK, f i =
pn∑

j=1

ai,jgj . (9)

A canonical extension of WGA to the multi-task problem can be computed as follows (Algorithm
3).

In the multi-task framework at step k, it is crucial to choose the coordinate from among
the residuals that is meaningful and thus most needs improvement, as well as the best regressor
ϕk ∈ D. The main idea is to focus on the coordinates that are still poorly approximated. We
introduce a new shrinkage parameter µ ∈ (0, 1]. It allows a tolerance towards the optimal choice
of the coordinate to be boosted, relying on either the Residual L2 norm - Equation (10) - or on
the D-Correlation sum - Equation (11).

Note that this latter choice is rather different from the choice proposed in [GN06], which
uses the multichannel energy and sums the correlations of each coordinate of the residuals to
any element of the dictionary. Comments on pros and cons of minimising the Residual L2 norm
or the D-Correlation sum viewed as the correlated residual can be found in [CT07] (page 2316).
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Algorithm 3 Boost-Boost algorithm
Require: f = (f1, ..., fm), (γ, µ, ν) ∈ (0, 1]3 (shrinkage parameters), kup (number of iterations).

Initialisation: G0(f) = 0Hm and R0(f) = f .
for k = 1 to kup do

Step 1: Select f ik according to:

‖Rk−1(f ik)‖2 ≥ µ max
1≤i≤m

‖Rk−1(f i)‖2, [Residual L2 norm] (10)

or to
p∑

j=1

〈Rk−1(f ik), gj〉2 ≥ µ max
1≤i≤m

p∑

j=1

〈Rk−1(f i), gj〉2, [D-Correlation sum] (11)

Step 2: Select ϕk ∈ D such that:

|〈Rk−1(f ik), ϕk〉| ≥ ν max
1≤j≤p

|〈Rk−1(f ik), gj〉|, (12)

Step 3: Compute the current approximation:

Gk(f i) = Gk−1(f i), ∀i 6= ik,

Gk(f ik) = Gk−1(f ik) + γ〈Rk−1(f ik), ϕk〉ϕk. (13)

Step 4: Compute the current residual: Rk(f) = f −Gk(f).
end for

Although [CT07] tends toward a final advantage for the D-Correlation sum alternative, we also
consider the Residual L2 norm that seems more natural. In fact, it relies on the norm of the
residuals themselves instead of the sum of information gathered by individual regressors on each
residual. Moreover, conclusions of [CT07] are more particularly focused on an orthogonal design
matrix. The noisy WGA for the multi-task problem is described by Algorithm 4 where we replace
the inner product 〈., .〉 by the empirical inner product 〈., .〉(n).
We use coupled criteria of Equations (10) and (12) in the Residual L2 norm Boost-Boost algo-
rithm, whereas we use criteria of Equations (11) and (12) in its D-Correlation sum counterpart.

3.2 Approximation results in the deterministic setting

We consider the sequence of functions (Rk(f))k recursively built according to our Boost-Boost
Algorithm 3 with either choice (10) or (11). Since SpanD = H, for any f ∈ Hm, each f i can be
decomposed in H, and we denote Si as the minimal amount of sparsity for such a representation.
We then prove a first approximation result provided that the following assumption is true.

Hypothesis HRE+ A λmax <∞ independent of n exists so that:

sup
β,Supp(β)⊂S

‖Dβ‖2/‖β‖2 ≤ λmax.

λmax of Assumption HRE+ is the largest eigenvalue of the restricted matrix tDSDS . Note that

∀u ∈ RS , tutDSDSu = ‖DSu‖2 ≤ ‖u‖2
∑

j∈S
‖gj‖2

≤ S‖u‖2. (14)
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Algorithm 4 Noisy Boost-Boost algorithm
Require: Observations (Xi, Yi)i=1,...,n, γ ∈ (0, 1] (shrinkage parameter), kup (number of itera-

tions).
Initialisation: Ĝ0(f) = 0Hm .
for k = 1 to kup do

Step 1: Select ik according to:

‖Y ik − Ĝk−1(f ik)‖2(n) = max
1≤i≤m

‖Y i − Ĝk−1(f i)‖2(n), [Residual L2 norm]

or to
p∑

j=1

〈Y ik − Ĝk−1(f ik), gj〉2(n) = max
1≤i≤m

p∑

j=1

〈Y i − Ĝk−1(f i), gj〉2(n), [D-Correlation sum]

Step 2: Select ϕk ∈ D such that:

|〈Y ik − Ĝk−1(f ik), ϕk〉(n)| = max
1≤j≤p

|〈Y i − Ĝk−1(f i), gj〉(n)|,

Step 3: Compute the current approximation:

Ĝk(f i) = Ĝk−1(f i), ∀i 6= ik,

Ĝk(f ik) = Ĝk−1(f ik) + γ〈Y ik − Ĝk−1(f ik), ϕk〉(n)ϕk.

end for

Then, denote v as the eigenvector associated with the largest eigenvalue λmax of tDSDS . Equa-
tion (14) then makes it possible to write:

tvλmaxv ≤ S‖v‖2,

which directly implies the following bound for λmax: λmax ≤ S. Then, if S is kept fixed indepen-
dent from n, Assumption HRE+ trivially holds.

On the other hand, if S is allowed to grow with n as S/n →n→+∞ l, [BCT11] proves that
the expected value of λmax is also bounded for the special Wishart matrices:

E(λmax) −→
n→+∞

(1 +
√
l)2.

Moreover, they show that fluctuations of λmax around Eλmax are exponentially small with n,
that is:

P (λmax > Eλmax + ε) −→
n→+∞

0, exponentially fast with n.

In the case of matrices with subgaussian entries, with probability 1−c exp(−S), [Ver12a] also
provides the following bound for λmin and λmax:

√
S/n− c ≤ λmin ≤ λmax ≤

√
S/n+ c.

Theorem 3.1 (Convergence of the Boost-Boost Algorithm) Let f = (f1, . . . fm) ∈ Hm

so that, for any coordinate i, f i ∈ A(D, B).
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(i) A suitable constant CB exists that only depends on B so that the approximations provided
by the Residual L2 norm Boost-Boost algorithm satisfy, for all k ≥ m:

sup
1≤i≤m

‖Rk(f i)‖ ≤ CBµ−
1
2 ν
− ν(2−γ)

2+ν(2−γ) (γ(2− γ))−
ν(2−γ)

2(2+ν(2−γ))

(
k

m

)− ν(2−γ)
2(2+ν(2−γ))

.

(ii) Assume that Hypotheses HRE− and HRE+ hold. A suitable constant Cλmin,B then exists
so that the approximations provided by the D-Correlation sum Boost-Boost algorithm satisfy, for
all k ≥ m:

sup
1≤i≤m

‖Rk(f i)‖ ≤ Cλmin,Bµ−
1
2 ν
− ν(2−γ)

2+ν(2−γ) (γ(2− γ))−
ν(2−γ)

2(2+ν(2−γ))

(
k

m

)− ν(2−γ)
2(2+ν(2−γ))

.

Remark 2 Note first that Theorem 3.1 is a uniform result over the mn coordinates. Then, note
that Assumptions HRE− and HRE+ are needed to obtain the second part of the theorem since
we have to compare each coordinate of the residual with the coordinate chosen at step k. For the
Residual L2 norm Boost-Boost algorithm, this comparison trivially holds.

We can discuss the added value brought by the Residual L2 norm Boost-Boost algorithm.
Compared to running m times standard WGA on each coordinate of the residuals, the proposed
algorithm is efficient when the coordinates of the residuals are unbalanced, i.e. when few columns
possess most of the information to be predicted. In contrast, when WGA is applied to well balanced
tasks, there is no clear advantage to using the Residual L2 norm Boost-Boost algorithm.

3.3 Stability of the Boost-Boost algorithms for noisy multi-task regression

We establish a theoretical convergence result for these two versions of the multi-task WGA. We
first state several assumptions adapted to the multi-task setting.

Hypothesis HMult
dim

HMult
dim−1 For any gj ∈ D: E[gj(X)2] = 1 and sup

1≤j≤pn,n∈N
‖gj(X)‖∞ <∞.

HMult
dim−2 ξ ∈ (0, 1), C > 0 exist so that the number of predictors and tasks (pn,mn) satisfies

pn ∨mn = O
n→+∞

(
exp(Cn1−ξ)

)
.

HMult
dim−3 (εi)i=1...n are i.i.d centered in Rmn , independent from (Xi)i=1...n so that for some t > 4

ξ ,
where ξ is defined in HMult

dim−2, sup
1≤j≤mn,n∈N

E|εj |t <∞.

Moreover, the variance of εj does not depend on j: ∀(j, j̃) ∈ {1 . . .mn}2, E|εj |2 = E|εj̃ |2.

HMult
dim−4 The sequence (ai,j)1≤j≤pn,1≤i≤mn satisfies: sup

n∈N,1≤i≤mn

pn∑

j=1

|ai,j | <∞.

It should be noted that a critical change appears in Hypothesis HMult
dim−3. Indeed, all tasks should

be of equal variance. We thus need to normalise the data before applying the Boost-Boost
algorithms.

We can therefore derive a result on the consistency of the Residual L2 norm Boost-Boost
algorithm. This extends the result of Theorem 2.2 for univariate WGA.
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Theorem 3.2 (Consistency of the Boost-Boost Residual L2 norm) Assume that Hypothe-
ses HMult

dim , HRE− and HRE+ are fulfilled. A sequence kn := C log(n) then exists, with C <
ξ/4 log(3), so that:

sup
1≤i≤mn

{
E‖f i − Ĝkn(f i)‖2(n)

}
= oP

n→+∞
(1).

As regards the Boost-Boost algorithm defined with the sum of correlations, if the number of
predictors pn satisfies a more restrictive assumption than HMult

dim−2, we prove a similar result.

Theorem 3.3 (Consistency of the Boost-Boost D-Correlation sum algorithm) Assume
that Hypotheses HMult

dim , HRE− and HRE+ are fulfilled, with pn = O
n→+∞

(nξ/4). A sequence

kn := C log(n) then exists with C < ξ/8 log(3) so that:

sup
1≤i≤mn

{
E‖f i − Ĝkn(f i)‖2(n)

}
= oP

n→+∞
(1).

We concede that Assumption HMult
dim−2 includes the very high-dimensional case. Theorem 3.3

has a slightly more restrictive assumption and encompasses the high-dimensional perspective
from a theoretical point of view.

We can also obtain a consistency result for the support of the Boost-Boost algorithms.

Theorem 3.4 (Support recovery) Assume Hypotheses HMult
dim , HS, HRE− and HRE+ are

fulfilled, then the two propositions hold.
(i) With high probability, only active coefficients are selected along iterations of Algorithm 4.
(ii) Moreover, if Assumption HSNR holds with a sufficiently small κ < κ∗ (with κ∗ depending

on γ), then both Boost-Boost procedures fully recover the support of f with high probability.

4 Numerical applications

This section is dedicated to simulation studies to assess the practical performances of our method.
We compare it to existing methods, namely the Bootstrap Lasso [Bac08], Random Forests [Bre01]
and the recently proposed remMap [PZB+10]. The aim of these applications is twofold. Firstly,
we assess the performance of our algorithms in light of expected theoretical results and as com-
pared to other state-of-the-art methods. Secondly, we demonstrate the ability of our algorithm
to analyse datasets that have features encountered in real situations. Three types of data sets
are used. The two first types are challenging multivariate, noisy, linear datasets with differ-
ent characteristics, either uni-dimensional or multi-dimensional. The third type consists in a
simulated dataset that mimics the behaviour of a complex biological system through observed
measurements. Datasets and codes used in the experiments are available upon request from the
authors.

First, we briefly present the competing methods. We then introduce the criteria we used to
assess the merits of the different methods (including a numerically-driven stopping criterion).
Datasets are precisely described in a dedicated paragraph. Finally, in the last paragraph, we
discuss the obtained results. For the sake of convenience, we will shortcut the notation pn to p
as well as mn to m in the sequel.
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Algorithms and methods We used our two proposed Boost-Boost algorithms (denoted “D-
Corr” for the Boost-Boost D-Correlation sum algorithm and “L2 norm” for the Boost-Boost
Residual L2 norm algorithm) with a shrinkage factor γ = 0.2. When the number of responses
m is set to 1, these two algorithms are similar to Algorithm 2 and will both be referred to as
“WGA”.

We compared them to a bootstrapped version of the Lasso, denoted “BootLasso” thereafter.
The idea of this algorithm is essentially that of the algorithm proposed by Bach [Bac08]: it uses
bootstrapped estimates of the active regression set based on a Lasso penalty. In [Bac08], only
variables that are selected in every bootstrap are kept in the model, and actual coefficient values
are estimated from a straightforward least square procedure. Due to high-dimensional settings
and empirical observations, we slightly relaxed the condition for a variable to be selected: at a
given penalty level, the procedure keeps a variable if more than 80% of bootstrapped samples lead
to select it in the model. We computed a 5-fold cross-validation unknown parameter estimate.
The R package glmnet v1.9− 5 was used for the BootLasso simulations.

The second approach we used is a random forest algorithm [Bre01] in regression, known to be
suited to reveal interactions in a dataset, denoted as “RForests”. It consists in a set (the forest) of
regression trees. The randomisation is combined into ’bagging’ of samples and random selection
of feature sets at each split in every tree. For each regression, predictors are ranked according
to their importance, which computes the squared error loss when using a shuffled version of the
variable instead of the original one. We filtered for variables that have a negative importance.
Such variables are highly non-informative since shuffling their sample values leads to an increased
prediction accuracy; this can happen for small sample sizes or if terminal leaves are not pruned at
the end of the tree-building process. No stopping criterion is implemented since it would require
storing all partial depth trees of the forest and would be very memory-consuming. However, in
each forest, we artificially introduced a random variable made up of a random blend of values
observed on any variable in the data for each sample. The rationale is that any variable that
achieves a lower importance than this random variable is not informative and should be discarded
from the model. For each forest, we repeated this random variable inclusion a hundred times.
We selected a variable if its importance was at leaste 85 times out of 100 higher than that of
the artificially introduced random variable, their importance could serve to rank them. We also
computed a final prediction L2-error for the whole forest and model selection metrics associated
with correctly predicted relationships. The R package randomForest v4.6 − 7 was used for the
RForests simulations. Notice that the total running time for RForests is linear in the size of
the output variables. Hence, when m = 250 (correlated covariates or correlated noise), the total
running time is nearly 4 days. We hence present partial results in these two cases on a very
limited number of networks (5).

Finally, we compared our method to “remMap” (REgularized Multivariate regression for iden-
tifying MAster Predictors) that essentially produces sparse models with several very important
regulatory variables in a high-dimensional setting. We refer to it as REM later in the paper.
More specifically, REM uses an L1-norm penalty to control the overall sparsity of the coefficient
matrix of the multivariate linear regression model. In addition, REM imposes a “group sparse”
penalty, which is pasted from the group lasso penalty ([YL07]). This penalty puts a constraint
on the L2 norm of regression coefficients for each predictor, which controls the total number
of predictors entering the model and consequently facilitates the detection of so-called master
predictors. We used the R package remMap v0.1 − 0 in our simulations. Parameter tuning was
performed using the built-in cross-validation function. We varied parameters for DS1 and DS3
from 10−5 to 105 with a 10-fold multiplicative increment; for DS2, DS4 and DREAM datasets,
the package could only run with parameters varying from 10−2 to 102. Lastly, in the very high-
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dimensional settings of our scenarii (p = m = 250), the built-in cross-validation function of the
remMap package wouldn’t allow us to visit parameters outside the range 10−1 to 101, with over
24 hours of computation per network.

Performance assessment and stopping criterion An important issue when implementing
a Boosting method, or any other model estimation procedure from a dataset, is linked to the
definition of a stopping rule. It ideally guarantees that the algorithm ran long enough to provide
informative conclusions without over-fitting the data. Cross-Validation (CV) or information
criteria such as AIC or BIC address this issue. [LB06] presented a corrected AIC criterion.
Firstly, the prediction error is required at each step and, secondly, the number of degrees of
freedom of Boosting has to be evaluated. The latter is equal to the trace of a ’hat matrix’ Ĥ
(see [HTF09] or [BY03]). Ĥ is defined as the operator that enables the estimation Â from the
true parameter only. However, as pointed by [LB06], the computation of the hat matrix at step
k has a complexity of O(n2p+ n3m2k), and thus becomes not feasible if n, p or m are too large.
For example, the computation of the hat matrix at the initialization of the algorithm (iteration
k = 1) with n = 100 and p = m = 250 requires 6.108 operations, which takes around 7 seconds
on an actual standard computer. Consequently, a typical run of the algorithm requires hundreds
of iterations, which would last almost 10 hours just for selection purpose and is not reasonnable
in practice.

We hence chose to use 5-fold cross-validation to assess the optimal number of iterations.
Finally, it should be noted that cross-validation should be carefully performed, as pointed out
by the erratum of [GWBV02]. It is imperative not to use the same dataset to both optimise
the feature space and compute the prediction error. We refer the interested reader to the former
erratum of [GWBV02] and several comments detailed in [AM02].

It should be noted that, in our simulation study, the cross-validation error ECV decreases
along the step of the Boosting algorithm while new variables are added in the model. The
selected model was the one estimated after the first iteration that made the ratio of the total
variation in the cross-validation error |(ECV − Emin)/(Emax − Emin)|, where Emax and Emin are
the maximal and the minimal values of the cross-validation error, below a 5% threshold.

The performances are measured through the normalised prediction error, also known as the
mean square error:

MSE =
1
m

m∑

i=1

‖Y i − Ĝk̂(f i)‖2(n),

where Ĝk̂(f
i) denotes the approximation of coordinate i of f . We also report the rate of coeffi-

cients inferred by mistake (false positives, FP) and not detected (false negatives, FN).

First dataset We use two toy examples in both univariate (m = 1) and multi-task (m = 5 and
m = 250) situations, with noisy linear datasets with different characteristics. They are simulated
according to a linear modelling:

Y = XA+ ε = f(X) + ε,

where Y is a n×m response matrix, X is a n×p observation matrix, ε is an additional Gaussian
noise and A is the p ×m S-sparse parameter matrix that encodes relationships to be inferred.
Covariates are generated according to a multi-variate Gaussian distribution ∀i,Xi ∼ N (0, Ip).
Errors are generated according to a multi-variate normal distribution with an identity covariance
matrix. Non-zero A-coefficients are set equal to 10 when (p,m, S) = (250, 1, 5) and 1 for all other
datasets.
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In all our simulations, we always generate n = 100 observations; this situation corresponds
to either moderate or very high-dimensional settings, depending on the number of explanatory
variables (p) or on the number of response variables (m). Unless otherwise stated, all experiments
are replicated 100 times and results are averaged over these replicates.

Prediction performances of tested methods are detailed in Table 1. In the first three simu-
lation settings, when m = 1, the prediction performances of the Boosting algorithms are quite
similar to those of the BootLasso and RF ones (see Table 1), but when the number of predictors
is set to 1, 000, BootLasso results are poorer. REM seems to achieve a better prediction than
other approaches, especially in the very high-dimensional settings (p = 1, 000 while m = 1). This
is still the case when p = 250 and m = 5 or 250. which .

(p,m,S) (250,1,5) (250,1,10) (1000,1,20) (250,5,50) (250,250,1250)
WGA 0.21 0.23 0.42 ∅ ∅
D-Corr ∅ ∅ ∅ 0.39 0.36
L2 norm ∅ ∅ ∅ 0.40 0.38
BootLasso 0.30 0.28 0.78 0.31 0.40
RForests 0.18 0.25 0.49 0.41 0.20∗

REM 0.33 0.18 0.08 0.21 0.19

Table 1: First dataset: MSE for the Boosting algorithms, with a shrinkage factor γ = 0.2,
compared to the BootLasso, RForests and REM; the sample size n is set to 100. (∗: for 5
simulated replicate data sets only as the running time for RForest was 4 days per network)

(p,m,S) (250,1,5) (250,1,10) (1000,1,20) (250,5,50) (250,250,1250)
FP FN FP FN FP FN FP FN FP FN

WGA 0.00 0.00 0.43 0.10 0.62 41.5 ∅ ∅ ∅ ∅
D-Corr ∅ ∅ ∅ ∅ ∅ ∅ 0.84 3.42 0.10 0.65
L2 norm ∅ ∅ ∅ ∅ ∅ ∅ 0.85 4.68 0.09 0.73
BootLasso 0.00 19.00 0.03 30.70 0.00 89.25 0.10 31.80 0.00 32.03
RForests 2.10 0.20 3.67 23.10 1.01 60.25 3.29 32.02 2.47∗ 2.76∗

REM 0.58 0.00 1.49 0.00 5.53 6.65 2.66 0.00 2.35 0.00

Table 2: First dataset: Percentage of false positive FP coefficients and false negative FN coeffi-
cients for the Boosting algorithms, with a shrinkage factor γ = 0.2, compared to the BootLasso,
RForests and REM; the sample size n is set to 100. (∗: for 5 simulated replicate data sets only
as the running time for RForest was 4 days per network)

Looking at the accuracy results of Table 2 at the same time is instructive: neither BootLasso
nor RF succeed at recovering the structure of f , with the FN rate much higher than that of
the L2-Boosting and REM approaches. In the moderately high-dimensional univariate setting
(p,m) = (250, 1), WGA and REM almost always recover the full model with few FP, while
BootLasso and RF miss one third and one fourth of the correct edges, respectively. Figures
in the high-dimensional univariate case (p,m) = (1, 000, 1) confirm this trend with a better
precision for WGA, whereas REM achieves a better recall. This probably explains the much
lower MSE for REM: the model selected in the REM framework is much richer and contains
the vast majority of relevant relationships at the price of a low precision (just below 30%). In
contrast, the model built by WGA is sparser with fewer FP, but misses some correct relationships.
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We therefore empirically observe here that MSE is not too informative for feature selection, as
reported by [HTF09], for example. The conclusion we can draw follow the same tendency in the
high-dimensional multivariate settings (p,m) = (250, 5) and (p,m) = (250, 250). Again, REM
is more comprehensive in retrieving actual edges, but it produces much more FP relationships
than the multivariate boosting algorithms we presented.

In addition to the performance value, Fig. 1 represents the norm of each coordinate of the
residual along the iterations of the Boost-Boost D-Correlation sum algorithm when the number
of predictors p is equal to 250 and the number of responses m is equal to 5 (A then includes
S = 50 non-zero coefficients). Figure 1 shows that no residual coordinate is preferred along the
iterations of the Boost-Boost D-Correlation sum algorithm.

Figure 1: First dataset (p,m, S) = (250, 5, 50): Norm of each coordinate of residuals along the
first 100 iterations of the Boost-Boost D-Correlation sum algorithm; the sample size n is set to
100.

Second dataset The following dataset stands for a more extreme situation. It is specifically
designed to illustrate the theoretical results we presented on permissive sparsity and the lower
bound of regression parameters. The idea is to consider a column-wise unbalanced design with
highly correlated predictors or highly correlated noise coordinates (correlations can be as strong
as ±0.9). More precisely, we generated the second dataset with p = 250 and m = 250 as follows.
For the first task (first column of X), we fixed 10 non-zero coefficients and set their value to 500.
For each task from 2 to 241, we chose 10 coefficients and set their value to 1. The last 9 columns
have respectively 9, 8, . . . 1 non-zero coefficients, which are also set to 1. At last, we first generated
in the first case some high correlations among covariates according to a multivariate Gaussian
distribution with covariance matrix V so that V j

i = 0.9(−1)|i−j|. Then, we also generated some
high correlations among the error terms according to the same multivariate Gaussian distribution
with covariance V . Table 3 shows performances of the proposed algorithms on this dataset.

Assumption HSNR may not be fulfilled here, but we are interested in the robustness of
the studied Boost-Boost algorithms in such a scenario. Results indicate that the Boost-Boost
D-Correlation sum algorithm and REM perform better overall. Their overall recall is quite
poor (about 71.26 − 75.60% of FN elements for REM and 74.20 − 83.36% for the Boosting
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algorithm). REM includes more irrelevant regressors in the model (with a rate of 4.38 − 7.07%
of FP elements for Boosting algorithms and 5.34 − 14.33% for REM), probably because of the
very high correlation levels between predictors or because of the intricate correlated noise we
artifically added to the data. The latter seems indeed to be an even more challenging obstacle
here. We recall here that in these 2 scenarii, a 1% in FP rate implies a difference of just over
600 falsely predicted edges. The algorithms we proposed were designed to deal partly with the
correlation between responses when it’s not too high and when the noise is not too high neither.
It seems here that the correlated noise is a more difficult situation to tackle, perhaps only because
of the choice we made to simulate it. The overall low recalls (or high FN rates) can be explained
by the highly unbalanced design between columns as well. Moreover, Boosting algorithms and
REM identify much richer models than BootLasso and RF do, quite beyond the 10

2,455 ≈ 0.41% of
TP in the first column whose coefficients dominate, even if their precision is not as good. On the
opposite, RForest and BootLasso do tend to produce reliable coefficients (at least in identifying
non-zero values) but at the price of a very poor coverage.

MSE are also quite high in this scenarii, mainly because the coefficient matrix includes many
coefficients with values set to 500. Hence, the effect of imprecisely estimated coefficients can have
quite a large impact on MSE values, even it is actually a true coefficient. D- Correlation sum,
L2-norm and REM again achieve the best MSE among tested approaches, with REM taking the
advantage again because of richer, less precise models.

Correlated covariates Correlated noises
FP (60,045) FN (2,455) MSE FP (60,045) FN (2,455) MSE

D-Corr 4.39 74.20 0.63 7.07 83.14 0.60
L2 norm 4.38 74.50 0.63 6.94 83.38 0.61
BootLasso 0.81 77.21 0.82 0.76 87.64 1.21
RForests∗ 2.27 78.63 0.84 0.79 97.15 0.93
REM 5.35 71.26 0.62 14.33 75.60 0.47

Table 3: Second dataset: Percentage of false positive FP parameters (number of coefficients not
to be predicted between brackets) and false negative FN parameters (number of coefficients to
be predicted between brackets) and MSE for the Boosting algorithms, with a shrinkage factor
γ = 0.2, compared with the BootLasso, RForests and REM; the sample size n is set to 100. We
also indicate the number of edges to retrieve: 2, 455 and the number of potential FP: 250 ∗ 250−
2455 = 60, 045. (∗: for 5 simulated replicate data sets only as the running time for RForest was
4 days per network).

Third dataset The last dataset mimics activation and inhibition relationships that exist be-
tween genes in the gene regulatory network of a living organism and is very close to a real data
situation. This dataset, for which p = 100, is exactly the one that was provided by the DREAM
Project [DRE] in their Challenge 2 on the “In Silico Network Challenge” (more precisely, the
InSilico_Size100_Multifactorial). First, a directed network structure is chosen. Its features can
be regarded as features of a biological network, e.g., in terms of degree distribution. Coupled
ordinary differential equations (ODEs) then drive the quantitative impact of gene expression on
each other, the expression of a gene roughly representing its activity in the system. For exam-
ple, if gene 1 is linked to gene 2 with a positive effect going from 1 to 2, then increasing the
expression of gene 1 (as operator do, see [Pea09]) will increase the expression of gene 2. However,
increasing the expression of gene 2 does not have a direct effect on gene 1. Lastly, the system of
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ODEs is solved numerically to obtain steady states of the expression of the genes after technical
and biological noises are created. We denote as A the n × p expression matrix of p genes for
n individuals. This simulation process is highly non-linear compared to the first two scenarios
described above.

The goal was to automatically retrieve network structure encoded in matrix A from data only.
Samples were obtained by multifactorial perturbations of the network using GeneNetWeaver
[SMF11] for simulations. A multifactorial perturbation is the simultaneous effect of numerous
minor random perturbations in the network. It therefore measures a deviation from the equilib-
rium of the system. This could be seen as changes in the network due to very small environmental
changes or genetic diversity in the population. Additional details and a discussion on the biolog-
ical plausability (network structure, the use of chemical Langevin differential equations, system
and experimental noise) of such datasets can be found in [MSMF09].

FP (9,695) FN (205) MSE
D-Corr 21.37 47.75 0.45
L2 norm 18.98 50.20 0.50
BootLasso 1.40 77.93 0.32
RForests 7.68 68.98 0.20
REM 7.05 78.53 0.01

Table 4: Third dataset: Percentage of false positive FP parameters (number of coefficents not
to be predicted between brackets) and false negative FN parameters (number of coefficients to
be predicted between brackets) and MSE for the Boosting algorithms, with a shrinkage factor
γ = 0.2, compared to the BootLasso, RForests and REM.

The results of tested methods on this last dataset are presented in Table 4. In this scenario,
our two multivariate (we recall that m = p = 100) L2-Boosting algorithms both suffer from
higher MSE. It also exhibits higher FP rates than other competing methods: ≈ 20% vs. 1.4,
7.7 and 7.1% for BootLasso, RF and REM, respectively. Many FP coefficients may imply an
increase in MSE, whereas the three other tested methods focus on fewer correct edges.

What can first be considered as a pitfall can be turned into a strength: recall can be close
to (for L2 norm) or even higher than (D-Correlation sum) 50%, whereas other approaches reach
31% at best (RF). In other words, the D-Correlation sum can retrieve more than half of the 205
edges to be predicted, at the price of producing more FP predictions, considered as noise from
a model prediction perspective in the delivered list. RF is on average only able to grab 84 out
of the 205 correct edges, but the prediction list is cleaner in a sense. A specifically designed
variant of the RF approach that we tested was deemed the best performer for this challenge by
the DREAM4 organisers [HTIWG10]. Our algorithm would have been ranked 2nd.

For the sake of completeness, we computed the smallest and the largest eigenvalues of the
restricted matrix tDSDS , that are involved in the key Assumptions HRE− and HRE+ . We also
provided the measured value of ρ := maxj /∈S ‖D+

S gj‖1 of Assumption HS in Table 5 for the three
datasets, which quantifies the coherence of the dictionary: favourable situations correspond to
small values of ρ, ideally lower than 1.

Regarding the first dataset, we obtain a larger value than 0 for λmin and a moderate value of
λmax. This implies a reasonable value of λmax/λmin. This situation is thus acceptable according
to the bound given by Equations (33) and (35) (see Appendix, Lemma B.2). Concerning As-
sumption HS, for each range of parameters on the first dataset, ρ is not very far from 1, which
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λmin λmax λmax/λmin ρ

First data set
(p,m, S) = (250, 1, 5) 75.31 130.43 1.73 0.82

First data set
(p,m, S) = (250, 1, 10) 59.03 143.78 2.43 1.52

First data set
(p,m, S) = (1000, 1, 20) 37.66 190.71 5.06 2.80

First data set
(p,m, S) = (250, 5, 50) 49.14 157.20 3.20 1.71

First data set
(p,m, S) = (250, 250, 50) 52.78 151.76 2.88 1.10

Second data set
Correlated covariates 3.95 921.39 233.44 5.47
Correlated noises 41.12 181.49 4.41 1.88
Third data set 19.29 233.83 12.12 1.57

Table 5: Smallest and largest eigenvalue of the restricted matrix, ratio of these eigenvalues and
computation of ρ := maxj /∈S ‖D+

S gj‖1 for the three datasets.

explains the good numerical results. We have to particularly emphasize the first simulation study
where (p,m, S) = (250, 1, 5). With a coherence value ρ lower than 1, the WGA reaches to recover
the true support of A. λmax/λmin and ρ values for the second dataset support our numerical
analysis (see Table 3) that shows that this is a very difficult dataset. This situation is clearly
less favourable for the sparse estimation provided by our Boosting procedures than for the first
data set. This is perhaps less visible for the second simulated setting, where additional noise
was is correlated. Clearly in this latter case, hypothesis HMult

dim−3 is violated because the noise
coordinates are not i.i.d. anymore. We however have no numerical indicator to quantify this.

For the last dataset, we can observe that HS yields a moderate value of ρ but that the ratio
of the restricted eigenvalues is quite large (compared to those obtained in the first dataset) and
it is difficult to recover the support of the true network.

Taken together, this numerically shows that both HS and HRE− , HRE+ are important to
obtain good reconstruction properties. These assumptions then seem complementary and not
redundant. However, the practical use of the proposed algorithms advocates a certain tolerance
of the method towards divergence from the hypotheses that condition our theoretical results.

5 Concluding remarks

We studied WGA and established a support recovery result for solving linear regression in high-
dimensional settings. We then proposed two statistically funded L2-Boosting algorithms derived
thereupon in a multivariate framework. The algorithms were developped to sequentially estimate
unknown parameters in a high-dimensional regression framework: significant possibly correlated
regressor functions from a dictionnary need be identified, relative coefficients need be estimated
and noise can disturb the observations. Consistency of two variants of the algorithms was proved
in Theorem 3.2 for the L2 norm variant and in Theorem 3.3 for the D-Correlation sum variant.
An important Support Recovery result (Theorem 3.4) under mild assumption on the sparsity
of the regression function and on the restricted isometry of the X matrix then generalises the
univariate result to the multi-task framework. Using the MSE of the model, we derived a simple
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yet effective stopping criterion for our algorithms.
We then illustrated the proposed algorithms in a variety of simulated datasets in order to

determine the ability of the proposed method to compete with state-of-the-art methods when
the data is high-dimensional, noisy and the active elements can be unbalanced. Even if the
algorithms we propose are not superior in all settings, we observed, for example, that they are
very competitive in situations such as those of the DREAM4 In Silico Multifactorial Network
Challenge. Without fine parameter tuning and with a very small computing time, our generic
method would have ranked 2nd in this challenge. Moreover, it has the ability to quickly produce
a rich prediction list of edges at an acceptable quality level, which might reveal novel regulatory
mechanisms on real biological datasets.

Aknowledgements: Thanks are due to the anonymous reviewer, to the Associate Editor and
to our colleagues whose suggestions greatly improved this manuscript.
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A Appendix: Stability results for Boosting algorithms

A.1 Concentration inequalities

We begin by recalling some technical results. Lemma A.1, given in [Büh06], provides a uniform
law of large numbers, in order to compare inner products 〈, 〉(n) and 〈, 〉. It is useful to prove the
theorems of Section 2.2.2 and 2.3, and does not rely on boosting arguments.

Lemma A.1 Assume that Hypotheses Hdim are fulfilled on dictionary D, f and ε, with 0 < ξ <
1 as given in Hdim−2, then:

(i) sup
1≤i,j≤pn

|〈gi, gj〉(n) − 〈gi, gj〉| = ζn,1 = OP (n−ξ/2),

(ii) sup
1≤i≤pn

|〈gi, ε〉(n)| = ζn,2 = OP (n−ξ/2),

(iii) sup
1≤i≤pn

|〈f, gi〉(n) − 〈f, gi〉| = ζn,3 = OP (n−ξ/2).

Denote ζn = max{ζn,1, ζn,2, ζn,3, ζn,4} = OP (n−ξ/2). The following lemma (Lemma 2 from
[Büh06]) also holds.

Lemma A.2 Under Hypotheses Hdim, a constant 0 < C < +∞ exists, independent of n and k,
so that on set Ωn = {ω, |ζn(ω)| < 1/2}:

sup
1≤j≤pn

|〈R̂k(f), gj〉(n) − 〈R̃k(f), gj〉| ≤ C
(

5
2

)k
ζn.

Proof This lemma is given in [Büh06], but their notations are confusing since residuals R̂k
are used to compute ϕk instead of Y − Ĝk (see Remark 1 at the end of Section 2.2). It is
nevertheless possible to generalise its application field using Lemma A.1. First, assume that
k = 0. The desired inequality follows directly from point (iii) of Lemma A.1. We now extend
the proof by an inductive argument.

Denote An(k, j) = 〈R̂k(f), gj〉(n) − 〈R̃k(f), gj〉. Then, on the basis of the recursive relation-
ships of Equations (7) and (8), we obtain:

An(k, j) = 〈R̂k−1(f)− γ〈R̂k−1(f), ϕk〉(n)ϕk − γ〈ε, ϕk〉(n)ϕk, gj〉(n)

−〈R̃k−1(f)− γ〈R̃k−1(f), ϕk〉ϕk, gj〉
= An(k − 1, j)− γ 〈R̃k−1(f), ϕk〉(〈ϕk, gj〉(n) − 〈ϕk, gj〉)︸ ︷︷ ︸

=(I)

−γ 〈ϕk, gj〉(n)(〈R̂k−1(f), ϕk〉(n) − 〈R̃k−1(f), ϕk〉)︸ ︷︷ ︸
=(II)

−γ 〈ε, ϕk〉(n)〈ϕk, gj〉(n)︸ ︷︷ ︸
=(III)

.

Expanding Equation (8) yields ‖R̃k(f)‖2 = ‖R̃k−1(f)‖2 − γ(2− γ)〈R̃k−1(f), ϕk〉2. From the
last equality, we deduce ‖R̃k(f)‖2 ≤ ‖R̃k−1(f)‖2 ≤ . . . ≤ ‖f‖2 and Lemma A.1 (i) shows that

sup
1≤j≤pn

|(I)| ≤ ‖R̃k−1(f)‖‖ϕk‖ζn ≤ ‖f‖ζn.

Moreover,

sup
1≤j≤pn

|(II)| ≤ sup
1≤j≤pn

|〈ϕk, gj〉(n)| sup
1≤j≤pn

|An(k − 1, j)|

≤ ( sup
1≤j≤pn

|〈ϕk, gj〉|+ ζn) sup
1≤j≤pn

|An(k − 1, j)| by (i) of Lemma A.1

≤ (1 + ζn) sup
1≤j≤pn

|An(k − 1, j)|.
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Finally, using (i) and (ii) from Lemma A.1:

sup
1≤j≤pn

|(III)| ≤ sup
1≤j≤pn

|〈ϕk, gj〉(n)| sup
1≤j≤pn

|〈εik , gj〉(n)| ≤ (1 + ζn)ζn.

Using our bounds on (I), (II) and (III), and γ < 1, we obtain on Ωn

sup
1≤j≤pn

|An(k, j)| ≤ sup
1≤j≤pn

|An(k − 1, j)|+ ζn‖f‖+ (1 + ζn) sup
1≤j≤pn

|An(k − 1, j)|+ (1 + ζn)ζn

≤ 5
2

sup
1≤j≤pn

|An(k − 1, j)|+ ζn

(
‖f‖+

3
2

)
.

A simple induction yields:

sup
1≤j≤pn

|An(k, j)| ≤
(

5
2

)k
sup

1≤j≤pn
|An(0, j)|

︸ ︷︷ ︸
≤ζn

+ζn

(
‖f‖+

3
2

) k−1∑

`=0

(
5
2

)`

≤
(

5
2

)k
ζn


1 +


sup
n∈N

pn∑

j=1

|aj |+
3
2



∞∑

`=1

(
5
2

)−`

 ,

which ends the proof of (i) by setting C = 1 +
(

sup
n∈N

∑pn
j=1 |aj |+ 3

2

)∑∞
`=1

(
5
2

)−`
. �

A.2 Proof of consistency result

We aim then to apply Theorem 2.1 to the semi-population R̃k(f) version of R̂k(f). This will
be possible with high probability when n→ +∞. We first observe that Lemma A.2 holds when
replacing the theoretical residual R̂k(f) with the observed residual Y − Ĝk(f), thanks to Lemma
A.1 (ii). Hence, on the set Ωn, by definition of ϕk:

|〈Y − Ĝk−1(f), ϕk〉(n)| = sup
1≤j≤pn

|〈Y − Ĝk−1(f), gj〉(n)|

= sup
1≤j≤pn

{
|〈R̃k−1(f), gj〉| − C

(
5
2

)k−1

ζn

}
. (15)

Applying Lemma A.2 again on the set Ωn, we have:

|〈R̃k−1(f), ϕk〉| ≥ |〈Y − Ĝk−1(f), ϕk〉(n)| − C
(

5
2

)k−1

ζn

≥ sup
1≤j≤pn

|〈R̃k−1(f), gj〉| − 2C
(

5
2

)k−1

ζn. (16)

Let Ω̃n =

{
ω, ∀k ≤ kn, sup

1≤j≤pn
|〈R̃k−1(f), gj〉| > 4C

(
5
2

)k−1
ζn

}
. We deduce the following

equality from Equation (16):

|〈R̃k−1(f), ϕk〉| ≥
1
2

sup
1≤j≤pn

|〈R̃k−1(f), gj〉|. (17)
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Consequently, on the set Ωn ∩ Ω̃n, we can apply Theorem 2.1 to the family (R̃k(f i))k, since it
satisfies a WGA with constants ν̃ = 1/2.

‖R̃k(f)‖ ≤ CB
(

1 +
1
4
γ(2− γ)k

)− 2−γ
2(6−γ)

. (18)

Now consider the set Ω̃C
n =

{
ω, ∃ k ≤ kn sup

1≤j≤pn
|〈R̃k−1(f), gj〉| ≤ 4C

(
5
2

)k−1
ζn

}
. Note that:

‖R̃k(f)‖2 = 〈R̃k(f), f − γ
k−1∑

j=0

〈R̃j(f), ϕj〉ϕj〉

≤




pn∑

j=1

|aj |+ γ

k−1∑

j=0

∣∣∣〈R̃j(f), ϕj〉
∣∣∣


 sup

1≤j≤pn

∣∣∣〈R̃k(f), gj〉
∣∣∣ .

Then, since ‖R̃k(f)‖ is non-increasing and by definition of Ω̃C
n , we deduce that on Ω̃C

n ,

‖R̃k(f)‖2 ≤ 4C
(

5
2

)k
ζn




pn∑

j=1

|aj |+ γk‖f‖


 . (19)

Hence, on (Ωn ∩ Ω̃n) ∪ Ω̃C
n , using Equations (18) and (19),

‖R̃k(f)‖2 ≤ C2
B

(
1 +

1
4
γ(2− γ)k

)− 2−γ
6−γ

+ 4C
(

5
2

)k
ζn




pn∑

j=1

|aj |+ γk‖f‖


 . (20)

To conclude, note that P
(

(Ωn ∩ Ω̃n) ∪ Ω̃C
n

)
≥ P(Ωn) −→

n→+∞
1. Inequality (20) holds almost

surely for all ω and for a sequence kn < (ξ/4 log(3)) log(n), which grows sufficiently slowly:

‖R̃kn(f)‖ = oP (1). (21)

To end the proof, let k ≥ 1 and consider Ak = ‖R̂k(f)− R̃k(f)‖. By definition:

Ak = ‖R̂k−1(f)− γ〈R̂k−1(f), ϕk〉(n)ϕk − γ〈ε, ϕk〉(n)ϕk −
(
R̃k−1(f)− γ〈R̃k−1(f), ϕk〉ϕk

)
‖

≤ Ak−1 + γ|〈Y − Ĝk−1(f), ϕk〉(n) − 〈R̃k−1(f), ϕk〉|. (22)

Under Hypothesis Hdim, we deduce the following inequality on Ωn from Equation (22):

Ak ≤ Ak−1 + γ

(
C

(
5
2

)k−1

+ 1

)
ζn. (23)

Using A0 = 0, we deduce recursively from Equation (23) that, on Ωn, since k := kn grows
sufficiently slowly:

Akn
P−−−−−→

n→+∞
0. (24)

Finally, observe that ‖R̂kn(f)‖ ≤ ‖R̃kn(f)‖ + Akn . The conclusion holds using Equation (21)
and (24).
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A.3 Proof of support recovery

We now detail the proof of Theorem 2.3, which represents the exact recovery of the support
with high probability. It should be recalled that we denote as S (respectively, S) the sparsity
(respectively, the support) of f . We suppose that the current residuals could be decomposed on
D as R̂k(f) =

∑pn
j=1 θ

k
j gj , where (θkj )j is Sk-sparse, with support Sk.

Proof of (i): The aim of the first part of the proof is to show that along the iterations of
Boosting, we only select elements of the support of f using Equation (5). Since S0 = S, we
only have to show that (Sk)k≥0 is non-increasing, which implies that successive residual supports
satisfy Sk ⊂ Sk−1. At the initial step k = 0, S0 = S and S0 = S. The proof works now by
induction, and we assume that Sk−1 ⊂ S. Using the same outline as that of the proof of Lemma
A.2, we have:

∀gj ∈ D, |〈Y − Ĝk−1(f), gj〉(n) − 〈R̂k−1(f), gj〉| ≤ Cζn
(

5
2

)k−1

. (25)

On the one hand, we deduce from Equation (25) below that:

∀j ∈ Sk−1, |〈Y − Ĝk−1(f), gj〉(n)| ≥ |〈R̂k−1(f), gj〉| − Cζn
(

5
2

)k−1

. (26)

On the other hand, for j /∈ Sk−1, we also have:

|〈Y − Ĝk−1(f), gj〉(n)| ≤ |〈R̂k−1(f), gj〉|+ Cζn

(
5
2

)k−1

. (27)

Now denote Mk := maxj∈Sk−1
|〈R̂k−1(f), gj〉| and MC

k := maxj /∈Sk−1
|〈R̂k−1(f), gj〉|. We recall

that element j is selected at step k following Equation (5). Hence, we deduce from Equations
(26) and (27) that j ∈ Sk is in Sk−1 if the following inequality is satisfied:

Mk > MC
k + 2Cζn

(
5
2

)k−1

. (28)

The next step of the proof consists in comparing the two quantities Mk and MC
k . Note that

M and MC can be rewritten as ‖tDSk−1
R̂k−1(f)‖∞ and ‖tDSCk−1

R̂k−1(f)‖∞. Following the
arguments of [Tro04], we have:

Mk

MC
k

=
‖tDSCk−1

tD+
Sk−1

tDSk−1
R̂k−1(f)‖∞

‖tDSk−1
R̂k−1(f)‖∞

≤ ‖tDSCk−1

tD+
Sk−1
‖∞,∞,

where ‖.‖q,q is the subordonate norm of the space (Rq, ‖.‖q). In particular, the norm ‖.‖∞,∞
equals the maximum absolute row of its arguments, and we also have:

Mk

MC
k

≤ ‖D+
Sk−1

DSCk−1
‖1,1 = max

j /∈Sk−1

‖D+
Sk−1

gj‖1.

Using Assumption HS and the recursive assumption Sk−1 ⊂ S, we obtain that Mk > MC
k .

The end of the proof of (i) follows with Equation (28) for k := kn given by Theorem 2.2,
which implies that ζn(5/2)k → 0. �
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Proof of (ii): The second part of the proof consists in checking that, along the iterations of
the Boosting algorithm, every correct element of the dictionary is chosen at least once.

Assume that one element j0 of S is never selected. Then, if we denote θk = (θkj )1≤j≤pn as
the decomposition of R̂k−1(f) on D, we obtain:

‖θk‖2 =
∑

j

(θkj )2 ≥ (θkj0)2 = a2
j0 , (29)

where aj0 is the true coefficient of f associated with the element gj0 .
Moreover, note that

‖R̂k−1(f)‖2 = ‖Dθk‖2 ≥ λmin‖θk‖2, (30)

with λmin := inf
β,Supp(β)⊂S

‖Dβ‖2/‖β‖2 > 0 by Assumption HRE− .

Equation (30) deserves special attention since (‖R̂k−1(f)‖)k decreases with k. More precisely,
Equations (20) and (23) of Section A.2 provide the following bound for ‖R̂k−1(f)‖:

‖R̂k−1(f)‖2 ≤ (C log(n))−α ,

where α := 2−γ
6−γ .

The sought contradiction is obtained using Assumption HSNR in Equation (29) as soon as

λmin log(n)−2κ ≥ (C log(n))−α ,

i.e., when κ < κ∗ := (2− γ)/2(6− γ). This ends the proof of the support consistency.
�

B Appendix: Proof for multi-task L2-Boosting algorithms

B.1 Proof of Theorem 3.1

We break down the proof of Theorem 3.1 into several steps here. It should be recalled that
D = {(gj), 1 ≤ j ≤ p} is a dictionary that spans H. We set any f = (f1, . . . , fm) ∈ Hm so that
f i ∈ A(D, B).

The first key remark is that if we denote si(k) as the number of steps in which i is invoked
until step k, for all i ∈ J1,mK, we deduce from Theorem 2.1 that:

∀k ≥ 1, ‖Rk−1(f i)‖ ≤ CB(1 + ν2γ(2− γ)si(k − 1))−
ν(2−γ)

2(2+ν(2−γ)) . (31)

The second key point of the proof consists in comparing Rk(f i) and Rk(f ik), where ik is
chosen using Equation (10) or (11). For the Boost-Boost Residual L2 norm algorithm, this step
is not pivotal since, using Equation (10):

sup
1≤i≤m

‖Rk(f i)‖ ≤ µ−1‖Rk(f ik)‖. (32)

However, for the Boost-Boost D-Correlation sum algorithm, we can prove the following lemma:

Lemma B.1 Suppose that Assumptions HRE− and HRE+ hold. Then, for any k:

sup
1≤i≤m

‖Rk−1(f i)‖2 ≤ µ−1‖Rk−1(f ik)‖2
(
λmax
λmin

)3

,

where λmin and λmax (given by Assumptions HRE− and HRE+) are the smallest and the largest
eigenvalues tDSDS .
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Proof Assume that each residual Rk(f i) is expanded on D at step k as: Rk(f i) =
p∑

j=1

θki,jgj ,

where (θki,j)1≤j≤p is Sik-sparse, with support Sik. Note that, along the iterations of the Boost-
Boost algorithm, an incorrect element of the dictionary cannot be selected using Equation (12)
(see Theorem 3.4 for some supplementary details). We observe then that Assumptions HRE−

and HRE+ imply that at each step, each approximation is at most S-sparse. We present an
elementary lemma that will be very useful until the end of the proof.

Lemma B.2 Let D = (g1, ..., gp) be a dictionary on H. Denote D as the matrix whose columns
are the elements of D, and for any S ⊂ J1, pK, DS the matrix restricted to the elements of D that
are in S. Then, if we denote λmin and λmax as the smallest and the largest eigenvalues of the
restricted matrix tDSDS , the two propositions hold.

(i) For any S-sparse family (aj)1≤j≤p, we have:

λmin




p∑

j=1

|aj |2

 ≤

∥∥∥∥∥∥

p∑

j=1

ajgj

∥∥∥∥∥∥

2

≤ λmax




p∑

j=1

|aj |2

 .

(ii) For any function f spanned on D as f =
∑p

j=1 ajgj, where (aj)j is S -sparse, we have:

λ2
min




p∑

j=1

|aj |2



1/2

≤




p∑

j=1

|〈f, gj〉|2



1/2

≤ λ2
max




p∑

j=1

|aj |2



1/2

.

Now, let i 6= ik. By Lemma B.2 (right hand side -r.h.s.- of (ii) and left hand side -l.h.s.- of
(i)) combined with Assumption HRE− , we have:

p∑

j=1

|〈Rk−1(f ik), gj〉|2 ≤ ‖Rk−1(f ik)‖2λ
2
max

λmin
. (33)

Moreover Lemma B.2 again (l.h.s. of (ii) and r.h.s. of (i)) and Assumption HRE+ show that:

∀1 ≤ i ≤ m,
p∑

j=1

|〈Rk−1(f i), gj〉|2 ≥ ‖Rk−1(f i)‖2 λ
2
min

λmax
. (34)

By definition of ik (see Equation (11) in the Boost-Boost algorithm), we deduce that:

∀i ∈ J1,mK,
p∑

j=1

|〈Rk−1(f ik), gj〉|2 ≥ µ

p∑

j=1

|〈Rk−1(f i), gj〉|2

≥ µ‖Rk−1(f i)‖2 λ
2
min

λmax
. (35)

The conclusion follows by using Equations (33) and (35). �
To conclude, we consider the Euclidean division of k by m: k = mK+d, where the remainder

d is not greater than the divisor m. A coordinate i∗ ∈ {1 . . .m}, that is selected at least K times
by Equation (10) or (11) exists, hence si∗(k) ≥ K. We also denote k∗ as the last step that
selects i∗ before step k. Since

(
‖Rk(f i)‖

)
k
is a non-increasing sequence along the iterations of

the algorithm, Equation (31) leads to:

‖Rk−1(f i
∗
)‖ ≤ ‖Rk∗−1(f i

∗
)‖ ≤ CB(1 + ν2γ(2− γ)(K − 1))−

ν(2−γ)
2(2+ν(2−γ)) . (36)

The conclusion holds noting that k
m − 1 ≤ K ≤ k

m and ν < 1, and using our bounds (32) for
the Boost-Boost Residual L2 norm algorithm, or Lemma B.1 for the Boost-Boost D-Correlation
sum algorithm.
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B.2 Proof of Theorem 3.4

We begin this section by clarifying the proof of Theorem 3.4 since this result is needed to prove
all other multi-task results. The proof proceeds in the same way as in Section A.3. Our focus is
on the choice of the regressor to add in the model, regardless of the column chosen to be regressed
in the previous step. Therefore, in order to simplify notations, index i may be omitted and we
can do exactly the same computations.

B.3 Proof of Theorems 3.2 and 3.3

The proof of consistency results in the multi-task case is the same as in Section A.2. Hence,
we consider a semi-population version of the two Boost-Boost algorithms: let (R̃k(f))k be the
phantom residuals, that are now living in Hm, initialised by R̃0(f) = f , and satisfy at step k:

R̃k(f i) = R̃k−1(f i) if i 6= ik,

R̃k(f ik) = R̃k−1(f ik)− γ〈R̃k−1(f ik), ϕk〉ϕk, (37)

where (ik, ϕk) is chosen according to Algorithm 4.
As previously explained, we aim at applying Theorem 3.1 to the phantom residuals. This will

be possible if we can show an analogue of Equations (10) (for the Residual L2 norm) or (11) (for
the D-Correlation sum) and (12). Note that on the basis of Theorem 3.4, the sparsity of both
residuals R̃k(f) and R̂k(f) does not exceed S with high probability if we choose γ small enough
in Equation (13).

We begin the proof by recalling Lemma A.1. In the multi-task case, this lemma can be easily
extended as follows:

Lemma B.3 Assume that Hypotheses HMult
dim are fulfilled on dictionary D, f and ε, with 0 <

ξ < 1 as given in HMult
dim−2, then:

(i) sup
1≤i,j≤pn

|〈gi, gj〉(n) − 〈gi, gj〉| = ζn,1 = OP (n−ξ/2),

(ii) sup
1≤i≤pn,1≤j≤mn

|〈gi, εj〉(n)| = ζn,2 = OP (n−ξ/2),

(iii) sup
1≤i≤mn,1≤j≤pn

|〈f i, gj〉(n) − 〈f i, gj〉| = ζn,3 = OP (n−ξ/2).

(iv) sup
1≤i≤mn

|‖εi‖2(n) − E(|εi|2)| = ζn,4 = OP (n−ξ/2).

The first three points of Lemma B.3 are the same as (i), (ii) and (iii) of Lemma A.1. The fourth
point is something new. However, since its proof does not call for typical boosting arguments,
we do not state it here.

Denoting ζn = max{ζn,1, ζn,2, ζn,3, ζn,4} = OP (n−ξ/2), we can show that Lemma A.2 is still
true for the ik-th coordinate of f . Moreover, let i 6= ik. Since R̂k(f i) = R̂k′(f i) for all k′ ≤ k so
that ik is not selected between step k′ and k (see Equation (13)), we can easily extend Lemma
A.2 to each coordinate of f :

sup
1≤i≤mn

sup
1≤j≤pn

|〈R̂k(f i), gj〉(n) − 〈R̃k(f i), gj〉| ≤ C
(

5
2

)k
ζn. (38)

Using this extension of Lemma A.1, the same calculations detailed in Section A.2 can be
done. Hence, considering the ik-th coordinate of f chosen by Equations (10) or (11), on the set
Ωn, inequality (17) also holds:

|〈R̃(f ik), ϕk〉| ≥
1
2

sup
1≤j≤pn

|〈R̃k−1(f ik), gj |.
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Now consider the Boost-Boost Residual L2 norm algorithm. To obtain an analogue of (10),
we need the following lemma, which compares the norms of both residuals:

Lemma B.4 Under Hypotheses HMult
dim , a constant 0 < C < +∞ exists, independent of n and

k, so that on the set Ωn = {ω, |ζn(ω)| < 1/2}:

sup
1≤i≤mn

|‖R̂k−1(f i)‖2(n) − ‖R̃k−1(f i)‖2| ≤ C
(

2
(

5
2

)k−1

+ S

)
Sζn.

Proof Consider the two residual sequences (R̂k(f))k and (R̃k(f))k, expanded on D as:
R̂k−1(f i) =

∑
j θ

k
i,jgj , and R̃k−1(f i) =

∑
j θ̃

k
i,jgj . Hence,

|‖R̂k−1(f i)‖2(n) − ‖R̃k−1(f i)‖2| ≤ |
pn∑

j=1

θki,j

(
〈R̂k−1(f i), gj〉(n) − 〈R̃k−1(f i), gj〉

)
|

︸ ︷︷ ︸
(I)

+ |
pn∑

j=1

θ̃ki,j

(
〈R̂k−1(f i), gj〉(n) − 〈R̃k−1(f i), gj〉

)
|

︸ ︷︷ ︸
(II)

+ |
pn∑

j=1

θki,j〈R̃k−1(f i), gj〉 −
S∑

j=1

θ̃ki,j〈R̂k−1(f i), gj〉(n)|
︸ ︷︷ ︸

(III)

.

Using Equation (38), we can provide two upper bounds for (I) and (II):

(I) ≤ C
(

5
2

)k−1 pn∑

j=1

|θki,j |ζn and (II) ≤ C
(

5
2

)k−1 pn∑

j=1

|θ̃ki,j |ζn.

Denoting M := max
1≤j≤S

{|θki,j |, |θ̃ki,j |}, the following inequality holds for (I) and (II):

(I) ∨ (II) ≤ CMS

(
5
2

)k−1

ζn.

To conclude, using Lemma (B.3), we have:

(III) ≤
pn∑

j=1

|ãki,j |
pn∑

j′=1

|aki,j ||〈gj , gj′〉 − 〈gj , gj′〉(n)| ≤ S2M2ζn.

and the conclusion follows using our last bounds. �
Since Lemma B.4 is not directly applicable to the observed residual Y − Ĝk(f), the same

calculation cannot be performed to obtain an analogue of Equation (10). However, we can
compare the norm of the theoretical and observed residuals:

sup
1≤i≤mn

‖Y i − Ĝk−1(f i)‖2(n) = ‖R̂k−1(f i) + εi‖2(n)

= ‖R̂k−1(f i)‖2(n) + ‖εi‖2(n) + 2〈R̂k−1(f i), εi〉(n).

Note that, using Lemma B.3, we obtain: |〈R̂k(f i), εi〉(n)| ≤ MSζn, where M is defined in the
proof of Lemma B.4. Hence, we have for all i:

‖R̂k−1(f i)‖2(n)+‖εi‖2(n)−2MSζn ≤ ‖Y i−Ĝk−1(f i)‖2(n) ≤ ‖R̂k−1(f i)‖2(n)+‖εi‖2(n)+2MSζn. (39)
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It should be recalled that E(|εi|2) does not depend on i from Assumption HMult
dim−3, and is

denoted by σ2. An application of Lemma B.3 (iv) to Equation (39) then yields:

‖R̂k−1(f i)‖2(n)+σ
2−(1+2MS)ζn ≤ ‖Y i−Ĝk−1(f i)‖2(n) ≤ ‖R̂k−1(f i)‖2(n)+σ

2+(1+2MS)ζn. (40)

Hence, on Ωn, by definition of ik, Equation (40) and Lemma B.4, we can write:

‖Y ik − Ĝk−1(f ik)‖2(n) ≥ sup
1≤i≤mn

‖Y i − Ĝk−1(f i)‖2(n)

≥ sup
1≤i≤mn

{
‖R̂k−1(f i)‖2(n) + σ2

}
− (1 + 2MS)ζn

≥ sup
1≤i≤mn

{
‖R̃k−1(f i)‖2 + σ2

}
− C

(
2
(

5
2

)k−1

+ S

)
Sζn

−(1 + 2MS)ζn. (41)

Using the same calculus on the set Ωn once again:

‖R̃k−1(f ik)‖2 ≥ ‖R̂k−1(f ik)‖2(n) − C
(

2
(

5
2

)k−1

+ S

)
Sζn

≥ ‖Y ik − Ĝk−1(f ik)‖2(n) − σ2 − (1 + 2MS)ζn − C
(

2
(

5
2

)k−1

+ S

)
Sζn

≥ sup
1≤i≤mn

{
‖R̃k−1(f i)‖2 + σ2

}
− σ2 − 2(1 + 2MS)ζn

−2C

(
2
(

5
2

)k−1

+ S

)
Sζn, by Equation (41). (42)

We then obtain from Equation (42) that:

‖R̃k−1(f ik)‖2 ≥ sup
1≤i≤mn

‖R̃k−1(f i)‖2 − 2(1 + 2MS)ζn − 2C

(
2
(

5
2

)k−1

+ S

)
Sζn. (43)

Let Ω̌1
n =

{
ω, ∀k ≤ kn sup

1≤i≤mn
‖R̃k−1(f i)‖2 > 4

(
1 + 2MS + C

(
2
(

5
2

)k−1 + S
)
S
)
ζn

}
. We

deduce from Equation (43) the following inequality on set Ωn ∩ Ω̌1
n:

‖R̃k−1(f ik)‖2 ≥ 1
2

sup
1≤i≤mn

‖R̃k−1(f i)‖2.

Finally, consider the Boost-Boost D-Correlation sum algorithm. To obtain an analogue of
Equation (11), the following lemma is needed:

Lemma B.5 Under Hypotheses HMult
dim , a constant 0 < C < +∞ exists, independent of n and

k so that, on the set Ωn = {ω, |ζn(ω)| < 1/2}:

sup
1≤i≤m

sup
1≤j≤pn

|〈R̂k(f i), gj〉2(n) − 〈R̃k(f i), gj〉2| ≤ C
(

5
2

)2k

ζn.
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Proof Let k ≥ 1, i ∈ J1,mnK. We have the following equality:

|〈R̂k(f i), gj〉2(n) − 〈R̃k(f i), gj〉2| = |〈R̂k(f i), gj〉(n) − 〈R̃k(f i), gj〉||〈R̂k(f i), gj〉(n) + 〈R̃k(f i), gj〉|,
(44)

where |〈R̂k(f i), gj〉(n) − 〈R̃k(f i), gj〉| ≤ C
(

5
2

)k
ζn by Equation (38).

Moreover, using the recursive equation for (R̂k(f ik))k, we can obtain the following bounds:
∣∣∣〈R̂k(f ik), gj〉(n)

∣∣∣ ≤
∣∣∣〈R̂k−1(f ik), gj〉(n)

∣∣∣+ γ
∣∣∣〈R̂k−1(f ik), ϕk〉(n)〈ϕk, gj〉(n)

∣∣∣
+γ
∣∣〈εik , ϕk〉(n)〈gj , ϕk〉(n)

∣∣

≤ sup
1≤j≤pn

∣∣∣〈R̂k−1(f ik), gj〉(n)

∣∣∣
(
1 + γ|〈ϕk, gj〉(n)|

)
+ γζn(1 + ζn)

≤ M ik
k−1(1 + γ(1 + ζn)) + γζn(1 + ζn),

where M i
k := sup1≤j≤pn |〈R̂k(f i), gj〉(n)|. Note that for i 6= ik, M i

k = M i
k−1.

On Ωn, we therefore have, as a suitable constant, C > 0:

M i
k ≤M i

k−1

(
1 +

3
2
γ

)
+ C . . . ≤

(
1 +

3
2
γ

)k

sup
n∈N

pn∑

j=1

|ai,j |+
3
2


+ C. (45)

Using Equation (8), ‖R̃k(f i)‖ is non-increasing and thus ‖R̃k(f i)‖ ≤ ‖f i‖. The Cauchy-Schwarz
inequality allows us to write that:

∣∣∣〈R̃k(f i), gj〉
∣∣∣ ≤ ‖R̃k(f i)‖ ≤ ‖f i‖. (46)

The conclusion therefore holds using Equations (45) and (46) in Equation (44) for a large enough
constant C. �

Observe that Lemma B.5 remains true if we change the observed residual by the theoretical
residual. Therefore, on the set Ωn,

pn∑

j=1

|〈Y ik − Ĝk−1(f ik), gj〉(n)|2 ≥ sup
1≤i≤mn

pn∑

j=1

|〈Y i − Ĝk−1(f i), gj〉(n)|2

≥ sup
1≤i≤mn

pn∑

j=1

(
|〈R̃k−1(f i), gj〉(n)|2 − C

(
5
2

)2(k−1)

ζn

)

≥ sup
1≤i≤mn

pn∑

j=1

|〈R̃k−1(f i), gj〉(n)|2 − Cpn
(

5
2

)2(k−1)

ζn. (47)

Using Lemma B.5 again on Ωn:

pn∑

j=1

|〈R̃k−1(f ik), gj〉|2 ≥
pn∑

j=1

|〈Y ik − Ĝk−1(f ik), gj〉(n)|2 − Cpn
(

5
2

)2(k−1)

ζn

≥ sup
1≤i≤mn

pn∑

j=1

|〈R̃k−1(f i), gj〉|2 − 2Cpn

(
5
2

)2(k−1)

ζn by Equation (47).

(48)
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Let Ω̌2
n =

{
ω, ∀k ≤ kn sup

1≤i≤mn

∑pn
j=1 |〈R̃k−1(f i), gj〉|2 > 4Cpn

(
5
2

)2(k−1)
ζn

}
. On the basis

of Equation (48), we can deduce the following inequality on Ωn ∩ Ω̌2
n:

pn∑

j=1

|〈R̃k−1(f ik), gj〉|2 ≥
1
2

sup
1≤i≤mn

pn∑

j=1

|〈R̃k−1(f i), gj〉|2.

Consequently, on Ωn∩Ω̃n∩Ω̌1
n and Ωn∩Ω̃n∩Ω̌2

n, we can apply Theorem 3.1 to family (R̃k(f i))k,
since it satisfies a deterministic Boost-Boost algorithm with constants µ̃ = 1/2, ν̃ = 1/2, and
has a bounded sparsity S.

Let us now consider the set
(
Ω̌2
n

)C . Using Equation (34), we obtain

‖R̃k(f i)‖2 ≤
λmax
λ2
min

pn∑

j=1

|〈R̃k(f i), gj〉|2 ≤ 4
λmax
λ2
min

Cpn

(
5
2

)2k

ζn.

On the set
(
Ω̌1
n

)C , we also have:

‖R̃k(f i)‖2 ≤ 4

(
1 + 2MS + C

(
2
(

5
2

)k
+ S

)
S

)
ζn.

The end of the proof follows as in Section A.2 by noting that P
(

(Ωn ∩ Ω̃n) ∪ Ω̃C
n ∪ Ω̌C

n

)
≥

P(Ωn) −→
n→+∞

1. Note that the conclusion holds for a sequence kn that grows sufficiently slowly:

for the Boost-Boost Residual L2 norm algorithm, kn is allowed to grow as (ξ/4 log(3)) log(n),
whereas kn can only grow as (ξ/8 log(3)) log(n) for the Boost-Boost D-Correlation sum algorithm.
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