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Abstract. Bounded Max-Sum is a message-passing algorithm for
solving Distributed Constraint Optimization Problems able to com-
pute solutions with a guaranteed approximation ratio. Although its
approximate solutions were empirically proved to be within a small
percentage of the optimal solution on low and moderately dense
problems, in this paper we show that its theoretical approximation
ratio is overestimated, thus overshadowing its good performance.
We propose a new algorithm, called Improved Bounded Max-Sum,
whose approximate solutions are at least as good as the ones found
by Bounded Max-Sum and with a tighter approximation ratio. Our
empirical evaluation shows that the new approximation ratio is sig-
nificantly tighter.

1 Introduction

Decentralised coordination techniques are a very important topic of
research. A common approach is to cast the problem as a multi-
agent distributed constraint optimization problem (DCOP), where
the possible actions that agents can take are associated with vari-
ables and the utility for taking joint actions are encoded with (soft)
constraints [10]. The set of constraints define a global utility function
F (x) to be optimized via decentralised coordination of the agents.
In general, complete algorithms [7, 6, 9] (i.e. algorithms that find
the true optimum) exhibit an exponentially increasing coordination
overhead, which makes them useless in many practical situations.

Approximate algorithms constitute a very interesting alternative.
They require little computation and communication at the cost of sac-
rificing optimality. There are several examples showing that they can
provide solutions which are very close to optimality [3, 5]. However,
this observation can only be verified on small toy instances, because
it requires the computation of the true optimal to compare with, and
it is not available in real-size real-world situations.

A significant breakthrough along this line of work was the
Bounded Max-Sum algorithm (BMS) [10]. This algorithm comes
with a guarantee approximation ratio ρ̃, meaning that its approxi-
mate solution x̃ has a utility F (x̃) which is no more than a factor
ρ̃ ≥ 1 away from the optimum (i.e, F (x̃) ≤ F (x∗) ≤ ρ̃F (x̃)).
Clearly, large values of ρ̃ reflect lack of confidence in the solution x̃.
There are two possible reasons for a large ρ̃: i) the algorithm failed
in finding a solution close to the optimal, ii) the approximation ratio
is not tight. Clearly, if we want ρ̃ to be our measure of confidence
about the quality of x̃, we want a tight ρ̃ (i.e, F (x∗) ≈ ρ̃F (x̃)).
Thus, the quality of the approximation ratio is a matter of the utmost
importance.

1 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica
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In this paper we propose an improvement of BMS with approxi-
mation ratio ρ. We theoretically show that it is always better than the
previous one (i.e., ρ ≤ ρ̃). Moreover, our experiments show that, in
practice, ρ is much tighter than ρ̃.

2 Preliminaries

In this Section we review the main elements to contextualize our
work. Definitions and notation is borrowed almost directly from [10].
We urge the reader to visit that reference for more details and exam-
ples.

2.1 DCOP

A Distributed Constraint Optimization Problem (DCOP) is a quadru-
ple P = (A,X,D,F), where A = {A1, . . . ,Ar} is a set of agents,
and X = {x1, . . . , xn} and D = {d1, . . . ,dn} are variables and
domains. F = {f1, . . . , fe} is a set of cost functions. The objective
function is,

F (x) =

e∑
j=1

fj(x
j)

where xj ⊆ X is the scope of fj . A solution is a complete assign-
ment x. An optimal solution is a complete assignment x∗ such that
∀x, F (x∗) ≥ F (x). The usual task of interest is to find x∗ through
the coordination of the agents.

In the applications under consideration, the agents search for the
optimum via decentralised coordination. We assume that each agent
can control only its local variable(s) and has knowledge of, and can
directly communicate with, a few neighboring agents. Two agents are
neighbors if there is a relationship connecting variables and functions
that the agents control.

The structure of a DCOP problem P = (A,X,D,F) is repre-
sented by its associated factor graph. A factor graph is a bipartite
graph having a variable node for each variable xi ∈ X, a factor node
for each local function fj ∈ F, and an edge connecting variable node
xi to factor node fj if and only if xi is an argument of fj .

2.2 Max-Sum Algorithm

The Max-Sum algorithm [2, 1] is a message-passing algorithm for
solving DCOP problems. It operates over a factor graph by sending
functions (a.k.a., messages) along its edges. Edge (i, j) has associ-
ated two messages qi→j , from variable node xi to function node fj ,
and rj→i, from function node fj to variable node xi. These messages
are defined as follows:



• From variable to function:

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi)

whereMi is a vector of function indexes, indicating which func-
tion nodes are connected to variable node xi, and αij is a normal-
izing constant to prevent the messages from increasing endlessly
in cyclic graphs.

• From function to variable:

rj→i(xi) = max
xj\xi

{fj(xj) +
∑

k∈Nj\i

qk→i(xi)}

whereNj is a vector of variable indexes, indicating which variable
nodes are connected to function node fj and xj \ xi = {xk | k ∈
Nj \ i}

Max-Sum is a distributed synchronous algorithm, since the agent
controlling node i has to wait to receive messages from all its neigh-
bors but j, to be able to compute (and send) its message to j. When
the factor graph is cycle free, the algorithm is guaranteed to converge
to the global optimal solution. Once the convergence is reached, each
variable node can compute function,

zi(xi) = max
xi

∑
k∈Mi

rk→i(xi)

The optimal solution is maxxi{zi(xi)} and the optimal assignment
x∗i = argmaxxi{zi(xi)}. When the factor graph is cyclic, the al-
gorithm may not converge to the optimum and only provides an ap-
proximation.

3 Bounded Max-Sum Algorithm
The Bounded Max-Sum algorithm (BMS) [10], is an approximation
algorithm built on the Max-Sum algorithm. From a possibly cyclic
problem P , the idea is to remove cycles in its factor graph by ignor-
ing dependencies between functions and variables which have the
least impact on the solution quality, producing a new acyclic prob-
lem P̃ . Then, Max-Sum is used to optimally solve P̃ while simul-
taneously computing the approximation ratio ρ̃. A more detailed de-
scription follows. For the sake of simplicity, we will restrict ourselves
to the case of binary functions fj(xi, xk). The extension to general
functions is direct. The algorithm works in three phases, each one im-
plementable in a decentralised manner (see [10] for further details):

• Relaxation Phase: First, the algorithm weights each edge (i, j)
of the original factor graph as,

wij = max
xk

{max
xi

fj(xi, xk)−min
xi

fj(xi, xk)}

Then, it finds a maximum spanning tree T . Let W be the sum of
weights of the removed edges (i.e, W =

∑
(i,j)/∈T wij). Next,

the original problem P is transformed into an acyclic one P̃ hav-
ing the spanning tree T as factor graph. This is done as follows:
for each edge (i, j) in the original graph that does not belong to
the tree, the cost function fj(xi, xk) is transformed into another
function f̃j(xk) defined as,

f̃j(xk) = min
xi

fj(xi, xk)

Note that the objective function of P̃ is

F̃ (x) =
∑

(i,j),(k,j)∈T

fj(xi, xk) +
∑

(i,j)/∈T

f̃j(xk)

• Solving Phase: BMS solves P̃ with Max-Sum. Let x̃ be the solu-
tion of this problem. Since the factor graph of P̃ is acyclic, x̃ is its
optimal assignment.

• Bounding Phase: In [10], it is proved that,

F (x̃) ≤ F (x∗) ≤ F̃ (x̃) +W

We can rewrite the previous upper bound expression as,

F (x∗) ≤ F̃ (x̃) +W

F (x̃)
F (x̃)

Therefore, the algorithm computes ρ̃ = F̃ (x̃)+W
F (x̃)

, which is a guar-
antee approximation ratio.

4 Improved BMS
4.1 Theoretical elements
Consider an edge (i, j) in the original factor graph that does not be-
long to the spanning tree. We define f̂j(xk) as,

f̂j(xk) = max
xi

fj(xi, xk)

Let P̂ denote the problem containing the not modified functions
fj(xi, xk) (for (i, j), (k, j) ∈ T ) and the f̂j(xk) functions (for
(i, j) /∈ T ). Note that P̂ and P̃ have the same acyclic factor graph.
Note as well that the objective function of P̂ is

F̂ (x) =
∑

(i,j),(k,j)∈T

fj(xi, xk) +
∑

(i,j)/∈T

f̂j(xk)

We can solve P̂ with Max-Sum. Let x̂ be the optimal solution of
this problem. It is obvious that F (x̂) is a lower bound of F (x∗).
Furthermore, as we prove next, F̂ (x̂) is an upper bound of F (x∗).
Therefore, ρ̂ = F̂ (x̂)

F (x̂)
is a guarantee approximation ratio.

Theorem 1 F (x∗) ≤ F̂ (x̂).

Proof By definition, F (x∗) =
∑

(i,j),(k,j)∈T fj(x
∗
i ,x
∗
k) +∑

(i,j)/∈T fj(x
∗
i ,x
∗
k). Since for all fj we have that fj(xi, xk) ≤

maxxi fj(xi, xk), then

F (x∗) ≤
∑

(i,j),(k,j)∈T

fj(x
∗
i ,x
∗
k)+

∑
(i,j)/∈T

max
xi

fj(xi,x
∗
k) = F̂ (x∗)

From the optimality of x̂, we know that F̂ (x∗) ≤ F̂ (x̂), which
proves the theorem.

Next, we show that F̂ (x̂) is a tighter upper bound than F̃ (x̃)+W .

Theorem 2 F̂ (x̂) ≤ F̃ (x̃) +W .

Proof The proof is direct once it has been noted that for all
fj(xi, xk),

f̂j(xk) ≤ f̃j(xk) + wij

which we prove next. By definition, the previous equation corre-
sponds to,

max
xi

fj(xi, xk) ≤ min
xi

fj(xi, xk)+max
xk

{max
xi

fj(xi, xk)−min
xi

fj(xi, xk)}

which can be rewritten as,

max
xi

fj(xi, xk)−min
xi

fj(xi, xk) ≤ max
xk

{max
xi

fj(xi, xk)−min
xi

fj(xi, xk)}
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Figure 1. Example of a factor graph containing cycles and a spanning tree formed by removing the edge between variable node x2 and function node f1.

which clearly holds.
We cannot establish any dominance relation between ρ̃ and ρ̂ be-

cause there is no dominance between F (x̃) and F (x̂). However, one
way to circumvent this situation is to take ρ = F̂ (x̂)

max{F (x̃),F (x̂)} . The
new ratio ρ dominates ρ̃.

Theorem 3 ρ ≤ ρ̃.

Proof Direct from Theorem 2 and the fact that
max{F (x̃), F (x̂)} ≥ F (x̃).

4.2 IBMS
Improved BMS (IMBS) works, as BMS, in three phases:

• Relaxation Phase: IBMS computes the spanning tree T and the
relaxed problem P̃ exactly as BMS does. Additionally, IBMS
computes the relaxed problem P̂ .

• Solving Phase: IBMS solves P̃ and P̂ with Max-Sum. Let x̃ and
x̂ be the solutions of these problems. The agents will act according
to the best solution (max{F (x̃), F (x̂)}).

• Bounding Phase: IBMS computes the approximation ratio ρ =
F̂ (x̂)

max{F (x̃),F (x̂)} .

The computation, storage and communication effort of IBMS is
essentially twice that of BMS, because it requires solving two re-
laxed problems with Max-Sum. Given the low cost of BMS, dou-
bling it seems acceptable. However, when it is not the case, one can
always run a weaker version of IBMS ignoring P̃ . This weaker ver-
sion will be exactly as costly as BMS. Its disadvantage is that x̂ is
not guaranteed to be better than x̃. In fact, our experiments show that
there is no clear winner among them. Interestingly, the approxima-
tion ratio of the weaker version ρ̂ is systematically better than the
approximation ratio of BMS ρ̃.

Example 1 Consider the problem P given in Figure 1 with two
variables {x1, x2} and two functions {f1, f2}. The spanning tree
of its factor graph is given with solid lines (i.e., edge (x2, f1) has
been removed, shown as a dashed line). Thus, W = 10. Functions
f̃1 and f̂1 in P̃ and P̂ , respectively, are given in the figure. Max-
Sum finds assignments x̃ = x̂ = (x1 = a, x2 = a), with utility
F̃ (x̃) = F̂ (x̂) = 20. Their evaluation on the original problem P is
F (x̃) = F (x̂) = 20. The approximation ratios are ρ̃ = 1.5, ρ̂ = 1,
and ρ = 1.

5 Empirical Evaluation
The purpose of the experiments is to evaluate the improvement of our
upper bound F̂ (x̂) and approximation ratios ρ and ρ̂ over the BMS
upper bound F̃ (x̃)+W and approximation ratio ρ̃, respectively. We
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Figure 2. First and second row, bounds obtained by algorithms IBMS and
BMS varying the number of agents; third row, lower bound detail for

instances with 25 agents and gamma distribution.

consider the same set of problems from the ADOPT repository2 used
in [10]. These problems represent graph colouring problems with two
different link densities (i.e., the average connection per agent) and
different number of nodes. Each agent controls one node (i.e., vari-
able), with domain |di| = 3, and each edge of the graph represents
a pairwise constraint between two agents. Each edge is associated
with a random payoff matrix, specifying the payoff that both agents
will obtain for every possible combination of their variables’ assign-
ments. Each entry of the payoff matrix is a real number sampled
from two different distributions: a gamma distribution with α = 9
and β = 2, and a uniform distribution with range (0, 1). For each
configuration, we report average values over 25 repetitions. For the
sake of comparison, we compute the optimal utility by a complete
centralized algorithm, although this value can only be computed up
to 12 agents by a complete decentralized algorithm, as shown in [10].

Figure 2 (first and second rows) shows the upper and lower bound

2 http://teamcore.usc.edu/dcop
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Figure 3. Percentage of improvement of the approximation ratio of IBMS
ρ and weaker version of IBMS ρ̂ (left y-axe), and percentage of decrease of

the 7-size-bounded-distance criteria using the the minimum maximum
reward bound (S7r) and the minimum fraction bound (S7f ) (right y-axe)

over the approximation ratio of BMS ρ̃.

obtained by IBMS (i.e., F̂ (x̂) and max{F (x̂), F (x̃)}, respectively)
and BMS (i.e., F̃ (x̃) and F (x̃), respectively), along with the opti-
mal utility (i.e., F (x∗)), for the different link densities and payoff
distributions. The behavior of both algorithms is very similar across
all link densities and payoff distributions. IBMS always computes an
upper bound tighter than the one computed by BMS. The improve-
ment is slightly better for the uniform distribution. The lower bounds
computed by both algorithms are very close, although IBMS lower
bound is slightly better.

Figure 2 (bottom row) shows a detail on the lower bounds F (x̂)
and F (x̃) obtained on each instance of a given parameter configu-
ration. Since the behavior across all number of agents, link densities
and payoff distributions is very similar, we only report results on in-
stances with 25 agents and gamma distribution. Both lower bounds
are very close, and none of them is consistently better than the other.

Figure 3 shows the percentage of improvement of the approxi-
mation ratio of IBMS ρ and the weaker version of IBMS ρ̂ over
the approximation ratio of MBS ρ̃ (left y-axe). The figure also re-
ports the percentage of deterioration of the approximation ratio of
the 7-size-bounded-distance criteria introduced in [11] according to
the minimum maximum reward bound (S7r) and the minimum frac-
tion bound (S7f ) presented in [12] over the approximation ratio of
MBS ρ̃ (right y-axe). Since the relation between the optimal solu-
tion of the problem F (x∗) and an approximation ratio ρ of a given
solution x is 1 ≤ F (x∗)

F (x)
≤ ρ, we compute the improvement of an

approximation ratio ρ over ρ̃ as,

(ρ̃− 1)− (ρ− 1)

ρ̃− 1
∗ 100

The improvement of ρ is always higher than 37%, and up to almost
50%. Its mean improvement for the gamma and uniform distributions
is higher than 40% and 45%, respectively. The improvement of ρ̂ is
always higher than 32%, and up to almost 46%. Its mean improve-
ment for the gamma and uniform distributions is higher than 35%
and 37%, respectively. Therefore, both IBMS and its weaker version

always significantly outperforms BMS. Recall that the weaker ver-
sion of IBMS has the same communication demands as BMS. Both
approximation ratios S7r and S7f are worse than the approximation
ratio of BMS ρ̃ (the percentage is always negative). Their quality
decreases as the number of agents increases for both distributions.

6 Related Work
There are other two incomplete algorithms that can provide guaran-
tees on the worst-case solution quality of their solutions at design
time: k-optimality [8] and t-optimality [4]. The idea of these algo-
rithms is to form coalitions of agents and to find the local optima
solutions for all agents within the coalitions. This local optima is
guaranteed to be within a predefined distance from the global opti-
mal solution. Very recently, [11] proposed a framework were differ-
ent coallition-based local optimality schemes can be described and
defined a new criteria called s-size bounded optimality. The complex-
ity of these algorithms depend on the number of coalitions and their
size. Therefore, in practice, these algorithms are used with relatively
small values of their control parameter.

In [10], it was shown that k-optimality provided significantly worst
quality guarantees than BMS for different values of k. As stated in
the following proposition, the quality guarantee provided by the 2-
size-bounded optimality for binary DCOPs is always higher than 2.

Proposition 1 Let P = (A,X,D,F) be a binary DCOP (i.e., the
arity of the functions is at most 2) such that |X| > 2. The quality
guarantee ρ satisfies:

2 ≤ ρ ≤ |F|

for all its 2-size-bounded optimal assignments.

Proof According to [11],

ρ =
|C| − nc∗
cc∗

where:

• C is a multi-set of subsets of X, where C ∈ C is a coalition;
• cc∗ = minf∈F{nc(f, C)}, where cc(f, C) = |{C ∈ C |
var(f) ⊆ C}|;

• nc∗ = minf∈F{cc(f, C)}, where nc(f, C) = |{C ∈ C |
var(f) ∩ C = ∅}|;

Let fij be a function with scope {xi, xj}. In a binary DCOP, its 2-
size-bounded region is C = {var(f) | f ∈ F} (i.e., |C| = |F|),
cc(f, C) = 1 for all f ∈ F, and nc(fij , C) = |F| − |{fik ∈ F |
j 6= k}| − |{flj ∈ F | l 6= i}| + 1 for all fij ∈ F. The minimum
nc∗ is when the DCOP constraint graph is a star because nc∗ = 0,
so that ρ = |C| is maximum. Note that on a star with |X| = 3,
ρ = |C| = 2. The maximum nc∗ is when the DCOP constraint graph
is a chain with |X| > 3 (note that a chain with |X| = 3 is a star),
because nc∗ = |F| − 3 so that its ρ = 3. Note that a DCOP with
two variables is trivially solved to optimality by the 2-bounded size
optimality scheme.

Note that for all instances in the empirical evaluation, the qual-
ity guarantees of both IBMS and BMS were smaller than 1.4. For
those instances, the s-size-bounded-distance provided worse approx-
imation ratios than IBMS and BMS even using the improved min-
imum maximum reward and minimum fraction bounds and a rela-
tively high value of the parameter s. We leave as future work a more
extensive empirical comparison of the different algorithms.



7 Conclusions
In this paper we introduced a new algorithm, called Improved
Bounded Max-Sum (IBMS), based on the Bounded Max-Sum algo-
rithm. We theoretically proved that its approximation ratio is always
better than the previous one, at the only cost of doubling the com-
munication requirements. We also introduced a weaker version of
IBMS having the same communication demands as Bounded Max-
Sum. Our experiments show that the approximation ratio of both al-
gorithms is significatively tighter.
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