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From Models to Metamodels

In Systems Biology, models are built with two contradictory
perspectives:

I models for aggregating knowledge: the more concrete the
better

I models for making predictions: the more abstract the better

These perspectives can be reconciled by organizing models in a
hierarchy of reduction/refinement relations.

To understand a system is not to know everything about it, but to
know abstraction levels that are sufficient for answering questions
about the system.
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The state of the art on model reduction

Analytical reductions (time/phase decompositions) are too
restrictive to be applicable on a large scale.

Published models are not formally related.

Model repositories are still only plain lists of annotated models.



Our contribution

Propose a general, minimalistic formalism for model reduction

Compute hierarchies of models

Example (MAPK models in biomodels.net)
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Reaction Graphs

Definition
A reaction graph is a triple (S , R, A), with A ⊆ S × R ∪ R × S .
S is the set of species of the graph, R is the set of reactions.

Example (E + S 
 ES → E + P)

E c ES

d
S

p P

Example (E + S → E + P)

S c P

E



Model reduction by graph operations

In our setting, we define a model reduction to be a string of the
following 4 elementary operations:

I Species deletion

I Reaction deletion

I Species merging

I Reaction merging



Species Deletion

This removes a species from the model.

I Remove every arc linking the species and any reaction

I Remove the species’ node from the graph

Example

E c ES

d
S

p P



Reaction Deletion

This removes a reaction from the model.

I Remove every arc linking the reaction and a species

I Remove the reaction’s node from the graph

Example

E c ES

d
S

p P



Species Merging
This merges several species S1 . . . Sn into one:
I Create a new species node S
I For every reaction linked with an Si , link it with S
I Delete every Si

A r1 B1

r2

B2

r3

r4 C

A r1 B

r2

r3

r4 C



Reaction Merging
This merges several reactions R1 . . .Rn into one:
I Create a new species node R
I For every reaction linked with an Ri , link it with R
I Delete every Ri

E c ES

d
S

p P

c+p

ESE

dS

P



The Michaelis-Menten reduction

E c ES

d
S

p P c+p

ESE

dS

P

c+p

ESE

dS

P
c+p

ES

E

S P



Comparing Graphs with Subgraph Epimorphisms

Definition
A subgraph morphism µ from G = (S ,R,A) to G ′ = (S ′,R ′,A′) is
a function µ : S0 ∪ R0 −→ S ′ ∪ R ′, with S0 ⊆ S and R0 ⊆ R, such
that :

I µ(S0) ⊆ S ′, µ(R0) ⊆ R ′

I ∀(x , y) ∈ A ∩ (S0 × R0 ∪ R0 × S0), (µ(x), µ(y)) ∈ A′.

Definition
A subgraph epimorphism is a subgraph morphism that is surjective
(on nodes and arcs).

Theorem
Let G ,G ′ be reaction graphs. There is a reduction from G to G ′

using species and reaction deletions and mergings iff there is a
subgraph epimorphism from G to G ′



Model Reductions as Subgraph Epimorphisms

Example

E → C
S → A
P → B
c → r
p → r
d → ⊥

ES→ ⊥

E c ES

d
S

p P

A r

C

B



The Subgraph Epimorphism Problem

Theorem
The problem of deciding if there is a subgraph epimorphism
between two reaction graphs is NP-complete.

Proof (article with Christine Solnon, in preparation):

The problem is trivially in NP.
The completeness is obtained by reduction of the Set Covering
Problem.



Implementation using Constraint Programming

We implemented a program in the GNU-Prolog programming
language to solve the Subgraph Epimorphism Problem.

I A finite domain variable is associated to every source node,
with domain the nodes of the target graph

I The morphism requirement (arc preservation) is implemented
as relational constraints on variables

I The surjectivity constraint is implemented with antecedent
variables, one per target arc

Thanks to constraint propagation, the programming language
makes an efficient enumeration of solutions easy.



Computing Hierarchies in the Large

To try out the formalism, we extracted four clusters of models
from the biomodels.net [le Novère et al., 2006] repository:

I MAPK cascades

I Circadian clock

I Calcium oscillation

I Cell cycle

Every pair of models was compared with a 20 minute timeout
(> 90% of computations took < 5s).



MAPK Hierarchy
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This shows the reductions found automatically.
Each node represents a model.
A −→ B means a reduction from A to B was found.
A
 B means A and B are isomorphic.



MAPK Models

Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 10078-10083, September 1996
Biochemistry

Ultrasensitivity in the mitogen-activated protein kinase cascade
CHI-YING F. HUANG AND JAMES E. FERRELL, JR.t
Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5332

Communicated by Daniel E. Koshland, Jr., University of California, Berkeley, CA, May 16, 1996 (received for review January 22, 1996)

ABSTRACT The mitogen-activated protein kinase
(MAPK) cascade is a highly conserved series of three protein
kinases implicated in diverse biological processes. Here we
demonstrate that the cascade arrangement has unexpected
consequences for the dynamics ofMAPK signaling. We solved
the rate equations for the cascade numerically and found that
MAPK is predicted to behave like a highly cooperative en-
zyme, even though it was not assumed that any of the enzymes
in the cascade were regulated cooperatively. Measurements of
MAPK activation in Xenopus oocyte extracts confirmed this
prediction. The stimulus/response curve of the MAPK was
found to be as steep as that of a cooperative enzyme with a Hill
coefficient of 4-5, well in excess of that of the classical
allosteric protein hemoglobin. The shape of the MAPK stim-
ulus/response curve may make the cascade particularly ap-
propriate for mediating processes like mitogenesis, cell fate
induction, and oocyte maturation, where a cell switches from
one discrete state to another.

Although the biological responses associated with mitogen-
activated protein kinase (MAPK) signaling are highly varied,
the basic structure of the MAPK cascade is well conserved
(1-3). The cascade always consists of a MAPK kinase kinase
(MAPKKK), a MAPK kinase (MAPKK), and a MAPK.
MAPKKKs activate MAPKKs by phosphorylation at two
conserved serine residues and MAPKKs activate MAPKs by
phosphorylation at conserved threonine and tyrosine residues
(Fig. 1). The cascade relays signals from the plasma membrane
to targets in the cytoplasm and nucleus.
A number of other membrane-to-nucleus signaling pathways,

such as the Jak/Stat pathways and the cAMP/protein kinase A
pathway, employ just a single protein kinase. Why does the
MAPK cascade invariably use three kinases instead of one? The
possibility that the three kinase arrangement has evolved to allow
signal ramification or amplification is attractive but, as yet, not
well supported by genetic or biochemical evidence.
We have explored the possibility that the cascade arrangement

has important consequences for the dynamics of MAPK signal-
ing. Here we shall focus on the steady-state responses of enzymes
at each level in the cascade to varying input stimuli. The stimulus/
response curve of a typical Michaelis-Menten enzyme is hyper-
bolic, and the enzyme responds in a graded fashion to increasing
stimuli. An 81-fold increase in stimulus is needed to drive the
enzyme from 10% to 90% maximal response (see for example,
the MAPKKK curves in Fig. 2). However, some enzymes exhibit
stimulus/response curves that are steeper or less steep than the
Michaelis-Menten curve. Goldbeter and Koshland have termed
these responses "ultrasensitivity" and "subsensitivity," respec-
tively (11-13). An ultrasensitive enzyme requires less than an
81-fold increase in stimulus to drive it from 10% to 90% maximal
response (for example, the MAPKand MAPKKcurves in Fig. 2);
a subsensitive enzyme requires more than an 81-fold increase.
The term ultrasensitivity emphasizes the fact that the upstroke

of the stimulus/response curve is steeper than that of a hyperbolic
Michaelis-Menten enzyme, as shown in Fig. 2A. However,

INPUT
(El)

MAPKKK ' MAPKKK'

E2

MAPKK '~* MAPKK-P Z_ MAPKK-PP

MAPKK P'ase

MAPK _ MAPK-P ' MAPK-PP

MAPK P'ase

OUTPUT

FIG. 1. Schematic view of the MAPK cascade. Activation of
MAPK depends upon the phosphorylation of two conserved sites
[Thr-183 and Tyr-185 in rat p42 MAPK/Erk2 (4, 5)]. Full activation
of MAPKK also requires phosphorylation of two sites [Ser-218 and
Ser-222 in mouse Mek-1/MKK1 (6-10)]. Detailed mechanisms for the
activation of various MAPKKKs (e.g., Raf-1, B-Raf, Mos) are not yet
established; here we assume that MAPKKKs are activated and inac-
tivated by enzymes we denote El and E2. MAPKKK* denotes
activated MAPKKK. MAPKK-P and MAPKK-PP denote singly and
doubly phosphorylated MAPKK, respectively. MAPK-P and
MAPK-PP denote singly and doubly phosphorylated MAPK. P'ase
denotes phosphatase.

ultrasensitive enzymes are also relatively less sensitive to small
stimuli than are Michaelis-Menten enzymes; at low stimulus
levels their stimulus/response curves are less steep than those of
Michaelis-Menten enzymes (Fig. 2A). Thus, highly ultrasensitive
enzymes tend toward all-or-none, switch-like responses.
The most widely appreciated mechanism for generating

ultrasensitive responses is cooperativity. Positively cooperative
enzymes have sigmoidal stimulus/response curves, and require
less than an 81-fold stimulus to drive them from 10% to 90%
maximal response. However, cooperativity is not the only
mechanism through which ultrasensitive responses can be
generated. Ultrasensitivity also arises when enzyme cycles
operate near saturation ["zero-order ultrasensitivity" (11)]
and when stimuli impinge upon multiple steps of an enzyme
cascade ["multistep ultrasensitivity" (12-14)].
We have investigated whether an ultrasensitive, switch-like

response would be expected of the vertebrate Erkl/Erk2
MAPK cascade, given what is known about the abundances of
the members of the cascade and their affinities for each other.
We solved the rate equations for the cascade numerically, and
found that the dose/response curves for MAPK and MAPKK
are predicted to be sigmoidal, with the MAPK curve predicted
to be as steep as that of a cooperative enzyme with a Hill
coefficient of nearly 5. We then carried out detailed measure-
ments of the stimulus/response curves for one MAPKK
(Mek-1) and one MAPK (p42 MAPK/Erk2) in a highly

Abbreviations: MAPK, mitogen-activated protein kinase; MAPKK,
MAPK kinase; MAPKKK, MAPK kinase kinase.
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A MAPK model presented in [Huang and Ferrell, 1996].



MAPK Hierarchy
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Models 009 (Huang 1996), 010 (Kholodenko 2000) and 011
(Levchenko 2000) are 3-level MAPK cascades.
Models 026 to 031 (Markevitch 2004) are 1-level MAPK cascades.
Models 049 (Sasagawa 2005) and 146 (Hatakeyama 2003) are
bigger (resp. 216 and 46 reactions), some computations timed out.



Circadian Clock Models Hierarchy

021_Lelo

170_Weim

022_Ueda

034_Smol

055_Lock

073_Lelo

078_Lelo

074_Lelo

083_Lelo

089_Lock 171_Lelo



Calcium Oscillation Models Hierarchy

039_Marh

098_Gold

115_Somo

117_Dupo

166_Zhu

043_Borg

044_Borg

045_Borg

058_Bind

122_Fish

145_Wang



Cell Cycle Models Hierarchy

007_Nova

008_Gard 168_Obey

056_Chen

169_Agud 196_Sriv109_Habe 111_Nova144_Calz

Models of the cell cycle in biomodels.net do not represent their
structure as reactions.
Typical problems include the use of invariants (matter
conservation) and events (cell division), which are not reflected in
the reaction graph.



Negative Control

We looked for possible reductions between every model of the 4
classes.
Inter-class reductions are false positives, they amount to 9% of the
tests.
They are typically big-to-small models reductions.

By removing the smaller models from the pool, only 1.2% of the
tests are positives remain.



Conclusion

The model reduction method we presented is stricly structural.
The four graph reduction operations are simple, but precise enough
to capture model reductions in biomodels.net.

As a future work, linking the operations with mathematical
reductions is the obvious path:

I species deletions with species in excess

I reaction deletions with slow reverse reactions

I species mergings with fast equilibria (QSSA)

I reaction mergings with limiting reactions



Thank you for your attention!

Questions?
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