
THÈSE

présentée pour obtenir le titre de

DOCTEUR DE l’ÉCOLE NATIONALE SUPÉRIEURE DE

L’AÉRONAUTIQUE ET DE L’ESPACE

Spécialité : Informatique

par

Cédric Pralet

Un cadre algébrique général pour représenter et résoudre

des problèmes de décision séquentielle avec incertitudes,

faisabilités et utilités

A generic algebraic framework for representing and solving

sequential decision making problems with uncertainties, feasibilities,

and utilities

Thèse présentée devant le jury composé de:

Malik Ghallab LAAS-CNRS, Toulouse Examinateur

Patrice Perny LIP6, Paris Rapporteur

Francesca Rossi Université de Padoue (Italie) Rapporteur

Thomas Schiex INRA, Toulouse Directeur de thèse

Gérard Verfaillie ONERA, Toulouse Directeur de thèse

Nic Wilson 4C, Cork (Irlande) Examinateur

Thèse préparée au LAAS-CNRS et à l’INRA Toulouse

2

Contents

I Representing decision making problems in the PFU framework 13

1 Background notations and definitions 15

1.1 Basic definitions . 15

1.2 An illustrative example . 18

2 A guided tour of frameworks for decision making 21

2.1 SAT-based decision frameworks . 21

2.1.1 The satisfiability problem . 22

2.1.2 Quantified boolean formulas: towards pessimistic indeterminism and partial

observabilities . 22

2.1.3 Stochastic SAT and extended stochastic SAT: towards a stochastic indeter-

minism . 23

2.2 CSP-based decision frameworks . 24

2.2.1 Constraint satisfaction problems . 24

2.2.2 Extension to non-binary uncertainties and utilities: soft constraints 25

2.2.3 Modeling uncontrollabilities and partial observabilities: mixed CSP 28

2.2.4 Quantified CSP for modeling multi-step decision processes 30

2.2.5 Integrating probabilistic uncertainties: stochastic CSP 30

2.3 Bayesian network-based decision frameworks . 32

2.3.1 Bayesian networks . 32

2.3.2 Possibilistic networks . 34

2.3.3 Mixed networks . 34

2.3.4 Influence diagrams . 35

2.4 Beyond conditional probabilities for modeling uncertainties 37

2.4.1 Markov random fields and chain graphs . 38

2.4.2 Valuation networks . 39

2.5 Classical planning-based frameworks . 40

2.5.1 Classical planning . 40

2.5.2 Conformant planning and probabilistic planning 43

2.6 Sequential decision making under uncertainty with MDPs 44

2.6.1 Markov decision processes . 44

2.6.2 Partially observable MDPs . 47

2.6.3 Other uncertainty-utility models: towards algebraic MDPs 47

3

4 CONTENTS

2.6.4 Back to a variable-based representation: factored MDPs 48

2.7 Valuation algebras . 49

2.8 The three basic ingredients of a generic framework 51

2.9 Summary . 52

3 A generic algebraic structure 53

3.1 Some algebraic definitions . 53

3.2 Plausibility structure . 54

3.3 Feasibility structure . 56

3.4 Utility structure . 56

3.5 Expected utility structure . 57

3.6 Structures covered . 59

3.7 Relations with other existing structures . 60

3.8 Summary . 61

4 Plausibility-Feasibility-Utility networks 63

4.1 Decision and environment variables . 63

4.2 Towards local plausibility and feasibility functions 63

4.2.1 A first factorization step using conditional independence 64

4.2.2 Further factorization steps . 69

4.3 Local utilities . 70

4.4 Formal definition of PFU networks . 71

4.5 From PFU networks to global functions . 72

4.6 Back to existing frameworks . 72

4.7 Summary . 73

5 Queries on a PFU network 75

5.1 Query definition . 75

5.2 Answer to a query: semantic definition . 77

5.3 Answer to a query: operational definition . 80

5.4 Equivalence theorem . 81

5.5 Bounded queries . 81

5.6 Back to existing frameworks . 82

5.7 Extensions to other classes of queries . 83

5.8 Summary . 84

5.9 Gains and costs of the PFU framework . 84

II Generic algorithms for answering PFU queries 87

6 First generic algorithms 89

6.1 A basic tree search algorithm . 89

6.2 A first naive variable elimination algorithm . 91

6.3 Solving the undecomposability problem . 92

6.4 Definition of an improved variable elimination algorithm 94

CONTENTS 5

6.4.1 Improved VE algorithm in the semiring case 94

6.4.2 Improved VE algorithm in the semigroup case 96

6.4.3 General case . 98

6.4.4 Simplifying the problem specification in the semigroup case 99

6.5 Quantifying the theoretical complexity . 101

6.5.1 Induced-width . 101

6.5.2 Constrained induced-width . 103

6.6 Decreasing the constrained induced-width . 104

6.6.1 Weakening constraints on the elimination order 105

6.6.2 Working on the hypergraph . 106

6.7 Summary . 107

7 Structuring multi-operator queries 109

7.1 Back on the multi-operator queries considered . 109

7.2 From queries to computation nodes . 110

7.3 Structuring multi-operator queries in the semiring case 112

7.3.1 Building the macrostructure of a query using rewriting rules 112

7.3.2 Preliminaries: cluster-tree decompositions 118

7.3.3 Towards multi-operator cluster trees using cluster-tree decompositions . . . 121

7.3.4 Comparison with an unstructured approach 122

7.3.5 Comparison with existing approaches . 123

7.3.6 Adding feasibilities . 124

7.4 Structuring multi-operator queries in the semigroup case 124

7.4.1 Building the macrostructure of a query using rewriting rules 124

7.4.2 Cluster-tree decompositions to structure DAGs of computation nodes: to-

wards multi-operator cluster-DAGs (MCDAGs) 131

7.4.3 Comparison with an unstructured approach 135

7.4.4 Comparison with existing approaches . 135

7.4.5 Adding feasibilities . 137

7.5 Conclusion . 137

8 A generic structured tree search 141

8.1 Existing structured tree search algorithms . 142

8.2 A first generic structured tree search . 144

8.3 Adding caching to the structured tree search . 146

8.4 A structured tree search using both bounds and caching 147

8.4.1 A small additional algebraic assumption . 147

8.4.2 Using bounds in presence of several elimination operators 147

8.4.3 Using bounds without inverse for the combination operations 149

8.4.4 Algorithm definition . 150

8.5 Using division and difference operators . 156

8.6 Computing bounds by inference mechanisms . 161

8.7 Integrating feasibilities . 164

6 CONTENTS

8.8 Summary and perspectives . 164

9 A generic solver for answering PFU queries 165

9.1 Description of problems . 165

9.1.1 XML representation of PFU networks . 165

9.1.2 XML representation of queries . 168

9.1.3 Reading others formats . 168

9.2 Solver description . 169

9.3 Perspectives . 172

Bibliography 183

A Notations 193

B Proofs 195

B.1 Proofs of Chapter 3 . 195

B.2 Proofs of Chapter 4 . 195

B.3 Proofs of Chapter 5 . 200

B.4 Proofs of Chapter 6 . 212

B.5 Proofs of Chapter 7 . 220

B.6 Proofs of Chapter 8 . 247

C Concrete problem example 263

D DTD of the XML format 269

Remerciements

Merci tout d’abord à Elyssa de m’avoir toujours supporté (dans les deux sens du terme) pendant

ma thèse. Cette thèse est un peu la tienne. Merci aussi à ma famille pour son soutien. Je tiens

également à remercier les personnes suivantes, tant sur le plan scientifique que sur le plan humain :

— Thomas Schiex et Gérard Verfaillie, mes deux directeurs de thèse, pour leur disponibilité,

l’excellence de leur encadrement, leur ouverture d’esprit, et leur soutien. Merci notamment

pour le caractère scientifiquement stimulant de nos réunions, qui, de mon point de vue, ont

fait du travail de recherche un pur plaisir.

— Francesca Rossi, de l’université de Padoue, et Patrice Perny, de l’université Paris 6, qui

m’ont fait l’honneur de s’intéresser à mon travail en acceptant d’être rapporteurs de cette

thèse.

— Malik Ghallab, directeur du LAAS-CNRS, et Nic Wilson, chercheur au Cork Constraint

Computation Center, pour avoir accepté de participer à mon jury de thèse. Merci sincèrement

à Nic de m’avoir invité à présenter mes travaux à un workshop ECAI’06. Je lui suis réellement

reconnaissant de cette belle opportunité.

— Aux membres de mon “comité de thèse” réunis à l’issue de mes premières et deuxièmes

années de thèse : Rachid Alami du LAAS-CNRS, Jean-Loup Farges de l’ONERA Toulouse,

Jérôme Lang de l’IRIT, et Régis Sabbadin de l’INRA Toulouse. Merci pour leur lecture

attentive de mes rapports d’avancement et pour les discussions que j’ai pu avoir avec eux

par la suite.

— Plus généralement, merci aux personnes du groupe RIA du LAAS-CNRS et aux personnes

de l’INRA pour la bonne ambiance de travail dont j’ai pu bénéficier.

7

Introduction

In the last decades, numerous formalisms have been developed to express and solve decision making

problems. In such problems, an agent must make decisions consisting in either choosing actions

and ways to fulfill them (as in action planning, task scheduling, or resource allocation), or choosing

explanations of observed phenomena (as in diagnosis or situation assessment). These choices may

depend on various parameters listed below:

1. Plausibilities: uncertainty measures, which we call plausibilities, may describe beliefs about

the state of the environment. That is to say, the environment may be non deterministic.

2. Feasibilities: preconditions may have to be satisfied for a decision to be feasible.

3. Utilities : possible states of the environment and possible decisions do not generally have

the same value for the decision maker’s point of view. Utilities can be expressed to model

costs, gains, risks, satisfaction degrees, hard requirements, and more generally, preferences

(the notion of utility is not restricted here to its additive version).

4. Sequential aspect and partial observabilities: when time is involved, decision processes may

be sequential. This means that there may be several decision steps, and that the values of

some variables may be observed between two steps, as in chess where each player plays in

turn and can observe the move of the opponent before playing again.

5. Multi-agent aspect and partial controllabilities: there may be adversarial or collaborative

decision makers, each of them controlling a set of decisions.

In this thesis, we are interested in generic sequential decision problems including plausibilities,

feasibilities, and utilities. Given (1) the plausibilities defined over the states of the environment,

(2) the feasibility constraints on the decisions, (3) the utilities defined over the decisions and the

states of the environment, and (4) the possible multiple decision steps, the objective is to provide

a decision maker with optimal decision rules for the decision variables he controls, depending on

the environment and of decisions of other agents.

Among the formalisms designed to solve problems included in this class, one can find:

• formalisms developed in the boolean satisfiability framework: the satisfiability problem

(SAT), quantified boolean formulas, stochastic SAT [82], and extended stochastic SAT [82];

• formalisms developed in the very close constraint satisfaction framework: constraint satis-

faction problems (CSPs [84]), valued/semiring CSPs [12] (covering classical, fuzzy, additive,

lexicographic, probabilistic CSPs), mixed CSPs and probabilistic mixed CSPs [47], quantified

CSPs [15], and stochastic CSPs [138];

9

10 INTRODUCTION

• formalisms developed to represent uncertainties and extended to represent decision problems

under uncertainties: Bayesian networks [96], Markov random fields [22] (also known as Gibbs

networks), chain graphs [55], hybrid or mixed networks [36, 37], influence diagrams [64],

unconstrained [68], asymmetric [131, 92], or sequential [67] influence diagrams, valuation

networks [128], and asymmetric [130] or sequential [41] valuation networks;

• formalisms developed in the classical planning framework, such as STRIPS planning [49, 58],

conformant planning [60], and probabilistic planning [77];

• formalisms such as Markov decision processes (MDPs), probabilistic, possibilistic, or using

Spohn’s epistemic beliefs [133, 142, 59], factored or not, possibly partially observable [111,

89, 119, 19, 18].

Many of these formalisms present interesting similarities:

• they include variables modeling the state of the environment (environment variables) or the

decisions (decision variables);

• they use local functions modeling plausibilities, feasibilities, or utilities;

• they use operators either to combine local information (such as × to aggregate probabilities

under independence hypothesis, + to aggregate gains and costs), or to synthesize a global

information (such as + to compute a marginal probability, min or max to compute an optimal

decision).

Even if the meaning of variables, functions, and combination or synthesis operators may be

specific to each formalism, they can all be seen as graphical models in the sense that they exploit

(implicitly or explicitly) a hypergraph of local functions between variables. This thesis shows that it

is possible to build a generic algebraic framework subsuming many of these formalisms by reducing

decision making problems to a sequence of so-called “variable eliminations” on an aggregation of

local functions.

Motivations Building a generic framework and generic algorithms to represent and solve various

decision making problems will be able to provide:

• A better understanding: a generic framework has an obvious theoretical and pedagogical

interest, since it can bring to light similarities and differences between the formalisms covered

and help people of different communities to communicate on a common basis.

• An increased expressive power : a generic framework may be able to capture problems that

cannot be modeled in any existing formalism. This increased expressiveness should be reach-

able by capturing the essential algebraic properties of existing frameworks.

• Generic algorithms: ultimately, besides a generic framework, it should be possible to define

generic algorithms capable of solving problems defined in this framework. This objective

fits into a growing effort to identify common algorithmic approaches that were developed

for solving different AI problems. It may also facilitate cross-fertilization by allowing each

subsumed framework to reuse algorithmic ideas defined in another one.

INTRODUCTION 11

Thesis outline This thesis is organized in two parts:

1. The first part, which focuses on knowledge representation, introduces a new generic frame-

work for sequential decision making with uncertainties, feasibilities, and utilities.

After the definition of some notations and notions (Chapter 1), we start by showing, with

a catalog of existing formalisms for decision making, that a generic algebraic framework

capturing many existing formalisms can be informally identified (Chapter 2).

This generic framework, called the Plausibility-Feasibility-Utility (PFU) framework, is then

formally introduced in three steps:

• Algebraic structures enabling us to express generic forms of plausibilities, feasibilities,

and utilities are introduced in Chapter 3. They specify how to combine and synthesize

information.

• These algebraic structures are exploited inside a network structure (graphical model),

defined in Chapter 4. The basic elements involved in such networks are variables and

local functions.

• Problems over such networks are captured by the notion of queries, defined in Chapter 5.

In the end, solving a decision making problem means answering a query.

2. The second part of the thesis focuses on generic algorithms able to answer queries.

• The first generic algorithms presented in Chapter 6 are based on tree search and variable

elimination. The second tries to exploit for the best the decomposition of a global

information into local functions, and has a theoretical complexity exponential in the

so-called constrained induced-width.

• More advanced techniques which analyze the actual structure of a query are given

in Chapter 7. This provides us with a generic computational architecture, called the

multi-operator cluster DAG architecture, which explicitly expresses a decomposition of

the computations to perform in order to answer queries.

• Based on this architecture, Chapter 8 introduces structured tree search algorithms,

which can be more or less sophisticated depending on whether they use some recording

and/or bounds.

• Last, Chapter 9 presents a generic implemented solver used to answer queries, which

shows that the framework and the algorithms defined is this thesis are not just abstrac-

tions.

A table recapitulating the main notations used is available in Appendix A and the proofs of all

lemmas, propositions, and theorems are given in Appendix B, in order to keep the reading fluid.

Part I

Representing decision making

problems in the PFU framework

13

Chapter 1

Background notations and

definitions

This small chapter introduces the essential objects used in the thesis, hence the interest of as-

similating the few definitions given below. The main notions manipulated are variables, domains,

local functions (called scoped functions), graphical models, combination and elimination operators,

decision rules, and some vocabulary concerning graphs. Some of these notions are illustrated by

a toy example, which also informally introduces the notions of plausibilities, feasibilities, utilities,

partial observability, and controllability.

1.1 Basic definitions

Definition 1.1. The domain of values of a variable x is denoted dom(x) and for every a ∈ dom(x),

(x, a) denotes the assignment of x with value a. By extension, for a set of variables S, we denote by

dom(S) the Cartesian product of the domains of the variables in S, i.e. dom(S) =
∏

x∈S dom(x).

An element A of dom(S) is called an assignment of S. 1

If A1, A2 are assignments of disjoint subsets S1, S2, then the concatenation of A1 and A2,

denoted A1.A2, is the assignment of S1 ∪ S2 where variables in S1 are assigned as in A1 and

variables in S2 are assigned as in A2.

If A is an assignment of a set of variables S, the projection of A over a set of variables S′,

denoted A↓S′

, is the assignment of S ∩ S′ where variables are assigned to their value in A.

Definition 1.2. (Scoped function) A scoped function is a pair (S, ϕ) where S is a set of variables

and ϕ is a function mapping elements in dom(S) to a given set E.

In the following, we will often consider that S is implicit and denote a scoped function (S, ϕ)

as ϕ alone. The set S of variables is called the scope of ϕ and is denoted sc(ϕ). If A is an

assignment of a superset of sc(ϕ) and A′ is the projection of A onto sc(ϕ), then ϕ(A) will be used

as an abbreviation of ϕ(A′).

For example, a scoped function ϕ mapping assignments of sc(ϕ) to elements of the boolean

1. An assignment of S = {x1, . . . , xk} is actually a set of variable-value pairs {(x1, a1), . . . , (xk, ak)}, but we
assume that variables are implicit when using a tuple of values (a1, . . . , ak) ∈ dom(S).

15

16 CHAPTER 1. BACKGROUND NOTATIONS AND DEFINITIONS

lattice B = {t, f} is analogous to a constraint describing the subset of dom(sc(ϕ)) of authorized

tuples in constraint networks.

From this, the general notion of graphical model can be defined:

Definition 1.3. (Graphical model) A graphical model is a pair (V,Φ) such that V = {x1, . . . , xn}

is a finite set of variables and Φ = {ϕ1, . . . , ϕm} is a finite set of scoped functions whose scopes

are included in V .

The terminology of graphical models is used here simply because a set of scoped functions

can be represented as a hypergraph whose hyperedges are the functions scopes. As we will see,

this hypergraph captures a form of independence and induces parameters for the time and space

complexity of our algorithms. This definition of graphical models generalizes the usual one used

in statistics, defining a graphical model as a (directed or not) graph where the nodes represent

random variables and where the structure captures probabilistic independence relations.

“Local” scoped functions in a graphical model give a space-tractable definition of a global

function over all variables defined by their aggregation. For example, in a Bayesian network [96]

a global probability distribution Px,y,z over x, y, z may be defined as the product (using operator

×) of a set of scoped functions {Px, Py|x, Pz|y}. Local scoped functions can also facilitate the

projection of the information expressed by a graphical model onto a smaller scope. For example,

in order to compute a marginal probability distribution Py,z from the previous network, we can

compute
∑

x Px,y,z = (
∑

x Px × Py|x)×Pz|y and avoid taking Pz|y into account. Here the operator
∑

is used to project information onto a smaller scope by eliminating variable x. Operators used

to combine scoped functions will be called combination operators, while operators used to project

information onto smaller scopes will be called elimination operators.

Definition 1.4. (Combination) Let ϕ1, ϕ2 be scoped functions to E1 and E2 respectively. Let

⊗ : E1 ×E2 → E be a binary operator. The combination of ϕ1 and ϕ2, denoted by ϕ1 ⊗ ϕ2, is the

scoped function to E with scope sc(ϕ1) ∪ sc(ϕ2) defined by (ϕ1 ⊗ ϕ2)(A) = ϕ1(A) ⊗ ϕ2(A) for all

assignments A of sc(ϕ1) ∪ sc(ϕ2). ⊗ is called the combination operator of ϕ1 and ϕ2.

In the rest of part I, all combination operators will be denoted ⊗.

Definition 1.5. (Elimination) Let ϕ be a scoped function to E. Let op be an associative and

commutative operator on E. The elimination of variable x from ϕ with op, denoted opx ϕ, is a

scoped function whose scope is sc(ϕ) − {x} and whose value for an assignment A of its scope is

(opx ϕ)(A) = opa∈dom(x) ϕ(A.(x, a)). In this context, op is called the elimination operator for x.

The elimination of a set of variables S = {x1, . . . , xk} on ϕ is a function with scope sc(ϕ)− S

defined by (opS ϕ)(A) = opA′∈dom(S) ϕ(A.A′).

Hence, when computing
∑

x (Px × Py|x × Pz|x), scoped functions are aggregated using the com-

bination operator ⊗ = × and the information is synthesized by eliminating x using the elimination

operator +. In the rest of Part I, ⊕ denotes elimination operators. Actually, the denomination of

combination operator or elimination operator depends on the usage of an operator: for example

+ can be used both as a combination operator to aggregate additive gains and costs, and as an

elimination operator used to compute a marginal probability distribution.

In some cases, the elimination of a set of variables S with an operator op from a scoped

function ϕ should only be performed on a subset of dom(S) containing assignments that satisfy

1.1. BASIC DEFINITIONS 17

some property denoted by a boolean scoped function F . Then, one must compute for every

A ∈ dom(sc(ϕ) − S) the value opA′∈dom(S),F (A′)=t ϕ(A.A′). For simplicity and homogeneity, and

in order to always use elimination over dom(S), one can equivalently truncate ϕ so that elements of

dom(S) which do not satisfy the property expressed by F are mapped to a special value (denoted

♦) which is itself defined as an identity for op.

Definition 1.6. (Truncation operator) The unfeasible value ♦ is a new special element and every

elimination operator op : E × E → E is extended to op : (E ∪ {♦}) × (E ∪ {♦}) → E ∪ {♦} by

op(♦, e) = op(e,♦) = e for all e ∈ E ∪ {♦}.

Let {t, f} be the boolean lattice. For any boolean b and any e ∈ E ∪ {♦}, we define b ⋆ e to be

equal to e if b = t and ♦ otherwise. ⋆ is called the truncation operator.

Given a boolean scoped function F , the unfeasibility element ♦ and the truncation operator ⋆

make it possible to write quantities like opA′∈dom(S),F (A′)=t ϕ as the elimination opS (F ⋆ ϕ).

In order to solve decision problems, one usually wants to compute functions mapping the

available information to a decision. The notion of decision rules will be used to formalize this:

Definition 1.7. (Decision rule, policy) A decision rule for a variable x given a set of variables

S′ is a function δ : dom(S′) → dom(x) mapping each assignment of S′ to a value in dom(x).

By extension, a decision rule for a set of variables S given a set of variables S′ is a function

δ : dom(S′)→ dom(S). A set of decision rules is called a policy.

If ϕ is a scoped function on a totally �-ordered set E and if one computes maxS ϕ, then a

decision rule δ : dom(sc(ϕ) − S) → dom(S) such that ϕ(A.δ(A)) � ϕ(A.A′) for all (A,A′) ∈

dom(sc(ϕ) − S) × dom(S) is called an optimal decision rule. Similarly, if one computes minS ϕ,

then we call optimal decision rule for S a decision rule δ : dom(sc(ϕ) − S) → dom(S) such that

ϕ(A.δ(A)) � ϕ(A.A′) for all (A,A′) ∈ dom(sc(ϕ)−S)×dom(S). This means that optimal decision

rules are examples of decision rules given by argmin and argmax.

Graph concepts In this thesis, we also need some definitions concerning graphs.

Definition 1.8. Let G = (V,H) be a hypergraph (this means that V is a set of variables and H is

a set of hyperedges over V , i.e. a subset of 2V). The primal graph of G is the graph G = (V,E)

such that E contains an edge {x, y} ∈ V 2 iff there exists an hyperedge h in H such that {x, y} ⊂ h.

Definition 1.9. Let G = (V,E) be a graph. A subset S of V is called a clique iff for all x, y in

S, {x, y} ⊂ E.

Definition 1.10. A graph G = (V,E) is a tree iff it is an undirected connected graph without

cycle. It is a rooted tree iff it is a directed connected graph without cycle. The root of the tree is

then the unique vertex without parents.

Definition 1.11. (Directed Acyclic Graph (DAG)) A directed graph G is a DAG iff it contains no

directed cycle. When variables are used as vertices, paG(x) denotes the set of parents of variable x

in G. The set of non-descendants of x, denoted ndG(x), corresponds to the set of variables y such

that there does not exist a directed path from x to y in G. The set of ancestors of x is the set of

variables y such that there is a directed path from y to x in G.

In the sequel, the cardinality of a set Γ is denoted |Γ|.

18 CHAPTER 1. BACKGROUND NOTATIONS AND DEFINITIONS

1.2 An illustrative example

The following toy example was created in order to better describe the notions of “plausibilities”,

“feasibilities”, “utilities”, “obervability”, “decision variable”, “environment variable”, or “control-

lability”. It also illustrates how variables and local scoped functions can express a global informa-

tion in a compact way. Eventually, this example shows why sequences of variable eliminations on

combinations of scoped functions are of interest for sequential decision problems.

Example John faces three doors A, B, C. One of the doors hides a treasure, another a gangster.

John can decide to open one of the doors. The gangster will rob him 4,000e but the treasure is

worth 10,000e.

Modeling To represent the environment and the decisions in a compact way, we introduce three

variables: (1) two environment variables : one for the door behind which is the gangster, the

“gangster door” (denoted ga), and one for the door behind which is the treasure, the “treasure

door” (tr); (2) one decision variable (do), representing the door John decides to open. Every

variable has {A,B,C} as domain. Decision variables are variables whose value is controlled by an

agent. The other variables are environment variables.

Then, we need two local utility functions U1, U2 to represent utilities: (1) U1 expresses that if

John opens the gangster door, he must pay 4, 000e (soft constraint do = ga, with utility degree

−4, 000e if satisfied, and 0 otherwise); (2) U2 expresses that if John opens the treasure door, he

wins 10, 000e (soft constraint do = tr, with utility degree 10, 000e if satisfied, and 0 otherwise).

A soft constraint is also called a cost function.

Associated query Which door should John open if he knows that the gangster is behind door

A and that the treasure is behind door C (no uncertainties)? Obviously, he should open door C.

Adding uncertainties

In real problems, the environment may not be completely known: there may be uncertainties (here

called plausibilities) as well as possible observations on this uncertain environment. We make the

treasure quest problem more complex in order to illustrate such aspects.

Example The treasure and the gangster are not behind the same door, and all situations are

equiprobable. John is accompanied by Peter. Each of them can decide to listen in to door A, B,

or C to try to detect the gangster. The probability of hearing something is 0.8 if one eavesdrops at

the gangster door ga, 0.4 at a door next to it, and 0 otherwise.

Modeling We define four more variables to represent these new specifications:

• two decision variables liJ and liP , with {A,B,C} as domain, model the doors to which John

and Peter listen in;

• two environment variables heJ and heP , with {yes, no} as domain, model whether John and

Peter hear the gangster.

1.2. AN ILLUSTRATIVE EXAMPLE 19

We then define four local plausibility functions:

• P1 : ga 6= tr and P2 = 1/6 model the probability distribution over the gangster’s and

treasure’s locations;

• P3 = PheJ | liJ ,ga defines the probability that John hears something given the door at which

he eavesdrops and the gangster door;

• similarly, P4 corresponds to PheP | liP ,ga.

Implicitly, the local plausibilities satisfy normalization conditions. First, as the treasure and the

gangster are somewhere,
∑

ga,tr (P1 × P2) = 1. Second, as John and Peter hear something or not,
∑

heJ
P3 = 1 and

∑

heP
P4 = 1.

Associated queries Which decision rules maximize the expected utility, if first Peter and John

eavesdrop, and then John decides to open a door knowing what has been heard?

Such a query can be answered using a standard decision tree. In this tree, variables can be

considered in the order liJ → liP → heJ → heP → do→ ga→ tr. This order corresponds to the

following sequence of events: first, John and Peter choose a door to eavesdrop at, then they listen

and depending on what they have heard, John decides which door to open; finally the gangster and

the treasure are behind given doors with a certain probability. An internal node n in the decision

tree corresponds to a variable x. An edge in the decision tree is labeled with an assignment (x, a)

of the variable x associated with the node above. Such an edge is also weighted by the probability

P ((x, a) |A), where A is the assignment corresponding to the path from the root to x.

The utility of a leaf node is the global utility (U1 + U2)(A) of the complete assignment A

associated with it. The utility of an internal decision node is given by the value of an optimal

children (and it is possible to record an associated optimal decision). The utility of an internal

environment node is given by the probabilistic expected utility of the values of its children nodes.

The global expected utility is the utility of the root node. It is proved [103] that such a decision

tree procedure can be reduced to the computation of

max
liJ ,liP

∑

heJ ,heP

max
do

∑

ga,tr

((
∏

i∈[1,4]

Pi)× (
∑

i∈[1,2]

Ui))

In other words, the decision tree procedure is equivalent to a sequence of variable eliminations

on a combination of local functions. Optimal decision rules can be recorded using argmax during

the computation.

Different elimination sequences represent different problems or situations: if John thinks that

Peter is a traitor and if he lets him choose a door to listen in to first (pessimistic attitude

concerning the other agent), the sequence of eliminations minliP maxliJ
∑

heJ ,heP
maxdo

∑

ga,tr

is adequate, because it eliminates liP with min. If Peter does not even tell John what he has

heard, meaning that John does not observe heP , then the sequence of eliminations becomes

minliP maxliJ
∑

heJ
maxdo

∑

heP

∑

ga,tr.

20 CHAPTER 1. BACKGROUND NOTATIONS AND DEFINITIONS

Adding feasibilities

In some cases, certain conditions must be satisfied for a decision to be feasible. For example, if

two players accept to respect chess rules, then a move is feasible if and only if it satisfies the rules.

Note that unfeasibility is different from infinite utility, because for example none of the players can

make an impossible move, whereas each of them may achieve a checkmate, which yields an infinite

negative utility for his adversary.

Example John and Peter cannot eavesdrop at the same door and door A is locked.

Modeling Two local feasibility functions are added to represent this new situation: F1 : liJ 6= liP

and F2 : do 6= A. We assume that at least one decision is feasible in any situation (no dead-end).

This is represented by two normalization conditions on feasibilities: ∨liJ ,liP F1 = t and ∨doF2 = t.

The classical decision tree procedure which can be used to answer the query is then equivalent to

the computation of

min
liP

max
liJ

∑

heJ

max
do

∑

heP

∑

ga,tr

((∧
i∈[1,2]

Fi) ⋆ (
∏

i∈[1,4]

Pi)× (
∑

i∈[1,2]

Ui))

which uses the truncation operator ⋆ to mask unfeasible decisions. Again, this corresponds to a

sequence of variable eliminations on a combination of scoped functions.

In the end, the knowledge modeled with variables and local functions forms a composite graph-

ical model defined by a DAG capturing normalization conditions on plausibilities and feasibilities

(Figure 1.1(a)), 2 and a network of local functions (Figure 1.1(b)). The network involves several

types of variables (decision and environment variables) and several types of local functions (local

utility, plausibility, and feasibility functions).

plausibilility

feasibility

utility

environment

decision

(b)(a)

do

heJ

ga

heJ

F1

P2P1

U1

U2

P3

P4

F2 tr

liP

liJ

heP

heP
P4

ga,tr

P1,P2F1

P3

do

F2

liJ,liP

Figure 1.1: Composite graphical model (a) DAG capturing normalization conditions; (b) Network
of local functions.

John’s treasure quest is an example which illustrates the notion of a sequential decision problem

involving plausibilities, feasibilities, and utilities. This notion will be used in the next chapters.

2. If P denotes the set of local plausibility functions associated with a node corresponding to a set of variables
S, then this means that

P

S (
Q

Pi∈P Pi) = 1. If F denotes the set of local feasibility functions associated with a

node corresponding to a set of variables S, then this means that ∨S(∧Fi∈F Fi) = t.

Chapter 2

A guided tour of frameworks for

decision making

In order to build a generic framework for decision making, the very first step consists in under-

standing and analyzing existing formalisms. Their first characteristic is that they are numerous.

The reason is that in the last decades, many efforts were made in the AI community in order

to build new representation schemes or extensions of existing ones. This led to many proposals,

which have different modeling abilities. Some can model preferences, other can model only hard

requirements. Some can model uncertainties, others cannot. Some can model sequential decision

making, whereas others are designed for one-shot decision processes.

This chapter presents a non-exhaustive catalog of such formalisms. This catalog has two

main features:

• It is incremental, in the sense that it shows how basic frameworks like Satisfiability problems,

Constraint Satisfaction Problems [84], Bayesian Networks [96], classical planning [49, 58], or

Markov Decision Processes [111, 89] were extended to integrate the notion of uncertainties

for some of them, or the notion of preferences and decisions for others.

• It analyzes the similarities and differences of existing frameworks in terms of knowledge

representation. This analysis tries to show that (1) many formalisms reason on the notion of

variables and local scoped functions between these variables, and (2) queries asked in these

formalisms can be reduced to the computation of a sequence of variable eliminations on a

combination of scoped functions, using various operators. Points (1) and (2) can be seen as

the guiding line of this catalog.

2.1 SAT-based decision frameworks

The first and probably the oldest framework for decision making is the Satisfiability (SAT) problem.

As we shall see, the basic SAT problem was extended to formalisms like quantified boolean formulas

or stochastic SAT [82], in order to model uncontrollable variables and partial observabilities.

21

22 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

2.1.1 The satisfiability problem

We start with a few definitions on propositional logic. The syntax of this logic is based on boolean

variables, usually called propositional variables or atoms. These variables with {t, f} as domain

represent properties which are either true or false.

Definition 2.1. Let V be a finite set of boolean variables. Boolean formulas are defined inductively

by the following rules:

1. if x ∈ V , then x is a boolean formula,

2. if ϕ is a boolean formula, then ¬ϕ is a boolean formula,

3. if ϕ and ψ are boolean formulas, then ϕ ∧ ψ is a boolean formula.

It is also possible to define ϕ∨ψ as ¬(¬ϕ∧¬ψ) and ϕ→ ψ as ¬ϕ∨ψ. The symbols ¬, ∧, ∨, and

→ are called logical connectives.

In order to provide boolean formulas with a truth value, one must define a semantics for the

connectives. First, given a boolean variable x, formula x is true iff x is assigned with value true. 1

Second, ¬ϕ is true iff ϕ is false. Third, ϕ ∧ ψ is true iff both ϕ and ψ are true. This implies that

ϕ ∨ ψ is true iff ϕ or ψ is true.

Definition 2.2. A literal is a boolean variable or its negation. A clause is a disjunction of literals.

A boolean formula is in conjunctive normal form if it is a conjunction of clauses.

Definition 2.3. The Satisfiability problem (SAT) consists in determining whether a boolean for-

mula in conjunctive normal form has an assignment of its variables which makes the formula true.

Note that every boolean formula can be put in a conjunctive normal form. SAT enables various

reasoning tasks to be modeled, for example in hardware design and more generally in formal

verification.

Example 2.4. (x∨ y)∧ (y ∨¬z)∧ (¬y ∨ z) is a boolean formula in conjunctive normal form. It is

satisfiable since for example the assignment (x, t).(y, t).(z, t) makes the formula true. By assuming

f ≺ t, this SAT instance can be seen as a binary optimization problem on boolean variables,

consisting in computing

val = max
x,y,z

((x ∨ y) ∧ (y ∨ ¬z) ∧ (¬y ∨ z)) (2.1)

Indeed, if val = f , then the formula is not satisfiable; otherwise the formula is satisfiable and a

corresponding optimal decision rule for {x, y, z} defines a solution. Hence, SAT can be considered

as the computation of max-eliminations on a conjunction of clauses.

2.1.2 Quantified boolean formulas: towards pessimistic indeterminism

and partial observabilities

The basic SAT problem was extended to Quantified Boolean Formulas (QBFs [57]) in order to

model decision problems involving

1. In propositional logic, the assignment of a propositional variable is called a substitution.

2.1. SAT-BASED DECISION FRAMEWORKS 23

• uncontrollable variables that may take any of their values. These variables are quantified with

the universal quantifier ∀. The other variables are quantified with ∃ or are not quantified;

• partial observabilities: the alternation of ∃ and ∀ quantifiers makes the decision problem

sequential and the value of some variables may be observed between two decision steps.

The syntax of QBFs is defined by adding the existential and universal quantifiers to the propo-

sitional logic.

Definition 2.5. Let V be a finite set of boolean variables. Quantified Boolean Formulas (QBFs)

are defined inductively by the following rules:

1. if x ∈ V , then x is a QBF,

2. if ϕ is a QBF, then ¬ϕ is a QBF,

3. if ϕ and ψ are QBFs, then ϕ ∧ ψ is a QBF,

4. if ϕ is a QBF and x ∈ V , then ∃xϕ and ∀xϕ are QBFs.

The meaning of a QBF is defined by the standard semantics of the connectives and of the

quantifiers, which is: “if ϕ is a boolean formula, then ∃xϕ is true iff ϕ((x, t)) ∨ ϕ((x, f)) is and

∀xϕ is true iff ϕ((x, t)) ∧ ϕ((x, f)) is”.

Example 2.6. Let us consider the boolean formula (x ∨ y) ∧ (y ∨ ¬z) ∧ (¬y ∨ z) introduced in

Example 2.4. Let us assume that variable y is not controllable. Then, does there exist a value

for x such that for every value of y, there exists a value for z such that the three clauses x ∨ y,

y∨¬z, and ¬y∨ z are satisfied? This query can be formalized using a QBF in the so-called prenex

conjunctive normal form, which is ∃x∀y∃z((x ∨ y) ∧ (y ∨ ¬z) ∧ (¬y ∨ z)). The ∀-quantification

means that variable y may take any of its values. The alternation of ∀ and ∃ quantifiers means

that the value of y is observed only after the assignment of x. By assuming f ≺ t, this QBF can

also be written

max
x

min
y

max
z

((x ∨ y) ∧ (y ∨ ¬z) ∧ (¬y ∨ z)) (2.2)

Equation 2.2 corresponds to a sequence of eliminations (max over x, min over y, max over z) on

a conjunction of clauses. Its value can be shown to equal true, and an optimal policy enabling the

three clauses to always be satisfied can be described as “set x to true; then, if y takes value true,

set z to true; otherwise, if y takes value false, set z to false”.

An example of QBF whose value is false is ∃x∀y∃z(y ∧ (x ∨ z) ∧ (¬x ∨ ¬z)).

2.1.3 Stochastic SAT and extended stochastic SAT: towards a stochastic

indeterminism

In QBFs, uncontrollable variables can take any of their values. Therefore, QBFs can model a

pessimistic indeterminism, in the sense that all possible situations are considered. In another

direction, the SAT problem was extended to integrate stochastic indeterminisms (i.e. probabilistic

uncertainties). The corresponding extension is the Stochastic SAT (SSAT [82]) framework, which

uses a special quantifier Rto quantify random variables.

24 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Definition 2.7. Let V be a finite set of boolean variables. Stochastic SAT (SSAT) formulas are

defined inductively by the following rules:

1. every boolean formula is an SSAT formula;

2. if ϕ is an SSAT formula and x ∈ V , then ∃xϕ and Rxϕ are SSAT formulas.

Given a boolean formula ϕ, the semantics of Rxϕ is given by the expected truth value of ϕ,

i.e. val(Rxϕ) = 0.5 · ϕ((x, t)) + 0.5 · ϕ((x, f)). Hence, the semantics of the Rquantifier enables

mutually independent boolean random variables to be modeled: Rx means that variable x takes

value t or f with a probability of 0.5. The value of ∃xϕ becomes max(ϕ((x, t)), ϕ((x, f))) instead

of ϕ((x, t)) ∨ ϕ((x, f)). If ϕ is a boolean formula, then its value is 1 if the formula is true and 0

otherwise. ∧ becomes ×, in order to be able to combine truth values with probabilities.

Example 2.8. Let us update the unsatisfiable example ∃x∀y∃z(y ∧ (x ∨ z) ∧ (¬x ∨ ¬z)) given for

QBFs in a less pessimistic form, where y takes each of its values with a probability of 0.5. The

corresponding SSAT formula is ∃x Ry∃z(y∧(x∨z)∧(¬x∨¬z)). Its value is given by the semantics of

the connectives and of the quantifiers ∃ and R. It equals maxx
∑

y 0.5 ·maxz(y×(x∨z)×(¬x∨¬z)),

which is equivalent to:

max
x

∑

y

max
z

(0.5× (y × (x ∨ z)× (¬x ∨ ¬z))) (2.3)

The value of this sequence of alternating max- and sum-eliminations on a product of scoped func-

tions is 0.5. It corresponds to the probability for the formula y ∧ (x∨ z)∧ (¬x∨¬z) to be satisfied.

An easier decision problem associated with SSAT is to determine whether the value of an SSAT

formula is greater than a threshold θ. Also, in a version called extended SSAT [82], the universal

quantifier ∀ is added, the semantics of ∀xϕ being min(ϕ((x, t)), ϕ((x, f))).

2.2 CSP-based decision frameworks

Similarly to the SAT framework, the basic CSP formalism was extended in order to improve its

abilities to model sequential decision problems involving plausibilities, feasibilities, and utilities.

But sequences of eliminations, hidden or not, are still present.

2.2.1 Constraint satisfaction problems

Constraint Satisfaction Problems (CSPs [84]), also known as Constraint Networks (CNs), are

graphical models involving scoped functions which are constraints. These constraints can model

either hard preferences, or impossibilities.

Definition 2.9. A CSP is a pair (V,C) where:

• V is a finite set of variables;

• C is a finite set of constraints. A constraint c is a scoped function (S, ϕ) where S ⊂ V is the

set of variables on which the constraint holds and ϕ : dom(S)→ {t, f} is a boolean function

2.2. CSP-BASED DECISION FRAMEWORKS 25

defining the set of assignments of S satisfying the constraint. 2

The usual query on a CSP (V,C) can be formulated as “Is there an assignment of V satisfying

all the constraints in C?”. If the answer is yes (resp. no), the CSP is said to be consistent (resp.

inconsistent). By setting f ≺ t, this decision problem can be reduced to the computation of:

max
V

(

∧
c∈C

c

)

(2.4)

This quantity can be computed by performing max-eliminations on a conjunction of constraints.

If it equals t, then an optimal decision rule for V defines a solution (an assignment of V satisfying

all the constraints). If it equals f , then the CSP is inconsistent.

Example 2.10. One must color each vertex of the graph in Figure 2.1 so that two ajdacent

vertices have different colors. The available colors are (r)ed, (g)reen, and (b)lue. This problem can

be modeled as a CSP (V,C) where

• V = {x1, x2, x3} and dom(x) = {r, g, b} for each x ∈ V ;

• C = {c1, c2, c3} is a set of constraints defined by c1 : x1 6= x2, c2 : x2 6= x3, c3 : x1 6= x3.

Thus, one variable is associated with each vertex, the assignment of this variable specifies the vertex

color, and binary difference constraints are defined. (x1, r).(x2, g).(x3, b) is a solution for this CSP.

In a two color version where dom(x) = {r, g} for each x ∈ V , the CSP is inconsistent.

6=6=

6=
x1

x2

x3

Figure 2.1: Graph coloring problem.

2.2.2 Extension to non-binary uncertainties and utilities: soft constraints

The CSP formalism can model hard constraints which express hard requirements or impossibilities.

It was extended in order to represent soft constraints expressing soft preferences (such as costs or

risks) or uncertainties (such as probabilities or possibilities). This led to formalisms like addi-

tive [126], possibilistic [122], probabilistic [44], partial [52], fuzzy [42], or lexicographic CSPs [46].

These extensions as well as usual CSPs are covered by two generic algebraic frameworks: the valued

CSP [123] and semiring-based CSP [10, 11] frameworks.

2. Usually, a constraint is defined as a pair (S, R) where S is the scope of the constraint and R, called a relation,
is the set of tuples satisfying the constraint. The definition we take just considers the boolean characteristic function
of R instead of R itself.

26 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Valued CSP (VCSP [123])

In a VCSP, the violation of one soft constraint induces a violation degree. Violation degrees are

combined using a combination operator ⊗ 3 corresponding to min, max, +, ×. . . The algebraic

structure defining the set of violation degrees and the operator ⊗ is called a valuation structure.

Definition 2.11. A valuation structure is a triple (E,⊗,�) such that:

• (E,�) is a totally ordered set equipped with a maximal element ⊤ (unacceptable violation)

and a minimal element ⊥ (no violation);

• ⊗ is an associative, commutative, monotonic operator on E, with ⊥ as an identity (e⊗ ⊥= e)

and ⊤ as an annihilator (e⊗⊤ = ⊤).

⊥ is an identity for ⊗ because the combination of a violation degree e with no violation yields

an unchanged violation degree. ⊤ is an identity for ⊗ because the combination of an unacceptable

violation with any other violation leads to an unacceptable violation. The monotonicity of ⊗

ensures that if a local violation degree decreases, then the global violation degree cannot increase.

Definition 2.12. A Valued CSP (VCSP) on a valuation structure (E,⊗,�) is a pair (V,C) where

• V is a finite set of variables;

• C is a finite set of soft constraints. A soft constraint c is a scoped function (S, ϕ) where

S ⊂ V is the set of variables on which the constraint holds and ϕ is a function dom(S)→ E

associating a violation degree with each assignment of S.

A usual query on a VCSP is to search for a complete assignment which has a minimal violation

degree. This problem can be solved by computing:

min
V

(

⊗
c∈C

c

)

(2.5)

An optimal decision rule for V defines a solution for the VCSP. Equation 2.5 is a sequence of

min-eliminations on a ⊗-combination of scoped functions.

Example 2.13. Let us soften the inconsistent two color version of the graph coloring problem

of Example 2.10. If two adjacent vertices have the same color, this induces a cost of 1. Colors

(r)ed and (g)reen are available for each vertex. Coloring a vertex in red costs 1 and coloring a

vertex in green costs 2. We assume that costs are additive, i.e. we use the valuation structure

(R+ ∪ {+∞},≤,+), with e + (+∞) = +∞. 0 corresponds to no violation and +∞ to an infinite

cost.

A VCSP modeling this new problem is the couple (V,C) = ({x1, x2, x3}, {ci | i ∈ [1, 6]}), where

• c1 = ({x1}, ϕ), c2 = ({x2}, ϕ), c3 = ({x3}, ϕ), where ϕ(r) = 1 and ϕ(g) = 2 (cost 1 for value

red and cost 2 for value green);

• c4 = ({x1, x2}, ϕ′), c5 = ({x2, x3}, ϕ′), c6 = ({x1, x3}, ϕ′), where ϕ′(r, r) = ϕ′(g, g) = 1

and ϕ′(r, g) = ϕ′(g, r) = 0 (cost 1 if two adjacent vertices have the same color, no violation

otherwise).

3. In the usual definition of VCSP, this operator is denoted ⊕. We decide to adapt this notation because this
operator is actually a combination operator and not an elimination one.

2.2. CSP-BASED DECISION FRAMEWORKS 27

It is possible to show that A = (x1, g).(x2, r).(x3, r) is an optimal solution for this VCSP, with

a cost of
∑

i∈[1,6] ci(A) = 2 + 1 + 1 + 0 + 1 + 0 = 5.

Semiring-based CSP [10, 11]

In the semiring-based CSP formalism, soft constraints are also defined. They associate with each

assignment of their scope a satisfaction degree in a totally or partially ordered set E. This set is

equipped with two operators, ⊗ and ⊕, which satisfy some sensible algebraic properties making

the structure (E,⊕,⊗) a “c-semiring”:

Definition 2.14. A triple (E,⊕,⊗) is a c-semiring iff:

• (E,⊕,⊗) is a commutative semiring (cf. Definition 3.2 page 53); the identity of ⊕ is denoted

0E and the identity of ⊗ is denoted 1E;

• ⊕ is idempotent and 1E is an annihilator for ⊕.

Informally, ⊗ is a combination operator used to combine satisfaction degrees and ⊕ is an

elimination operator enabling to synthesize a satisfaction degree obtained from two values of the

c-semiring. These operators are associative and commutative so that the result of a combination

or of a synthesis does not depend on the way they are performed. 0E , which is an annihilator for

⊗, is associated with complete dissatisfaction (the combination of any satisfaction degree with a

complete dissatisfaction yields a complete dissatisfaction), whereas 1E , which is an identity for ⊗

and an annihilator for ⊕, stands for a complete satisfaction degree.

The idempotency of ⊕ enables a partial order � to be defined, as (x � y) ↔ (x ⊕ y = y).

It is shown that (E,�) is a lattice (a lattice is a partially ordered set in which any two elements

have a supremum denoted sup and an infimum denoted inf) whose supremum is given by ⊕, i.e.

x ⊕ y = sup(x, y). This shows that ⊕ enables one to synthesize a kind of maximum satisfaction

degree. More precisely, we have 0E � x � 1E for all x ∈ E. This means that 0E (complete

dissatisfaction) is the minimal element in the lattice whereas 1E (complete satisfaction) is the

maximal one.

Once the c-semiring structure is defined, soft constraint satisfaction problems can be introduced.

The definition of a semiring-based CSP (V,C) is exactly the same as Definition 2.12 of VCSPs,

except that the valuation structure (E,⊗,�) is replaced by a c-semiring (E,⊕,⊗).

An optimal solution of a semiring-based CSP (V,C) is an assignment A of V such that there

is no other assignment A′ of V satisfying ⊗c∈Cc(A) ≺ ⊗c∈Cc(A′). In other words, a solution is

a non-dominated assignment. The best value of a semiring-based CSP is defined by ⊕V (⊗c∈Cc).

One (or all) optimal solution(s) can be recorded during the computation of this ⊕-elimination

on a ⊗-combination of scoped functions. Compared to VCSPs, semiring-based CSPs are more

expressive because they can deal with partial orders. When the order � induced by ⊕ is total,

VCSPs and semiring-based CSPs are equivalent [12].

Example 2.15. Assume that the cost induced by the color used for each vertex, and the cost

induced by the existence of adjacent vertices having the same color are not commensurable. In

order to model such a situation, we use the c-semiring (E,⊕,⊗), where:

28 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

• E = (R− ∪{−∞})× (R−∪{−∞}); a pair (e, e′) models a (cost-color,cost-adjacence) pair: it

means that the colors used for each vertex induce a cost of e, and that the satisfaction degree

induced by adjacent vertices having the same color is e′;

• ⊕ is defined by (e1, e
′
1)⊕ (e2, e

′
2) = (max(e1, e2),max(e′1, e

′
2));

• ⊗ is defined by (e1, e
′
1)⊗ (e2, e

′
2) = (e1 + e2, e

′
1 + e′2).

The problem can be modeled by the semiring-based CSP (V,C) = ({x1, x2, x3}, {ci | i ∈ [1, 6]})

where:

• c1 = ({x1}, ϕ), c2 = ({x2}, ϕ), c3 = ({x3}, ϕ), where ϕ(r) = (−1, 0) and ϕ(g) = (−2, 0) (cost

of 1 for value red and cost of 2 for value green);

• c4 = ({x1, x2}, ϕ
′), c5 = ({x2, x3}, ϕ

′), c6 = ({x1, x3}, ϕ
′), where ϕ′(r, r) = ϕ′(g, g) = (0,−1)

and ϕ′(r, g) = ϕ′(g, r) = (0, 0) (cost of 1 if two adjacent vertices have the same color, no

violation otherwise).

For example, the satisfaction degree of assignment A = (x1, g).(x2, r).(x3, r) is ⊗i∈[1,6] ci(A) =

(−2, 0) ⊗ (−1, 0) ⊗ (−1, 0) ⊗ (0, 0) ⊗ (0,−1) ⊗ (0, 0) = (−4,−1). It is possible to show that A is

an optimal solution, as well as A′ = (x1, r).(x2, r).(x3, r), which has a value (−3,−3) which is not

comparable with (−4,−1). The best value for this semiring-based CSP is (−3,−1), but there is no

assignment that achieves this supremum.

2.2.3 Modeling uncontrollabilities and partial observabilities: mixed CSP

Similarly to the extensions performed from SAT to QBF, the basic CSP framework was also

extended to model situations involving uncontrollable variables and partial observabilities. A first

step towards indeterminism was made with the Mixed CSP formalism [45], which distinguished

controllable variables representing the decisions from uncontrollable variables representing the state

of the environment (hence the name of mixed CSP).

Definition 2.16. A mixed CSP is a tuple (V,C,K) where

• V is a set of variables, partitioned between decision variables and environment variables; 4

• C is a set of hard constraints, each of which involves at least one decision variable;

• K is a set of hard constraints involving only environment variables.

The constraints in C define constraints on the decisions, whereas the constraints in K restrict

the possible environments. As constraints in K do not involve decision variables, it is assumed that

decisions do not influence the state of the environment. This assumption is called the contingency

assumption.

Definition 2.17. A complete assignment of the environment variables is called a world. A com-

plete assignment of the decision variables is called a decision.

A world is possible if it satisfies every constraint in K. A possible world is covered by a decision

if this world together with this decision satisfy every constraint in C.

4. Mixed CSP call the environment variables “contingent variables”. We adapt this terminology in order to make
the comparison with other formalisms easier.

2.2. CSP-BASED DECISION FRAMEWORKS 29

Two tasks, defining distinct observational situations, are associated with a mixed CSP:

1. If the state of the environment is completely observed before making the decision, the goal is

to seek a conditional decision rule, which associates with each possible world a decision such

that the number of covered worlds is maximized.

2. If the decision maker does not observe the environment before making his decision, the goal

is to compute an unconditional decision rule covering as many worlds as possible.

Example 2.18. Let us use the graph coloring problem of Example 2.10 again. In this new ex-

ample, the colors of vertices x2 and x3 are not controlled. They are determined by some exter-

nal phenomena independent of the color chosen for x1. The contingency assumption therefore

holds. The only available knowledge is that vertices x2 and x3 are of different colors (constraint

k1 : x2 6= x3), x2 is not blue (constraint k2 : x2 6= b), and x3 is red whenever x2 is green (constraint

k3 : (x2 = g) → (x3 = r)). The constraints on the decisions specifying that two adjacent vertices

must have different colors still hold (constraints c1 : x1 6= x2 and c2 : x1 6= x3).

This problem can be modeled by the mixed CSP (V,C,K) where V = {x1, x2, x3}, C = {c1, c2},

and K = {k1, k2, k3}. x1 is the unique decision variable and x2, x3 are environment variables.

Three assignments of {x2, x3} exist which satisfy the constraints in K, i.e. there are three

possible worlds. If the colors of x2 and x3 are known when a color is chosen for x1, then an

optimal conditional decision rule, covering the three possible worlds defined by K, is given below.

Possible worlds for {x2, x3} Conditional decision for x1

(x2, r).(x3, g) b

(x2, r).(x3, b) g

(x2, g).(x3, r) b

If the colors of x2 and x3 are not known before a color is chosen for x1, then an optimal uncondi-

tional decision is (x1, b). It covers two worlds among the three possible ones.

What is the link between these solutions and sequences of eliminations? First, given an as-

signment A of {x2, x3}, there exists an assignment of x1 covering A iff maxx1((
∏

i∈[1,2] ci(A)) ×

(
∏

i∈[1,3] ki(A))) = 1. An associated optimal decision is given by argmax. More generally, when

the decision maker is aware of the colors of x2 and x3 before choosing the color of x1, the number

of covered worlds is

∑

x2,x3

max
x1

((
∏

i∈[1,2]

ci)× (
∏

i∈[1,3]

ki)) (2.6)

An optimal decision rule δx1 : dom({x2, x3}) → dom(x1) for x1 corresponds to what is called an

optimal conditional decision rule in the mixed CSP terminology.

Similarly, when x2 and x3 are not observed before assigning x1, the number of worlds covered

by an unconditional decision is

max
x1

∑

x2,x3

((
∏

i∈[1,2]

ci)× (
∏

i∈[1,3]

ki)) (2.7)

An unconditional decision rule for x1 is simply obtained using argmax.

30 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

In both cases, the problems associated with a mixed CSP can be reduced to the computation

of a sequence of eliminations (max
∑

or
∑

max) eliminating decision variables using max and

environment variables using
∑

. The scoped functions are the constraints in C and K.

2.2.4 Quantified CSP for modeling multi-step decision processes

The sequential aspect in mixed CSPs is reduced to a unique decision step, either before or after

an observation step. In order to model multi-step decision processes where some variables are

uncontrollable and may take any of their values, Quantified CSPs (QCSPs [15]) were introduced.

QCSP is to CSP what QBF is to SAT. This means that the only difference from the knowledge

modeling point of view between QCSP and QBF is that clauses are replaced by constraints.

Definition 2.19. A QCSP on a set of variables V is a formula of the form Q(c1∧ . . .∧cm) where:

• Q is a sequence of quantifiers (Q1x1)(Q2x2) . . . (Qnxn) such that each Qi equals ∃ or ∀ and

each variable of V appears exactly once in Q;

• c1, . . . , cm are constraints whose scope is included in V .

Definition 2.20. The value of a QCSP q is defined inductively as follows (with f ≺ t):

• if q = t (t corresponds to a constraint always taking value true), then val(q) = t, and if

q = f , then val(q) = f ;

• if q = (∃x1)(Q2x2) . . . (Qnxn)(c1 ∧ . . . ∧ cm), then val(q) = maxa∈dom(x1) val(q
′(a)), where

q′(a) = (Q2x2) . . . (Qnxn)((c1 ∧ . . . ∧ cm)(x1, a));

• if q = (∀x1)(Q2x2) . . . (Qnxn)(c1 ∧ . . . ∧ cm), then val(q) = mina∈dom(x1) val(q
′(a)), where

q′(a) = (Q2x2) . . . (Qnxn)((c1 ∧ . . . ∧ cm)(x1, a)).

As in QBFs, problems associated with QCSPs can be answered using sequences of min- and

max-eliminations on a conjunction of constraints.

2.2.5 Integrating probabilistic uncertainties: stochastic CSP

Stochastic CSPs [138] enhance the CSP framework to model probabilistic uncertainties on uncon-

trollable variables, just as SSAT enhances SAT to be able to express stochastic indeterminisms.

Similarly to SSAT, SCSPs tackle multi-step decision making problems the goal of which is to

maximize the probability that all constraints are satisfied or to make that probability greater than

a given threshold θ. Globally, SCSPs are defined by an alternation of decision-observation steps.

In a one-step SCSP, one must assign decision variables in a set D1 without observing random

variables in a set S1. In a two-step SCSP, one first assigns decision variables in a set D1, then

observes random variables in a set S1, then assigns decision variables in a set D2 depending on

the observations made, but without observing the values of random variables in a set S2. A k-step

SCSP is defined similarly.

Definition 2.21. A Stochastic CSP (SCSP) is a tuple (V, P,C) where:

2.2. CSP-BASED DECISION FRAMEWORKS 31

• V is a sequence of variables. The order in which the variables appear in the sequence is

their order through the SCSP stages. Variables in V are either random variables or decision

variables;

• P is a set of scoped functions whose product gives a probability distribution on the random

variables, and whose scopes do not involve any decision variable (contingency assumption);

• C is a set of hard constraints to be satisfied.

Thus, SCSPs extend CSPs first by adding uncontrollable random variables and then by adding

a sequential aspect in the decision process. They can also be updated to integrate aspects such

as additive costs, as in Stochastic Constraint Optimization Problems (SCOPs [138]). However, a

restriction is that decision variables cannot have any influence on random ones. This contingency

assumption is violated in fields like medicine, where the treatment chosen by a doctor influences

the patient health state. Definition 2.21 is actually an enhanced definition of SCSPs, since in

the basic version of SCSPs, the random variables are assumed to be mutually independent and

P = {Ps | s ∈ S} is a set of unary probability distributions.

Definition 2.22. (SCSP-policy) A SCSP-policy is a tree involving nodes labeled with variables.

The root is labeled with the first variable in V and the nodes just upon the leaves are labeled with

the last variable in V . Edges in the tree are labeled with variable values. Nodes labeled with a

decision variable only have one son which corresponds to the value chosen for this variable, while

nodes labeled with a random variable x have one son per value in dom(x).

Each leaf can be associated with a complete assignment A of V . It is labeled with 1 if A satisfies

all the constraints in C, with 0 otherwise. Moreover, it can be be associated with a probability of

occurrence p =
∏

ϕ∈P ϕ(A). The value of a SCSP-policy is the sum of the leaf values weighted by

their probabilities.

A SCSP is satisfiable iff there exists a SCSP-policy whose value is greater than a given threshold

θ. A SCSP-policy is optimal iff it has a maximal SCSP-policy value.

Example 2.23. The graph coloring problem of Example 2.10 is made more complex by assuming

that variable x2 is uncontrollable and takes value red, green, blue with a probability of 0.2, 0.5, and

0.3 respectively. We further assume that first the color of x1 must be chosen, then the color of x2

is observed, and last a color for x3 must be chosen. The associated SCSP is (V, P,C) where

• V = [x1, x2, x3]; x1, x3 are decision variables, x2 is a random variable;

• P = {Px2} contains the probability distribution over x2;

• C = {c1, c2, c3} is a set of three difference constraints c1 : x1 6= x2, c2 : x2 6= x3, and

c3 : x3 6= x1.

Figure 2.2 shows an optimal SCSP-policy. Its value of 0.8 means that it enables constraints to

be satisfied with a probability of 0.8.

It is possible to show that Equation 2.8 below can be used to seek an optimal SCSP-policy. We

assume that f and t are mapped onto 0 and 1 respectively, to be combinable with probabilities.

max
x1

∑

x2

max
x3

(

Px2 ×
(
∏

i∈[1,3]ci

))

(2.8)

32 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

g

x3 x3 x3

x2

x1

gr b

bb

r

+Px2((x2, b)) · 1
+Px2((x2, g)) · 1
Px2((x2, r)) · 0

= 0.8

Policy value :

110

Figure 2.2: An optimal SCSP-policy for the updated graph coloring problem.

Equation 2.8 corresponds to a sequence of max and + eliminations (over decision and random

variables respectively) on a combination of scoped functions.

2.3 Bayesian network-based decision frameworks

The overall approach previously described consisted in extending the expressiveness of the basic

SAT and CSP frameworks by introducing plausibilities, either in the form of probabilistic uncer-

tainties as in stochastic CSPs, or in the form of boolean pessimistic indeterminism as in QBFs.

At the same time and in an opposite direction, formalisms like Bayesian Networks (BNs [96]) were

developed to model uncertainties and then extended to integrate aspects such as decisions, utilities,

and even constraints. We describe such extensions starting from the standard BN framework.

2.3.1 Bayesian networks

Bayesian networks (BNs [96]) enable a global joint probability distribution PV over a set of random

variables V to be represented using “local” scoped functions, the same way as CSPs enable a

global constraint on all the variables to be represented using “local” constraints. Such a factored

representation is useful for two reasons. First, recording a joint probability distribution when V

is large can be difficult or even impossible. Second, using a factored representation of a joint

distribution over V is algorithmically decisive.

Definition 2.24. A Bayesian network is a triple (V,G, P) such that:

• V is a finite set of variables;

• G is a directed acyclic graph (DAG) over V ;

• P = {Px | paG(x) |x ∈ V } is a set of conditional probability distributions of each variable x ∈ V

given its parents in G, which are multiplicative factors of the joint probability distribution

PV =
∏

x∈V Px | paG(x).

This means that the joint probability distribution PV is represented by local conditional prob-

ability distributions Px | paG(x). The main property of Bayesian networks is an equivalence theorem

between factorization and conditional independence.

2.3. BAYESIAN NETWORK-BASED DECISION FRAMEWORKS 33

Definition 2.25. Let PV be a joint probability distribution over V and let G be a DAG over V .

G is said to be compatible with PV iff every variable x ∈ V is conditionally independent of its

non-descendants given its parents, i.e. Px |ndG(x) = Px | paG(x).

Theorem 2.26. [96] Let PV be a joint probability distribution over V and let G be a DAG over

V . Then, PV =
∏

x∈V Px | paG(x) iff G is compatible with PV .

In fact, there are two major definitions for Bayesian networks. The first one, used in Def-

inition 2.24, introduces BNs starting from the factorization into conditional distributions. The

second one, which starts instead from conditional independence, is “Let PV be a joint probability

distribution over V and let G be a DAG over V . The pair (G,PV) is a Bayesian network iff G is

compatible with PV ”. The two definitions are equivalent thanks to Theorem 2.26. The choice of

one of the two definitions is a matter of perspective and both points of view are used.

One possible query on a BN is to compute the marginal probability distribution of a variable

y ∈ V :

Py =
∑

V−{y}

PV =
∑

V−{y}

(
∏

x∈V

Px | paG(x)) (2.9)

Equation 2.9 corresponds to sum-eliminations on a product of scoped functions. In other queries

on BNs such as MAP (Maximum A Posteriori hypothesis), used to seek an optimal explana-

tion to some observations, max-eliminations are also performed, in elimination sequences such as

maxD
∑

V−D(
∏

x∈V Px | paG(x)).

Example 2.27. [95] Mr Holmes has equipped his house with an alarm which can ring if a burglary

or if an earthquake occurs. If it sounds, then his two neighbors John and Mary are likely to call

him.

This problem can be modeled using 5 boolean random variables: bu, representing the occurrence

of a burglary, eq, representing the occurrence of an earthquake, al, modeling whether the alarm

sounds, mc, specifying whether Mary calls, and jc, modeling whether John calls.

The DAG represented on Figure 2.3 can then be used to model conditional independences qual-

itatively. It says that each variable is conditionally independent of its non descendants given its

parents. For example, mc is conditionally independent of eq, bu, jc given al. This means that as

soon as one knows whether the alarm sounds, mc does not depend on the other variables. Similarly,

jc is conditionally independent of eq, bu, mc given al. Moreover, eq is conditionally independent

of bu given no other information. However, as soon as the value of the descendant al is known, eq

and bu become correlated.

jcbu

mc

al

eq

Figure 2.3: DAG of the Bayesian network of Mr Holmes’ alarm problem.

34 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Besides the qualitative information expressed by the DAG, BNs also specify conditional proba-

bility distributions of each variable given its parents, such as Pal | eq,bu, the conditional probability

that the alarm sounds or not given the occurrence of an earthquake and a burglary.

The joint probability distribution then factors as Peq,bu,al,jc,mc = Peq · Pbu · Pal | eq,bu · Pjc | al ·

Pmc | al. In order to make a diagnosis and get the probability that the alarm sounds or not, one

must compute Pal =
∑

eq,bu,jc,mc

(
Peq · Pbu · Pal | eq,bu · Pjc | al · Pmc | al

)
.

Similarly, queries on so-called Dynamic Bayesian Networks (DBNs [31]), which extend BNs by

integrating a temporal aspect, can be reduced to the computation of eliminations on a product of

conditional probability distributions.

2.3.2 Possibilistic networks

BNs use probabilities to model uncertainties. Possibilistic networks [51, 69] extend BNs to a

possibilistic representation of uncertainty, and enable a global joint possibility distribution to be

represented by local conditional possibility distributions.

Definition 2.28. A possibilistic network is a triple (V,G, P) such that:

• V is a finite set of variables;

• G is a directed acyclic graph (DAG) over V ;

• P = {πx | paG(x) |x ∈ V } is a set of conditional possibility distributions of each variable

x ∈ V given its parents in G, which are factors of the joint possibility distribution πV =

minx∈V πx | paG(x).
5

In order to get the marginal possibility distribution of a variable y ∈ V , one must compute

πy = max
V−{y}

πV = max
V−{y}

(min
x∈V

πx | paG(x)) (2.10)

The latter equation is a max-elimination on a min-combination of scoped functions.

2.3.3 Mixed networks

BNs were extended to use CSP techniques such as constraint propagation. This extension is called

mixed networks [36, 37]. In this formalism, constraints are introduced over the random variables

of a BN, in order to model:

• either the deterministic part extracted from conditional probability distributions (0-1 proba-

bilities): for example, if x, y, and z are boolean variables such that Pz | x,y(A) = 0 whenever

A contains (x, t).(z, t), one can extract the constraint c : ¬(x ∧ z) as a redundant but algo-

rithmically important information;

• or evidences (i.e. observations). They correspond either to the assignment of a single variable,

or to more complex evidences expressed e.g. as boolean formulas. For instance, if one hears

5. Actually, the joint possibility distribution can take other forms depending on the operator used to define
possibilistic conditioning. Typically, the joint possibility distribution represented by a possibilistic network can also
be πV =

Q

x∈V πx | paG(x).

2.3. BAYESIAN NETWORK-BASED DECISION FRAMEWORKS 35

a sound in a room containing two sources s1 and s2, then the complex evidence s1 ∨ s2 can

be inferred (s = t if a source s has produced a noise).

Definition 2.29. A mixed network is a tuple (V,G, P,C) where:

• V is a finite set of variables;

• G is a DAG over V ;

• P = {Px | paG(x) |x ∈ V } is a set of conditional probability distributions. When Px | paG(x) is a

conditional probability distribution taking values 0 or 1 only, it is called a deterministic con-

ditional distribution. It can then be represented as a deterministic function dom(paG(x))→

dom(x) or as a constraint;

• C = {c1, . . . , ck} is a finite set of constraints whose scopes are included in V .

A query on a mixed network can be for instance to determine the probability pc that constraints

in C are satisfied. Such a query can be answered by computing the sum of the probabilities of the

complete assignments satisfying all the constraints, i.e.

∑

A∈dom(V),c1(A)∧...∧ck(A)=t

(
∏

x∈V

Px | paG(x)(A)) =
∑

V

((
∏

x∈V

Px | paG(x))× (
∏

i∈[1,k]

ci)) (2.11)

Equation 2.11 combines local probabilities using ×, combines constraints using ×, combines prob-

abilities with constraints using ×, and eliminates variables using
∑

.

When the CSP (V,C) is consistent, a mixed network actually represents the joint “mixed”

probability distribution MPV such that for all complete assignments A of V , MPV (A) is the

probability of occurrence of assignment A given that the constraints in C are satisfied. More

formally,

MPV (A) =

{
1
pc
· PV (A) if c1(A) ∧ . . . ∧ ck(A) = t

0 otherwise
(2.12)

2.3.4 Influence diagrams

In another direction, BNs only define probabilistic relations between random variables. They allow

to model diagnosis problems. Influence diagrams (IDs [64]) extend BNs by adding the notions of

decision and additive utility.

Definition 2.30. An influence diagram is a composite graphical model defined on three sets of

variables organized in a DAG G:

• a set S of chance variables, represented by circles. For each x ∈ S, a conditional probability

distribution Px | paG(x) on x given its parents in G is specified (as in a BN);

• a set D of decision variables, represented by squares. For each x ∈ D, paG(x) is the set of

variables observed before decision x is made. Hence, arcs pointing to decision variables are

information arcs, since they define available information when the decision is made.

There must exist a directed path d1 → d2 → . . . → dq containing all decision variables, so

that the order in which decisions are made is completely determined (regularity assumption).

36 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Moreover, even if this is not represented in the DAG, the parents of a decision variable must

be parents of all subsequent decision variables (no-forgetting assumption). 6

• a set Γ of utility variables, represented by diamonds. For each u ∈ Γ, an additive utility

function UpaG(u) of scope paG(u) is specified. Utility variables must be leaves in the DAG.

Similarly to a stochastic CSP, the problem associated with an influence diagram is to search

for an optimal ID-policy, as defined below.

Definition 2.31. (ID-policy) An ID-policy is a set of decision rules δx : dom(paG(x) ∩ S) →

dom(x), one per decision variable x ∈ D. 7

For every complete assignment A of the chance variables, an ID-policy ∆ defines a unique

complete assignment ∆(A) = A.δd1(A). · · · .δdq
(A), such that

• the probability that A occurs is P∆(A) =
∏

x∈S Px | paG(x)(∆(A)),

• the utility associated with A is U∆(A) =
∑

u∈Γ UpaG(u)(∆(A)).

The value of an ID-policy ∆ is val∆ =
∑

A∈dom(S) (P∆(A) · U∆(A)). It corresponds to the

probabilistic expected utility of ∆.

An optimal ID-policy ∆∗ is an ID-policy of maximal value.

The above definition can be related to sequences of eliminations. If one denotes by I0 the set

of chance variables observed before the first decision d1, by Ik the set of chance variables observed

between decisions dk and dk+1, and by Iq the set of chance variables unobserved before the last

decision dq, then computing an optimal ID-policy is equivalent [66] to computing optimal decision

rules for the quantity

∑

I0

max
d1

. . .
∑

Iq−1

max
dq

∑

Iq

((
∏

x∈S

Px | paG(x))× (
∑

u∈Γ

UpaG(u))) (2.13)

Again, Equation 2.13 is a sequence of eliminations (alternating eliminations using max and +) on

a combination of scoped functions (probabilities combined using ×, utilities combined using +,

probabilities and utilities combined using ×).

Example 2.32. Mr Holmes does not just want to perform diagnosis tasks to know the probability

that he is burglarized. He also wants to plan actions in order to maximize an expected utility:

• Mr Holmes can decide to call a neighbor in order to know whether the alarm is ringing: we

remove variables mc and jc, and we add a boolean decision variable ca modeling whether Mr

Holmes calls a neighbor. However, a phone call makes him lose a 1000e contract which he

is negotiating. This is represented by a utility variable u1 with ca as parent.

• If Mr Holmes calls, he gets, with a certain probability, a result re equal to na (no answer,

if his neighbor does not answer), t (if the neighbor tells him that the alarm is ringing), or f

(if the neighbor tells him that the alarm is not ringing). If Mr Holmes does not call, he gets

re = na (no answer).

6. Extensions of IDs exist which relax the no-forgetting or the regularity assumptions, such as decision net-
works [144]. In some extensions, arcs pointing into a decision variable x can also model that some values in dom(x)
are forbidden for some assignments of paG(x). This allows so-called asymmetric decision problems to be modeled.

7. We do not make any assumption on the way this set of decision rules is recorded. We only assume that for
each x ∈ D, it implicitly or explicitly specifies a decision to make depending on the assignment of paG(x) ∩ S.

2.4. BEYOND CONDITIONAL PROBABILITIES FOR MODELING UNCERTAINTIES 37

• Depending on the call and the answer, Mr Holmes can decide to call the police. This is

modeled by a boolean decision variable po. If he calls the police and his house is not being

burglarized, he will pay a 500e penalty. If he does not call and his house is being burglarized,

he loses 2000e. This is modeled using a utility function u2 with {bu, po} as scope.

The associated influence diagram is shown in Figure 2.4. The unique optimal ID-policy consists

in calling neither a neighbor, nor the police. Its value is −20e. It can be obtained by directly

applying Definition 2.31 or by computing a sequence of variable eliminations on the combination

of the scoped functions defined by the ID, as in Equation 2.14.

max
ca

∑

re

max
po

∑

bu,eq,al

((
Pbu · Peq · Pal | bu,eq · Pre | al,ca

)
× (Uca + Ubu,po)

)
(2.14)

(a) (b)

ca
eq

u2

u1

bu

false 0.99
true 0.01

false 0.9995 false 0
true 0.0005

 false 0

 false 0

 false 0

 false 1

 false 1

 false 0.3

 false 0.05

al

na true true 0.1

al eq bu P(al | eq,bu)
true true true 0.9

true true true 0.85

P(al | eq,bu)

re al ca P(re | al,ca)
P(re | al,ca)

bu po U2(bu,po)
U2(bu,po)

U1(ca)

ca U1(ca)

eq P(eq)

bu P(bu)
P(bu)

P(eq)

po

re

 false 0.7

 false 0.95 false 0

 false true 0.05

 false true 0.85

 false true 0.1

 false true 0.2

 false true 0.8

false true true 0.05

false true true 0.1
 false − 2000
true true 0

 − 500false true

false 0
true − 1000

Figure 2.4: An influence diagram: (a) Qualitative part; (b) Quantitative part.

Compared to the most advanced SAT and CSP-based formalisms, influence diagrams can cap-

ture uncertainties without assuming any contingency. Decisions can therefore influence the state

of the environment (e.g. decision ca influences random variable re). This is mainly due to the

fact that modeling uncertainties is one of the bases of influence diagrams and not just an added

component. Nevertheless, as far as we know, influence diagrams are algorithmically less developed

on some points, since e.g. they do not use any soft constraint propagation mechanisms.

2.4 Beyond conditional probabilities for modeling uncer-

tainties

All the previous BN-based formalisms represent uncertainties using local conditional distributions.

In another direction, some formalisms emphasize factorization and do not require to handle only

conditional distributions. We briefly present some of them, which can be seen as alternatives to

Bayesian networks and influence diagrams.

38 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

2.4.1 Markov random fields and chain graphs

In order to explain why BN is not always the best formalism to model uncertainties, and why

factorization-based models can be more efficient, we use a statistical physics example.

Example 2.33. A spin glass is a disordered magnetic material, for instance a material made

of copper (Cu) and containing some atoms of manganese (Mn) distributed on some sites, as in

Figure 2.5. The magnetic state of the manganese atoms can be described by a random variable

taking value +1 or −1. Some atoms of manganese want to have the same magnetic state (“friend”

atoms), while others want to have opposite magnetic states (“antagonist” atoms). Last, some

atoms do not directly interact, because they are too far from each other.

The interactions between the manganese atoms are such that no state exists where all atoms

magnetic preferences are satisfied. For example, let us consider three atoms placed on sites s1, s2,

s3. If s1 wants to have the same magnetic state as both s2 and s3, whereas s2 and s3 want to have

distinct magnetic states, there is no perfect situation.

Cu = interacting atomsMn

Mn

Mn

Mn
Mn

Mn

Mn

Mn

Mn

Mn

Mn

Figure 2.5: A copper (Cu) / manganese (Mn) spin glass.

Let us assume that there are n sites and that the magnetic state (±1) of site i is given by

variable si. Let Jij be a parameter equal to 1 if the atoms in si and sj are friend atoms, −1 if

they are antagonist atoms, and 0 if they do not interact. Then, in order to describe the global

state of the copper-manganese alloy, statistical physicians write the joint probability distribution

over {s1, . . . , sn} as Ps1,...,sn
= 1

Z exp(−β · Es1,...,sn
), where Z is a normalizing constant, β is a

constant, and Es1,...,sn
is the energy function equal to Es1,...,sn

= −
∑

(i,j) Jijsisj. This enables us

to write

Ps1,...,sn
=

1

Z
×
∏

(i,j)

exp(−βJijsisj) (2.15)

Equation 2.15 expresses a joint probability distribution as a combination of factors which are not

conditional probability distributions. Expressing this joint distribution with Bayesian networks is

not only unnatural, but also less efficient, because BNs could involve scoped functions whose largest

scope can be linear in n! This is due to the difference between conditional independences expressible

in a directed graph and in an undirected one.

Markov Random Fields (MRFs [22]) is a formalism which enables probability distributions such

as the one in Equation 2.15 to be modeled. We only present discrete state MRFs.

Definition 2.34. Let S = {s1, . . . , sn} be a finite set of finite domain random variables organized

2.4. BEYOND CONDITIONAL PROBABILITIES FOR MODELING UNCERTAINTIES 39

in an undirected graph G. Each variable x ∈ S has a set of neighbors NG(x) given by G. Let PS

denote a probability distribution over S.

(G,PS) is a Markov Random Field iff for every variable x ∈ S, Px |S−{x} = Px |NG(x), i.e. each

variable is probabilistically independent of its non-neighbors given its neighbors in G.

The Hammersley-Clifford theorem [63] establishes that (G,PS) is a MRF iff PS can be factored

as a Gibbs distribution:

Ps1,...,sn
=

1

Z
×
∏

cl∈Cl

exp(−β · ϕcl) (2.16)

where Z is a normalization constant, Cl is the set of cliques of G, and ϕcl is a scoped function of

scope cl called the potential of clique cl. This shows that MRFs can be used to model problems

like spin glasses. This formalism is also used in vision and neuronal biology. Roughly speaking,

its “philosophy” is that BNs are more often used to model temporal (causal) relations between

random variables, whereas MRFs are more appropriate to model spatial correlations.

Given a MRF, one can compute a most probable configuration by performing max-eliminations

on a multiplication of scoped functions, as follows:

max
s1,...,sn

(
1

Z
×
∏

cl∈Cl

exp(−β · ϕcl)) (2.17)

BNs and MRFs are unified by Chain graphs [55]. A chain graph uses a graph containing both

directed and undirected arcs, and such that cycles in this graph involve undirected links only. The

set C of connected components obtained when removing directed arcs are called the components of

the chain graph. A chain graph can then be seen as a DAG G whose vertices are the components

in C.

It represents a joint probability distribution PV in a factored form PV =
∏

c∈C Pc | paG(c), each

conditional distribution Pc | paG(c) being itself specified as in Markov random fields by a set of

scoped functions Φc and by a normalization constant ZpaG(c) whose scope is included in paG(c),

so that Pc | paG(c) = 1
ZpaG(c)

∏

ϕ∈Φc
ϕ.

2.4.2 Valuation networks

The statement made for Bayesian networks also holds for influence diagrams. Basically, IDs use

conditional probability distributions to model uncertainties. They were extended so as to integrate

models like MRFs. The corresponding extension is called Valuation Networks (VNs [128]) and is

also known as valuation-based systems for Bayesian decision. VNs emphasize the multiplicative

decomposition of a joint probability distribution, and not conditional independence.

Definition 2.35. A Valuation Network is a tuple (V, P, U,≺) where:

• V is a finite set of variables, partitioned between decision and environment variables;

• P = {P1, . . . , Ps} is a set of scoped functions 8 whose multiplication gives a family of joint

probability distributions on the environment variables (one joint distribution per possible as-

signment of the decision variables);

8. In the valuation network terminology, scoped functions are called valuations.

40 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

• U = {U1, . . . , Ut} is a set of scoped functions which are additive factors of a global utility;

• ≺ defines precedence constraints, indicating which observations are available when a decision

is made. Some consistency conditions are imposed on these precedence constraints (we omit

them for simplicity [128]).

The usual query on a VN is the same as for influence diagrams. It can be answered to by

computing a sequence of eliminations like

∑

I0

max
d1

. . .
∑

Iq−1

max
dq

∑

Iq

((
∏

Pi∈P

Pi)× (
∑

Ui∈U

Ui)) (2.18)

in which the Pi functions are not necessarily conditional probability distributions.

The VN formalism was also extended in order to handle asymmetric decision problems in a

better way, as in sequential valuation networks [41]. Informally, a decision problem is asymmetric

if some variable assignments are impossible given the assignment of other variables, leading to

an asymmetric tree in a decision tree representation. In such extensions, e.g. with asymmetric

valuation networks [130], sequential decision problems with probabilistic uncertainties, feasibilities,

and additive utilities can be modeled. The difference with usual VNs is that a set F = {F1, . . . , Fr}

of boolean scoped functions, called indicator valuations, is added. These indicator valuations are

local feasibility constraints. They specify that the assignments of some variables are unfeasible

given the assignment of other variables.

If the precedence constraints look like d1 ≺ d2 ≺ s1 ≺ d3 ≺ d4 ≺ s2, it can be shown that

optimal decision rules for d1, d2, d3, d4 are defined via Equation 2.19:

max
d1,d2

∑

s1

max
d3,d4

∑

s2

((

∧
Fi∈F

Fi

)

⋆

(
∏

Pi∈P

Pi

)

×

(
∑

Ui∈U

Ui

))

(2.19)

Local feasibility constraints are combined using ∧, and combined with other scoped functions using

the truncation operator ⋆ (cf Definition 1.6). And, again, a sequence of eliminations is performed.

2.5 Classical planning-based frameworks

The previous sections have offered a quick overview of some existing variable-based representation

frameworks for sequential decision making with uncertainties, feasibilities, and utilities. In another

direction, classical planning problems can use different representations [58]. We describe only the

most popular one, the classical planning representation, which is namely linked with the planning

system STRIPS [49] and the famous PDDL planning language [86]. This representation is of

interest because it uses a knowledge representation which differs from the variable-based modeling

seen so far with SAT, CSPs, and BNs.

2.5.1 Classical planning

The presentation of classical planning requires some definitions concerning first order languages.

Definition 2.36. A first order language L is based on four types of symbols: constant, variable,

predicate, and function symbols. The following definitions hold when there are no function symbols.

2.5. CLASSICAL PLANNING-BASED FRAMEWORKS 41

A term is either a constant symbol or a variable symbol.

If pr is an n-place predicate and t1, . . . , tn are terms, then pr(t1, . . . , tn) is called an atom.

A literal is an atom or its negation. A positive literal is an atom and a negative literal is the

negation of an atom. Given a set of literals L, we denote by L+ and L− the set of positive and

negative literals in L respectively.

An atom (resp. a literal) is said to be a ground atom (resp. a ground literal) if it involves only

constant symbols.

For example, in a first-order language L without functions where the constant symbols are b1,

b2, b3, where variable symbols are x and y, and where there is a two-place predicate pr, the terms

are b1, b2, b3, x, and y, pr(b1, x), pr(b2, b3), and pr(x, y) are examples of atoms, among which only

pr(b2, b3) is a ground atom, and pr(b1, x) and ¬pr(b2, b3) are literals, among which only ¬pr(b2, b3)

is a ground literal.

Definition 2.37. Let L be a first-order language with a finite number of symbols and without

function symbols. A planning operator in L is a triple o = (name(o), precond(o), effects(o)) such

that:

• name(o) is the operator name, looking like n(x1, . . . , xk) (n is called the operator symbol and

x1, . . . , xk are the variables appearing in the definition of o);

• precond(o) and effects(o) are sets of literals in L defining the preconditions and effects of o

respectively.

If O is a set of planning operators in L, then (L,O) defines a classical planning domain.

The definition of a planning domain is purely syntactic. Semantically speaking, a planning

domain defines a so-called “restricted state-transition system” [58] Σ = (S,A, γ) where:

• S ⊆ 2{all ground atoms of L} is a finite set of states. We make the closed-world assumption, i.e.

an atom which is not explicitly specified in a state does not hold in that state;

• A = {all ground instances of operators in O} is a finite set of actions. A ground instance of

a planning operator o is simply a planning operator obtained from o by replacing variable

symbols by constant symbols;

• γ : S × A → S is a state-transition function. Given (s, a) ∈ S × A, if precond+(a) ⊆ s and

precond−(a) ∩ s = ∅, then a is applicable to s. In this case, γ(s, a) = (s − effects−(a)) ∪

effects+(a) is a state in S obtained if action a is performed in state s: a deletes the negative

effects and add the positive ones. Otherwise, if action a is not applicable in state s, γ(s, a)

is undefined. In other words, planning operators explicitly say that preconditions must be

satisfied for a decision to be feasible, and they define deterministic effects of actions.

Definition 2.38. The statement of a planning problem is a triple (P , s0, g) where P = (L,O) is

a planning domain, s0 is a set of ground atoms in L defining the initial state, and g is a set of

ground literals in L representing the goal.

The set of goal states Sg is the set of all states s ∈ S such that every positive literal in g is in

s and no negative literal in g is in s.

42 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Definition 2.39. Let (P , s0, g) be the statement of a planning problem. A plan is a sequence

of actions [a1, . . . , ak]. A plan is applicable iff γ(γ(. . . γ(γ(γ(s0, a1), a2), a3) . . . , ak−1), ak) is not

undefined, where γ is the transition function of the restricted state-transition system associated

with P. A plan is a solution iff γ(γ(. . . γ(γ(γ(s0, a1), a2), a3) . . . , ak−1), ak) ∈ Sg

The planning problem consists in finding a plan which is a solution.

Example 2.40. The “Blocks World” problem described below illustrates planning operators. Ini-

tially, a stack of numbered blocks lies on a table, as in Figure 2.6(a). A robot arm can unstack the

highest block of a pile or pick up a block from the table. A block held by the arm can be put down

on the table or stacked on the top of a pile of blocks. The arm cannot hold more than one block.

b1

b2

b3

b2

b1

b3

(a) (b)

Figure 2.6: A blocks world problem: (a) initial state; (b) state reached after applying the plan
[unstack(b1, b2), put-down(b1), unstack(b2, b3)].

In order to model this problem, we first define the planning domain:

• Language L:

– Predicate symbols: clear(x), ontable(x), on(x, y), emptyarm, holding(x);

– Constant symbols: b1, b2, b3;

• Planning operators:

o1 : stack(x, y)

precond(o1) : {holding(x), clear(y)}

effects(o1) : {¬holding(x),¬clear(y), clear(x), emptyarm, on(x, y)}

o2 : unstack(x, y)

precond(o2) : {emptyarm, on(x, y), clear(x)}

effects(o2) : {¬emptyarm,¬on(x, y),¬clear(x), clear(y), holding(x)}

o3 : pick-up(x)

precond(o3) : {clear(x), ontable(x), emptyarm}

effects(o3) : {¬clear(x),¬ontable(x),¬emptyarm, holding(x)}

o4 : put-down(x)

precond(o4) : {holding(x)}

effects(o4) : {¬holding(x), clear(x), emptyarm, ontable(x)}

An action is an instantiation of a planning operator. For example, stack(b1, b2) is an action

which puts block b1 on block b2 if the preconditions holding(b1) and clear(b2) both hold.

A planning problem statement can then be defined on the previous planning domain, e.g. by

• the initial state s0 = {ontable(b3), on(b2, b3), on(b1, b2), clear(b1), emptyarm} represented in

Figure 2.6(a);

2.5. CLASSICAL PLANNING-BASED FRAMEWORKS 43

• the goal g = {clear(b3),¬emptyarm}, which says a state is a goal state iff there is no block

on top of b3 and the robot arm holds a block.

[unstack(b2, b3)] and [pick-up(b2), put-down(b3)] are examples of plans which are not applicable,

because they violate some preconditions. [unstack(b1, b2), put-down(b1), pick-up(b1), stack(b1, b2)] is

an applicable plan. It says that the robot must take b1 on top of the initial stack, put it on the table,

pick it up from the table, and put it again on the blocks stack. An example of a plan which is a solu-

tion to the planning problem is the sequence of actions [unstack(b1, b2), put-down(b1), unstack(b2, b3)].

The state obtained when performing this plan, which is a goal state, is shown in Figure 2.6(b).

The classical planning framework offers extensions in which preconditions and action effects

can be more general than just sets of literals or atoms, and in which goals can be more general

than just states to reach (e.g., the number of actions of a plan can be a plan ranking parameter).

As previously stated, the classical planning framework uses a knowledge representation which

is different from the variable-based one used in SAT, CSP, or BN. Nevertheless, the classical

planning representation is equivalent to another variable-based representation [58]. A classical

planning problem can indeed be formulated as a CSP in order to search for a solution plan with

a length ≤ k. This shows that a classical planning problem can be formulated as a sequence of

max-eliminations on a conjunction of scoped functions.

In all the following, we will use a variable-based representation. This choice is motivated both

in terms of models and algorithms:

• From a modeling point of view, many formalisms reason about variables and local functions.

In order to build a generic encompassing framework, it is more natural (and easier) to reuse

this common basis.

• From an algorithmic point of view, frameworks like CSPs or BNs already offer various tech-

niques which are strongly related with the variable-based representation. In order to gener-

alize them, working on a similar representation can be helpful.

2.5.2 Conformant planning and probabilistic planning

The classical planning framework was extended in order to model either pessimistic indeterminisms,

as in conformant planning [60], or stochastic indeterminisms, as in probabilistic planning [77]. The

two main ideas are first that there can be uncertainties on the initial state of the environment, and

second that action effects may be non-deterministic.

In conformant planning, the initial state s0 is replaced by a set of possible initial states S0.

S0 can be defined either explicitly, or implicitly via boolean formulas or constraints. Planning

operators become non-deterministic, meaning that they describe all the possible states which can

be reached when they are applied. The objective is to find an unconditional plan (the environment

is assumed to be unobservable) which guarantees that the goal is reached, whatever the evolution

of the environment is.

In conformant probabilistic planning, a probability distribution over the initial state is specified,

and actions have probabilistic effects. The objective is then to search for an unconditional plan

maximizing the probability that a goal state is reached.

44 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

In probabilistic planning, the state of the environment becomes observable. Hence one can seek

conditional plans. Probabilistic planning problems can be expressed using the PPDDL planning

language [143].

2.6 Sequential decision making under uncertainty with MDPs

Frameworks like MDPs also use a state-based modeling and describe the evolution of the whole

state of the environment. This section introduces MDPs and their extensions to non-probabilistic

uncertainties and partial observabilities. It also shows that despite the basic state-based represen-

tation, variable eliminations can still be used.

2.6.1 Markov decision processes

Markov Decision Processes (MDPs [111, 89]) model sequential decision problems such that, at each

step t of the decision process, an agent must make a decision d depending on the state s of the

environment at t. This decision d induces an immediate reward U(s, d) and a stochastic evolution

of the whole state of the environment, which becomes s′ with a certain probability P (s′ | s, d).

This reward U(s, d) and this evolution P (s′ | s, d) are assumed to depend only on s and d (Markov

hypothesis). Figure 2.7 describes the unrolled form of a 4-step MDP.

t=4t=3t=2t=1

d1 d2 d3 d4

s1 s2 s3 s4 s5

U(s1, d1)
P (s2|s1, d1)

Figure 2.7: A 4-step MDP. A vertex si represents the state at step i and a vertex di represents
the decision made at step i. An undirected dotted edge between si and di represents the reward
induced when decision di is made in state si, and arcs into vertex si+1, coming from si and di,
point out that the state at step i+1 depends on the state and decision at step i (via the transition
function P (s′ | s, d)).

Definition 2.41. A MDP is a tuple (S,D, P (. | ., .), U(., .)) where

• S is a finite set of states of the environment;

• D is a finite set of decisions;

• P (. | ., .) : S × S × D → [0, 1] is a function such that P (s′ | s, d) is the conditional probability

of reaching state s′ if decision d is made in state s (transition model);

• U(., .) : S×D → R is a function such that U(s, d) is the immediate reward obtained if decision

d is made in state s (reward model). 9

9. The literature offers various definitions of MDPs. In Definition 2.41, we consider only stationary MDPs, that
is the actions available, the transition model, and the immediate rewards do not depend on the step t considered.

2.6. SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY WITH MDPS 45

MDPs do not basically involve variables: they reason about a state space S and a decision space

D. However, the state at one step can be described by one state variable s with S as domain, and

the decision made at one step can be seen as one decision variable d with D as domain.

A MDP can be either a finite, or an infinite horizon MDP. In the former, there exists a step T

such that what occurs after T is not considered. 10 In the latter, a discount factor γ (0 ≤ γ < 1) is

introduced to model that the sooner the rewards the better. This discount factor can be used with

finite horizon MDPs as well, in which case it does not need to be strictly lesser than 1. Given the

transition model and the reward model, the goal is to search for a sequence of decisions of maximal

expected utility.

Definition 2.42. (MDP-policy) A MDP-decision rule is a function δ : S → D specifying a decision

δ(s) ∈ D to make depending on the current state s ∈ S. A MDP-policy ∆ is a set of MDP-decision

rules ∆ = {δ1, δ2, δ3, . . .} (δt is the MDP-decision rule associated with the tth-to-last step). If

δ1 = δ2 = δ3 = . . . = δ, then the MDP-policy is said to be stationary and is specified simply as

∆ = {δ}.

The value of a MDP-policy ∆ is its associated expected utility, defined inductively as follows.

Let val∆,t(s) be the expected utility if ∆ is applied during t steps starting from state s. For

t = 1, the expected utility is simply the immediate reward obtained when making decision δ1(s),

i.e. val∆,1(s) = U(s, δ1(s)). For t > 1, the expected utility obtained when applying ∆ during t

steps is the sum of the immediate reward obtained when making decision δt(s) in state s and of

the expected utility obtained when applying policy ∆ during the t − 1 remaining steps. In other

words,

val∆,t(s) = U(s, δt(s)) + γ ·
∑

s′∈S

P (s′ | s, δt(s)) · val∆,t−1(s
′)

For a MDP with a finite horizon T , the value val∆ of a MDP-policy ∆ = {δ1, . . . , δT } is given by

val∆ = val∆,T . With an infinite horizon, the value of ∆ is limt→∞ val∆,t.

An optimal MDP-policy ∆∗ is a MDP-policy of highest value. Standard results on MDPs show

that when the horizon is infinite, there always exists an optimal MDP-policy which is stationary

(∆∗ = {δ}). This does not hold when the horizon is finite.

Example 2.43. [118] A robot is in position (1, 1) on the 4 × 3 grid of Figure 2.8. Reaching

position (4, 3) offers a reward of +1 and reaching the undesired position (4, 2) gives a reward of

−1. All other positions on the grid are rewarded with −0.04. At each time step, the robot decides

to move up, down, left, or right. The intended effect occurs with probability 0.8, and the rest of the

time, the robot moves at right angles to the intended direction. If an obstacle prevents the robot

from moving, then it stays in the same position. If the robot reaches position (4, 2) or (4, 3), then

it gets out of the grid. Last, the robot is always aware of its position.

This problem can be modeled by the MDP (S,D, P (. | ., .), U(., .)), where

• S = ({1, 2, 3, 4}× {1, 2, 3})∪ {out} is the set of positions on the grid plus the out position;

• D = {up, down, left, right} is the set of available decisions at each time step;

10. Or one defines a function G : S → R specifying, for each state s at step T , a global expected gain concerning
what occurs after T .

46 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

• P (. | ., .) is the transition model defining e.g. P ((1, 2) | (1, 1), up) = 0.8, P ((2, 1) | (1, 1), up) =

0.1, and P ((1, 1) | (1, 1), up) = 0.1;

• U(., .) defines the rewards: U((4, 2), .) = −1, U((4, 3), .) = 1, U(out, .) = 0, and U((i, j), .) =

−0.04 otherwise.

The goal is to find an optimal MDP-policy. If each action produced the expected effect, then the

sequence [up, up, right, right, right] would be optimal. But with uncertainties, an optimal stationary

MDP-policy when the horizon is infinite and γ = 0.99 consists of moving up if the position is (1, 1),

(1, 2), or (3, 2), right if the position is (1, 3), (2, 3), or (3, 3), and left if the position is (2, 1), (3, 1),

or (4, 1). Its expected utility is approximately 0.7.

obstacle

init

0.8

0.1 0.1

+1

−1

Figure 2.8: A sequential decision problem modelable with MDPs.

MDP-policies can be computed systematically. First, the maximal expected utility which can be

obtained in one step starting from state s is val∗1(s) = maxd∈D U(s, d). A corresponding optimal

decision rule is δ∗1(s) ∈ argmaxd∈DU(s, d). Second, the maximal expected utility which can be

obtained if there are t > 1 remaining steps is given by the Bellman equation:

val∗t (s) = max
d∈D

(U(s, d) + γ ·
∑

s′∈S

P (s′ | s, d) · val∗t−1(s
′))

An associated decision rule, denoted δ∗t , is obtained using argmaxd∈D. For a T -step finite horizon

MDP, this so-called value iteration mechanism gives an optimal policy ∆∗ = {δ∗1 , . . . , δ
∗
T }. For

an infinite horizon MDP, this mechanism converges to an optimal stationary MDP-policy δ∗ =

limt→∞ δ∗t .

The Bellman equation can be seen as a sequence of max and sum variable eliminations. Indeed,

let s and s′ (boldface letters) be variables with the state space as domain (dom(s) = dom(s′) = S)

and let d be a variable with the decision space as domain (dom(d) = D). Let Ps′ | s,d be the scoped

function ({s′, s,d}, P (. | ., .)), let Us,d be the scoped function ({s,d}, U(., .)), let val∗s be the scoped

function ({s}, val∗t (.)), and let val∗
s′

be the scoped function ({s′}, val∗t−1(.)). Then, the Bellman

equation can be rewritten as:

val∗
s

= max
d

∑

s′

Ps′ | s,d · (Us,d + γ · val∗
s′) (2.20)

Similarly, given a finite horizon MDP with γ = 1, one can even unroll it to get the complete

elimination sequence it performs. If st and dt are variables denoting the state and decision at step

t respectively (dom(st) = S and dom(dt) = D), and if Pst+1 | st,dt
and Ust,dt

denote the scoped

functions ({st+1, st,dt}, P (. | ., .)) and ({st,dt}, U(., .)) respectively, then the sequence of variable

2.6. SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY WITH MDPS 47

eliminations equivalent to the whole value iteration algorithm is:

max
d1

∑

s2

max
d2

. . .
∑

sT

max
dT

((
∏

t∈[1,T [

Pst+1|st,dt
)× (

∑

t∈[1,T]

Ust,dt
)) (2.21)

2.6.2 Partially observable MDPs

MDPs assume that the state s of the environment is completely observable. But in many problems,

the state of the environment is not exactly known when a decision is made. Only noisy observations

of the actual state are available to the decision maker. The formalism extending MDPs to integrate

such aspects is the Partially Observable MDP (POMDP [132, 89, 83, 71]) formalism. 11

Definition 2.44. A POMDP is a tuple (S,D, P (. | ., .), U(., .),Ω, O(. | .)) where:

• (S,D, P (. | ., .), U(., .)) is a MDP;

• Ω is a finite set of possible observations;

• O(. | .) : Ω×S → [0, 1] is a function such that O(o | s) is the probability of making observation

o in state s (observational model).

The goal is still to seek a policy which maximizes the expected utility. A first naive and

suboptimal approach is to specify at each step t a decision to be made depending on the observation

made at t. The optimal method is to specify at each step t a decision to be made depending on

all previous observations.

For a finite horizon POMDP, POMDP-policies are defined by a tree, as in a stochastic CSP.

The root of this tree corresponds to the first decision to be made. It has as many sons as possible

observations. A son of the root corresponds to the second decision to be made, depending on the

first observation. And so on to the last stage.

The value of a POMDP-policy is defined by its expected utility, as in a stochastic CSP. Without

further details, it can be shown that if there are T steps, the search for an optimal POMDP policy

can be reduced to the computation of a sequence of eliminations of the form:

∑

o1

max
d1

∑

o2

max
d2

. . .
∑

oT

max
dT

∑

s1,...,sT

((
∏

t∈[1,T [

Pst+1|st,dt
×

∏

t∈[1,T]

Pot|st)× (
∑

t∈[1,T]

Ust ,dt)) (2.22)

2.6.3 Other uncertainty-utility models: towards algebraic MDPs

In another direction, the initial probabilistic MDP framework was adapted to other representations

of uncertainties and utilities.

In possibilistic MDPs [119], conditional probabilities P (s′ | s, d) are replaced by conditional

possibilities π(s′ | s, d) and additive rewards U(s, d) by preferences µ(s, d) combined using min.

In pessimistic possibilistic finite horizon MDPs, which use the pessimistic possibilistic expected

utility [43], the search for an optimal policy can be reduced to the computation of optimal decision

rules for the quantity:

max
d1

min
s2

max
d2

. . .min
sT

max
dT

(max(1 − min
t∈[1,T [

πst+1|st,dt
, min
t∈[1,T]

µst,dt
)) (2.23)

11. When there is no decision, the corresponding model is Hidden Markov Model [112].

48 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

In other words, plausibilities are combined using min, utilities are combined using min, plausibil-

ities and utilities are combined using (p, u) → max(1 − p, u), min-eliminations are performed for

environment variables, and max-eliminations are performed for decision variables.

In optimistic possibilistic MDPs [119], which use the optimistic possibilistic expected utility [43],

the sequence of eliminations is

max
d1

max
s2

max
d2

. . .max
sT

max
dT

(min(min
t∈[1,T [

πst+1|st,dt
, min
t∈[1,T]

µst,dt
) (2.24)

In MDPs using κ-rankings [133, 142] as a model of uncertainties and using only positive utili-

ties [59], the sequence of eliminations looks like:

min
d1

min
s2

min
d2

. . .min
sT

min
dT

((
∑

t∈[1,T [

κst+1|st,dt
) + (

∑

t∈[1,T]

Ust,dt
)) (2.25)

Algebraic MDPs

The fact that only the elimination and combination operators used change between MDPs using

different kinds of uncertainty-utility models was recognized, in the finite horizon case, by the

Algebraic MDP (AMDP [97]) framework. AMDPs are based on generic existing structures for

modeling plausibilities [54, 62] and expected utilities [23]. The transition model is expressed by a

so-called conditional plausibility measure of reaching a state s′ starting from state s and applying

decision d, denoted P(s′ | s, d). Rewards are combined using an abstract operator ⊗. AMDPs

define an algebraic form of the Bellman equation, which uses two abstract operators ⊞ and ⊠

enabling to compute an expected utility. This algebraic Bellman equation is of the form:

val∗t (s) = max
d∈D

(U(s, d) ⊗ (⊞
s′∈S
P(s′ | s, d)⊠ val∗t−1(s

′))) (2.26)

AMDPs impose axioms on the operators used, which, once again, reduce the computations they

perform to a sequence of variable eliminations on a combination of scoped functions.

2.6.4 Back to a variable-based representation: factored MDPs

We have argued at the beginning of Subsection 2.6.1 that MDPs basically use a state-based rep-

resentation. The drawbacks of this rather raw representation were however surmounted with an

adaptation of MDPs, the factored MDP [19, 18] framework, which uses variables representing the

basic features of the state of the system. The following small example illustrates factored MDPs

and the interest of such a variable-based representation.

Example 2.45. The robot in the 4× 3 grid of Figure 2.8 has a limited amount of energy varying

from 0 to 9. This amount is decremented by 1 at each step, and the robot can move on the grid

only if it has a strictly positive energy level.

With these new specifications, the state of the robot can be described by its position pos and

by its level of energy en. At each step, the global state s corresponds to the aggregation of pos

and en. In this case, there are |S| = 130 possible states for the robot (13 positions with the out

position, and 10 energy levels). In order to define the transition model P (s′ | s, d), one must define

130× 130× 4 = 67600 individual probabilities.

2.7. VALUATION ALGEBRAS 49

This unfactored representation can be improved. Indeed, the conditional probability distribution

P (s′ | s, d) can be factored as P (pos′ | pos, en, d)×P (en′ | en), since the energy level at step t+1 does

not depend on the position and on the decision made at step t. With this factored representation,

we need to specify only 13× 13× 10× 4+10× 10 = 6860 individual probabilities! The factored and

unfactored representations are given in Figure 2.9. The state representation is inadequate because

the number of states grows exponentially with the number of variables describing the state. 12

b)a)

d d

pos

en′

pos′pos

enen′

pos′

en

Figure 2.9: (a) Unfactored MDP representation; (b) Factored MDP representation.

Factored MDPs actually correspond to MDPs where the transition model P (. | ., .) is given by

one so-called Dynamic Bayesian Network (DBN [31]) per decision. This DBN gives the probabilistic

dependences between the variables representing the full state. When decisions are themselves

represented by decision variables, the obtained formalism is called Dynamic Decision Network

(DDN [118]).

2.7 Valuation algebras

The previous study shows that the formalisms developed in the CSP, BN, or MDP frameworks

present many interesting similarities in that various queries in these formalisms can be reduced

to the computation of a sequence of variable eliminations on a combination of scoped functions.

The idea of a generic algebraic framework for modeling and solving decision problems based on

variables and local functions between these variables was actually already proposed for the mono-

operator case (one elimination operator and one combination operator) under the name of valuation

algebras [127, 128, 75].

In order to introduce valuation algebras, it is first necessary to define the notions of valuation,

combination of two valuations, and marginalization of a valuation.

First, a valuation is strictly identical to a scoped function. For instance, given a BN, a condi-

tional probability distribution Px | paG(x) is a valuation of scope sc(Px | paG(x)) = {x} ∪ paG(x). In

the valuation algebras terminology, the scope of a valuation is called its domain. Second, let Ψ

denote a set of valuations. Two abstract operators are defined directly on valuations (and not on

the image E of a valuation ϕ : dom(sc(ϕ))→ E):

1. A combination operator ⊠ : Ψ×Ψ→ Ψ associating with two valuations ϕ1, ϕ2 their combi-

nation ϕ1 ⊠ ϕ2. In order to handle CSPs, the combination operator ⊠ equals ∧. In order to

12. The factorization can even be improved by using for example a decision diagram representation [1, 21] where
the fact that the robot does not move if its level of energy equals 0 is explicitly taken into account.

50 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

handle BNs, ⊠ = ×.

2. A marginalization operator denoted ↓: Ψ × 2V → Ψ associating with a valuation ϕ and a

set of variables S ⊂ V a projected valuation ϕ↓S . In order to seek a solution to a CSP, this

marginalization corresponds to an elimination of the variables in sc(ϕ)−S using max. In order

to compute a marginal probability distribution on a BN, this marginalization corresponds to

an elimination of the variables in sc(ϕ)− S using +.

As a unique combination operator is used, the information is combined in the same way in-

dependently of what it represents. As a unique marginalization operator is used, the information

is synthesized in the same way independently of the variable considered. The addition of some

axioms defines valuation algebras.

Definition 2.46. A valuation algebra is a tuple (V,Ψ,⊠, ↓) such that V is a set of variables, Ψ is

the set of all valuations whose scopes are included in V , and ⊠ and ↓ satisfy the following axioms:

1. (Ψ,⊠) is a semigroup, i.e. ⊠ is associative, commutative, and, for each S ⊂ V , ⊠ has an

identity on each ΨS = {ϕ ∈ Ψ | sc(ϕ) = S}, i.e. ∃eS ∈ ΨS ∀ϕ ∈ ΨS , ϕ⊠ eS = ϕ.

2. Combining two valuations ϕ1, ϕ2 gives a valuation with scope sc(ϕ1) ∪ sc(ϕ2).

3. Every marginalization ϕ↓S gives a valuation with scope sc(ϕ) ∩ S. Moreover, ϕ↓sc(ϕ) = ϕ

and ϕ↓S = ϕ↓S∩sc(ϕ).

4. Transitivity of marginalization: for every valuation ϕ and for every S1, S2 subsets of V

(ϕ↓S1)↓S2 = ϕ↓S1∩S2 .

5. Distributivity of marginalization over combination: for all valuations ϕ1, ϕ2, (ϕ1⊠ϕ2)
↓sc(ϕ1) =

ϕ1 ⊠ (ϕ2
↓sc(ϕ1)).

6. Identity elements: ∀S1, S2 ⊂ V , eS1 ⊠ eS2 = eS1∪S2 .

Given a set of valuations Φ = {ϕ1, ϕ2, . . . , ϕn} and a set of variables S ⊂ V , a possible query

on valuation algebras is to compute (ϕ1 ⊠ . . . ⊠ ϕn)
↓S . This corresponds to eliminating variables

in sc(ϕ1) ∪ . . . ∪ sc(ϕn) − S on the combination of the scoped functions in Φ. One of the most

significant contribution of the valuation algebra framework is that it contains sufficient axioms for

generic variable elimination algorithms to be used. The main idea is to choose an order in which

variables in V − S are eliminated, and then to use the distributivity of ⊠ over ↓, in order to write

decompositions like

(ϕ1 ⊠ . . .⊠ ϕn)↓S−x = (⊠
ϕ∈Φ,x/∈sc(ϕ)

ϕ)⊠ ((⊠
ϕ∈Φ,x∈sc(ϕ)

ϕ)↓S−x) (2.27)

The computations performed are local in the sense that when a variable x is eliminated, only

valuations having x in their scopes need to be considered.

Example 2.47. Let us consider Mr Holmes’ alarm again. One possible query was to compute

Pal =
∑

eq,bu,jc,mc

(
Peq × Pbu × Pal | eq,bu × Pjc | al × Pmc | al

)
.

2.8. THE THREE BASIC INGREDIENTS OF A GENERIC FRAMEWORK 51

In order to solve this problem, one can use the valuation algebra (V,Ψ,⊠, ↓) where V =

{eq, bu, al, jc,mc}, Ψ is the set of valuations dom(S) → R+ with S ⊂ V , ⊠ = ×, and ϕ↓S =
∑

sc(ϕ)−S ϕ.

The goal is then to compute (Peq⊠Pbu⊠Pal | eq,bu⊠Pjc | al⊠Pmc | al)
↓al. Variables in V −{al} =

{eq, bu, jc,mc} must be eliminated. If one chooses to eliminate variables in the order eq, bu, jc,

mc, then the decomposition of the global computation to be performed into local computations is

given below. It uses the basic axioms of valuation algebras so that when eliminating a variable x,

only scoped functions with x in their scopes are considered. Note that normalization conditions

could be used to simplify the computations.

step 0 Peq ⊠ Pbu ⊠ Pal | eq,bu ⊠ Pjc | al ⊠ Pmc | al

step 1: elim(eq) Pbu ⊠ Pjc | al ⊠ Pmc | al ⊠ (Peq ⊠ Pal | eq,bu)
↓eq

step 2: elim(bu) Pjc | al ⊠ Pmc | al ⊠ (Pbu ⊠ (Peq ⊠ Pal | eq,bu)
↓eq)↓bu

step 3: elim(jc) (Pjc | al)
↓jc ⊠ Pmc | al ⊠ (Pbu ⊠ (Peq ⊠ Pal | eq,bu)

↓eq)↓bu

step 4: elim(mc) (Pjc | al)
↓jc ⊠ (Pmc | al)

↓mc ⊠ (Pbu ⊠ (Peq ⊠ Pal | eq,bu)
↓eq)↓bu

2.8 The three basic ingredients of a generic framework for

sequential decision making with uncertainties, feasibili-

ties, and utilities

The previous subsections show that usual queries considered in various existing formalisms can

be reduced to a sequence of variable eliminations on a combination of scoped functions. These

formalisms can all be seen as graphical models and differ mainly in the way eliminations and

combinations are performed and in what variables and scoped functions represent.

This kind of observation has led to the definition of algebraic MDPs [97] or to the definition of

valuation algebras [127, 75], the latter being a generic algebraic framework in which eliminations

can be performed on a combination of scoped functions. However, valuation algebras are defined

using only one combination operator, whereas several combination operators may be needed to ma-

nipulate the different types of scoped functions in composite graphical models. Moreover, valuation

algebras can deal with only one type of elimination, whereas several elimination operators may be

required for handling the different types of variables. In valuation networks [130], plausibilities are

necessarily represented as probabilities, and min-eliminations cannot be performed. Essentially, a

more powerful framework is needed.

In order to be simple and yet general enough to cover various queries asked in various for-

malisms, the generic form we need to consider is:

Sov

((

∧
Fi∈F

Fi

)

⋆

(

⊗p
Pi∈P

Pi

)

⊗pu

(

⊗u
Ui∈U

Ui

))

(2.28)

where (1) ∧ is used to combine local feasibilities, ⊗p is used to combine local plausibilities, ⊗u is

used to combine local utilities, ⊗pu is used to combine plausibilities and utilities, and the truncation

operator ⋆ is used to ignore unfeasible decisions without having to deal with elimination operations

52 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

on restricted domains; 13 (2) F , P , U are (possibly empty) sets of local feasibility, plausibility,

and utility functions respectively; (3) Sov is an operator-variable(s) sequence, indicating how

to eliminate variables. Sov involves min or max on decision variables and an operator ⊕u on

environment variables.

Equation 2.28 is still very informal. To define it formally, and to provide it with a clear

semantics, we need to define three key elements.

1. First, we must define ⊗p, ⊗u, ⊗pu, the operators used to respectively combine plausibilities,

utilities, and plausibilities with utilities, as well as ⊕u, the operator used to eliminate envi-

ronment variables. An elimination operator ⊕p on plausibilities, enabling us to synthesize

information coming from plausibilities, is also introduced.

These operators define the flexible algebraic structure of the PFU framework. Semantically

speaking, they define the plausibility/utility model and must satisfy some basic algebraic

properties.

2. Second, we must organize the information as a graphical model involving a set of variables,

and sets of scoped functions expressing plausibilities, feasibilities, and utilities (sets P , F ,

U). Together, they define a PFU network, exploiting graphical models concepts (locality,

conditional independence). The possibility to express information in such a structured form

must also be justified, e.g. using the notion of conditional independence.

3. Last, in order to formulate decision making problems, we need to define queries on PFU

networks, by introducing a sequence of operator-variable(s) pairs Sov applied on the com-

bination of the scoped functions as in Equation 2.28. Queries must allow to model various

situations in terms of partial observability and controllability. We must also show why com-

puting such quantities is of interest from the decision theory point of view by comparing

Equation 2.28 with a standard decision tree approach.

2.9 Summary

We have informally shown that usual queries formulated in various formalisms reasoning about

plausibilities and/or feasibilities and/or utilities can be reduced to sequences of variable elimina-

tions on combinations of scoped functions, using various operators. They can intuitively be covered

by Equation 2.28. The three key elements (an algebraic structure, a PFU network, and a sequence

of variable eliminations) needed to formally define and give sense to this equation are introduced

in Chapters 3, 4, and 5.

13. In Equation 2.28, all local plausibilities are combined using the same operator ⊗p and all local utilities are
combined using the same operator ⊗u: the proposed graphical model is composite only in the sense that there are dif-
ferent types of scoped functions (plausibilities, feasibilities, and utilities). However, the generic form of Equation 2.28
does not prevent from having different kinds of information contained among each type of scoped functions: e.g.,
if one wants to manipulate both probabilities and possibilities, one can take ⊗p defined on (probability,possibility)
pairs by (p1, π1) ⊗p (p2, π2) = (p1 × p2, min(π1, π2)).

Chapter 3

A generic algebraic structure for

sequential decision under

uncertainty

The first element of the PFU framework is an algebraic structure specifying how the information

provided by plausibilities, feasibilities, and utilities is combined and synthesized. This algebraic

structure is obtained by adapting previous structures from Friedman, Chu, and Halpern [54, 62,

23] for representing uncertainties and expected utilities. It involves combination and elimination

operators which satisfy some algebraic properties. Moreover, it covers various existing algebraic

structures used in different plausibility/utility models.

3.1 Some algebraic definitions

Definition 3.1. (E,⊛) is a commutative monoid iff E is a set and ⊛ is a binary operator on E

which is associative (x ⊛ (y ⊛ z) = (x ⊛ y)⊛ z), commutative (x⊛ y = y ⊛ x), and which has an

identity 1E ∈ E (x⊛ 1E = 1E ⊛ x = x).

Definition 3.2. (E,⊕,⊗) is a commutative semiring iff

• (E,⊕) is a commutative monoid, with an identity denoted 0E,

• (E,⊗) is a commutative monoid, with an identity denoted 1E,

• 0E is annihilator for ⊗ (x⊗ 0E = 0E),

• ⊗ distributes over ⊕ (x⊗ (y ⊕ z) = (x ⊗ y)⊕ (x⊗ z)).

Definition 3.3. Let (Ea,⊕a,⊗a) be a commutative semiring. Then, (Eb,⊕b,⊗ab) is a semimodule

on (Ea,⊕a,⊗a) iff

• (Eb,⊕b) is a commutative monoid, with an identity denoted 0Eb
,

• ⊗ab : Ea × Eb → Eb satisfies

53

54 CHAPTER 3. A GENERIC ALGEBRAIC STRUCTURE

– ⊗ab distributes over ⊕b (a⊗ab (b1 ⊕b b2) = (a⊗ab b1)⊕b (a⊗ab b2)),

– ⊗ab distributes over ⊕a ((a1 ⊕a a2)⊗ab b = (a1 ⊗ab b)⊕b (a2 ⊗ab b)),

– linearity property: a1 ⊗ab (a2 ⊗ab b) = (a1 ⊗a a2)⊗ab b,

– for all b ∈ Eb, 0Ea
⊗ab b = 0Eb

and 1Ea
⊗ab b = b.

Definition 3.4. Let E be a set with a partial order �. An operator ⊛ on E is monotonic iff

(x � y)→ (x⊛ z � y ⊛ z) for all x, y, z ∈ E.

3.2 Plausibility structure

Various forms of plausibilities exist. The most usual one is probabilities. As shown previously, for

example with Equation 2.9 page 33 which involves the quantity
∑

V−{y}

(∏

x∈V Px | paG(x)

)
, one

uses ⊗p = × to combine probabilities and ⊕p = + as an elimination operator.

But plausibilities can also be expressed as possibility degrees in [0, 1]. Possibilities are eliminated

using ⊕p = max and usually combined using ⊗p = min. An interesting case appears when

possibility degrees are booleans describing which states of the environment are completely possible

or impossible. Plausibilities are then combined using ⊗p = ∧ and eliminated using ⊕p = ∨.

Another example is Spohn’s epistemic beliefs, also known as κ-rankings (kappa rankings) [133,

142, 59]. In this case, plausibilities are elements of N∪{+∞} called surprise degrees, 0 is associated

with non-surprising situations, +∞ is associated with completely surprising (impossible) situations,

and more generally a surprise degree k can be viewed as a probability of ǫk for an infinitesimal ǫ.

Surprise degrees are combined using ⊗p = + and eliminated using ⊕p = min.

To capture these various plausibility modeling frameworks, we start from Friedman-Halpern’s

work on plausibility measures [54, 62] (similar approaches are developed in [140, 27]).

Friedman-Halpern’s structure Assume we want to express plausibilities over the assignments

of a set of variables S. Each subset of dom(S) is called an event. In [54, 62], plausibilities are

elements of a set Ep called the plausibility domain. Ep is equipped with a partial order �p

and with two special elements 0p and 1p satisfying 0p �p p �p 1p for all p ∈ Ep. A function

Pl : 2dom(S) → Ep is a plausibility measure over S iff it satisfies Pl(∅) = 0p, Pl(dom(S)) = 1p,

and (W1 ⊂ W2) → (Pl(W1) �p Pl(W2)). This means that 0p is associated with impossibility, 1p

is associated with the highest plausibility degree, and the plausibility degree of a set is as least as

high as the plausibility degree of each of its subsets.

Among all plausibility measures, we focus on so-called algebraic conditional plausibility mea-

sures, which use abstract functions ⊕p and ⊗p which are analogous to + and × for probabili-

ties. These measures satisfy properties such as decomposability: for all disjoint events W1, W2,

Pl(W1 ∪W2) = Pl(W1) ⊕p Pl(W2). As ∪ is associative and commutative, it follows for example

that ⊕p is associative and commutative on representations of disjoint events, i.e. (a⊕p b)⊕p c =

a⊕p(b⊕pc) and a⊕pb = b⊕pa if there exist pairwise disjoint setsW1,W2,W3 such that Pl(W1) = a,

Pl(W2) = b, Pl(W3) = c.

Restriction of Friedman-Halpern’s structure An important point in Friedman-Halpern’s

work is that the algebraic properties of ⊕p and ⊗p hold only on the domains of definition of ⊕p and

3.2. PLAUSIBILITY STRUCTURE 55

⊗p. Although this is sufficient to express and manipulate plausibilities, it can be algorithmically

restrictive. Indeed, consider a Bayesian network involving two boolean variables {x1, x2} and

define Px1,x2 as Px1 × Px2 | x1
. Assume that Px1 is a constant factor L0 = 0.5. In order to

evaluate Px2((x2, t)), the quantity
∑

x1
L0 × Px2 | x1

((x2, t)) must be computed. To do so, it is

simpler to factor it and compute L0 ×
∑

x1
Px2 | x1

((x2, t)). If Px2 | x1
((x2, t).(x1, t)) = 0.6 and

Px2 | x1
((x2, t).(x1, f)) = 0.8, the answer is 0.5 × (0.6 + 0.8) = 0.7. Performing 0.6 + 0.8 requires

applying addition outside of the range of usual probabilities, for which a ⊕p b is defined only if

a+ b ≤ 1, since two probabilities whose sum exceeds 1 cannot be associated with disjoint events.

To take such issues into account, we adapt Friedman-Halpern’s Ep, ⊕p, ⊗p so that ⊕p and ⊗p

become closed in Ep and so that Friedman-Halpern’s axioms hold in the closed structure. Once

this closure is performed, we obtain a plausibility structure.

Definition 3.5. A plausibility structure is a tuple (Ep,⊕p,⊗p) such that

• (Ep,⊕p,⊗p) is a commutative semiring (identities for ⊕p and ⊗p are denoted 0p and 1p

respectively),

• Ep is equipped with a partial order �p such that 0p = min(Ep) and such that ⊕p and ⊗p are

monotonic with respect to �p.

Elements of Ep are called plausibility degrees.

Note that 1p is not necessarily the maximal element of Ep. For probabilities, Friedman and

Halpern’s structure would be ([0, 1],+′,×), where a +′ b = a + b if a + b ≤ 1 and is undefined

otherwise. In order to get closed operators, we take (Ep,⊕p,⊗p) = (R+,+,×) and therefore

1p = 1 is not the maximal element in Ep. In some cases, Friedman-Halpern’s structure does need

to be closed. This is the case with κ-rankings (already closed: (Ep,⊕p,⊗p) = (N∪{+∞},min,+))

and with possibilities (already closed: (Ep,⊕p,⊗p) is typically ([0, 1],max,min), although other

choices such as ([0, 1],max,×) are possible).

Given two plausibility structures (Ep,⊕p,⊗p) and (E′
p,⊕

′
p,⊗

′
p), if we define E = Ep × E′

p,

(p1, p
′
1)⊕ (p2, p

′
2) = (p1⊕p p2, p

′
1⊕

′
p p

′
2) and (p1, p

′
1)⊗ (p2, p

′
2) = (p1⊗p p2, p

′
1⊗

′
p p

′
2), then (E,⊕,⊗)

is a plausibility structure too. This allows us to deal with different kinds of plausibilities (such as

probabilities and possibilities) or with families of probability distributions.

From plausibility measures to plausibility distributions

Let us consider a plausibility measure [54, 62] Pl : 2dom(S) → Ep over a set of variables S.

Assume that Pl(W1 ∪ W2) = Pl(W1) ⊕p Pl(W2) for all disjoint sets W1,W2 ∈ 2dom(S), as is

the case with Friedman-Halpern’s algebraic plausibility measures. This assumption entails that

Pl(W) = ⊕pA∈W Pl({A}) for allW ∈ 2dom(S). This holds even forW = ∅ since 0p is the identity of

⊕p. Hence, defining Pl({A}) for all complete assignments A of S suffices to describe Pl. Moreover,

in this case, the three conditions defining plausibility measures (Pl(dom(S)) = 1p, Pl(∅) = 0p,

and (W1 ⊂ W2) → (Pl(W1) �p Pl(W2))) are equivalent to just ⊕pA∈dom(S) Pl({A}) = 1p, using

the monotonicity of ⊕p for the third condition. This means that we can deal with plausibility

distributions instead of plausibility measures:

Definition 3.6. A plausibility distribution over S is a function PS : dom(S) → Ep such that

⊕pA∈dom(S)PS(A) = 1p.

56 CHAPTER 3. A GENERIC ALGEBRAIC STRUCTURE

The normalization condition imposed on plausibility distributions is simply a generalization of

the convention that probabilities sum up to 1. It captures the fact that the disjunction of all the

assignments of S has 1p as a plausibility degree.

Proposition 3.7. A plausibility distribution PS can be extended to give a plausibility distribution

PS′ over every S′ ⊂ S, defined by PS′ = ⊕pS−S′ PS.

3.3 Feasibility structure

Feasibilities define whether a decision is possible or not, and are therefore expressed as booleans

in {t, f}. This set is equipped with the total order �bool satisfying f ≺bool t.

Boolean scoped functions, expressing feasibilities, are combined using the operator ∧ since an

assignment of decision variables is feasible iff all feasibility functions agree that this assignment is

feasible.

Given a scoped function Fi expressing feasibilities, it is possible to know whether an assignment

A of a set of variables S is feasible according to Fi by computing ∨sc(Fi)−S Fi(A), since A is feasible

according to Fi iff one of its extensions over sc(Fi) is feasible. This means that feasibilities are

synthesized using the elimination operator ∨.

As a result, feasibilities are expressed using the feasibility structure Sf = ({t, f},∨,∧). Sf

is not only a commutative semiring, but also a plausibility structure. Therefore, all plausibility

notions and properties apply to feasibility. We may therefore speak of feasibility distributions, and

the normalization condition ∨SFS = t imposed on a feasibility distribution FS over S means that

at least one decision must be feasible.

3.4 Utility structure

Utilities express preferences and can take various forms. If additive utilities, combined using +,

are the most usual, utilities can also model priorities combined using ⊗u = min. When utilities

represent absolute requirements, they can be modeled as booleans combined using ⊗u = ∧.

More generally, utility degrees are defined as elements of a set Eu equipped with a partial order

�u. Smaller utility degrees are associated with less preferred events. Utility degrees are combined

using an operator ⊗u which is assumed to be associative and commutative. This guarantees that

combined utilities do not depend on the way combination is performed. We also assume that ⊗u

admits an identity 1u ∈ Eu, representing indifference. This ensures the existence of a default utility

degree when there are no utility scoped functions. We also assume that ⊗u is monotonic, so that

if a local utility decreases, the global utility cannot increase. These properties are captured in the

following notion of utility structure.

Definition 3.8. (Eu,⊗u) is a utility structure iff it is a commutative monoid and Eu is equipped

with a partial order �u such that ⊗u is monotonic. Elements of Eu are called utility degrees.

Eu may have a minimum element ⊥u representing unacceptable events and which will be an

annihilator for ⊗u (the combination of any event with an unacceptable one must be unacceptable

too). But these properties are not necessary to establish the forthcoming results.

3.5. EXPECTED UTILITY STRUCTURE 57

The distinction between plausibilities, feasibilities, and utilities is important and can be justified

using algebraic arguments. Since ⊗p and ⊗u may be different operators (for example, ⊗p = ×

and ⊗u = + in usual probabilities with additive utilities), we must distinguish plausibilities and

utilities. It is also necessary to distinguish feasibilities from utilities or plausibilities. Indeed,

imagine a simple card game involving two players P1 and P2, each having three cards: a jack J ,

a queen Q, and a king K. P1 must first play one card x ∈ {J,Q,K}, then P2 must play a card

y ∈ {J,Q,K}, and last P1 must play a card z ∈ {J,Q,K}. A rule forbids to play the same card

consecutively (feasibility functions Fxy : x 6= y and Fyz : y 6= z). The goal for P1 is that his two

cards x and z have a value strictly better than P2’s card y. By setting J < Q < K, this requirement

corresponds to two utility functions Uxy : x > y and Uyz : z > y. In order to compute optimal

decisions in presence of unfeasibilities, we must restrict optimizations (eliminations of decision

variables with max or min) to feasible values: instead of maxx miny maxz(Uxy ∧ Uyz), we must

compute:

max
a∈dom(x)

(

min
b∈dom(y),Fxy(a,b)=t

(

max
c∈dom(z),Fyz(b,c)=t

(Uxy(a, b) ∧ Uyz(b, c))

))

which, by setting f ≺ t , is logically equivalent to

max
x

min
y

(

Fxy → max
z

(Fyz ∧ (Uxy ∧ Uyz))
)

In the latter quantity, feasibility functions concerning P2’s play (y) are taken into account using

logical connective→, so that P2’s unfeasible decisions are ignored in the set of all scenarios consid-

ered. Feasibility functions concerning P1’s last move (z) are taken into account using ∧, so that P1

does not consider scenarios in which he achieves a forbidden move. Therefore, feasibility functions

cannot be handled simply by using the same combination operator as for utility functions: we

need to dissociate what is unfeasible for all decision makers (unfeasibility is absolute) from what

is unacceptable or required for one decision maker only (utility is relative).

At a more general level, for example when Uxy and Uyz are soft requirements or when we do

not know exactly in advance who controls which variable, the logical connectives ∧ and → cannot

be used anymore. In order to ignore unfeasible values in decision variables elimination, we use the

truncating operator ⋆ introduced in Definition 1.6. In order to eliminate a variable x from a local

function ϕ while ignoring unfeasibilities indicated by a feasibility function Fi, we simply perform

the elimination of x on (Fi ⋆ ϕ) instead of ϕ. This maps unfeasibilities to the value ♦, which is

defined as an identity for elimination operators (see Definition 1.6). On the example above, if Uxy

and Uyz were additive gains and costs, we would compute

max
x

min
y

(

Fxy ⋆max
z

(Fyz ⋆ (Uxy + Uyz))
)

3.5 Expected utility structure

To define expected utilities, plausibilities and utilities must be combined. Consider a situation

where a utility ui is obtained with a plausibility pi for all i ∈ [1, N], with p1 ⊕p . . . ⊕p pN = 1p.

L = ((p1, u1), . . . , (pN , uN)) is classically called a lottery [137]. When we speak of expected utility,

58 CHAPTER 3. A GENERIC ALGEBRAIC STRUCTURE

we implicitly speak of the expected utility EU(L) of a lottery L.

A standard way to combine plausibilities and utilities is to use the probabilistic expected utility

theory [137] defining EU(L) as
∑

i∈[1,N] (pi × ui): it aggregates plausibilities and utilities using the

combination operator ⊗pu = × and synthesizes the aggregated information using the elimination

operator ⊕u = +. However, alternative definitions exist:

• If plausibilities are possibilities, then EU(L) = mini∈[1,N] max(1 − pi, ui) with the possibilis-

tic pessimistic expected utility [43] (i.e. ⊕u = min and ⊗pu : (p, u) → max(1 − p, u)) and

EU(L) = maxi∈[1,N] min(pi, ui) with the possibilistic optimistic expected utility [43] (i.e.

⊕u = max and ⊗pu = min).

• If plausibilities are κ-rankings and utilities are positive integers [59], then the expected utility

of L is EU(L) = mini∈[1,N] (pi + ui) (i.e. ⊕u = min and ⊗pu = +).

To generalize these definitions of EU(L), we start from Chu-Halpern’s work on generalized

expected utility [23, 24].

Chu-Halpern’s structure Generalized expected utility is defined in an expectation domain,

which is a tuple (Ep, Eu, E
′
u,⊕u,⊗pu) such that: (1) Ep is a set of plausibility degrees and Eu is

a set of utility degrees; (2) ⊗pu : Ep × Eu → E′
u combines plausibilities with utilities and satisfies

1p ⊗pu u = u; (3) ⊕u : E′
u × E′

u → E′
u is a commutative and associative operator which can

aggregate the information combined using ⊗pu.

When a decision problem is additive, i.e. when, for all plausibility degrees p1, p2 associated with

disjoint events, (p1 ⊕p p2)⊗pu u = (p1 ⊗pu u)⊕u (p2 ⊗pu u), the generic definition of the expected

utility of a lottery is:

EU(L) = ⊕u
i∈[1,N]

(pi⊗pu ui)

Classical expectation domains also satisfy additional properties such as “⊕u is monotonic” and

“0p⊗pu u = 0u, where 0u is the identity of ⊕u”.

Adapting Chu-Halpern’s structure for sequential decision making If we use ⊗pu : Ep ×

Eu → E′
u and ⊕u : E′

u ×E
′
u → E′

u to compute expected utilities at the first decision step, then we

need to introduce operators ⊗′
pu : Ep × E′

u → E′′
u and ⊕′

u : E′′
u × E

′′
u → E′′

u to compute expected

utilities at the second decision step. In the end, if there are T decision steps, we must define T

operators ⊗pu and T operators ⊕u. In order to avoid the definition of an algebraic structure that

would depend on the number of decision steps, we take Eu = E′
u and work with only one operator

⊗pu : Ep × Eu → Eu and one operator ⊕u : Eu × Eu → Eu.

As for plausibilities, and for the sake of the future algorithms, we restrict Chu-Halpern’s expec-

tation domains (Ep, Eu, Eu,⊕u,⊗pu) so that ⊕u and ⊗pu become closed and generalize properties

of the initial ⊕u and ⊗pu. However, this closure is not sufficient to deal with sequential decision

making, because Chu-Halpern’s expected utility is designed for one-step decision processes only.

This is why we introduce three additional axioms for ⊕u and ⊗pu:

• The first axiom is similar to a standard axiom for lotteries [137] defining compound lotteries.

It states that if a lottery L2 involves a utility u with plausibility p2, and if one of the utilities of

3.6. STRUCTURES COVERED 59

a lottery L1 is the expected utility of L2 with plausibility p1, then it is as if utility u had been

obtained with plausibility p1⊗p p2. This gives the axiom p1⊗pu (p2⊗pu u) = (p1⊗p p2)⊗pu u.

• We further require that ⊗pu distributes over ⊕u. To justify this point, assume that a lottery

L = ((p1, u1), (p2, u2)) is obtained with plausibility p. Two different versions of the contribu-

tion of L to the global utility degree can be derived: the first is p⊗pu((p1⊗puu1)⊕u(p2⊗puu2)),

and the second, which uses compound lotteries, is ((p ⊗p p1)⊗pu u1)⊕u ((p ⊗p p2) ⊗pu u2).

We want these two quantities to be equal for all p, p1, p2, u1, u2.

This can be shown to be equivalent to the simpler property p⊗pu (u1⊕u u2) = (p⊗pu u1)⊕u

(p⊗pu u2), i.e. to the distributivity of ⊗pu over ⊕u.

• Finally, we assume that ⊗pu is right monotonic, i.e. (u1 �u u2) → (p ⊗pu u1 �u p⊗pu u2).

This means that if an agent prefers (strictly or not) an event ev2 to another event ev1, and

if both events have the same plausibility degree p, then the contribution of ev2 to the global

expected utility degree must not be lesser than the contribution of ev1.

These axioms define the notion of expected utility structure.

Definition 3.9. Let (Ep,⊕p,⊗p) be a plausibility structure and let (Eu,⊗u) be a utility structure.

(Ep, Eu,⊕u,⊗pu) is an expected utility structure iff

• (Eu,⊕u,⊗pu) is a semimodule on (Ep,⊕p,⊗p) (cf. Definition 3.3 page 53),

• ⊕u is monotonic for �u and ⊗pu is right monotonic for �u ((u1 �u u2) → (p ⊗pu u1 �u

p⊗pu u2)).

3.6 Structures covered

Many structures considered in the literature are instances of expected utility structures, as shown in

Proposition 3.10. The results presented in the remaining of the thesis hold not only for these usual

expected utility structures, but more generally for all structures satisfying the axioms specified in

Definitions 3.5, 3.8, and 3.9.

Proposition 3.10. The structures in Table 3.1 are expected utility structures.

It is possible to define more complex expected utility structures from existing ones. For example,

from two expected utility structures (Ep, Eu,⊕u,⊗pu) and (E′
p, E

′
u,⊕

′
u,⊗

′
pu), it is possible to build

a compound expected utility structure (Ep × E′
p, Eu × E

′
u,⊕

′′
u,⊗

′′
pu). This can be used to deal

simultaneously with probabilistic and possibilistic expected utilities or more generally to deal with

tuples of expected utilities.

The business dinner example To flesh out these definitions, we consider the following toy

example, which will be referred to in the sequel. It does not correspond to a concrete real-life

problem, but is used for its simplicity. Peter invites John and Mary (a divorced couple) to a

business dinner in order to convince them to invest in his company. Peter knows that if John is

present at the end of the dinner, he will invest 10Ke. The same holds for Mary with 50Ke. Peter

knows that John and Mary will not come together (one of them has to baby-sit their child), that

60 CHAPTER 3. A GENERIC ALGEBRAIC STRUCTURE

Ep �p ⊕p ⊗p 0p, 1p Eu �u ⊗u ⊕u ⊗pu ⊥u, 0u, 1u

1 R+ ≤ + × 0, 1 R ∪ {−∞} ≤ + + × −∞, 0, 0

2 R+ ≤ + × 0, 1 R+ ≤ × + × 0, 0, 1

3 [0, 1] ≤ max min 0, 1 [0, 1] ≤ min max min 0, 0, 1

4 [0, 1] ≤ max min 0, 1 [0, 1] ≤ min min max(1−p, u) 0, 1, 1

5 N ∪ {∞} ≥ min + ∞, 0 N ∪ {∞} ≥ + min + ∞,∞, 0

6 {t, f} �bool ∨ ∧ f, t {t, f} �bool ∧ ∨ ∧ f, f, t

7 {t, f} �bool ∨ ∧ f, t {t, f} �bool ∧ ∧ → f, t, t

8 {t, f} �bool ∨ ∧ f, t {t, f} �bool ∨ ∨ ∧ f, f, f

9 {t, f} �bool ∨ ∧ f, t {t, f} �bool ∨ ∧ → f, t, f

Table 3.1: Expected utility structures for: 1. probabilistic expected utility with additive utilities
(allows the probabilistic expected utility of a cost or a gain to be computed), 2. probabilistic
expected utility with multiplicative utilities, also called probabilistic expected satisfaction (allows
the probability of satisfaction of some constraints to be computed), 3. possibilistic optimistic
expected utility, 4. possibilistic pessimistic expected utility, 5. qualitative utility with κ-rankings
and with only positive utilities, 6. boolean optimistic expected utility with conjunctive utilities
(allows one to know whether there exists a possible world in which all goals of a set of goals G are
satisfied), 7. boolean pessimistic expected utility with conjunctive utilities (allows one to know
whether in all possible worlds, all goals of a set of goals G are satisfied), 8. boolean optimistic
expected utility with disjunctive utilities (allows one to know whether there exists a possible world
in which at least one goal of a set of goals G is satisfied), 9. boolean pessimistic expected utility
with disjunctive utilities (allows one to know whether in all possible worlds, at least one goal of a
set of goals G is satisfied).

at least one of them will come, and that the case “John comes and Mary does not” occurs with a

probability of 0.6. As for the menu, Peter can order fish or meat for the main course, and white or

red for the wine. However, the restaurant does not serve fish and red wine together. John does not

like white wine and Mary does not like meat. If the menu does not suit them, they will leave the

dinner. If John comes, Peter does not want him to leave the dinner because he is his best friend.

Example 3.11. The dinner problem uses the expected utility structure representing probabilistic

expected additive utility (row 1 in Table 3.1): the plausibility structure is (R+,+,×), ⊕u = +,

⊗pu = ×, and utilities are additive gains: (Eu,⊗u) = (R ∪ {−∞},+), with the convention that

u+ (−∞) = −∞.

3.7 Relations with other existing structures

If we compare the structures defined with those defined in [54, 62, 23], we can observe that:

• The structures defined here are less general than Friedman-Chu-Halpern’s, since additional

axioms have been introduced. For example, plausibility structures are not able to model

belief functions [125], which are not decomposable, whereas this is possible using Friedman-

Halpern’s plausibility measures (however, we are not aware of existing schemes for decision

theory using belief functions directly; some proposals using the so-called “pignistic probability

distribution” induced by a belief function together with the probabilistic expected utility

exist [141], but they do not work directly on belief functions).

Moreover, for one-step decision processes, Chu-Halpern’s generalized expected utility is more

general, since it assumes that ⊗pu : Ep×Eu → E′
u whereas we consider ⊗pu : Ep×Eu → Eu.

3.8. SUMMARY 61

• Conversely, the structures defined here can deal with multi-step decision processes whereas

Chu-Halpern’s generalized expected utility does not. Beyond this, other axioms such as the

use of closed operators are essentially motivated by operational reasons. In fact, we use a

slightly less expressive structure for the sake of future algorithms.

As a set Ep of plausibility degrees and a set Eu of utility degrees are defined, plausibilities and

utilities must be cardinal. Purely ordinal approaches such as CP-nets [17], which, like Bayesian

networks, exploit the notion of conditional independence to express a network of purely ordinal

preference relations, are not covered.

As ⊗pu takes values in Eu, it is implicitly assumed that plausibilities and utilities are com-

mensurable: works such as [48], describing a purely ordinal approach where qualitative preferences

and plausibilities are not necessarily commensurable, are not captured either. Furthermore, some

axioms entail that only distributional plausibilities are covered (the plausibility of a set of variable

assignments is determined by the plausibilities of each covered complete assignment): Dempster-

Shafer belief functions [125] are not encompassed. Finally, as only one partial order �u on Eu is

defined, it is assumed that the decision makers share the same preferences over utilities.

3.8 Summary

In this chapter, we have introduced expected utility structures, which are the first element of the

PFU framework. They specify how plausibilities are combined and projected (using ⊗p and ⊕p),

how utilities are combined (using ⊗u), and how plausibilities and utilities are aggregated to define

generalized expected utility (using ⊕u and ⊗pu). More precisely, the basic algebraic structures

used are:

• a commutative semiring (Ep,⊕p,⊗p) to handle plausibilities,

• a commutative monoid (Eu,⊗u) to handle utilities,

• a semimodule (Ep, Eu,⊕p,⊗pu) to compute expected utilities.

The addition of monotonicity axioms on these classical structures leads to the notions of plausibility

structure, utility structure, and expected utility structure respectively. These cover various existing

plausibility/utility models and are inspired by Friedman-Chu-Halpern’s plausibility measures and

generalized expected utility. The main differences lie in the addition of axioms to deal with multi-

step decision processes and in the use of closed operators motivated by operational reasons.

Chapter 4

Plausibility-Feasibility-Utility

networks

The second element of the PFU framework is a network of scoped functions Pi, Fi, and Ui (cf.

Equation 2.28 page 51) over a set of variables V . This network defines a compact and structured

representation of the state of the environment, of the decisions, and of the global plausibilities,

feasibilities, and utilities which hold over them. This chapter defines such networks and analyzes the

relations between local functions and the global quantity they model, mainly based on conditional

independence.

In the rest of the thesis, a plausibility function denotes a scoped function onto Ep (the set of

plausibility degrees), a feasibility function is a scoped function onto {t, f} (the set of feasibility

degrees), and a utility function is a scoped function onto Eu (the set of utility degrees).

4.1 Decision and environment variables

In structured representations, decisions are represented using decision variables, which are con-

trolled by one of the agents, and the state of the environment is represented by environment

variables, which are not directly controlled by an agent. We use VD to denote the set of decision

variables and VE to denote the set of environment variables. VD and VE form a partition of V .

Example 4.1. The dinner problem can be modeled using six variables: bpJ and bpM (value t

or f), representing John’s and Mary’s presence at the beginning, epJ and epM (value t or f),

representing their presence at the end, mc (value fish or meat), representing the main course

choice, and w (value white or red), representing the wine choice. Thus, we have VD = {mc,w}

and VE = {bpJ , bpM , epJ , epM}.

4.2 Towards local plausibility and feasibility functions

Using combined local functions to represent a global one raises some considerations: how and when

such local functions can be obtained from a global one, and conversely, when such local functions

are directly used, which implicit assumptions are made on the global function.

63

64 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

We now show that all these questions boil down to the notion of conditional independence. In

the following definitions and propositions, (Ep,⊕p,⊗p) corresponds to a plausibility structure.

4.2.1 A first factorization step using conditional independence

Preliminaries: generalization of Bayesian networks results

Assume that one wants to express a global plausibility distribution PS (cf. Definition 3.6 page 55) as

a combination of local plausibility functions Pi. As work on Bayesian networks [96] has shown, the

factorization of a joint distribution is essentially related to the notion of conditional independence.

To introduce conditional independence, we first define conditional plausibility distributions.

Definition 4.2. A plausibility distribution PS over S is said to be conditionable iff there exists

a set of functions denoted PS1 | S2
(one function for each pair S1, S2 of disjoint subsets of S) such

that if S1, S2, S3 are disjoint subsets of S, then

(a) for all assignments A of S2 such that PS2(A) 6= 0p, PS1 |S2
(A) is a plausibility distribution

over S1,
1

(b) PS1 | ∅ = PS1 ,

(c) ⊕pS1
PS1,S2 |S3

= PS2 |S3
,

(d) PS1,S2 |S3
= PS1 |S2,S3

⊗p PS2 |S3
,

(e) (PS1,S2,S3 = PS1 |S3
⊗p PS2 |S3

⊗p PS3)→ (PS1,S2 |S3
= PS1 |S3

⊗p PS2 |S3
).

PS1 |S2
is called the conditional plausibility distribution of S1 given S2.

Condition (a) means that conditional plausibility distributions must be normalized. Condition

(b) means that the information given by an empty set of variables does not change the plausibilities

over the states of the environment. Condition (c) means that conditional plausibility distributions

are consistent from the marginalization point of view. Condition (d) is the analog of the so-called

chain rule with probabilities. Condition (e) is a kind of weak division axiom. 2

Theorem 4.3 gives simple conditions on a plausibility structure, satisfied in all usual frameworks,

that suffice for plausibility distributions to be conditionable.

Theorem 4.3. If (Ep,⊕p,⊗p) satisfies the axioms:

• if p1 �p p2 and p2 6= 0p, then max{p ∈ Ep | p1 = p⊗p p2} exists and is �p 1p,

• if p1 ≺p p2, then there exists a unique p ∈ Ep such that p1 = p⊗p p2,

• if p1 ≺p p2, then there exists a unique p ∈ Ep such that p2 = p⊕p p1,

it is called a conditionable plausibility structure, since all plausibility distributions are then condi-

tionable: it suffices to define PS1 |S2
by PS1 |S2

(A) = max{p ∈ Ep | PS1,S2(A) = p⊗p PS2(A)} for

all A ∈ dom(S1 ∪ S2) satisfying PS2(A) 6= 0p.

1. To avoid specifying that properties of PS1 | S2
hold only for assignments A of S1 ∪ S2 satisfying PS2

(A) 6= 0p,
we use expressions such as “PS1 | S2

= L” to denote “∀A ∈ dom(S1 ∪S2), (PS2
(A) 6= 0p) → (PS1 |S2

(A) = L(A))”.
2. Compared to Friedman and Halpern’s conditional plausibility measures [54, 62], (c) is the analog of axiom

(Alg1), (d) is the analog of axiom (Alg2), (e) is the analog of axiom (Alg4), and axiom (Alg3) corresponds to the
distributivity of ⊗p over ⊕p.

4.2. TOWARDS LOCAL PLAUSIBILITY AND FEASIBILITY FUNCTIONS 65

The systematic definition of conditional plausibility distributions given in Theorem 4.3 fits

with the usual definitions of conditional distributions, which are, with probabilities, “PS1 |S2
(A) =

PS1,S2(A)/PS2(A)”, with κ-rankings, “PS1 |S2
(A) = PS1,S2(A) − PS2(A)”, and with possibility

degrees combined using min, “PS1 |S2
(A) = PS1,S2(A) if PS1,S2(A) < PS2(A), 1 otherwise”. In the

following, every conditioning statement PS1 |S2
for conditionable plausibility structures will refer

to the canonical notion of conditioning given in Proposition 4.3. Conditional independence can

now be defined.

Definition 4.4. Let (Ep,⊕p,⊗p) be a conditionable plausibility structure. Let PS be a plausibility

distribution over S and S1, S2, S3 be disjoint subsets of S. S1 is said to be conditionally independent

of S2 given S3, denoted I(S1, S2 |S3), iff PS1,S2 |S3
= PS1 |S3

⊗p PS2 |S3
.

This means that S1 is conditionally independent of S2 given S3 iff the problem can be split

into one part depending on S1 and S3, and another part depending on S2 and S3.
3 This definition

satisfies the usual properties of conditional independence, as proved by Proposition 4.5. These

usual properties, known as the semigraphoid axioms [96], were shown to be the basis of the notion

of information relevance in a wide variety of models.

Proposition 4.5. I(., . | .) satisfies the semigraphoid axioms:

1. symmetry: I(S1, S2 |S3)→ I(S2, S1 |S3),

2. decomposition: I(S1, S2 ∪ S3 |S4)→ I(S1, S2 |S4),

3. weak union: I(S1, S2 ∪ S3 |S4)→ I(S1, S2 |S3 ∪ S4),

4. contraction: (I(S1, S2 |S4) ∧ I(S1, S3 |S2 ∪ S4))→ I(S1, S2 ∪ S3 |S4).

Informally, the symmetry axiom states that if a set of variables S1 does not provide any infor-

mation about a set of variables S2 given a third set of variables S3, then S2 gives no information

about S1 given S3. The decomposition axiom asserts that if S1 does not depend on both S2 and

S3 given S4, then S1 does not depend on S2 and S3 considered independently. The weak union

axiom states that if S2 ∪ S3 is irrelevant to S1 given S4, then knowing S3 does not change the

irrelevance of S2 with regard to S1. Last, the contraction axiom tells that if S3 is irrelevant to S1

after knowing an irrelevant information about S2, then S3 must be irrelevant to S1 before learning

S2.

Proposition 4.5 makes it possible to use Bayesian network techniques to express information

in a compact way. With Bayesian networks, a DAG of variables is used to represent conditional

independences between variables [96]. In some cases, such as image processing or statistical physics,

it is more natural to express conditional independences between sets of variables. If probabilities

are used, such situations can be modeled using chain graphs [55] presented in Chapter 2 page 38.

In a chain graph, the DAG defined is not a DAG of variables, but a DAG of sets of variables,

called components. Conditional probability distributions Px | paG(x) of variables are replaced by

3. Definition 4.4 differs from Halpern’s, which is “S1 is conditionally independent (CI) of S2 given S3 iff
PS1 | S2,S3

= PS1 |S3
and PS2 | S1,S3

= PS2 | S3
”. In [62], the definition we adopt is called non-interactivity (NI)

and is shown to be weaker than CI. This implies that NI is satisfied more often and may lead to more factorizations.
[62] gives a simple axiom (axiom (Alg4’)) under which CI and NI are equivalent. Though this axiom holds in many
usual frameworks, it does not hold with possibility degrees combined using min, a case covered by the PFU algebraic
structure.

66 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

conditional probability distributions Pc | paG(c) of components, each Pc | paG(c) being expressed in a

factored form ϕc1 × ϕ
c
2 × . . .× ϕ

c
kc

.

We now formally introduce DAGs over sets of variables, called DAGs of components, and then

use them to factor plausibility distributions.

Definition 4.6. A DAG G is said to be a DAG of components over a set of variables S iff the

vertices of G form a partition of S. C(G) denotes the set of components of G. For each c ∈ C(G),

paG(c) denotes the set of variables included in the parents of c in G, and ndG(c) denotes the set

of variables included in the non-descendant components of c in G.

Definition 4.7. Let (Ep,⊕p,⊗p) be a conditionable plausibility structure. Let PS be a plausibility

distribution over S and let G be a DAG of components over S. G is said to be compatible with

PS iff I(c, ndG(c) − paG(c) | paG(c)) for all c ∈ C(G) (c is conditionally independent of its non-

descendants given its parents).

Theorem 4.8. (Conditional independence and factorization) Let (Ep,⊕p,⊗p) be a conditionable

plausibility structure and let G be a DAG of components over S.

(a) If G is compatible with a plausibility distribution PS over S, then PS = ⊗pc∈C(G)Pc | paG(c).

(b) If, for all c ∈ C(G), there is a function Lc,paG(c) such that Lc,paG(c)(A) is a plausibility distri-

bution over c for all assignments A of paG(c), then γS = ⊗pc∈C(G) Lc,paG(c) is a plausibility

distribution over S with which G is compatible.

Theorem 4.8 links conditional independence and factorization. Theorem 4.8(a) is a general-

ization of the usual result of Bayesian networks [96] which says that if a DAG of variables is

compatible with a probability distribution PS , then PS can be factored as PS =
∏

x∈S Px | paG(x).

Theorem 4.8(b) is a generalization of the standard result of Bayesian networks [96] which says that,

given a DAG G of variables in S, if conditional probabilities Px | paG(x) are defined for each variable

x ∈ S, then
∏

x∈S Px | paG(x) defines a probability distribution over S with which G is compatible.

Both results are generalizations since they hold for arbitrary plausibility distributions (and not for

probability distributions only).

Theorem 4.8(a) entails that in order to factor a global plausibility distribution PS , it suffices

to define a DAG of components compatible with it, i.e. to express conditional independences. To

define such a DAG, the following systematic procedure can be used. The initial DAG of components

is an empty DAG G. While C(G) = {c1, . . . , ck−1} is not a partition of S, do:

1. Let Sk = c1∪. . .∪ck−1; choose a subset ck of the set S−Sk of variables not already considered

by following two rules:

(R1) Consider causes before effects : in the dinner problem, this suggests not putting epJ in

ck if its causes bpJ and w are not in Sk.

(R2) Gather in a component variables that are correlated even when all variables in Sk are

assigned : bpJ and bpM are correlated and (R1) does not apply. Indeed, we cannot say

that bpJ has a causal influence on bpM , or that bpM has a causal influence on bpJ ,

since it is not specified whether Mary or John chooses first if (s)he baby-sits. bpJ and

bpM could also be correlated via an unmodeled common cause such as a coin toss that

4.2. TOWARDS LOCAL PLAUSIBILITY AND FEASIBILITY FUNCTIONS 67

determines the baby-sitter. Hence, bpJ and bpM can be put in the same component

c = {bpJ , bpM}. 4

2. Add ck as a component toG and find a minimal subset pak of Sk such that I(ck, Sk−pak | pak).

Add edges directed from components containing at least one variable in pak to ck.

The resulting DAG of components is guaranteed to be compatible with PS , which implies, using

Theorem 4.8(a), that the local functions Pi representing PS can simply be defined as the functions

in the set {Pc | paG(c), c ∈ C(G)}. We say that (R1) and (R2) build a DAG respecting causality.

They must be seen just as possible mechanisms that help in identifying conditional independences.

All the previous results extending Bayesian networks results to plausibility distributions also ap-

ply to feasibilities. Indeed, the feasibility structure Sf = ({t, f},∨,∧) is a particular case of a condi-

tionable plausibility structure, since it satisfies the axioms of Theorem 4.3. We may therefore speak

of conditional feasibility distribution. If S is a set of decision variables, the construction of a DAG

compatible with a feasibility distribution FS leads to the factorization FS = ∧c∈C(G)Fc | paG(c).

Taking the different types of variables into account

In general, the situation is a bit more complex because variables may be either decision or environ-

ment variables. In this case, we cannot simply deal with a plausibility or a feasibility distribution

over all variables. We must express a plausibility distribution over the set of environment variables

VE , but decision variables can influence the environment (for example, the health state of a patient

depends on the treatment chosen for him by a doctor). This means that we want to express a

family of plausibility distributions over VE (one for each assignment of VD) rather than only one

plausibility distribution over VE . To make this clear, we define controlled plausibility distributions.

Definition 4.9. A plausibility distribution over VE controlled by VD, denoted PVE ||VD
, is a func-

tion dom(VE ∪ VD)→ Ep, such that for all assignments AD of VD, PVE ||VD
(AD) is a plausibility

distribution over VE . PVE ||VD
is called a controlled plausibility distribution.

As for feasibilities, we want to express a feasibility distribution over the set of decision variables

VD, but environment variables can constrain the possible decisions (for example, if a blackout

occurs, an agent cannot switch on the light). Thus, we want to express a family of feasibility

distributions over VD (one for each assignment of VE) rather than only one feasibility distribution

over VD. In other words, we want to express a controlled feasibility distribution FVD ||VE
.

In order to directly reuse the previous theorems for controlled distributions, we introduce the

notion of the completion of a controlled distribution. This allows us to extend a distribution to

the full set of variables V by assigning the same plausibility (resp. feasibility) degree to every

assignment of VD (resp. VE).

Proposition 4.10. Let (Ep,⊕p,⊗p) be a conditionable plausibility structure. Then, for all n ∈ N∗,

there exists a unique p0 such that ⊕pi∈[1,n] p0 = 1p.

4. Components such as {bpJ , bpM} could be broken by assuming for example that bpM causally influences bpJ ,
i.e. that Mary chooses if she baby-sits first. We can (and prefer to) keep the component as {bpJ , bpM} because in
general, “breaking” components can increase the scopes of the functions involved. For example, assume that one
wants to model plausibilities over variables representing colors of pixels of an N × N image such that the color
of a pixel probabilistically depends on the colors of its 4 neighbors only. With a component approach, results
of Markov random fields [22] show that the local functions obtained have scopes of size 5 only, whereas with a
component-breaking mechanism, the size of the largest scope is linear in N .

68 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

Definition 4.11. Let (Ep,⊕p,⊗p) be a conditionable plausibility structure and let PVE ||VD
be

a controlled plausibility distribution. Then, the completion of PVE ||VD
is a function denoted

PVE ,VD
and defined by PVE ,VD

= PVE ||VD
⊗p p0, where p0 is the unique element of Ep such that

⊕pi∈[1,|dom(VD)|] p0 = 1p.

In other words, PVE ,VD
is defined from PVE ||VD

by assigning the same plausibility degree p0

to all assignments of VD. In the case of probability theory, it corresponds to saying that all

assignments of VD are equiprobable.

Proposition 4.12. Let PVE ,VD
be the completion of a controlled plausibility distribution PVE ||VD

.

Then, PVE ,VD
is a plausibility distribution over VE ∪ VD and PVE |VD

= PVE ||VD
.

As a result, we use PVE |VD
to denote PVE ||VD

(and this is equivalent). Similarly, it is possible

to complete a controlled feasibility distribution FVD ||VE
. Proposition 4.14 below, entailed by

Theorem 4.8(a), shows how to obtain a first factorization of PVE |VD
and FVD |VE

.

Definition 4.13. A DAG G is a typed DAG of components over VE ∪ VD iff the vertices of G

form a partition of VE ∪ VD such that each element of this partition is a subset of either VD or

VE . Each vertex of G is called a component. The set of components contained VE (environment

components) is denoted CE(G) and the set of components included in VD (decision components) is

denoted CD(G).

Proposition 4.14. Let G be a typed DAG of components over VE ∪ VD. Let Gp be the partial

graph of G induced by the arcs of G incident to environment components. Let Gf be the partial

graph of G induced by the arcs of G incident to decision components.

If Gp is compatible with the completion of PVE ||VD
(cf. Definition 4.7) and Gf is compatible

with the completion of FVD ||VE
, then

PVE |VD
= ⊗p

c∈CE(G)

Pc | paG(c) and FVD |VE
= ∧

c∈CD(G)
Fc | paG(c).

This allows us to specify local Pi and Fi functions: it suffices to express each Pc | paG(c) and each

Fc | paG(c) to express PVE |VD
and FVD |VE

in a compact way. In fact, we could have defined two

DAGs, one for the factorization of PVE |VD
and the other for the factorization of FVD |VE

, but these

two DAGs can actually always be merged as soon as one makes the (undemanding) assumption

that it is impossible, given x ∈ VD and y ∈ VE , that both x influences y, and y constrains the

possible decision values for x. This assumption ensures that the union of the two DAGs does not

create cycles. We use just one DAG for simplicity.

Example 4.15. Consider the dinner problem to illustrate the first factorization step. One way

to obtain G is to use the causality-based reasoning described after Theorem 4.8. We start with an

empty DAG. As epJ and epM are both effects of other variables, they are not considered in the

first component c1. bpJ can be chosen as a variable to add to c1, because bpJ is not necessarily an

effect of another variable. As previously explained, bpJ can be a cause of bpM or an effect of bpM ,

or bpJ may be correlated with bpM via an unmodeled cause. As a result, we get c1 = {bpJ , bpM}

as a first component. c1 gets no parent because it is the first created component.

Then, as epJ and epM are effects of w or mc, we do not consider epJ or epM in the second

component c2. Since w is not necessarily an effect of mc, one can add w to c2. The dinner problem

4.2. TOWARDS LOCAL PLAUSIBILITY AND FEASIBILITY FUNCTIONS 69

specifies that ordering fish and red wine simultaneously is not feasible, but we do not know whether

the wine is chosen before or after the main course, i.e. w can be a cause or an effect of mc. As

a result, we take c2 = {mc,w}. As the menu choice is independent from who is present at the

beginning, c2 has no parent in the temporary DAG.

As epJ is a direct effect of bpJ and w only (John leaves the dinner if white wine is chosen),

we can add epJ to a third component c3. Moreover, epJ is not correlated with epM when c1 ∪ c2 =

{bpJ , bpM ,mc, w} is assigned. Hence, we take c3 = {epJ}. Given that epJ depends both on

bpJ and w, c3 gets {bpJ , bpM} and {mc,w} as parents. Finally, c4 = {epM}, and as epM is

independent of other variables given bpM and mc (because Mary leaves iff meat is chosen), we have

that I({epM}, {epJ , bpJ , w} | {bpM ,mc}). This entails that c4 = {epM} is added to the DAG with

{bpJ , bpM} and {mc,w} as parents. Therefore, we get CD(G) = {{mc,w}} as the set of decision

components and CE(G) = {{bpJ , bpM}, {epJ}, {epM}} as the set of environment components. The

DAG of components is shown in Figure 4.1(a) page 71.

Proposition 4.14 ensures that the joint probability and feasibility distributions factor as PVE |VD
=

PbpJ ,bpM
× PepJ | bpJ ,bpM ,mc,w × PepM | bpJ ,bpM ,mc,w and FVD |VE

= Fmc,w respectively.

4.2.2 Further factorization steps

Proposition 4.14 provides us with a decomposition of PVE |VD
and FVD |VE

based on the conditional

independence relation I(., . | .) of Definition 4.4. It may be possible to perform further factorization

steps by factoring each Pc | paG(c) as a set of local plausibility functions Pi and factoring each

Fc | paG(c) as a set of local feasibility functions Fi.

• In some cases, expressing factors of Pc | paG(c) or Fc | paG(c) is quite natural. For example, if

⊗p = ∧, if variables in an environment component c = {xi,j | i, j ∈ [1, n]} without parents

represent pixel colors, and if one wants to model in Pc that adjacent pixels have different

colors, it is natural to define a set of binary difference constraints δxi,j,xk,l
and to factor

Pc as Pc =
(
∧(i,j)∈[1,n−1]×[1,n] δxi,j ,xi+1,j

)
∧
(
∧(i,j)∈[1,n]×[1,n−1] δxi,j,xi,j+1

)
. Such a decom-

position cannot be obtained based only on the conditional independence relation I(., . | .) of

Definition 4.4.

• In some settings, as in Markov random fields [22], systematic techniques exist to obtain

such factorizations. For Bayesian networks, systematic techniques also exist: with hybrid

networks [36], we can extract the deterministic information contained in a conditional proba-

bility distribution Px | paG(x) by expressing it as Px | paG(x) = Px | paG(x)×Γ, where Γ is the 0-1

function defined by Γ(A) = 0 iff Px | paG(x)(A) = 0. Thus, a conditional probability distribu-

tion can be specified by several functions. Adding such redundant deterministic information,

with a possible smallest arity, generally improves algorithmic efficiency.

• One may use another weaker definition of conditional independence: in valuation-based sys-

tems [129], S1 and S2 are said to be conditionally independent given S3 with regard to a

function γS1,S2,S3 if this function factors into two scoped functions with scopes S1 ∪ S3 and

S2 ∪ S3. This definition is not used for the first factorization step because it destroys the

normalization conditions which may be useful from a computational point of view.

70 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

These additional factorization steps are of interest because decreasing the size of the scopes of

the functions involved or adding redundant information in the problem can be computationally

useful.

For every environment component c, if “Pi ∈ Fact(c)” stands for “Pi is a factor of Pc | paG(c)”,

the second factorization gives us

Pc | paG(c) = ⊗p
Pi∈Fact(c)

Pi

Given that ⊕pc Pc | paG(c) = 1p, the Pi functions in Fact(c) satisfy the normalization condition

⊕pc

(

⊗pPi∈Fact(c)
Pi

)

= 1p. Their scopes sc(Pi) are naturally contained in sc(Pc | paG(c)) = c ∪

paG(c).

For every decision component c, if “Fi ∈ Fact(c)” stands for “Fi is a factor of Fc | paG(c)”, the

second factorization gives us

Fc | paG(c) = ∧
Fi∈Fact(c)

Fi

Given that ∨cFc | paG(c) = t, the Fi functions in Fact(c) satisfy the normalization condition

∨c
(
∧Fi∈Fact(c) Fi

)
= t. Moreover, sc(Fi) ⊂ c ∪ paG(c).

Other factorizations, which do not decrease the scopes of the functions involved, could also be

exploited. Indeed, each scoped function Pi or Fi can itself have an internal local structure, as for

instance when Pi is a noisy-OR gate [96] in a Bayesian network, or in presence of context-specific

independence [20]. Such internal local structures can be made explicit by representing functions

with tools such as Algebraic Decision Diagrams [113].

Example 4.16. PbpJ ,bpM
can be expressed in terms of a first plausibility function P1 specifying the

probability of John and Mary being present at the beginning. P1 is defined by P1((bpJ , t).(bpM , f)) =

0.6, P1((bpJ , f).(bpM , t)) = 0.4, and P1((bpJ , t).(bpM , t)) = P1((bpJ , f).(bpM , f)) = 0. One can

also add redundant deterministic information with a second plausibility function P2 defined as the

constraint bpJ 6= bpM (P2(A) = 1 if the constraint is satisfied, 0 otherwise). We get PbpJ ,bpM
=

P1 ⊗p P2 and Fact({bpJ , bpM}) = {P1, P2}.

PepJ | bpJ ,bpM ,mc,w can be specified as a combination of two plausibility functions P3 and P4. P3

expresses that if John is absent at the beginning, he is absent at the end: P3 is the hard constraint

(bpJ = f) → (epJ = f) (P3(A) = 1 if the constraint is satisfied, 0 otherwise). Then, P4 : (bpJ =

t) → ((epJ = t) ↔ (w 6= white)) is a hard constraint specifying that John leaves iff white wine is

chosen. Hence, we have PepJ | bpJ ,bpM ,mc,w = P3 ⊗p P4 and Fact({epJ}) = {P3, P4}. Similarly,

PepM | bpJ ,bpM ,mc,w = P5 ⊗p P6, with P5, P6 defined as constraints, and Fact({epM}) = {P5, P6}.

As for feasibilities, Fmc,w can be specified by a feasibility function F1 expressing that ordering

fish with red wine is not allowed: F1 : ¬((mc = fish)∧ (w = red)) and Fact({mc,w}) = {F1}. The

association of local functions with components appears in Figure 4.1(a).

4.3 Local utilities

Local utilities can be defined over the states of the environment only (as in the utility of the health

state of a patient), over decisions only (as in the utility of the decision of buying a car or not), or

4.4. FORMAL DEFINITION OF PFU NETWORKS 71

over the states of the environment and decisions (as in the utility of the result of a horse race and

a bet on the race).

In order to specify local utilities, one standard approach, used in CSPs and influence diagrams,

is to directly define a set U of local utility functions, modeling preferences or hard requirements,

over decision and environment variables. This set implicitly defines a global utility UV = ⊗uUi∈U Ui

over all variables. If this factored form is obtained from a global joint utility, one may rely, when

⊗u = +, on the work of [50, 3], which introduces a notion of conditional independence for utilities.

No normalization condition is imposed on local utilities, which can always be combined without

generating any impossibility (their combination can only generate unacceptability).

Example 4.17. In the dinner problem, three local utility functions can be defined. A binary utility

function U1 expresses that Peter does not want John to leave the dinner: U1 is the hard constraint

(bpJ = t)→ (epJ = t) (U1(A) = 0 if the constraint is satisfied, −∞ otherwise). Two unary utility

functions U2 and U3 over epJ and epM respectively express the gains expected from the presences

at the end: U2((epJ , t)) = 10 and U2((epJ , f)) = 0 (John invests 10Ke if he is present at the end),

while U3((epM , t)) = 50 and U3((epM , f)) = 0 (Mary invests 50Ke if she is present at the end).

U2 and U3 can be viewed as soft constraints. All the local functions are represented in a composite

graphical model in Figure 4.1(b).

(a) (b)

decision

utility

feasibilitymc

w epJ

epMbpM

F1

environment

function

function

function
plausibility

P1 P2

P6

P5

P3

P4

P1, P2

P5, P6P3, P4 U3

U2
U1

mc, w

F1

bpJ , bpM

epMepJ

bpJ

Figure 4.1: (a) DAG of components (b) Network of scoped functions.

4.4 Formal definition of PFU networks

We can now formally define Plausibility-Feasibility-Utility networks. The definition is justified by

the previous construction process, but it holds even if the plausibility structure is not conditionable.

Definition 4.18. A Plausibility-Feasibility-Utility network on an expected utility structure is a

tuple N = (V,G, P, F, U) such that:

• V = {x1, x2, . . .} is a finite set of finite domain variables. V is partitioned into VD (decision

variables) and VE (environment variables).

• G is a typed DAG of components over VE ∪ VD (cf. Definition 4.6).

• P = {P1, P2, . . .} is a finite set of plausibility functions. Each Pi ∈ P is associated with a

unique component c ∈ CE(G) such that sc(Pi) ⊂ c ∪ paG(c). The set of Pi ∈ P associated

with a component c ∈ CE(G) is denoted Fact(c) and must satisfy ⊕p
c

(

⊗pPi∈Fact(c)
Pi

)

= 1p.

72 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

• F = {F1, F2, . . .} is a finite set of feasibility functions. Each function Fi is associated with

a unique component c ∈ CD(G) such that sc(Fi) ⊂ c ∪ paG(c). The set of Fi ∈ F associated

with a component c ∈ CD(G) is denoted Fact(c) and must satisfy ∨
c

(
∧Fi∈Fact(c)Fi

)
= t.

• U = {U1, U2, . . .} is a finite set of utility functions.

4.5 From PFU networks to global functions

We have seen how to obtain a PFU network expressing a global controlled plausibility distribution

PVE ||VD
, a global controlled feasibility distribution FVD ||VE

, and a global utility UV .

Conversely, let N = (V,G, P, F, U) be a PFU network, i.e. a set of variables, a typed DAG of

components, and sets of scoped functions. Then

• the global function Ψ = ⊗pPi∈P
Pi is a controlled plausibility distribution of VE given VD.

Moreover, by Theorem 4.8(b), if the plausibility structure is conditionable and if Gp is the

partial DAG of G induced by the arcs incident to environment components, then Gp is

compatible with the completion of Ψ;

• the global function Φ = ∧Fi∈F Fi is a controlled feasibility distribution of VD given VE .

Moreover, by Theorem 4.8(b), if Gf is the partial DAG of G induced by the arcs of G

incident to decision components, then Gf is compatible with the completion of Φ;

• µ = ⊗uUi∈U Ui is necessarily a global utility.

We can therefore denote Ψ by PVE ||VD
, Φ by FVD ||VE

, and µ by UV .

4.6 Back to existing frameworks

Let us consider some formalisms described in Chapter 2. A CSP (hard or soft) can easily be

represented as a PFU network N = (V,G, ∅, ∅, U): all variables in V are decision variables, G is

reduced to a single decision component containing all variables, and constraints are represented

by utility functions. Using feasibility functions to represent constraints, it would be impossible

to represent inconsistent networks because of the normalization conditions on feasibilities. SAT is

modeled similarly; the only difference is that constraints are replaced by clauses.

The same PFU network is used to represent the local functions of a quantified boolean formula

or of a quantified CSP. The differences with CSP or SAT appear when we consider queries on the

network (see next chapter).

A Bayesian network can be modeled as N = (V,G, P, ∅, ∅): all variables in V are environment

variables, G is the DAG of the BN, and P = {Px | paG(x), x ∈ V }. There is no feasibility or utility

function. A chain graph is also modeled as N = (V,G, P, ∅, ∅), with G the DAG of components of

the chain graph and P the set of factors of each Pc | paG(c).

A stochastic CSP is represented by a PFU network N = (V,G, P, ∅, U), where V is partitioned

into VD, the set of decision variables, and VE , the set of stochastic variables, G is a DAG which

depends on the relations between the stochastic variables, P is the set of probability distributions

over the stochastic variables, and U is the set of constraints.

4.7. SUMMARY 73

An influence diagram can be modeled by N = (V,G, P, ∅, U) such that VD contains the decision

variables, VE contains the chance variables, G is the DAG of the influence diagram without the

utility nodes and with arcs into random variables only (i.e. we keep only the so-called influence

arcs), and P = {Px | paG(x), x ∈ VE}. There are no feasibilities, and one utility function Ui is

defined per utility variable u, the scope of Ui being paG(u). To represent valuation networks, a

set F of feasibility functions is added. Note that the business dinner example could not have been

modeled using a standard influence diagram, since influence diagrams cannot deal with feasibilities

(suitable extensions exist however [130]).

A finite horizon probabilistic MDP can be modeled as N = (V,G, P, ∅, U). If there are T time-

steps, then VD = {dt, t ∈ [1, T]}∪{s1} and VE = {st, t ∈ [2, T]}; 5 G is a DAG of components such

that (a) each component contains one variable, (b) decision components have no parents, and (c)

the parents of an environment component {st+1} are {st} and {dt}; P = {Pst+1|st,dt
, t ∈ [1, T −1]}

and U = {Ust,dt
, t ∈ [1, T]}. Modeling a finite horizon possibilistic MDP is similar.

4.7 Summary

In this chapter, we have introduced the second element of the PFU framework: a network of

variables linked by local plausibility, feasibility, and utility functions, with a DAG capturing nor-

malization conditions. The factorization of global plausibilities, feasibilities, and utilities into

scoped functions has been linked to conditional independence. This provides us with a construc-

tive method to specify local functions representing a given global function. From a pure technical

point of view, the definition of PFU networks (Definition 4.18) is quite simple.

5. As there is no plausibility distribution over the initial state s1, s1 is not considered as an environment variable.
This corresponds to the special case where decision variables model problem parameters.

Chapter 5

Queries on a PFU network

A query corresponds to a reasoning task on the information expressed by a PFU network. Examples

of informal queries about the dinner problem are

1. “What is the best menu choice if Peter does not know who is present at the beginning?”

2. “What is the best menu choice if Peter knows who is present at the beginning?”

3. “How should we maximize the expected investment if the restaurant chooses the main course

first and Peter is pessimistic about this choice, then the presences at the beginning are

observed, and last Peter chooses the wine?”

Dissociating PFU networks from queries is consistent with the trend in the influence diagram

community to relax the so-called information links, as in Unconstrained Influence Diagrams [68]

or Limited Memory Influence Diagrams [81]: it explicitly figures that queries do not change the

local relations between variables.

In this chapter, we define a simple class of queries on PFU networks. We assume that a sequence

of decisions must be performed, and that the order in which decisions and observations are made

is known. We also make a no-forgetting assumption, that is, when making a decision, an agent

is aware of all previous decisions and observations. From now on, the set of utility degrees Eu is

assumed to be totally ordered. Actually, in the context of a systematic computation and execution

of a sequence of decisions, this total order assumption, which holds in various usual frameworks,

allows one to always identify optimal decision rules. See Section 5.7 for a discussion of how to

extend the results to a partial order.

Two definitions of the answer to a query are given, the first being based on decision trees,

and the second being more operational. An equivalence between these two definitions is then

established.

5.1 Query definition

In order to formulate reasoning tasks on a PFU network, we use a sequence Sov of operator-

variable(s) pairs. This sequence captures different aspects of the query:

75

76 CHAPTER 5. QUERIES ON A PFU NETWORK

• Partial observabilities: Sov specifies the order in which decisions are made and environ-

ment variables are observed. If x ∈ VE appears to the left of y ∈ VD (for example

Sov = . . . (⊕u, {x}) . . . (max, {y}) . . .), this means that the value of x is known (observed)

when a value for y is chosen. Conversely, if Sov = . . . (max, {y}) . . . (⊕u, {x}) . . ., x is not

observed when choosing y.

• Optimistic/pessimistic attitude concerning the decision makers: (max, {y}) is inserted in the

elimination sequence if one is optimistic about the behavior of the agent controlling a decision

variable y, and (min, {y}) if one is pessimistic. The operator used for environment variables

will always be ⊕u, to model that expected utilities are sought.

• Parameters of the decision making problem: if one wants to compute optimal expected utili-

ties or optimal policies without assigning a subset S of the decision variables, then variables

in S do not appear in Sov.

Example 5.1. The sequence corresponding to the informal query: “How should we maximize the

expected investment if the restaurant chooses the main course first and Peter is pessimistic about

this choice, then the presences at the beginning of the dinner are observed, and last Peter chooses

the wine before knowing who is present at the end?” is

Sov = (min, {mc}).(⊕u, {bpJ , bpM}).(max, {w}).(⊕u, {epJ , epM})

This sequence models that: (1) Peter is pessimistic about the main course (min over mc), which is

chosen without observing any variable (no variable to the left of mc in Sov); (2) Peter chooses the

wine for the best (max over w) after the main course has been chosen and after knowing who is

present at the beginning (w appears to the right of mc, bpJ , and bpM in Sov), but before knowing

who is present at the end (w appears to the left of epJ , epM). Specifically, bpJ and bpM are partially

observable, whereas epJ and epM are unobservable.

Definition 5.2. A query on a PFU network is a pair Q = (Sov,N) where N is a PFU network

and Sov = (op1, S1) · (op2, S2) · · · (opk, Sk) is a sequence of operator-variable(s) pairs such that

(1) all the Si are disjoint;

(2) either “Si ⊂ VD and opi = min or max”, or “Si ⊂ VE and opi = ⊕u”;

(3) variables not involved in any of the Si, called free variables, are decision variables;

(4) for all variables x, y of different types (one is a decision variable, the other is an environment

variable), if there is a directed path from the component which contains x to the component

which contains y in the DAG of the PFU network N , then x does not appear to the right of

y in Sov, i.e. either x appears to the left of y, or x is a free variable.

Condition (1) ensures that each variable is eliminated at most once. Condition (2) means

that optimal decisions are sought for decision variables, whereas expected utilities are sought

for environment variables. Condition (3) means that variables which are not eliminated in Sov

act as problem parameters and are viewed as decision variables. Condition (4) means that if x

5.2. ANSWER TO A QUERY: SEMANTIC DEFINITION 77

and y are of different types and x is an ancestor of y, then x is assigned before y. This en-

sures that causality is respected for variables of different types: for the dinner problem exam-

ple, ((⊕u, {bpJ , bpM , epJ , epM}).(max, {mc,w}),N), which violates condition (4), violates causal-

ity since the menu cannot be chosen after knowing who is present at the end.

Variables appearing in Sov are called quantified variables, by analogy with quantified boolean

formulas. The set of free variables is denoted by Vfr. Note that the definition of queries does not

prevent an environment variable from being “quantified” by min or max, because we may have

⊕u = min or ⊕u = max.

For all i ∈ [1, k], we define the set of variables appearing in Vfr or to the left of Si in Sov by

l(Si) = Vfr ∪ (∪j∈[1,i−1]Sj). Similarly, we define the set of variables appearing to the right of Si

in Sov by r(Si) = ∪j∈[i+1,k]Sj .

Proposition 5.3. For every PFU network N , there exists at least one query (Sov,N) without

free variables.

5.2 Answer to a query: a semantic definition based on de-

cision trees

In this subsection, we assume that the plausibility structure is conditionable (cf. Theorem 4.3

page 64). The controlled plausibility distribution PVE ||VD
= ⊗pPi∈P

Pi can then be completed

(cf. Definition 4.11 page 68) to give a plausibility distribution PVE ,VD
over VE ∪ VD. Similarly,

the controlled feasibility distribution FVD ||VE
= ∧Fi∈F Fi can be completed to give a feasibility

distribution FVE ,VD
over VE ∪ VD. We also use the global utility UV = ⊗uUi∈U Ui defined by the

PFU network.

Imagine that we want to answer the query Q = (Sov,N), where N is the network of the dinner

problem and Sov = (min, {mc}).(⊕u, {bpJ , bpM}).(max, {w}).(⊕u, {epJ , epM}).

To answer such a query, one can use a decision tree. First, the restaurant chooses the worst pos-

sible main course, taking into account the feasibility distribution overmc. Here, Fmc((mc,meat)) =

Fmc,w((mc,meat).(w,white))∨Fmc,w((mc,meat).(w, red)) = t∨t = t. Similarly, Fmc((mc,fish)) =

t. Both choices are feasible. Then, if A1 denotes the assignment of mc, the uncertainty over those

present at the beginning given the main course choice is described by the probability distribu-

tion PbpJ ,bpM |mc(A1). For each possible assignment A2 of {bpJ , bpM}, i.e. for each A2 such that

PbpJ ,bpM |mc(A1.A2) 6= 0p, Peter chooses the best wine while taking into account the feasibility

Fw |mc,bpJ ,bpM
(A1.A2): if the restaurant chooses meat, Peter chooses an optimal value between red

and white, and if the restaurant chooses fish, Peter can choose white wine only. Then, for each

feasible assignment A3 of w, the uncertainty regarding the presence of John and Mary at the end

of the dinner is given by PepJ ,epM | bpJ ,bpM ,mc,w(A1.A2.A3).

Note that the conditional probabilities used in the decision tree above are not directly defined

by the network. They must be computed from the global distribution; this computation can be a

challenge on large problems.

Utility UV (A1.A2.A3.A4) can be associated with each possible complete assignmentA1.A2.A3.A4

of the variables. For each possible assignment A1.A2.A3 of {bpJ , bpM ,mc, w}, the last stage,

i.e. the one in which epJ and epM are assigned, can be seen as a lottery [137] whose expected

78 CHAPTER 5. QUERIES ON A PFU NETWORK

utility is
∑

A4∈dom({epJ ,epM}) p(A4) × u(A4), where p(A4) = PepJ ,epM | bpJ ,bpM ,mc,w(A1.A2.A3.A4)

and u(A4) = UV (A1.A2.A3.A4). This expected utility becomes the reward of the scenario over

{bpM , bpJ ,mc, w} described by A1.A2.A3. It provides us with a criterion for choosing an optimal

value for w. The step in which bpJ and bpM are assigned can then be seen as a lottery, which

provides us with a criterion for choosing a worst value for mc. The computation associated with

the previously described process is:

min
A1∈dom(mc),Fmc(A1)=t

(
∑

A2∈dom({bpJ ,bpM}),PbpJ ,bpM | mc(A1.A2) 6=0

PbpJ ,bpM |mc(A1.A2)×

(max
A3∈dom(w),Fw | mc,bpJ ,bpM

(A1.A2.A3)=t

(
∑

A4 ∈ dom({epJ , epM})

PepJ ,epM | bpJ ,bpM ,mc,w(A1.A2.A3.A4) 6= 0

PepJ ,epM | bpJ ,bpM ,mc,w(A1.A2.A3.A4)×

UV (A1.A2.A3.A4))))

Decision rules for the decision variables (argmin and argmax) can be recorded during the

computation. This formulation represents the decision process as a decision tree in which each

internal level corresponds to variables assignments. Arcs associated with the assignment of a set

of decision variables are weighted by the feasibility of the decision given the previous assignments.

Arcs associated with the assignment of environment variables are weighted by the plausibility

degree of the assignment given the previous assignments. Leaf nodes correspond to the utilities of

complete assignments, and a node collects the values of its children to compute its own value.

Formalization of the decision tree procedure

In order to formalize the decision tree procedure, some technical results are first introduced in

Proposition 5.5. These results can be skipped for a first reading.

Definition 5.4. Let PS1 |S2
be the conditional plausibility distribution of S1 given S2 and let

A ∈ dom(S2). The function PS1 |S2
(A) is said to be well-defined iff PS2(A) 6= 0p. In this case,

PS1 |S2
(A) is a plausibility distribution over S1, which ensures the existence of at least one A′ ∈

dom(S1) satisfying PS1 |S2
(A.A′) 6= 0p. Similarly, for all A ∈ dom(S2), FS1 |S2

(A) is said to be

well-defined iff FS2(A) = t.

Proposition 5.5. Assume that the plausibility structure used is conditionable. Let Q = (Sov,N)

be a query where Sov = (op1, S1) · (op2, S2) · · · (opk, Sk). Let Vfr denote the set of free variables of

Q. Then,

(1) If VE 6= ∅, let Si be the leftmost set of environment variables appearing in Sov.

Then, for all A ∈ dom(l(Si)), PSi | l(Si)(A) is well-defined.

(2) Let i, j ∈ [1, k] such that i < j, Si ⊂ VE, Sj ⊂ VE , and r(Si) ∩ l(Sj) ⊂ VD (Sj is the first

set of environment variables appearing to the right of Si in Sov). Let (A,A′) ∈ dom(l(Si))×

dom(Si). If PSi | l(Si)(A) is well-defined and PSi | l(Si)(A.A
′) 6= 0p, then, for all A′′ extending

A.A′ over l(Sj), PSj | l(Sj)(A
′′) is well-defined.

(3) Let i, j ∈ [1, k] such that i < j, Si ⊂ VD, Sj ⊂ VD, and r(Si)∩ l(Sj) ⊂ VE (Sj is the first set

of decision variables appearing to the right of Si in Sov). Let (A,A′) ∈ dom(l(Si))×dom(Si).

5.2. ANSWER TO A QUERY: SEMANTIC DEFINITION 79

If FSi | l(Si)(A) is well-defined and FSi | l(Si)(A.A
′) = t, then, for all A′′ extending A.A′ over

l(Sj), FSj | l(Sj)(A
′′) is well-defined.

(4) The conditioning can be defined directly for controlled plausibility distributions as follows: for

all A ∈ dom(VD), PVE ||VD
(A) is a plausibility distribution over VE . Thus, one can define

from it conditional plausibility distributions, denoted PS |S′ ||VD
(A), for all S, S′ disjoint

subsets of VE , as in Theorem 4.3 page 64. Then, for all i ∈ [1, k] such that Si ⊂ VE ,

PSi | l(Si)∩VE ||VD
is a function with scope Si ∪ l(Si) ∪ VD, which does not depend on the

assignment of VD − l(Si). It can therefore be denoted by PSi | l(Si)∩VE || l(Si)∩VD
.

Moreover, if PVE ,VD
is the completion of PVE ||VD

, then PSi | l(Si) = PSi | l(Si)∩VE || l(Si)∩VD
.

This means that the conditioning on the completion of PVE ||VD
coincides with the condition-

ing done directly on PVE ||VD
. As a result, completing PVE ||VD

is useless to compute PS | l(S).

The situation is similar for feasibilities.

The technical results of Property 5.5 ensure that all the quantities involved in the following

semantic answer to a query are defined and have a clear meaning.

Definition 5.6. The semantic answer Sem-Ans(Q) to a query Q = (Sov,N) is a function of the

set Vfr of free variables of Q defined by 1

Sem-Ans(Q)(A) =

{

♦ if FVfr
(A) = f

Qsr(N , Sov,A) otherwise

with Qsr inductively defined by:

(1) Qsr(N , ∅, A) = UV (A)

(2) Qsr(N , (op, S) . Sov,A) =






min
A′ ∈ dom(S)

FS|l(S)(A.A
′) = t

Qsr (N , Sov,A.A′) if (S ⊂ VD) ∧ (op = min)

max
A′ ∈ dom(S)

FS|l(S)(A.A
′) = t

Qsr (N , Sov,A.A′) if (S ⊂ VD) ∧ (op = max)

⊕u
A′ ∈ dom(S)

PS|l(S)(A.A
′) 6= 0p

(
PS|l(S)(A.A

′)⊗pu Qsr (N , Sov,A.A′)
)

if (S ⊂ VE)

In other words, each step involving decision variables (first two cases) is considered as an

optimization step among the feasible choices, and each step involving environment variables (third

case) is considered as a lottery [137] such that the rewards are the Qsr (N , Sov,A.A′), and such that

the plausibility attributed to a reward is PS | l(S)(A.A
′) (the formula looking like ⊕ui (pi⊗pu ui) is

the expected utility of this lottery). When a set of decision variables S is eliminated, a decision

rule for S can be recorded, using an argmax (resp. an argmin) if max (resp. min) is performed.

Example 5.7. What is the maximum investment Peter can expect, and which associated deci-

sion(s) should he make if he chooses the menu without knowing who will attend? To answer this

question, we can use a query in which bpJ , bpM , epJ , and epM are eliminated to the right of mc

1. ♦ is the unfeasible value, cf. Definition 1.6 page 17.

80 CHAPTER 5. QUERIES ON A PFU NETWORK

and w to represent the fact that their values are not known when the menu is chosen. This query

is:

((max, {mc,w}).(⊕u, {bpJ , bpM , epJ , epM}),N)

The answer is 6Ke, with (mc,meat).(w, red) as a decision. If Peter knows who comes, the query

becomes

((⊕u, {bpJ , bpM}).(max, {mc,w}).(⊕u, {epJ , epM}),N)

and optimal values for mc and w can depend on bpJ and bpM . The answer is 26Ke with a 20Ke

gain from the observability of who is present at the beginning. The decision rule for {mc,w} is

(mc,meat).(w, red) if John is present and Mary is not, (mc,fish).(w,white) otherwise. Consider

the query introduced at the beginning of Section 5.1:

((min, {mc}).(⊕u, {bpJ , bpM}).(max, {w}).(⊕u, {epJ , epM}),N)

The answer is −∞: in the worst main course case, even if Peter chooses the wine, the situation

can be unacceptable. In order to compute the expected utility for each menu choice, one can use a

query in which mc and w are free variables:

((⊕u, {bpJ , bpM , epJ , epM}),N)

The answer is a function over {mc,w}. These examples show how queries can capture various

situations in terms of partial observabilities or optimistic/pessimistic attitude, and how they can

allow to evaluate various scenarios simultaneously by using free variables.

5.3 Answer to a query: a second more operational definition

The quantities PS | l(S)(A.A
′) and FS | l(S)(A.A

′) involved in the definition of the semantic an-

swer to a query are not directly available from the local functions and can be very expensive to

compute. For instance, with probabilities, PS | l(S)(A.A
′) equals PS,l(S)(A.A

′)/Pl(S)(A). Com-

puting PS,l(S)(A.A
′) =

∑

A′′∈dom(V−(S∪l(S))) PVE ,VD
(A.A′.A′′) can require a time exponential in

|V − (S ∪ l(S))|. Moreover, such quantities must be computed at each node of the decision tree.

Fortunately, there exists an alternative definition of the query meaning, which can be directly ex-

pressed using a PFU instance, that is, using the local plausibility, feasibility, and utility functions

defined by a PFU network.

Definition 5.8. The operational answer Op-Ans(Q) to a query Q = (Sov,N) is a function of the

free variables of Q: if A is an assignment of the free variables, then (Op-Ans(Q))(A) is defined

inductively as follows:

(Op-Ans(Q))(A) = Qor (N , Sov,A)

Qor(N , (op, S) . Sov,A) = opA′∈dom(S)Qor (N , Sov,A.A′) (5.1)

Qor(N , ∅, A) =

((

∧
Fi∈F

Fi

)

⋆

(

⊗p
Pi∈P

Pi

)

⊗pu

(

⊗u
Ui∈U

Ui

))

(A) (5.2)

By Equation 5.2, if all the problem variables are assigned, the answer to the query is the combi-

nation of the plausibility degree, the feasibility degree, and the utility degree of the corresponding

5.4. EQUIVALENCE THEOREM 81

complete assignment. By Equation 5.1, if the variables are not all assigned and (op, S) is the

leftmost operator-variable(s) pair in Sov, the answer to the query is obtained by eliminating S

using op as an elimination operator. Again, optimal decision rules for the decision variables can

be recorded if needed, using argmin and argmax. Equivalently, Op-Ans(Q) can be written:

Op-Ans(Q) = Sov

((

∧
Fi∈F

Fi

)

⋆

(

⊗p
Pi∈P

Pi

)

⊗pu

(

⊗u
Ui∈U

Ui

))

This shows that Op-Ans(Q) actually corresponds to the generic form of Equation 2.28 page 51.

5.4 Equivalence theorem

Theorem 5.9 proves that the semantic definition Sem-Ans(Q) gives semantic foundations to what

is computed with the operational definition Op-Ans(Q).

Theorem 5.9. If the plausibility structure is conditionable, then, for all queries Q on a PFU

network, Sem-Ans(Q) = Op-Ans(Q) and the optimal policies for the decisions are the same with

Sem-Ans(Q) and Op-Ans(Q).

In other words, Theorem 5.9 shows that it is possible to perform computations in a completely

generic algebraic framework, while providing the result of the computations with decision-theoretic

foundations, based on decision trees. Hence, computing Op-Ans(Q) is meaningful.

Due to this equivalence theorem, Op-Ans(Q) is denoted simply by Ans(Q) in the following.

Note that the operational definition applies even in a non-conditionable plausibility structure.

Giving a decision-theoretic based semantics to Op-Ans when the plausibility structure is not con-

ditionable is an open issue.

5.5 Bounded queries

It may be interesting to relax the problem of computing the exact answer to a query. Assume

that the leftmost operator-variable(s) pair in the sequence Sov is (max, {x}), with x a decision

variable. From the decision maker point of view, computing decision rules providing an expected

utility greater than a given threshold θ may be sufficient. This is the case for the E-MAJSAT

problem, defined as “Given a boolean formula over a set of variables V = VD ∪VE , does there exist

an assignment of VD such that the formula is satisfied for at least half of the assignments of VE?”

Extending the generic PFU framework to answer such queries is done in Definitions 5.10 and 5.11,

which introduce bounded queries.

Definition 5.10. A bounded query B-Q is a triple (Sov,N , θ), such that (Sov,N) is a query and

θ ∈ Eu (θ is the threshold).

Definition 5.11. The answer Ans(B-Q) to a bounded query B-Q = (Sov,N , θ) is a boolean

function of the free variables of the “unbounded” query Q = (Sov,N). For every assignment A of

these free variables,

(Ans(B-Q))(A) =

{

t if Ans(Q)(A) �u θ

f otherwise.

82 CHAPTER 5. QUERIES ON A PFU NETWORK

As the threshold θ may be used to prune the search space during the resolution, computing the

answer to a bounded query is easier than computing the answer to an unbounded one.

5.6 Back to existing frameworks

Let us consider again some frameworks mentioned in Chapter 2. Solving a CSP (Equation 2.4

page 25) or a totally ordered soft CSP (Equation 2.5 page 26) corresponds to the query Q =

((max, V),N), with N the PFU network corresponding to the CSP and V the set of variables of the

CSP. Computing the probability distribution of a variable y for a Bayesian network (Equation 2.9

page 33) can be modeled using Sov = (+, V − {y}). These examples are mono-operator queries,

involving only one type of elimination operator.

Let us consider multi-operator queries. The search for an optimal policy for the stochastic CSP

associated with Equation 2.8 page 31 is captured by Sov = (max, {x1}).(+, {x2}).(max, {x3}).

The modeling is similar for the query on influence diagrams of Equation 2.14 page 37, which can

be modeled using Sov = (max, {ca}).(+, {re}).(max, {po}).(+, {bu, eq, al}).

For a finite horizon MDP with T time-steps (Equation 2.21 page 47), the query looks like

Q = ((max, {d1}).(⊕u, {s2}).(max, {d2}) . . . (⊕u, {sT }).(max, {dT }),N), where ⊕u = + with prob-

abilistic MDP and ⊕u = min with pessimistic possibilistic MDP. The initial state s1 is a free

variable. With a quantified CSP or a quantified boolean formula, elimination operators min and

max are used to represent ∀ and ∃.

More formally, we can show:

Theorem 5.12. Queries and bounded queries can be used to express and solve the following list

of problems:

1. SAT framework: SAT, MAJSAT, E-MAJSAT, quantified boolean formula, stochastic SAT

(SSAT) and extended-SSAT [82].

2. CSP (or CN) framework:

• Check consistency for a CSP [84]; find a solution to a CSP; count the number of solutions

of a CSP.

• Seek a solution of a valued CSP [123].

• Solve a quantified CSP [15].

• Find a conditional decision or an unconditional decision for a mixed CSP or a proba-

bilistic mixed CSP [47].

• Find an optimal policy for a stochastic CSP or a policy with a value greater than a

threshold; solve a stochastic COP (Constraint Optimization Problem) [138].

3. Integer Linear Programming [124] with finite domain variables.

4. Search for a solution plan with a length ≤ k in a classical planning problem (STRIPS-like

planning [49, 58]).

5. Answer classical queries on Bayesian networks [96], Markov random fields [22], and chain

graphs [55], with plausibilities expressed as probabilities, possibilities, or κ-rankings:

5.7. EXTENSIONS TO OTHER CLASSES OF QUERIES 83

• Compute plausibility distributions.

• MAP (Maximum A Posteriori hypothesis).

• MPE (Most Probable Explanation).

• Compute the plausibility of an evidence.

• CPE task for hybrid networks [36] (CPE means CNF Probability Evaluation, a CNF

being a formula in Conjunctive Normal Form).

6. Solve an influence diagram [64].

7. With a finite horizon, solve a probabilistic MDP, a possibilistic MDP, a MDP based on κ-

rankings, completely or partially observable (POMDP), factored or not [111, 89, 119, 19, 18].

5.7 Extensions to other classes of queries

Queries can be made more complex by relaxing some assumptions:

• In the definition of queries, the order �u on Eu is assumed to be total. Extending the

results to a partial order is possible if (Eu,�u) defines a lattice (partially ordered set closed

under least upper and greatest lower bounds) and if ⊗pu distributes over the least upper

bound lub and greatest lower bound glb (i.e. p⊗pu lub(u1, u2) = lub(p⊗pu u1, p⊗pu u2) and

p⊗puglb(u1, u2) = glb(p⊗puu1, p⊗puu2)). This allows semiring CSPs [10, 11] to be captured

in the framework. We believe that other extensions to partial orders on utilities should allow

algebraic MDPs [97] to be captured.

• One can try to relax the no-forgetting assumption, as in limited memory influence diagrams

(LIMIDs [81]), which show that this can be relevant for decision processes involving multiple

decision makers or memory constraints on the policy recording. In a LIMID, the goal is to

search for decision rules δd : dom(Sd) → dom(d), one per decision variable d, where Sd is

the set of variables on which decision d is allowed to depend. These sets Sd are explicitly

specified and may violate the no-forgetting assumption. In such cases, optimal decisions can

become nondeterministic (decisions such as “choose x = 0 with probability p and x = 1 with

probability 1− p”).

• The order in which decisions are made and environment variables are observed is total and

completely determined by the query. One may wish to compute not only an optimal policy

for the decisions, but also an optimal order in which to perform decisions, without exactly

knowing the steps at which other agents make decisions or the steps at which observations

are made. Work on influence diagrams with unordered decisions, such as [68], is a good

starting point to try and extend our work in this direction.

• Finally, relaxing the finite domain variables assumption is not direct, since transforming

⊕u = + into integrals is not straightforward, and performing min- or max-eliminations over

continuous domains requires the guarantee of existence of a supremum. In this direction,

Simple Temporal Problems (STPs [39]) and their extensions could be considered. In such

84 CHAPTER 5. QUERIES ON A PFU NETWORK

problems, variables are timepoints taking values in continuous intervals, and constraints con-

cern durations between two timepoints, which represent for example durations of activities.

Among the extensions of STPs, Simple Temporal Problems with Preferences(STPPs [72]),

Simple Temporal Problems with Uncertainties (STPUs [134, 136]), and Simple Temporal

Problems with Preferences and Uncertainties (STPPUs [117]) are good starting points. Note

that in these formalisms, uncertainties correspond to boolean indetermisms, which means

that the only uncertainties involved are that some timepoints, called contingent timepoints,

are not controllable and can take any value in an interval. In order to extend the PFU

framework to encompass these formalisms, we actually need to handle continuous plausibil-

ity distributions and to use elimination operators ⊕p, ⊕u defined on intervals of values.

5.8 Summary

In Chapter 5, the last element of the PFU framework, a class of queries on PFU networks, has

been introduced. A decision-tree based definition of the answer to a query has been provided. The

first main result of this chapter is Theorem 5.9, which gives theoretical foundations to another

equivalent operational definition, reducing the answer to a query to a sequence of eliminations

on a combination of scoped functions. The latter is best adapted to future algorithms, because

it directly handles the local functions defined by a PFU network. The second important result

is Theorem 5.12, which shows that many standard queries are PFU queries. Overall, the PFU

framework definition lies in Definitions 3.5, 3.8, 3.9 for the algebraic structure, Definition 4.18 for

the network, and Definitions 5.2, 5.8 for queries.

The PFU formulation of a concrete problem which involves plausibilities, feasibilities, utilities,

and sequential decision making (a problem of deployment and maintenance of a constellation of

satellites [61]), is given in Appendix C.

5.9 Conclusion of Part I: gains and costs of the PFU frame-

work

A better understanding Theorem 5.12 shows that many existing frameworks are instances

of the PFU framework. Through this unification, similarities and differences between existing

formalisms can be analyzed. For instance, comparing VCSPs and the optimistic version of finite

horizon possibilistic MDPs through the operational definition of the answer to a query, one will no-

tice that algebraically speaking, a finite horizon optimistic possibilistic MDP (partially observable

or not) is a fuzzy CSP. Libraries available for VCSPs can then be used to solve such MDPs.

From the complexity theory point of view, studying the time and space complexity for comput-

ing Equation 2.28 (page 51) can lead to upper bounds on the complexity for several frameworks

simultaneously. One may also try to characterize which properties lead to a given theoretical

complexity.

Increased expressive power The expressive power of PFU networks is the result of a number of

features: (1) flexibility of the plausibility/utility model; (2) flexibility of the possible networks; (3)

5.9. GAINS AND COSTS OF THE PFU FRAMEWORK 85

flexibility of the queries in terms of situation modeling. This enables queries on PFU networks to

cover generic finite horizon sequential decision making problems with plausibilities, feasibilities, and

utilities, cooperative or adversarial decision makers, partial observabilities, and possible parameters

in the decision process modeled through free variables.

As none of the frameworks indicated in Theorem 5.12 presents such a flexibility, for every

subsumed formalism X indicated in Theorem 5.12, it is possible to find a problem which can

be represented with PFUs but not directly with X . More specifically, compared to influence

diagrams [64, 68, 131, 92, 67] or valuation networks (VNs [128, 130, 41]), PFUs can deal with more

than the probabilistic expected utility structure and allow us to perform eliminations with min to

model the presence of adversarial agents. Thus, quantified boolean formulas cannot be represented

with influence diagrams or VNs, but are covered by PFU queries (see Theorem 5.12). Moreover,

PFU networks use a DAG which captures normalization conditions of plausibilities or feasibilities,

whereas with VNs, this information is lost. Compared to sequential influence diagrams [67] or

sequential VNs [41], PFUs can express some so-called asymmetric decision problems (problems in

which some variables may not even need to be considered in a decision process) by adding dummy

values to variables.

Actually, some simple problems which can be expressed with PFUs cannot be apparently di-

rectly expressed in other frameworks. The simple instance “feasibilities with normalization con-

ditions + hard requirements” is not captured by any of the subsumed frameworks (using a CSP

to model it would result in a loss of the information provided by the normalization conditions on

feasibilities). The same occurs for “influence diagrams - like sequential decision processes based on

possibilistic expected utility”, which could be called possibilistic influence diagrams. 2 Same again

for the instance “stochastic CSPs without contingency assumption”, for the instance “max-QBF”

(analogous to max-SAT), or for the instance “quantified VCSPs”, which could correspond to VC-

SPs involving alternating min and max eliminations modeling the presence of antagonist decision

makers. Thus, the PFU framework also covers yet-unpublished frameworks.

The cost of greater flexibility and increased expressive power is that the PFU framework cannot

be described as simply and straightforwardly as, for example, constraint networks.

Generic algorithms Part II will show that generic algorithms can be built to answer queries on

PFU networks. As previously said, building generic algorithms should facilitate cross-fertilization

in the sense that any of the subsumed formalisms will directly benefit from the techniques developed

in another subsumed formalism. This fits into a growing effort to generalize resolution methods

used for different AI problems. For example, soft constraint propagation drastically improves the

resolution of VCSPs; integrating such a tool in a generic algorithm on PFUs could improve the

resolution of influence diagrams. Using abstract operators may enable us to identify algorithmically

interesting properties, or to infer necessary or sufficient conditions for a particular algorithm to be

usable.

However, one could argue that some techniques are highly specific to one formalism or to

one type of problem, and that, in this case, dedicated approaches certainly outperform a generic

algorithm. A solution for this can be to characterize the actual properties used by a dedicated

2. Possibilistic influence diagrams were proposed very recently, in a work parallel to this thesis [56]. This
formalism is a simple instantiation of the PFU framework.

86 CHAPTER 5. QUERIES ON A PFU NETWORK

approach, in order to generalize it as much as possible. Moreover, even if specialized schemes

usually improve over generic ones, there exist cases in which general tools can be more efficient

than specialized algorithms. See, for example, [121] or the use of SAT solvers for solving optimal

STRIPS planning problems.

Part II

Generic algorithms for answering

PFU queries

87

Chapter 6

First generic algorithms

The PFU framework is flexible and unifies several existing AI formalisms. One may think that the

cost to pay for such a genericity is that answering a PFU query is necessarily intractable. One of

the aims of the following chapters is to contradict this idea, by showing that tractability is more a

consequence of the query considered than a side effect of genericity.

In fact, the PFU framework has been built not only for its knowledge representation abilities,

but also to be able to define generic algorithms capable of answering queries. Some of our choices

have even been justified by algorithmic reasons. In other words, we want to be able to answer

queries as efficiently as possible, and not only to express them.

In the sequel, we introduce generic resolution schemes which are either generalizations of already

existing algorithms, or new techniques applicable to all PFU subsumed formalisms. This chapter

presents two first generic algorithms which answer arbitrary PFU queries without any further

assumption on the algebraic structure. These algorithms both work on the operational definition

of the answer to a query, defined as Ans(Q) = Sov((∧Fi∈F Fi) ⋆ (⊗pPi∈P
Pi) ⊗pu (⊗uUi∈U Ui)).

More precisely, we introduce:

• a basic tree search algorithm;

• a generic variable elimination algorithm [7], which intends to exploit the factorization into

local scoped functions for the best.

Complexity results are also provided, notably using a parameter called constrained induced-width.

6.1 A basic tree search algorithm

The operational definition of the answer to a query Q (cf Definition 5.8 page 80) defines a naive

exponential time algorithm to compute Ans(Q) using a tree exploration procedure. This algorithm

is given in Figure 6.1.

For each assignment A of the free variables of Q, a tree is explored. Each node in this tree

corresponds to a partial assignment of the variables, and variables are assigned in an order “com-

patible” with Sov. The value of a leaf is provided by the combination of the scoped functions of

the PFU network, applied to the complete assignment defined by the path from the root to this

leaf. Depending on the operator used, the value of an internal node is obtained by performing a

89

90 CHAPTER 6. FIRST GENERIC ALGORITHMS

min, max, or ⊕u operation on the values of its children. The root node returns (Ans(Q))(A). For

a query (Sov,N), the first call is TreeSearchAnswerQ(Sov,N). It returns Ans(Q).

TreeSearchAnswerQ(Sov, (V, G, P, F, U))
begin

foreach A ∈ dom(Vfr) do ϕ(A)← AnswerQ(Sov, (V, G, P, F, U), A)
return ϕ

end

AnswerQ(Sov, (V, G, P, F, U), A)
begin

if Sov = ∅ then return
“

(∧Fi∈F Fi) ⋆ (⊗pPi∈P
Pi)⊗pu (⊗uUi∈U Ui)

”

(A)

else

(op, S).Sov′ ← Sov

choose x ∈ S

if S = {x} then Sov ← Sov′ else Sov ← (op, S − {x}).Sov′

dom← dom(x)
res← ♦
while dom 6= ∅ do

choose a ∈ dom

dom← dom− {a}
res← op (res, AnswerQ(Sov, (V, G, P, F, U), A.(x, a)))

return res

end

Figure 6.1: A generic tree search algorithm to answer a query Q = (Sov, (V,G, P, F, U)).

If one assumes that every operator returns a result in a constant time and that each memory

read also takes a constant time, then the time complexity of this algorithm is O(m · dn), where m

stands for the number of scoped functions, d stands for the maximum domain size, and n stands

for the number of variables. 1

The space complexity is linear, hence computing the answer to a bounded query is PSPACE.

Moreover, the satisfiability of a QBF is a PSPACE-complete problem which can be expressed as

a bounded query (cf. Theorem 5.12 page 82), hence computing the answer to a bounded query is

PSPACE-hard. Being PSPACE and PSPACE-hard, the decision problem consisting in answering a

bounded query is PSPACE-complete. This result is not surprising, but it gives an idea of the level

of expressiveness which can be reached by the PFU framework. More work is needed to identify

subclasses of queries with a lower complexity, although many are already known.

Nevertheless, if one wants to record a policy for decision variables eliminated with max, then

the space complexity of the policy recording can become exponential in the number of variables

not eliminated with max. In order to recover a polynomial recording space, one can simply record

a “horizon-restricted” policy for the k first decisions only.

1. In fact, an upper bound on the time needed to get ϕ(A) for a scoped function ϕ represented as a table
is O(n · log(d)), and an operator returns a result in a time depending on the size of its arguments. We decide
to adopt the same convention as [93], where these two operations are assumed to be in constant time. Such an
assumption does not change the complexity class, and can be relaxed simply by adding factors such as n · log(d) in all
time complexity results. For example, we should say that the time complexity of algorithm TreeSearchAnswerQ is
O(m·n · log(d)·dn) instead of O(m·dn). Similarly, logarithmic factors should be integrated to all space complexities,
since numbers are recorded using bits.

6.2. A FIRST NAIVE VARIABLE ELIMINATION ALGORITHM 91

6.2 A first naive variable elimination algorithm

Quite naturally, a generic Variable Elimination (VE) algorithm can also be defined to answer

PFU queries. This algorithm, inspired by the seminal Bertelé and Brioschi’s proposal [7] and

by [127, 32, 75], is given in Figure 6.2. It eliminates variables from the right to the left of the

sequence Sov of the query, whereas with the tree search procedure, variables are assigned from the

left to the right. This right-to-left processing entails that the algorithm naturally returns a function

of the free variables of the query. The first call is Basic-VE-answerQ(Sov, (V,G, P, F, U)). The

time and space complexities of this algorithm are O(m · dn).

Basic-VE-answerQ(Sov, (V, G, P, F, U))
begin

ϕ0 ←
“

(∧Fi∈F Fi) ⋆ (⊗pPi∈P Pi)⊗pu (⊗uUi∈U Ui)
”

while Sov 6= ∅ do

Sov′.(op, S)← Sov

choose x ∈ S

if S = {x} then Sov ← Sov′ else Sov ← Sov′.(op, S − {x})
ϕ0 ← opx ϕ0

return ϕ0

end

Figure 6.2: A first generic variable elimination algorithm for answering a query Q =
(Sov, (V,G, P, F, U)).

Improving the basic scheme

The Basic-VE-answerQ algorithm is actually a very naive variable elimination scheme, because

it begins by combining all the scoped functions (first line) before eliminating variables, whereas the

advantage of a standard variable elimination algorithm is primarily to use the factorization into

local functions [7]. Ideally, we would like to perform computations as local as possible by considering

only scoped functions having x in their scope when computing a quantity like opx(F ⋆ P ⊗pu U).

Let us first introduce some additional notations and conventions:

• Given a set Φ of scoped functions, we denote by Φ+x (resp. Φ−x) the set of scoped functions

in Φ having (resp. not having) x in their scope: Φ+x = {ϕ ∈ Φ |x ∈ sc(ϕ)} (resp. Φ−x =

{ϕ ∈ Φ |x /∈ sc(ϕ)}).

• A quantity like opx((∧Fi∈F Fi) ⋆ (⊗pPi∈P
Pi) ⊗pu (⊗uUi∈U Ui)), where P , F , U are sets of

plausibility, feasibility, and utility functions respectively, is simply denoted as opx(F ⋆P ⊗pu

U): we consider the combination of scoped functions of the same “type” as implicit.

• Every combination operator ⊗ defined on a set E not containing ♦ is extended on E ∪ {♦}

by ♦ ⊗ e = e ⊗ ♦ = ♦ (combining anything with something unfeasible is unfeasible too). 2

This implies that f ⋆ (p⊗pu u) = p⊗pu (f ⋆ u).

Proposition 6.1 is a first step towards the use of factorizations.

2. An operator op can be used both as a combination operator between scoped functions and as an elimination
operator on some variables. In this case, the extension of op used as a combination operator creates an operator op′

such that op′(e, ♦) = ♦, whereas the extension of op considered as an elimination operator creates an operator op′′

such that op′′(e, ♦) = e. op′ and op′′ coincide on E but differ on E ∪ {♦}.

92 CHAPTER 6. FIRST GENERIC ALGORITHMS

Proposition 6.1. Let (Ep, Eu,⊕u,⊗pu) be a totally ordered expected utility structure (EU struc-

ture). Then, for all sets P , F , U of plausibility, feasibility, and utility functions respectively, and

for all op ∈ {min,max,⊕u}, opx(F ⋆ P ⊗pu U) = F−x ⋆ P−x ⊗pu (opx (F+x ⋆ P+x ⊗pu U)).

Moreover, if P+x = ∅ and op ∈ {min,max}, opx(F
+x ⋆ U) = U−x ⊗u (opx (F+x ⋆ U+x)).

Proposition 6.1 asserts that when a variable x is eliminated, it is not necessary to consider

plausibility functions or feasibility functions without x in their scope. Furthermore, if there are

no plausibility functions depending on x quantified with min or max, then it is not necessary to

consider utility functions without x in their scope either. This means that (1) it is always possible

to take advantage of the factorization of the global plausibility and feasibility into local plausibility

and feasibility functions, and (2) the factorization into local utility functions is directly usable if

P+x = ∅ and the elimination operator is min or max. In order to see how general the condition

“P+x = ∅” is, we use the following proposition.

Proposition 6.2. Let (Sov, (V,G, P, F, U)) be a query. Let x be a variable involved in the rightmost

operator-variable(s) pair in Sov. Then, (x ∈ VD)→ (P+x = ∅) and (x ∈ VE)→ (F+x = ∅).

Therefore, if x denotes a rightmost variable in Sov, then Proposition 6.2 enables us to infer

that at the first elimination step:

• If x is a decision variable, then P+x = ∅. Proposition 6.1 entails that

op
x

(F ⋆ P ⊗pu U) = F−x ⋆ P−x ⊗pu (U−x ⊗u (op
x

(F+x ⋆ U+x)) (6.1)

As a result, only scoped functions having x in their scope need to be considered: it suffices

to compute maxx(F
+x ⋆ U+x) if x is quantified with max and minx(F

+x ⋆ U+x) otherwise.

• If x ∈ VE , then F+x = ∅. In this case, Proposition 6.1 entails that

⊕u
x

(F ⋆ P ⊗pu U) = F−x ⋆ P−x ⊗pu (⊕u
x

(P+x ⊗pu U)) (6.2)

In general, the computation ⊕ux (P+x ⊗pu U) in Equation 6.2 cannot be decomposed any

further, in order to avoid considering scoped functions in U−x. The basic reason for this is

that the PFU algebraic structure makes no assumption on the relation between ⊕u and ⊗u.

This problem is referred to as the undecomposability problem.

6.3 Solving the undecomposability problem via two distinct

sufficient conditions

We give two axioms, each of which makes it possible to avoid considering scoped functions in U−x

when computing ⊕ux (P+x ⊗pu U). This means that they allow us to use factorizations for the

best. These two axioms, denoted AxSG and AxSR, are enounced as follows:

AxSR :

{

⊗u distributes over ⊕u

and p⊗pu (u1 ⊗u u2) = (p⊗pu u1)⊗u u2 for all (p, u1, u2) ∈ Ep × Eu × Eu

AxSG : “⊗u = ⊕u on Eu” (and not on Eu ∪ {♦})

6.3. SOLVING THE UNDECOMPOSABILITY PROBLEM 93

The first sufficient decomposability axiom is denoted AxSR as “axiom for the semiring case”,

because it makes (Eu,⊕u,⊗u) a semiring (see Proposition 6.3 below). The second sufficient de-

composability axiom is denoted AxSG as “axiom for the semigroup case”, because it makes the

structure (Eu,⊕u,⊗u) similar to the structure (Eu,⊕u), which is a semigroup. These two disjoint

axioms cover various standard EU structures, as shown in Table 6.1.

Ep Eu ⊗u ⊕u ⊗pu AxSR AxSG

1 R+ R ∪ {−∞} + + × √

2 R+ R+ × + × √

3 [0, 1] [0, 1] min max min
√

4 [0, 1] [0, 1] min min max(1−p, u)
√

5 N ∪ {∞} N ∪ {∞} + min +
√

6 {t, f} {t, f} ∧ ∨ ∧ √

7 {t, f} {t, f} ∧ ∧ → √

8 {t, f} {t, f} ∨ ∨ ∧ √

9 {t, f} {t, f} ∨ ∧ → √

Table 6.1: Expected utility structures satisfying AxSR or AxSG: 1. probabilistic expected utility
with additive utilities (allows the probabilistic expected utility of a cost or a gain to be computed),
2. probabilistic expected utility with multiplicative utilities (allows the probability of satisfaction
of some constraints to be computed), 3. possibilistic optimistic expected utility, 4. possibilistic
pessimistic expected utility, 5. qualitative utility with κ-rankings and with only positive utilities,
6. boolean optimistic expected utility with conjunctive utilities (allows one to know whether there
exists a possible world in which all goals of a set of goals G are satisfied), 7. boolean pessimistic
expected utility with conjunctive utilities (allows one to know whether in all possible worlds, all
goals of a set of goals G are satisfied), 8. boolean optimistic expected utility with disjunctive
utilities (allows one to know whether there exists a possible world in which at least one goal of a
set of goals G is satisfied), 9. boolean pessimistic expected utility with disjunctive utilities (allows
one to know whether in all possible worlds, at least one goal of a set of goals G is satisfied).

Proposition 6.3. Let (Ep, Eu,⊕u,⊗pu) be an EU structure satisfying AxSR (the underlying utility

structure being (Eu,⊗u)). Then, (Eu,⊕u,⊗u) is a commutative semiring.

Proposition 6.4 asserts that as soon as one of these two axioms holds, the undecomposability

problem is solved.

Proposition 6.4. Let (Ep, Eu,⊕u,⊗pu) be an EU structure. Let P and U be sets of plausibility

and utility functions respectively.

If AxSR holds, then

⊕u
x

(P+x ⊗pu U) = U−x ⊗u (⊕u
x

(P+x ⊗pu U
+x)) (6.3)

If AxSG holds, then

⊕u
x

(P+x ⊗pu U) = ((⊕p
x

P+x)⊗pu U
−x)⊗u (⊕u

x
(P+x ⊗pu U

+x)) (6.4)

This shows that when eliminating an environment variable x with ⊕u, only plausibility and

utility functions having x in their scope need to be considered. Note that in Equation 6.4, there

is no reason for the quantity ⊕px P
+x to equal 1p. Proposition 6.4 can be illustrated by the

probabilistic expected satisfaction and the probabilistic expected additive utility. In the first

94 CHAPTER 6. FIRST GENERIC ALGORITHMS

case, we have
∑

x (P+x × U) = U−x × (
∑

x (P+x × U+x)), whereas in the second one, we have
∑

x (P+x × (U−x + U+x)) = ((
∑

x P
+x)× U−x) + (

∑

x(P
+x × U+x)).

6.4 Definition of an improved variable elimination algorithm

As we shall see, AxSR and AxSG enable us to compute the answer to a query using a variable elim-

ination algorithm which considers only scoped functions having x in their scopes when eliminating

a variable x.

6.4.1 Improved VE algorithm in the semiring case

When AxSR holds, it is actually possible to simplify Equation 6.3 with no loss of generality, by

transforming the problem specification via an expected utility structure morphism. Indeed, let us

consider the simpler axiom

AxSR
′

:







(Ep,�p) = (Eu,�u) = (E,�)

⊗p = ⊗pu = ⊗u = ⊗

⊕p = ⊕u = ⊕

Theorem 6.5. Let S = (Ep, Eu,⊕u,⊗pu) be a totally ordered EU structure whose underlying

plausibility and utility structures are (Ep,⊕p,⊗p) and (Eu,⊗u) respectively. Let φ : Ep → Eu be

the function defined by φ(p) = p⊗pu 1u.

(a) If S satisfies AxSR
′

, then S satisfies AxSR.

(b) If S satisfies AxSR: let (E,�) = (Eu,�u), ⊕ = ⊕u, and ⊗ = ⊗u. Then,

• The structure S′ = (E,E,⊕,⊗) is a totally �-ordered EU structure, with (E,⊕,⊗) as

a plausibility structure and (E,⊗) as a utility structure. Moreover, it satisfies AxSR
′

.

• For every PFU network N = (V,G, P, F, U) on S, N ′ = (V,G, {φ(Pi) |Pi ∈ P}, F, U)

is a PFU network on S′. N ′ is denoted φ(N).

• For every query Q = (Sov,N) on a PFU network N defined on S, Q′ = (Sov, φ(N))

is a query on the PFU network φ(N). Moreover, Ans(Q) = Ans(Q′) and the optimal

policies for the decision variables are the same with Q and Q′.

Theorem 6.5(a) shows that axiom AxSR is weaker than axiom AxSR
′

. Theorem 6.5(b) shows

that if an expected utility structure satisfies AxSR, then it is possible to recover AxSR
′

thanks to

the morphism φ : p → p ⊗pu 1u, which enables us to transform a query Q on a PFU network N

into an equivalent query on the PFU network φ(N).

As a result, AxSR
′

is equivalent to AxSR and we can deal with AxSR
′

instead of AxSR. The

interest of AxSR
′

is that it involves only two customizable operators ⊕ and ⊗ and one ordered

set (E,�), which will simplify the future algorithms. The axioms making a structure an expected

utility structure also become simpler, as shown in Proposition 6.7.

Definition 6.6. (E,⊕,⊗) is a totally ordered Monotonic Commutative Semiring (totally ordered

MCS) iff it is a commutative semiring equipped with a total order � such that ⊕ and ⊗ are

monotonic with respect to �.

6.4. DEFINITION OF AN IMPROVED VARIABLE ELIMINATION ALGORITHM 95

Proposition 6.7. (Ep, Eu,⊕u,⊗pu) is a totally ordered EU structure satisfying AxSR
′

(the un-

derlying plausibility and utility structures being (Ep,⊕p,⊗p) and (Eu,⊗u) respectively) if and only

if (Eu,⊕u,⊗u) is a totally ordered MCS.

Therefore, when AxSR
′

holds, the algebraic structure of the PFU framework becomes just a

totally ordered MCS (E,⊕,⊗) = (Eu,⊕u,⊗u). The normalization condition imposed on environ-

ment components becomes

⊕
c
(⊗
Pi∈Fact(c)

Pi) = 1E

and the operational answer to a query becomes

Ans(Q) = Sov((∧
Fi∈F

Fi) ⋆ (⊗
ϕ∈P∪U

ϕ)) (6.5)

Moreover, instead of expressing feasibilities on {t, f}, we can express them on {1E,♦} by

mapping t onto 1E and f onto ♦. This preserves the value of the answer to a query since t⋆u = 1E⊗u

and f ⋆ u = ♦⊗ u. The answer Ans(Q) to a query Q becomes Ans(Q) = Sov(⊗ϕ∈P∪F∪U ϕ). As a

result, answering a query in the semiring case can require several elimination operators (min, max,

and ⊕), but it actually requires only one combination operator (⊗).

Proposition 6.8. Let (E,⊕,⊗) be a totally ordered MCS. We extend ⊕ and ⊗ to E ∪ {♦} by

u⊕ ♦ = ♦⊕ u = u and u⊗ ♦ = ♦⊗ u = ♦. Then, for every op ∈ {min,max,⊕}, (E ∪ {♦}, op,⊗)

is a commutative semiring.

Corollary 6.9. Let (E,⊕,⊗) be a totally ordered MCS and let Φ be a set of scoped functions

taking values in E∪{♦}. Then, for all variables x and for all op ∈ {min,max,⊕}, opx (⊗ϕ∈Φ Φ) =

(⊗ϕ∈Φ−x ϕ)⊗ (opx⊗ϕ∈Φ+x ϕ)

Using Corollary 6.9, the algorithm in Figure 6.3 defines a generic VE algorithm when AxSR

holds. The first call is VE-answerQ(Sov,⊗, P ∪F ∪U). This time, the factorization available in a

PFU network is fully exploited, since when eliminating a variable x, only local functions involving

x in their scope are considered. Complexity results on this algorithm are given in Section 6.5.

VE-answerQ(Sov,⊛, Φ)
begin

if Sov = ∅ then return Φ
else

Sov′.(op, S)← Sov

choose x ∈ S

if S = {x} then Sov ← Sov′ else Sov ← Sov′.(op, S − {x})
ϕ0 ← opx

`

⊛ϕ∈Φ+xϕ
´

Φ← (Φ−Φ+x) ∪ {ϕ0}
return VE-answerQ(Sov,⊛, Φ)

end

Figure 6.3: A generic variable elimination algorithm using factorization (Sov: sequence of
eliminations, ⊛: combination operator, Φ: set of scoped functions).

Proposition 6.10. VE-answerQ(Sov,⊗, P ∪ F ∪ U) returns a set of scoped functions Ψ such

that ⊗ψ∈Ψψ = Ans(Q).

96 CHAPTER 6. FIRST GENERIC ALGORITHMS

6.4.2 Improved VE algorithm in the semigroup case

The definition of an improved variable elimination algorithm in the semigroup case requires a bit

more work. In fact, Equation 6.4 page 93 does not create one new utility function resulting from

the elimination of x. It creates one new plausibility function ⊕px P
+x which must be combined

with all functions in U−x, and one new utility function ⊕ux (P+x ⊗pu U+x). In other words, the

global quantity obtained after the elimination of x is not formed as Sov′(F ′ ⋆ P ′ ⊗pu U ′), where

Sov′ is the resulting sequence of eliminations and F ′, P ′, and U ′ are new sets of scoped functions.

A solution to recover a global form which does not vary during the elimination steps consists in

working on pairs of plausibility-utility functions called potentials [91]. The definition introduced

below however differ from the standard one. 3

Definition 6.11. A potential is a pair (P0, U0) composed of one plausibility function P0 and one

utility function U0. Two operators are defined on plausibility-utility pairs:

• a combination operator ⊠ defined by (p1, u1)⊠(p2, u2) = (p1⊗pp2, (p1⊗puu2)⊗u(p2⊗puu1)),
4

• an elimination operator ⊞ defined by (p1, u1)⊞ (p2, u2) = (p1⊕p p2, u1⊕u u2).

Last, a partial order on plausibility-utility pairs can be defined as “(p, u1) � (p, u2) iff u1 � u2”.

In the sequel, we also consider each feasibility function as a potential. Since there is only a

partial order on plausibility-utility pairs (for example max((0.2, 4), (0.6, 3)) does not exist), some

technical steps are required to ensure that when a min- or a max-elimination on a decision variable

x is being performed, there does not exist any potential whose plausibility part depends on x.

These technical steps are addressed by Propositions 6.12 to 6.15, and lead us to the main result

given in Proposition 6.16.

Proposition 6.12. Let N = (V,G, P, F, U) be a PFU network. Then, there exists a PFU network

N ′ = (V,G′, P ′, F ′, U), which is called a refinement of N , such that

• every component c in G′ is included in one component of G, and the hypergraph having the

variables in c as vertices and {sc(ϕ) |ϕ ∈ Fact(c)} as a set of hyperedges is connected (to

mean that variables in a component are somehow correlated);

• ⊗pPi∈P
Pi = ⊗pPi∈P ′ Pi and ∧Fi∈F Fi = ∧Fi∈F ′ Fi.

Proposition 6.12 enables us to assume that all PFU networks considered are already refined,

notably because the proof of Proposition 6.12 is constructive.

Given a set Φ of scoped functions, we slightly update the definitions of Φ+x/Φ−x by
{

Φ+x = {ϕ ∈ Φ |x ∈ sc(ϕ)} ∪Φ0

Φ−x = Φ− Φ+x
, where Φ0 =

{

Φ ∩ Fact(c(x)) if sc(Φ) ∩ c(x) ⊂ {x}

∅ otherwise

Informally, the set Φ0 added to {ϕ ∈ Φ |x ∈ sc(ϕ)} means that when x is the last variable of

its component c(x) to be eliminated (test sc(Φ)∩ c(x) ⊂ {x}), we add in Φ+x the scoped functions

3. The notion of potentials introduced here differs from the one used in [91] for influence diagrams: in [91],
potentials are combined using (p1, u1) ⊠′ (p2, u2) = (p1 × p2, u1 + u2), and variable eliminations are performed

by ⊞′
x(P, U) = (

P

x P,
P

x(P×U)
P

x P
). Our proposal does not use any division operation, which is great since the

structures manipulated are not assumed to be equipped with a division.
4. The utility part of the obtained pair may be a bit surprising. In fact, p1 informally corresponds to a plausibility

which is already “integrated” in u1 but not in all other utilities, hence the combination p1 ⊗pu u2. Similarly, p2 is
already “integrated” in u2 and must weigh all other utilities, hence the combination p2 ⊗pu u1.

6.4. DEFINITION OF AN IMPROVED VARIABLE ELIMINATION ALGORITHM 97

in Fact(c(x)) which are still in Φ. These added scoped functions are exactly the scoped functions

in Fact(c(x)) whose scope is included in paG(c(x)). This technical step is required in order to

use normalization conditions ensuring that some minimization and maximization operations on

potentials are defined. Also, if Pi ∈ Fact(c) for a component c, then the potential (Pi, 1u) is

considered to be in Fact(c) too.

The next propositions show that Ans(Q) can be computed using potentials (Proposition 6.13),

and that the global form obtained when working with potentials uses the factorizations and is

unchanged during the elimination steps (Proposition 6.15).

Proposition 6.13. Let Q = (Sov,N) be a query on a PFU network N , defined on a totally

ordered EU structure satisfying AxSG. Let T (Sov) be the sequence of operator-variable(s) pairs

obtained from Sov by replacing ⊕u by ⊞. Let Π be the set of potentials Π = {(Pi, 1u), Pi ∈

P} ∪ F ∪ {(1p, Ui), Ui ∈ U}. Then, for all assignments A of the free variables of Q,

T (Sov)(⊠
ϕ∈Π

ϕ(A)) =

{

(1p, Ans(Q)(A)) if Ans(Q)(A) 6= ♦

♦ otherwise

Lemma 6.14. Let us consider a totally ordered EU structure satisfying AxSG. Then, for every

set of potentials Π,

• ⊞x(Π) = Π−x ⊠ (⊞x(Π
+x)).

• Assume that for all (P0, U0) ∈ Π, x /∈ sc(P0). Then, maxx(Π) exists and maxx(Π) =

Π−x ⊠maxx(Π
+x). 5 Similarly, minx(Π) exists and minx(Π) = Π−x ⊠minx(Π

+x).

Proposition 6.15. Let Q = (Sov,N) be a query on a PFU network N = (V,G, P, F, U) defined

on a totally ordered EU structure satisfying AxSG, where Sov = (op1, S1) · (op2, S2) · · · (opk, Sk).

Let |Sov| denote the number of variables in Sov. Let [x|Sov|, . . . , x1] be a sequence of variables

such that (xi ∈ Sj)→ (xi−1 ∈ Sj ∪ Sj+1).
6 Let op(x) denote the operator min if x ∈ VD and x is

quantified with min in Sov, max if x ∈ VD and x is quantified with max, and ⊞ otherwise.

Let Π1 be the initial set of potentials Π1 = {(Pi, 1u), Pi ∈ P} ∪ F ∪ {(1p, Ui), Ui ∈ U}. For all

i ∈ {1, . . . , |Sov|}, let Πi+1 be the set of potentials defined from Πi by:

Πi+1 =

{

undefined if Πi is undefined or if op(xi)xi
Π+xi

i does not exist

(Πi −Π+x
i) ∪ {op(xi)xi

Π+xi

i } otherwise

Then, Π|Sov|+1 is defined and ⊠ϕ∈Π|Sov|+1
ϕ = T (Sov)(⊠ϕ∈Π ϕ).

Proposition 6.15 shows that when eliminating a variable x on a set of potentials Π, with

an elimination operator op ∈ {min,max,⊞}, only potentials having x in their scope need to be

considered. After the elimination of x, one gets a new set of potentials Π′ = (Π−Π+x)∪{opx(Π
+x)}.

The condition “for all (P0, U0) ∈ Π, x /∈ sc(P0)” involved in Lemma 6.14, required when a decision

variable is eliminated, is always satisfied during the elimination steps and entails that the partial

order defined on potentials suffices to compute a min or a max when needed.

Eventually, the algorithm for the semigroup case is identical to the one used for the semiring ca-

se, except that the first call is VE-answerQ(T (Sov),⊠, {(Pi, 1u), Pi ∈ P}∪F ∪{(1p, Ui), Ui ∈ U}).

5. Given a set of potentials Π, maxx(Π) does not necessarily exist since only a partial order is given on plausibility-
utility pairs. For example, max((0.2, 4), (0.6, 3)) does not exist.

6. Informally, this means that the sequence [x|Sov|, . . . , x1] corresponds to a variable elimination order which can
be used when considering the variables in an order “compatible” with Sov.

98 CHAPTER 6. FIRST GENERIC ALGORITHMS

Proposition 6.16. VE-answerQ(T (Sov),⊠, {(Pi, 1u), Pi ∈ P} ∪F ∪ {(1p, Ui), Ui ∈ U}) returns

a set of potentials Π such that ⊠ϕ∈Πϕ(A) =

{

(1p, Ans(Q)(A)) if Ans(Q)(A) 6= ♦

♦ otherwise

6.4.3 General case

The semiring and semigroup cases define two sufficient conditions allowing us to use the factor-

ization into local plausibility, feasibility, and utility functions. Showing how necessary they are is

still an open issue. It may occur that neither AxSR, nor AxSG holds.

Example 6.17. (Ep, Eu,⊕u,⊗pu) = (R+,R,+,×) is an EU structure defined on the plausibility

structure (Ep,⊕p,⊗p) = (R+,+,×) and on the utility structure (Eu,⊗u) = (R,min). It can be used

to compute the expected utility of risks combined using min. It satisfies: (1) neither the semigroup

axiom AxSG, since ⊕u 6= ⊗u; (2) nor the semiring axiom AxSR, because ⊗u does not distribute

over ⊕u: indeed, “min(a, b+ c) = min(a, b) + min(a, c)” does not always hold.

As a result, cases exist for which the undecomposability problem, consisting of decomposing a

quantity such as “⊕ux (P+x ⊗pu U)”, is not solved. In those cases, it is as if there was a unique

global utility function U0 = ⊗uUi∈U Ui whose factorization cannot be used. We can assume that

(Ep,�p) = (Eu,�u) = (E,�), ⊕p = ⊕u = ⊕, and ⊗p = ⊗pu = ⊗ by using a transformation

similar to the one performed for the semiring case. The quantity to compute then becomes

Ans(Q) = Sov((∧
Fi∈F

Fi) ⋆ (⊗
Pi∈P

Pi)⊗ U0) = Sov(⊗
ϕ∈P∪F∪{U0}

ϕ) (6.6)

This means that the general case can be seen as a sub-case of the semiring case, at the price

of aggregating all utility functions. Hence, algorithm VE-answerQ can still be used, with VE-

answerQ(Sov,⊗, P ∪ F ∪ {U0}) as a first call.

Table 6.2 summarizes how the generic algorithm VE-answerQ can be used to answer PFU

queries. Note that for each case, no additional assumption is necessary on the PFU framework.

Only transformations of the initial problem into an equivalent one are required, such as the one

induced by morphism φ : p → p ⊗pu 1u when AxSR holds, or the one yielding a refined PFU

network (cf. Proposition 6.12) when AxSG is satisfied.

CASE FIRST CALL

semiring (AxSR) VE-answerQ(Sov,⊗, P ∪ F ∪ U)

semigroup (AxSG) VE-answerQ(T (Sov),⊠, {(Pi, 1u), Pi ∈ P} ∪ F ∪ {(1p, Ui), Ui ∈ U})

general case VE-answerQ(Sov,⊗, P ∪ F ∪ {U0}), with U0 = ⊗uUi∈U Ui

Table 6.2: Use of the generic variable elimination algorithm VE-answerQ.

6.4. DEFINITION OF AN IMPROVED VARIABLE ELIMINATION ALGORITHM 99

6.4.4 Simplifying the problem specification in the semigroup case

As in the semiring case and for future discussion, let us reformulate the answer to a query in order

to use only one set E and only two abstract operators ⊕ and ⊗, instead of having several sets (Ep

and Eu) and several abstract operators (⊗p, ⊗u, ⊗pu, ⊕p, ⊕u). Behind this, the basic idea is to

obtain a simplified structure, so that future generic algorithms become easier to define and easier

to read. Let us consider axiom AxSG
′

below:

AxSG
′

:







(Ep,�p) = (Eu,�u) = (E,�)

⊗p = ⊗pu = ⊗

⊕p = ⊕u = ⊗u = ⊕

The only difference between axioms AxSG
′

and AxSR
′

is that axiom AxSG
′

postulates that

⊗u = ⊕, whereas axiom AxSR
′

postulates that ⊗u = ⊗. The assumption “(Ep,�p) = (Eu,�u) =

(E,�), ⊕p = ⊕u = ⊕, and ⊗p = ⊗pu = ⊗”, which is common to the general case, the semiring

case, and the semigroup case, can also be axiomatically justified using the Algebraic Expected

Utility (AEU) theory recently introduced in [139]. This theory is a sub-case of Chu-Halpern’s

expected utility. In order to show the relation between AxSG and the simpler axiom AxSG
′

, we

first introduce two propositions which enable us to deal with either only positive utility degrees,

or only negative utility degrees, thanks to translation operations.

Proposition 6.18. Let S = (Ep, Eu,⊕u,⊗pu) be a totally ordered EU structure. Let E+
u = {u ∈

Eu |u �u 0u}. Let ⊗+
u , ⊕+

u , and ⊗+
pu denote the restrictions of ⊗u, ⊕u, ⊗pu on E+

u respectively.

Similarly, let E−
u = {u ∈ Eu |u �u 0u} and let ⊗−

u , ⊕−
u , and ⊗−

pu denote the restrictions of ⊗u,

⊕u, ⊗pu on E−
u .

Then, (E+
u ,⊗

+
u) is a utility structure and S+ = (Ep, E

+
u ,⊕

+
u⊗

+
pu) is a totally ordered EU

structure, as well as (E−
u ,⊗

−
u) and S− = (Ep, E

−
u ,⊕

−
u⊗

−
pu).

Proposition 6.19. Let S = (Ep, Eu,⊕u,⊗pu) be a totally ordered EU structure satisfying AxSG.

Let N = (V,G, P, F, U) be a PFU network defined on S, and let Q = (Sov,N) be a query on N .

• Assume that hypothesis (H+) holds:

(H+) : ∀(u1, u2) ∈ E2
u, ((u1 �u u2)→ (∃u3 �u 0u, u2 = u1 ⊗u u3)).

Given a utility function ϕ, let ϕ− = min{ϕ(A) |A ∈ dom(sc(ϕ))} and let translate+(ϕ)

denote a function satisfying ϕ = ϕ− ⊗u translate+(ϕ) (such a function exists because of

(H+)). Let N+ = (V,G, P, F, U+), where U+ = {translate+(ϕ) |ϕ ∈ U}.

Then, N+ is a PFU network on S+, and Q+ = (Sov,N+) is a query which satisfies

Ans(Q) = Ans(Q+)⊗u (⊗uϕ∈U ϕ
−). Also, every policy optimal in Q+ is also optimal in Q.

• Similarly, assume that hypothesis (H−) holds:

(H−) : ∀(u1, u2) ∈ E2
u, ((u1 �u u2)→ (∃u3 �u 0u, u1 = u2 ⊗u u3)).

Given a utility function ϕ, let ϕ+ = max{ϕ(A) |A ∈ dom(sc(ϕ))} and let translate−(ϕ)

denote a function satisfying ϕ = ϕ+ ⊗u translate−(ϕ) (such a function exists because of

(H−)). Let N− = (V,G, P, F, U−), where U− = {translate−(ϕ) |ϕ ∈ U}.

Then, N− is a PFU network on S−, and Q− = (Sov,N−) is a query which satisfies

Ans(Q) = Ans(Q−)⊗u (⊗uϕ∈U ϕ
+). Also, every policy optimal in Q− is also optimal in Q.

100 CHAPTER 6. FIRST GENERIC ALGORITHMS

Proposition 6.19 says that as soon as hypothesis (H+) or (H−) holds, it is possible to deal

with only positive utility degrees, or only negative utility degrees, i.e. to work on a non bipolar

expected utility structure.

In the standard cases given in Table 6.1 page 93, either the structure is already non bipolar,

or hypothesis (H+) or (H−) holds. To be more concrete, if Eu = R+ ∪ {−∞} and ϕ is a utility

function whose greatest value is 10, if suffices to transform ϕ into “(ϕ − 10)” and add 10 to the

final result. Note however that there exists cases where neither (H−) nor (H+) holds, like in

bipolar preference structures having an infinite positive utility together with an infinite negative

utility [98]. In such cases, the utility scale cannot be translated.

We can now introduce the main proposition establishing a relation between AxSG and AxSG
′

.

This proposition uses a non bipolarity assumption.

Proposition 6.20. Let S = (Ep, Eu,⊕u,⊗pu) be a non bipolar and totally ordered EU structure.

(a) If S satisfies AxSG
′

, then S satisfies AxSG.

(b) If S satisfies AxSG: let E = Eu and ⊕ = ⊕u. If there exists an operator ⊗ on E and a

function φ : Ep → E such that

• ⊗ is associative, commutative, monotonic, and distributive over ⊕,

• φ(p1 ⊗p p2) = φ(p1)⊗ φ(p2), φ(p1 ⊕p p2) = φ(p1)⊕ φ(p2), and p⊗pu u = φ(p) ⊗ u,

then, for every query Q = (Sov,N) on a PFU network N = (V,G, P, F, U) defined on S

• S′ = (E,E,⊕,⊗) is a totally ordered EU structure with (E,⊕,⊗) as a plausibility

structure and (E,⊕) as a utility structure (the identity for ⊗ is 1E = φ(1p), and its

annihilator is 0E = 0u = φ(0p)). Moreover, S′ satisfies AxSG
′

;

• N ′ = (V,G, {φ(Pi) |Pi ∈ P}, F, U) is a PFU network on S′;

• Q′ = (Sov,N ′) is a query on N ′ such that Ans(Q) = Ans(Q′) and such that the sets

of optimal policies are the same with Q and Q′.

Proposition 6.21. (E,E,⊕,⊗) is a totally ordered EU structure satisfying AxSG
′

with (E,⊕,⊗)

as a plausibility structure and (E,⊕) as a utility structure iff (E,⊕,⊗) is a totally ordered MCS.

The two conditions on φ and ⊗ in Proposition 6.20(b) hold in all standard cases associated with

the semigroup axiom: (1) for the probabilistic expected additive utility case (row 1 in Table 3.1

page 60), translated to Eu = R− ∪ {−∞}, φ = −id and ⊗ : (a, b) → −a · b fit; if we had

Eu = R+ ∪ {+∞}, then φ = id and ⊗ = × would fit; (2) for the possibilistic pessimistic expected

utility (row 4 in Table 3.1), φ : p→ 1−p and ⊗ = max fit; (3) for the boolean pessimistic expected

conjunctive utility (row 7 in Table 3.1), φ defined by φ(p) = ¬p and ⊗ = ∨ fit; (4) for the boolean

optimistic expected disjunctive utility (row 8 in Table 3.1), φ defined by φ = id and ⊗ = ∧ fit. In

all these cases, Proposition 6.20 says that axioms AxSG and AxSG
′

are in some sense equivalent.

This is why in the following, we assume thatAxSG
′

(and notAxSG) is satisfied. This assumption

is not necessary to use algorithm VE-answerQ; it will be used later in Chapter 7. When AxSG
′

holds, the computation to be performed, using only ⊕ and ⊗ as customizable operators, is:

Ans(Q) = Sov((∧
Fi∈F

Fi) ⋆ (⊗
Pi∈P

Pi)⊗ (⊕
Ui∈U

Ui)) (6.7)

6.5. QUANTIFYING THE THEORETICAL COMPLEXITY 101

6.5 Quantifying the theoretical complexity via the constrained

induced-width

After this small algebraic digression concerning axiom AxSG
′

, let us come back to algorithms.

The previous section shows that it is possible to design a generic variable elimination algorithm in

order to answer PFU queries. Most dedicated variable elimination approaches are actually specific

versions of this generic algorithm, that is to say, they correspond to its instantiation to a specific

expected utility structure. Section 6.5 gives upper bounds on the time and space complexities of

this VE-answerQ algorithm, using a parameter called the constrained induced-width [66, 94].

These bounds hold for every formalism subsumed by the PFU framework.

6.5.1 Induced-width

The induced-width [35, 34] is a parameter defining an upper bound on the theoretical complexity

of standard VE algorithms. It is also known as tree-width [115], k-tree number [2], or max-clique

size -1. Given a mono-operator query on a graphical model (V,Φ), the induced-width is defined

from the hypergraph G = (V, {sc(ϕ) |ϕ ∈ Φ}) associated with this graphical model.

Definition 6.22. An elimination order o on a set of variables V = {x1, . . . , xn} is a bijection

from {1, . . . , n} to V . For all k ∈ {1, . . . , n}, o(k) is called the kth variable eliminated in o.

An elimination order o induces a total order � on V , defined by o(n) ≺ . . . ≺ o(2) ≺ o(1),

where x ≺ y means that y must be eliminated before x. This allows us to assimilate o to a total

order on V .

Definition 6.23. (Induced-width of an elimination order) Let G = (VG , HG) be a hypergraph. Let

o be an elimination order on VG . o can be used to induce a sequence of hypergraphs G1, . . . ,Gn+1

(where n = |VG |), defined by

• G1 = G

• if Gk = (Vk, Hk) and x is the kth variable eliminated in o, then Gk+1 = (Vk − {x}, (Hk −

H+x
k) ∪ {hk+1}), where H+x

k is the set of hyperedges in Hk involving variable x and hk+1 =

(∪h∈H+x
k
h)− {x} is the hyperedge created from step k to k + 1 (variable elimination step).

The induced-width of G under the elimination order o, denoted wG(o), is the maximum size of

the created hyperedges, i.e. wG(o) = maxk∈{1,...,n} |hk+1|. 7

Informally, the hyperedge hk+1 created from step k to k + 1 is obtained by considering the set

H+x
k of all hyperedges in Gk which “depend” on x and by “linking” all variables involved in H+x

k

except for x. This points out that the elimination of x creates a new scoped function of scope hk+1.

1 +wG(o) corresponds to the maximum number of variables to simultaneously consider during the

variable elimination steps.

Example 6.24. Let us consider a CSP (V,C) where the set of variables is V = {x1, x2, x3, x4, x5}

and the set of constraints is C = {cx1,x2, cx2,x3 , cx2,x4 , cx2,x5 , cx4,x5}. The hypergraph G associated

with it is G = (V,HG) where HG = {sc(c) | c ∈ C} = {{x1, x2}, {x2, x3}, {x2, x4}, {x2, x5}, {x4, x5}}.

7. To be more formal, we should speak of the induced-width of the primal graph of G, since the usual definition
of the induced-width holds on graphs (and not on hypergraphs).

102 CHAPTER 6. FIRST GENERIC ALGORITHMS

The induced-width of G under the elimination order o1 : x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 equals 2.

It is obtained by generating the sequence of hypergraphs introduced in Definition 6.23, as done in

Figure 6.4. An induced-width of 2 means that at most 2 + 1 = 3 variables must be considered

simultaneously when using the elimination order o1 to compute maxx1,x2,x3,x4,x5(cx1,x2 ∧ cx2,x3 ∧

cx2,x4 ∧ cx2,x5 ∧ cx4,x5). The decompositions obtained graphically with the sequence of hypergraphs

can also be algebraically described by a sequence of computations:

maxx1 maxx2 maxx3 maxx4 maxx5(cx1,x2 ∧ cx2,x3 ∧ cx2,x4 ∧ cx2,x5 ∧ cx4,x5)

= maxx1 maxx2 maxx3 maxx4(cx1,x2 ∧ cx2,x3 ∧ cx2,x4 ∧ maxx5(cx2,x5 ∧ cx4,x5)
︸ ︷︷ ︸

= c′x2,x4
(computation involving 3 variables)

)

= maxx1 maxx2 maxx3(cx1,x2 ∧ cx2,x3 ∧ maxx4(cx2,x4 ∧ c
′
x2,x4

)
︸ ︷︷ ︸

= c′x2
(computation involving 2 variables)

)

= maxx1 maxx2(cx1,x2 ∧ c
′
x2
∧ maxx3(cx2,x3)

︸ ︷︷ ︸

= c′′x2(computation involving 2 variables)

)

= maxx1(maxx2(cx1,x2 ∧ c
′
x2
∧ c′′x2)

︸ ︷︷ ︸

= c′x1
(computation involving 2 variables)

)

= maxx1c
′
x1

︸ ︷︷ ︸

= c′
∅
(computation involving 1 variable)

x5

x1

x3

o1 : x1 < x2 < x3 < x4 < x5

o2 : x1 < x3 < x4 < x5 < x2 wG(o2) = 4

wG(o1) = 2

x2

x4 x1

x3

x1

x3

x4x1

x3x5

x4x1

x3x5

x4

x2

x1

x3

x1

x1

x1

x3

Created hyperedgeEliminated variable

the eliminated variable
consider when eliminating
Set of variables to

x2

x4

x2

x4

G1 = G G2 G3 G4 G5

G1 = G G2 G3 G5G4

x5

x2 x2
x1

Figure 6.4: Illustration of the induced-width under an elimination order.

6.5. QUANTIFYING THE THEORETICAL COMPLEXITY 103

With this algebraic perspective, the induced-width under the elimination order o1 is the maxi-

mum number of variables to simultaneously consider, minus 1, i.e. the induced-width is 3− 1 = 2.

In other words, the induced-width under the elimination order o1 is the maximum scope size of the

constraints c′S created during the eliminations. The scopes of these constraints actually correspond

to the hyperedges created when generating the sequence of hypergraphs.

The induced-width of G under the elimination order o2 : x1 ≺ x3 ≺ x4 ≺ x5 ≺ x2 is wG(o2) = 4.

The successive hypergraphs obtained with o2 are also shown in Figure 6.4.

The time and space complexities of a VE algorithm using an elimination order o on a graphical

model (V,Φ) are known to be O(|Φ| · d1+wG(o)), where G is the hypergraph associated with the

graphical model. 8

Definition 6.25. (Induced-width of G) Let G = (VG , HG) be a hypergraph. The induced-width of

G, denoted wG , is the minimal induced-width under an elimination order on VG . In other words,

if O denotes the set of all possible elimination orders on VG , then wG = mino∈O wG(o).

The induced-width of a hypergraph is the minimal number of variables to simultaneously con-

sider in a VE algorithm when using an optimal elimination order. The decision problem associated

with the problem of finding an optimal elimination order is known to be NP-complete [2].

If only a subset S of VG must be eliminated, as is the case when there are free variables, the

definition of the induced-width of G for the elimination of the variables in S is similar. The only

difference is that the sequence if hypergraphs stops when all variables in S have been eliminated.

In the following, we consider that the set of variables to eliminate is implicit.

Example 6.26. The induced-width of the hypergraph G associated with the CSP of the previous

example can be shown to be wG = 2 (o1 is an optimal elimination order).

6.5.2 Constrained induced-width

In the multi-operator case however, there are constraints on the elimination order because the

alternating elimination operators do not generally commute. The complexity can then be quantified

using the constrained induced-width [66, 94].

Definition 6.27. Let � be a partial order on V . The set of linearizations of �, denoted lin(�),

is the set of total orders �′ on V satisfying (x � y)→ (x �′ y).

Definition 6.28. (Constrained induced-width) Let G = (VG , HG) be a hypergraph and let � be a

partial order on VG . The constrained induced-width wG(�) of G with constraints on the elimination

order given by � (“x ≺ y” stands for “y must be eliminated before x”) is defined by wG(�) =

mino∈lin(�) wG(o).

The constraints on the elimination order induced by the sequence of variable eliminations Sov

can be formally defined.

8. More precisely, when eliminating one variable x, nbv ≤ 1 + wG(o) variables are considered. For each of the
dnbv assignments of these variables, one must combine the values given by r scoped functions. In the end, the time
complexity of a variable elimination step is O(r · dnbv) ≤ O(r · d1+wG (o)). Summing on all the elimination steps can
be shown to give a time complexity O(|Φ| · d1+wG(o)) [78]. Similarly, the space complexity is O(|Φ| · d1+wG(o)) too.

104 CHAPTER 6. FIRST GENERIC ALGORITHMS

Definition 6.29. Let Q = (Sov,N) be a query on a PFU network such that Sov = (op1, S1) ·

(op2, S2) · · · (opq, Sq). The partial order �Sov induced by Sov is given by S1 ≺Sov S2 ≺Sov . . . ≺Sov

Sq. It forces variables in Sj to be eliminated before variables in Si whenever i < j.

For example, the partial order induced by the sequence of operator-variables pairs Sov =

minx1,x2

∑

x3,x4
maxx5 is defined by {x1, x2} ≺Sov {x3, x4} ≺Sov x5.

The theoretical complexity of algorithm VE-answerQ can now be provided, using the con-

strained induced-width. Note that this complexity result holds for any formalism covered by the

PFU framework.

Proposition 6.30. Let G = (V,Φ) be a graphical model. Let Sov be a sequence of operator-

variable(s) pairs on V . If an induced-width optimal elimination order is used, algorithm VE-

answerQ(Sov,⊛,Φ) is time and space O(|Φ| · d1+wG(�Sov)), where d is the maximum domain size

of the variables in V .

Therefore, given a query Q = (Sov,N) on a PFU network N = (V,G, P, F, U),

• answering a query in the semiring case is time and space O(|P ∪F ∪U | ·d1+wG(�Sov)), where

G = (V, {sc(ϕ) |ϕ ∈ P ∪ F ∪ U}) is the hypergraph associated with the PFU network;

• provided that condition (C): “sc({ϕ ∈ Fact(c) | sc(ϕ) ⊂ paG(c)}) ⊂ sc({ϕ ∈ Fact(c) | sc(ϕ) *

paG(c)})” holds for every component c, answering a query in semigroup case is also time and

space O(|P ∪F ∪U | ·d1+wG(�Sov)), where G = (V, {sc(ϕ) |ϕ ∈ P ∪F ∪U}) is the hypergraph

associated with the PFU network.

Condition (C) is a technical point ensuring that the updating of the definition of Φ+x in

the semigroup case (for which Φ+x = {ϕ ∈ Φ |x ∈ sc(ϕ)} ∪ Φ0, where Φ0 equals ∅ or

Φ ∩ Fact(c(x))) does not change the constrained induced-width. 9 It can be shown that as

soon as the plausibility structure satisfies “(p⊗p p1 = p⊗p p2 = 1p)→ (p1 = p2)”, condition

(C) can be enforced on every PFU network. This sufficient condition “(p⊗p p1 = p⊗p p2 =

1p)→ (p1 = p2)” is satisfied in all standard plausibility structures;

• in the general case, answering a query is time and space O((|P |+|F |+1)·d1+wG (�Sov)), where

G = (V, {sc(ϕ) |ϕ ∈ P ∪F ∪{U0}}) is the hypergraph associated with the PFU network after

merging all utility functions into a unique utility function U0.

6.6 Decreasing the constrained induced-width

Since a linear variation of the constrained induced-width yields an exponential variation of the

theoretical complexity, it is worth working on the two parameters wG(�Sov) depends on: the

partial order �Sov and the hypergraph G.

9. (C) enables us to assume without loss of generality that for every environment component c, the scope of
⊕pc (⊗pPi∈F act(c),sc(Pi)∩c 6=∅ Pi) contains the scope of each plausibility function Pi ∈ Fact(c) such that sc(Pi) ⊂

paG(c). Informally, (C) says that a parent must be “linked” with variables of its son components.

6.6. DECREASING THE CONSTRAINED INDUCED-WIDTH 105

6.6.1 Weakening constraints on the elimination order

Weakening the partial order �Sov induced by a sequence of eliminations Sov is known to be useless

in contexts like Maximum A Posteriori hypothesis [94] on Bayesian networks, where there is only

one alternation of max and sum marginalizations. But it can decrease the constrained induced-

width as soon as there are more than two levels of alternation.

Indeed, let us consider a stochastic CSP (V, P,C) (cf Definition 2.21 page 30) where V is the

sequence of variables [x1, . . . , xq, y, xq+1], P = {Py} contains a probability distribution over y, the

unique stochastic variable, and C = {cy,x1} ∪ {cxi,xq+1 | i ∈ {1, . . . , q}}) contains constraints cS

over sets of variables S. The PFU-representation of this problem is given in Figure 6.5. Solving

this stochastic CSP is equivalent to computing

maxx1,...,xq

∑

y maxxq+1

(

Py × cy,x1 ×
∏

i∈{1,...,q}cxi,xq+1

)

.

Sequence of eliminations:
Sov = maxx1,...,xq

∑

y maxxq+1

x3x2

x1 xq+1y

xq

Figure 6.5: Stochastic CSP example.

If one uses G = (VG , HG), with VG = {x1, . . . , xq+1, y} and HG = {sc(c) | c ∈ C} together with

�1=�Sov ({x1, . . . , xq} ≺1 y ≺1 xq+1), the constrained induced-width is wG(�1) = q, because �1

forces xq+1 to be eliminated first, which creates the hyperedge {x1, . . . , xq} of size q.

However, the scopes of the functions involved, and namely the fact that y is “linked” only with

x1, enable us to write the quantity to compute as

maxx1

((
∑

y Py × cy,x1

)

×
(

maxx2,...,xq+1

(
∏

i∈{1,...,q} cxi,xq+1

)))

.

This rewriting shows that the only actual constraint on the elimination order is that y must be

eliminated before x1. This constraint, modeled by �2 defined by x1 ≺2 y, gives wG(�2) = 1,

for example with the elimination order xq+1 ≺ xq ≺ . . . ≺ x2 ≺ x1 ≺ y. Hence, the complexity

decreases from O((q + 2) · d1+q) to O((q + 2) · d2) (there is a (q+ 2) factor because there are q+ 2

scoped functions).

This example shows that defining constraints on the elimination order from the sequence of

operator-variables Sov only is uselessly strong and may be exponentially suboptimal compared

to a method considering the function scopes. In other words, it may be possible to reveal extra

freedoms in the elimination order. It is also obvious that weakening constraints on the elimination

order can only decrease the constrained induced-width:

Proposition 6.31. If G = (VG , HG) is a hypergraph and if �1, �2 are two partial orders on VG

such that (x �2 y)→ (x �1 y) (�2 is weaker than �1), then wG(�2) ≤ wG(�1).

106 CHAPTER 6. FIRST GENERIC ALGORITHMS

6.6.2 Working on the hypergraph

Let us show how the constrained induced-width can be decreased by working on the hypergraph

G.

First, normalization conditions can be used in order to avoid some useless computations. For

example, computing
∑

x Px | pa(x) is useless if Px | pa(x) denotes a conditional probability distribution

of x given pa(x). This means that x and the hyperedges associated with Px | pa(x) can be removed

from the hypergraph G.

Second, decompositions may exist which enable us to use more than just the distributivity of a

combination operator ⊗ over an elimination operator ⊕. To illustrate this point, let us consider an

influence diagram equivalent to the computation of maxx1,...,xq

∑

y Py ·
(
Uy,x1 + · · ·+ Uy,xq

)
. Its

PFU-representation is given in Figure 6.6 (left part).

Sequence of eliminations:
Sov = maxx1,...,xq

∑

y

duplication
of y

y

xq

x3x2

x1

x1 y

y

xq

y

x2

y

x3

Figure 6.6: Influence diagram example (before and after duplication).

The basic hypergraph G1 = ({x1, . . . , xq, y}, {{y}, {y, x1}, . . . , {y, xq}}), together with �1 de-

fined by {x1, . . . , xq} ≺1 y, gives a theoretical complexity O((q+1) ·dwG1 (�1)+1) = O((q+1) ·dq+1).

However, one can write:

maxx1,...,xq

∑

y Py ·
(
Uy,x1 + · · ·+ Uy,xq

)
= (maxx1

∑

y Py · Uy,x1) + · · ·+ (maxxq

∑

y Py · Uy,xq
)

Such an implicit repeated duplication of y makes the complexity decrease to O(q · d2) = O(q ·

d1+wG2 (�2)), where G2 is the hypergraph defined by the variables {x1, . . . , xq, y
(1), . . . , y(q)} and

by the set of hyperedges {{x1, y
(1)}, . . . , {xq, y(q)}}, and where �2 is given by x1 ≺2 y(1), . . . ,

xq ≺2 y
(q). This method, which uses the property

∑

S (U1 + U2) = (
∑

S U1)+(
∑

S U2), duplicates

variables “quantified” by
∑

, so that computations become more local.

Another example where duplication is applicable is QCSP. For example, a QCSP equiva-

lent to computing ∃x1 . . . ∃xq∀y
(
ϕx1,y ∧ . . . ∧ ϕxq,y

)
can also be written, after duplicating y, as

∃x1, . . . ,∃xq
(
(∀y1ϕx1,y1) ∧ . . . ∧

(
∀yqϕxq,yq

))
. This makes the constrained induced-width decrease

from q to 1.

Proposition 6.32 shows that such a duplication mechanism can be used only in one specific case,

when the elimination operator is equal to the combination operator. This applies to eliminations

with ∀ on QBFs and QCSPs, with min on possibilistic MDPs, or with + on influence diagrams.

6.7. SUMMARY 107

Proposition 6.32. Let ⊛ and ⊙ be two operators such that (E,⊛) and (E,⊙) are monoids. Then,

(⊛x (ϕ1 ⊙ ϕ2) = (⊛x ϕ1)⊙ (⊛x ϕ2) for all scoped functions ϕ1, ϕ2)↔ (⊛ = ⊙).

When feasibilities are involved, the above result must be slightly updated.

Proposition 6.33. Let ⊛ and ⊙ be two operators such that (E,⊛) and (E,⊙) are monoids. ⊛

and ⊙ are extended to E ∪ {♦} by x⊛ ♦ = ♦⊛ x = x and x⊙ ♦ = ♦⊙ x = ♦.

If ⊛ = ⊙ on E, then, for all scoped functions ϕ1, ϕ2 such that (ϕ1(A) = ♦) ↔ (ϕ2(A) = ♦),

⊛x (ϕ1 ⊙ ϕ2) = (⊛x ϕ1)⊙ (⊛x ϕ2).

This entails for example that if F0 is a feasibility function, if U1, U2 are two real utility functions,

then
∑

x(F0 ⋆ (U1 + U2)) = (
∑

x(F0 ⋆ U1)) + (
∑

x(F0 ⋆ U2)).

Proposition 6.34 proves that duplicating is always better than not.

Proposition 6.34. Let φx,Si
be a scoped function of scope {x} ∪ Si onto a set E for any i ∈

[1,m]. For all commutative and associative operator ⊛ on E, the direct computation of ψ =

⊛x (φx,S1 ⊛ · · ·⊛ φx,Sm
) always requires more operations than the direct computation of (⊛x φx,S1)⊛

· · ·⊛ (⊛x φx,Sm
).

Moreover, the direct computation of ψ results in a time complexity O(m · d1+|S1∪...∪Sm|),

whereas the direct computation of the m quantities in the set
{
⊛x ϕx,Sj

| j ∈ {1, . . . ,m}
}

is O(m ·

d1+maxj∈{1,...,m} |Sj|).

6.7 Summary

This chapter has introduced a generic variable elimination algorithm, called VE-answerQ, capable

of answering PFU queries. This algorithm is able to benefit from the factorization into local

functions as soon as one of the two disjoint decomposability axioms AxSR and AxSG is satisfied.

Its use is summarized in Table 6.2 page 98, which shows that in the semiring case, its application

is very natural, in the semigroup case, it requires the use of potentials, and in the general case, it

requires to combine all utility functions into a unique global utility.

The principle of this algorithm is to eliminate variables in an order somehow compatible with the

sequence Sov of multi-operator eliminations, and its time and space complexities are exponential

in the constrained induced-width. Such an approach suffices to obtain the correct result, but, as

shown in the last part of the chapter, does not take advantage of all the actual structural features

of multi-operator queries:

1. First, defining constraints on the elimination order only from the sequence of operator-

variable(s) pairs Sov can be restrictive, since reordering freedoms can appear if the scopes of

the local functions involved are considered.

2. Second, algorithm VE-answerQ uses just the distributivity of a combination operator over

elimination operators. But additional decompositions may exist based on the duplication

mechanism mentioned earlier.

3. Third, PFU networks include some normalization conditions. These have not been used so

far. Not using them can completely mask the real complexity of a problem.

108 CHAPTER 6. FIRST GENERIC ALGORITHMS

Using the three previous mechanisms can lead to an improved constrained induced-width, and

doing so to possible exponential gains in theoretical complexity. These statements lead us to

introduce more advanced techniques able to reveal the actual structure of multi-operator queries.

Chapter 7

Structuring multi-operator queries

The constrained induced-width can be decreased and exponential gains in complexity obtained

thanks to an accurate structural analysis of multi-operator queries. As previously mentioned, this

analysis can bring to light freedoms in the elimination order, reveal some possible decompositions,

and remove useless computations. The goal of this chapter is to systematize the structuration of

multi-operator queries in a preprocessing step, and then to exploit it for the best in a new variable

elimination algorithm.

It is important to note that the techniques we introduce are not just generalizations of existing

methods defined in formalisms subsumed by the PFU framework. Thus, they contribute to all sub-

sumed formalisms, including QBFs, stochastic SAT, extended-stochastic SAT, QCSPs, stochastic

CSPs, probabilistic and possibilistic influence diagrams, or factored MDPs. This again shows the

interest of defining generic algorithms in a generic algebraic framework.

As we shall see, structuration steps lead us to define a new generic computational architecture

called the multi-operator cluster DAG architecture. The latter answers queries more efficiently than

algorithm VE-answerQ introduced in the previous chapter, in terms of induced-width.

7.1 Back on the multi-operator queries considered

In the following, we consider that either AxSR
′

or AxSG
′

holds (cf. Chapter 6 pages 94 and 99;

note that the general case is a sub-case of the semiring one, at the price of aggregating all utility

functions). This is equivalent to assume that:

• Instead of having a plausibility structure, a utility structure, and an expected utility struc-

ture, we simply have one totally ordered MCS (E,⊕,⊗) (cf Definition 6.6 page 94).

• The normalization conditions over environment components c of a PFU network (V,G, P, F, U)

become ⊕c(⊗Pi∈Fact(c) Pi) = 1E .

• The operational answer to a query Q = (Sov, (V,G, P, F, U)) becomes:

– Ans(Q) = Sov((∧Fi∈F Fi) ⋆ (⊗Pi∈P Pi)⊗ (⊗Ui∈U Ui)) in the semiring case (AxSR
′

),

– Ans(Q) = Sov((∧Fi∈F Fi) ⋆ (⊗Pi∈P Pi)⊗ (⊕Ui∈U Ui)) in the semigroup case (AxSG
′

).

These three points exactly state the axioms which are assumed to hold in the following.

109

110 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

7.2 From queries to computation nodes

Before introducing the structuration process, we define new elements, called computations nodes.

The introduction of such elements is motivated by the fact that the representation tools used so

far prevent us from exploiting some mechanisms. To be more concrete, the duplication mechanism

cannot be used on potentials, since in general ⊞x(π1 ⊠ π2) 6= (⊞x π1)⊠ (⊞x π2) even if ⊕ux(U1 ⊗u

U2) = (⊕ux U1)⊗u (⊕ux U2). We need to come back to a more basic representation enabling us to

benefit from all algebraic properties.

Definition 7.1. A computation node on a set E is:

• either a scoped function ϕ taking values in E (atomic computation node);

• or a triple (sov,⊛, N) such that (E,⊛) is a commutative monoid, N is a set of computation

nodes, and sov is a sequence of operator-variables pairs involving operators op such that

(E, op) is a commutative monoid.

For example, if P1, P2 are two plausibility functions and if U1, U2 are two utility functions,

then P1, P2, U1, U2 are atomic computation nodes. The triples n1 = (
∑

x,×, {P1}) and n2 =

(
∑

y,z,t,×, {P2, U2}) are also computation nodes, as well as n3 = (minq maxr,+, {n1, n2, U1}).

Informally, a computation node represents a computation to perform. This is made explicit by the

definition of the value of a computation node.

Definition 7.2. Let n be a computation node. The value of n, denoted val(n), is defined by

val(n) =

{

n if n is atomic

sov(⊛n′∈N val(n
′)) if n = (sov,⊛, N)

The set of variables eliminated by n, denoted Ve(n), is empty if n is atomic, and equals the set of

variables appearing in sov if n = (sov,⊛, N).

The scope of n, denoted sc(n), is defined by sc(n) =

{

sc(ϕ) if n = ϕ is atomic

(∪n′∈N sc(n
′))− Ve(n) if n = (sov,⊛, N)

The set of sons of n, denoted Sons(n), is a set of computation nodes which is empty if n is

atomic, and which equals N if n = (sov,⊛, N).

For example, the value of n1 is val(n1) =
∑

x P1, the value of n2 is val(n2) =
∑

y,z,t(P2 ×U2),

and the value of n3 is val(n3) = minq maxr(val(n1) + val(n2) + U1). Hence, a node (sov,⊛, N)

defines a sequence of eliminations sov on a ⊛-combination of computation nodes. It can be repre-

sented as in Figure 7.1 as the root of a tree of computation nodes.

sov ⊛ ϕ2 ϕk

n1 n2 nl

ϕ1

Figure 7.1: A computation node (sov,⊛, N), where {ϕ1, . . . , ϕk} (resp. {n1, . . . , nl}) is the set
of atomic (resp. non-atomic) computation nodes in N .

We extend the previous definitions to sets of computation nodes N by sc(N) = ∪n′∈Nsc(n
′),

Ve(N) = ∪n′∈NVe(n
′), and Sons(N) = ∪n′∈NSons(n

′).

7.2. FROM QUERIES TO COMPUTATION NODES 111

Moreover, for all op ∈ {min,max,⊕}, we define the set of nodes in N performing eliminations

only with op by N [op] = {n ∈ N |n = (opS ,⊛, N
′)}. The set N − N [op] is denoted N [¬op]. For

example, for N = {n1, n2, n3}, we have N [+] = {n1, n2} and N [¬+] = {n3}.

Finally, given a set of computation nodes N , we define N+x (resp. N−x) as the set of nodes

in N whose scope contains x (resp. does not contain x): N+x = {n ∈ N |x ∈ sc(n)} (resp.

N−x = {n ∈ N |x /∈ sc(n)}).

It is easy to express the answer to a queryQ = (Sov, (V,G, P, F, U)) as the value of a computation

node:

• In the semiring case, Ans(Q) = val(n0) where n0 = (Sov,⊗, P ∪ F ∪ U).

• In the semigroup case, Ans(Q) = val(n0) where n0 = (Sov,⊕, {(∅,⊗, P ∪ F ∪ {Ui}), Ui ∈

U}). Indeed, val(n0) = Sov(⊕Ui∈U (⊗ϕ∈P∪F∪{Ui} ϕ)) = Sov((∧Fi∈F Fi) ⋆ (⊗Pi∈P Pi) ⊗

(⊕Ui∈U Ui)).

We also explicitly define the notion of elimination order compatible with a sequence of elimi-

nations.

Definition 7.3. An elimination order o over V is compatible with a sequence Sov over V iff

o ∈ lin(�Sov). If op(x) corresponds to the elimination operator of x in Sov, then Sov(o) denotes

the sequence of operator-variable (o(k) is the kth variable eliminated in o):

Sov(o) = op(o(n))o(n) · · · op(o(2))o(2) · op(o(1))o(1)

Example 7.4. Let Sov = minx1,x2

∑

x3,x4
maxx5 . The elimination order o : x1 ≺ x2 ≺ x4 ≺

x3 ≺ x5 is compatible with Sov and Sov(o) = minx1 minx2

∑

x4

∑

x3
minx5 . The elimination order

o′ : x4 ≺ x2 ≺ x1 ≺ x3 ≺ x5 is not compatible with Sov because x4 ≺ x2 whereas x2 ≺Sov x4.

Towards a two-step structuration process

Exhibiting the query structure is equivalent to rewriting the initial computation node n0 in order

to reveal hidden structures. This is done thanks to a two-step structuration process:

1. We first seek the macrostructure of a multi-operator query. This corresponds to determine

the actual freedoms in the elimination order and the possible decompositions (but not to

determine an optimal elimination order).

This macrostructure is obtained by using rewriting rules which simulate the decompositions

induced by the variable eliminations from the right to the left of Sov(o) for an elimination

order o compatible with Sov. Rewriting rules R : n1 n2 transform a computation node

n1 into another computation node n2 denoted n2 = R(n1). Their use may be restricted by

preconditions. Three types of rewriting rules are used to get the macrostructure:

• decomposition rules, which decompose the structure using the duplication technique;

• recomposition rules, which reveal freedoms in the elimination order;

• simplification rules, which remove useless computations from the architecture, thanks

to normalization conditions.

112 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

2. Once the macrostructure is built, the second structuration step consists in exploiting the

freedoms in the elimination order revealed by the first step. This will be done using cluster-

tree decomposition techniques, enabling us to take advantage of finer structural features.

The structuration process differs between the semiring and semigroup cases, which do not have

the same structural characteristics. We present the whole structuration for the semiring case first.

7.3 Structuring multi-operator queries in the semiring case

We here assume that there is no feasibility function since it simplifies the presentation greatly.

The case with feasibilities is considered in Section 7.3.6. Also, in order for the rewriting rules

to be more readable, computation nodes (sov,⊗, N) are written simply as (sov,N), because the

combination operator of computation nodes is always ⊗ in the semiring case.

7.3.1 Building the macrostructure of a query using rewriting rules

Let o be an elimination order compatible with the sequence Sov of the query. The initial un-

structured computation node is n0 = (Sov(o),⊗, P ∪ U), denoted (Sov(o), P ∪ U). This node can

be seen as a tree of Computation Nodes (CNT) and is therefore denoted as CNT0(Q, o). In the

example of Figure 7.2, CNT0(Q, o) is the first node. The application of rewriting rules generates

a sequence of trees of computation nodes. For all k ∈ {0, . . . , |Sov| − 1}, the macrostructure at

step k + 1, denoted CNTk+1(Q, o), is obtained from CNTk(Q, o) by considering the rightmost

remaining elimination and by applying a decomposition rule DR and a recomposition rule RR:

1. Decomposition rule DR uses the distributivity of ⊗ over the elimination operators (so that

when eliminating a variable x, only scoped functions having x in their scopes are considered),

together with possible duplications. Rule DR implements both types of decompositions.

DR

(

sov. op
x
, N

)

{

(sov,N−x ∪ {(opx, {n}) |n ∈ N
+x}) if op = ⊗

(sov,N−x ∪ {(opx, N
+x)}) otherwise

In Figure 7.2, DR transforms the initial structure CNT0(Q, o) = (minx1 maxx2 maxx3 minx4

maxx5 , {ϕx3,x4 , ϕx1,x4 , ϕx1,x5, ϕx2,x5 , ϕx3,x5}) into CNT1(Q, o) = (minx1 maxx2 maxx3 minx4 ,

{ϕx3,x4, ϕx1,x4 , (maxx5 , {ϕx1,x5 , ϕx2,x5 , ϕx3,x5})}) (case op 6= ⊗, using just the distributivity

of ∧ over max).

Eliminating x4 using min then transformsCNT1(Q, o) into CNT2(Q, o) = (minx1 maxx2 maxx3 ,

{(minx4 , {ϕx3,x4}), (minx4 , {ϕx1,x4}), (maxx5 , {ϕx1,x5 , ϕx2,x5 , ϕx3,x5})}) (case op = ⊗ = min,

using a duplication of x4). Note that in the semiring case, the duplication is actually usable

iff op is idempotent. 1

2. Recomposition rule RR aims at revealing freedoms in the elimination order for the nodes

1. Indeed, assume that op = ⊗, with op ∈ {min, max,⊕}. If op = ⊕, then, for all e ∈ E, 0E ⊕ e = 0E ⊗ e, i.e.
e = 0E , hence E = {0E} and op = max = ⊗ = min. If op = min or max, then it is also obviously idempotent.

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 113

CNT1(Q, o)

CNT0(Q, o)

CNT2(Q, o)

CNT3(Q, o)

CNT5(Q, o)

ϕx1,x4

minx1 maxx2

ϕx1,x4minx4

ϕx1,x4minx4 minx4ϕx3,x4ϕx1,x5maxx5 ϕx2,x5ϕx3,x5

minx4 ϕx3,x4ϕx1,x5maxx5 ϕx2,x5ϕx3,x5

maxx3

ϕx3,x5ϕx1,x4ϕx1,x5ϕx2,x5ϕx3,x4minx1 maxx2 maxx3 minx4 maxx5

ϕx3,x5maxx5

minx1 maxx2 maxx3 minx4 ϕx3,x4

ϕx1,x5 ϕx2,x5

minx1 maxx2 maxx3

minx1 maxx2

ϕx1,x4minx4ϕx1,x5maxx3,x5 ϕx2,x5ϕx3,x5

minx4 ϕx3,x4

ϕx1,x5 ϕx3,x5

ϕx1,x4minx1,x4
minx1

minx4 ϕx3,x4

ϕx2,x5maxx2,x3,x5

DR,x5

DR,x4

DR,x3

+DR,x1

+RR,x2

RR,x3

+RR,x1

DR,x2

Figure 7.2: Application of the rewriting rules on a QCSP example:
minx1 maxx2,x3 minx4 maxx5(ϕx3,x4 ∧ ϕx1,x4 ∧ ϕx1,x5 ∧ ϕx2,x5 ∧ ϕx3,x5), with the elimination
order o : x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5.

created by DR.

RR

(

op
x
, N

)

(

op
{x}∪Ve(N [op])

, N [¬op] ∪ Sons(N [op])

)

RR means that if a computation node performs an elimination opx and has sons perform-

ing eliminations opS with op too, then there is no reason to eliminate variables in S before

x. RR makes it explicit by merging the corresponding computation nodes. In Figure 7.2,

RR transforms the node (maxx3 , {(minx4 , {ϕx3,x4}), (maxx5 , {ϕx1,x5 , ϕx2,x5 , ϕx3,x5})}), cre-

ated by DR(CNT2(Q, o)), into (maxx3,x5 , {(minx4 , {ϕx3,x4}), ϕx1,x5 , ϕx2,x5 , ϕx3,x5}), which

appears in CNT3(Q, o). In other words, RR reveals that although x3 ≺Sov x5, there is

actually no need to eliminate x5 before x3.

More formally, for all k ∈ {0, . . . , |Sov| − 1}, the structure CNTk+1(Q, o) at step k + 1 is

obtained from the structure CNTk(Q, o) at step k by

CNTk+1(Q, o) = rewrite(CNTk(Q, o)) (7.1)

where

rewrite((sov · op
x
, N)) =

{

(sov,N−x ∪ {RR((opx, {n})), n ∈ N
+x}) if op = ⊗

(sov,N−x ∪ {RR((opx, N
+x)})) otherwise

114 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

This means that when variable x is eliminated, we decompose the computations, using duplication

if op = ⊗, and then recompose the created node(s) in order to reveal freedoms in the elimination

order. In fact, function rewrite specifies explicitly an order in which rules must be applied because

a chaotic iteration of the rules does not converge (for example, rules DR and RR may be infinitely

alternately applied).

Given a query Q = (Sov,N) and an elimination order o compatible with Sov, the final com-

putation nodes tree obtained, denoted CNT (Q, o), is

CNT (Q, o) = CNT|Sov|(Q, o) = rewrite|Sov|(CNT0(Q, o))

also denoted as

CNT (Q, o) = rewrite∗(CNT0(Q, o))

At each step, a non-duplicated variable appears exactly once in the tree and a duplicated one

appears at most once in each branch of the tree.

Using normalization conditions We have not used so far normalization conditions such as

⊕c(⊗Pi∈Fact(c) Pi) = 1E for every environment component c. These normalization conditions can

allow useless computations to be removed from the architecture. That is why we introduce a

simplification rule SR:

SR [Precond. : (c ∈ CE(G)) ∧ (c ∩ (S ∪ sc(N)) = ∅)]

(⊕
S∪c

, N ∪ Fact(c)) (⊕
S
, N)

For example, SR transforms a node n = (
∑

x,y,z, {Px | y,z, Py, Pz , cy}), obtained e.g. when

structuring a stochastic CSP, into a simplified node n′ = (
∑

y,z, {Py, Pz, cy}) by using
∑

x Px | y,z =

1. Applying SR again gives an even simpler computation node n′′ = (
∑

y,, {Py, cy}). SR cannot

be applied again on n′′. Intrinsically, although simplifications are available, they can remain

undetected during the specification of a query because it can be difficult for a specifier to identify

and use all available conditional independences.

Proposition 7.5. Let Q = (Sov,N) be a query and let o ∈ lin(�Sov). Let n be a computation

node obtained during the construction of CNT (Q, o).

Then, SR cannot be applied an infinite number of times on n. Moreover, if n1 and n2 are two

computation nodes obtained by applying SR as many times as possible on n, then n1 = n2.

Proposition 7.5 shows that a recursive application of rewriting rule SR leads to a unique fixed

point. In the following, this fixed point is denoted by SR∗(n).

It is important to note that SR itself can reveal new decompositions and new reordering free-

doms, as shown below.

Example 7.6. Assume that AxSR
′

holds with ⊕ = + and ⊗ = ×. Let us consider the query

Q = (
∑

x3
maxx5

∑

x4
maxx6

∑

x1,x2
,N), where N = (V,G, P, F, U) is the PFU network given in

Figure 7.3(a). We use the elimination order o : x3 ≺ x5 ≺ x4 ≺ x6 ≺ x1 ≺ x2. After applying

DR and RR for
∑

x2
,
∑

x1
, maxx6 , and

∑

x4
successively, we obtain the macrostructure given in

Figure 7.3(b).

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 115

Using normalization condition
∑

x4
(P4 ·P5) = 1 on node n = (

∑

x1,x2,x4
, {P1, P2, P3, P4, P5, U1,

U2}) leads to the simplified node SR∗(n) = (
∑

x1,x2
, {P1, P2, P3, U1, U2}). It is then possible

to rewrite SR∗(n) itself, since it makes appear a new possible decomposition, as shown in Fig-

ure 7.3(c). This decomposition was hidden because x4 created links between x1 and x2, which are

actually completely unrelated. The computation node rewrite∗(SR∗(n)), equal to (∅, N ′), can be

reintegrated to the global macrostructure by replacing {n} by N ′, as done in Figure 7.3(d).

Applying rewriting rules DR and RR for the remaining eliminations maxx5 and
∑

x3
leads

to the macrostructure given in Figure 7.3(e), which can be simplified by replacing node n′ =

(
∑

x1,x3
, {P1, P3, U1}) by n′′ = (

∑

x1
, {P1, U1}), thanks to the normalization condition

∑

x3
P3 = 1.

The final macrostructure obtained is given in Figure 7.3(f). We can say that this macrostructure

was not obvious in the initial Sov sequence.

o : x3 ≺ x5 ≺ x4 ≺ x6 ≺ x1 ≺ x2

P2
P1

P4, P5P3

U3

maxx6 U3
P1P2P3

P

x1x2 U1U2

P2U2
P

x2
P1P3U1

P

x1

maxx6 U3

P2U2
P

x2

P1P3U1
P

x1

scoped functions DAG

CNT (Q, o)

P4

P2U1

P1

P3

P5

U2

P

x3
maxx5

P1P2P3
P4P5U1U2

P

x1x2x4

P1P2P3
P4P5U1U2

P

x1x2x4

maxx5x6

P2U2
P

x2

U3P1P3U1
P

x1,x3
maxx5x6

P2U2
P

x2

U3P1U1
P

x1

P

x3
maxx5

Sov :
P

x3
maxx5

P

x4
maxx6

P

x1,x2

{x6}

{x5}{x1} {x2}

{x4}{x3}

x5

x6

SR∗

rewrite∗

SR∗ + rewrite∗

R
R
+
D

R

(a)

(b)

(c)

(d)

(e) (f)

x2

x4x3

x1

Figure 7.3: Macrostructuration of a query using simplification rule SR.

The use of rule SR is formalized as follows. We introduce a function simplify such that:

simplify((sov,N)) = (sov, {n ∈ N |SR∗(n) = n} ∪ (∪
n∈N,SR∗(n) 6=n

Sons(rewrite∗(SR∗(n)))))

116 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

In other words, function simplify enables us to simplify some nodes using SR∗ and to restructure

them using rewrite∗, in order to make new decompositions appear in the simplified nodes. In the

previous example, simplify transforms

(
∑

x3
maxx5 , {(

∑

x1,x2,x4
, {P1, P2, P3, P4, P5, U1, U2}), (maxx6 , {U3})})

into

(
∑

x3
maxx5 , {(

∑

x1
, {P1, P3, U1}), (

∑

x2
, {P2, U2}), (maxx6 , {U3})}),

i.e. it transforms the structure given in Figure 7.3(b) into the structure given in Figure 7.3(d).

Function simplify is applied after the treatment of each block of variables eliminated with ⊕,

so that as many normalization conditions as possible can be used simultaneously.

More formally, we update the previous formulation given in Equation 7.1 by: for all k ∈

{0, . . . , |Sov| − 1},

CNTk+1(Q, o) =

{

simplify(rewrite(CNTk(Q, o)) if op(o(k + 1)) = ⊕ 6= op(o(k + 2))

rewrite(CNTk(Q, o)) otherwise

The tree of computation nodes obtained after these steps is still denoted CNT (Q, o).

Some good properties of the final macrostructure obtained

Unicity Theorem 7.9 shows that the tree of computation nodes CNT (Q, o) obtained given a

query Q = (Sov,N) and an elimination order o is actually independent from the arbitrary elimi-

nation order o compatible with Sov chosen at the beginning.

Lemma 7.7. For all op ∈ {min,max,⊕}, if CNT = (sov · opx · opy, N) and CNT ′ = (sov ·

opy · opx, N), then rewrite2(CNT) = rewrite2(CNT ′).

Lemma 7.8. Given an elimination order o ∈ lin(�Sov), any elimination order o′ ∈ lin(�Sov) can

be obtained from o by successive permutations of adjacent eliminations.

Theorem 7.9. Let Q = (Sov,N) be a query. Then, for all o, o′ ∈ lin(�Sov), CNT (Q, o) =

CNT (Q, o′).

This allows us to denote CNT (Q, o) simply as CNT (Q).

Soundness The soundness of the created macrostructure, which has not been proved so far, is

provided by Theorem 7.16. This theorem is preceded by preliminary lemmas which show that the

rewriting process preserves nodes values.

Lemma 7.10. Rewriting rule DR is sound, i.e. val(DR(n)) = val(n) holds.

Lemma 7.11. Let RR′ : (opS , N1 ∪ {(opS′ , N2)}) (opS∪S′ , N1 ∪N2). If S′ ∩ (S ∪ sc(N1)) = ∅

and N1 ∩N2 = ∅, then RR′ is a sound rewriting rule.

Lemma 7.12. Let n = (opx, N) be a computation node such that for all (n1, n2) ∈ N2, (n1 6=

n2) → ((Ve(n1) ∩ Ve(n2) = ∅) ∧ (Ve(n1) ∩ sc(n2) = ∅)), and such that x /∈ Ve(n) for all n ∈ N .

Then val(RR(n)) = val(n).

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 117

Lemma 7.13. Let Q = (Sov,N) be a query and let o ∈ lin(�Sov). Let k ∈ {0, . . . , |Sov|} and let

n = (sov,N) be a computation node in CNTk(Q, o).

Then, for all (n1, n2) ∈ N [¬⊗]2, (n1 6= n2)→ ((Ve(n1) ∩ Ve(n2) = ∅) ∧ (Ve(n1) ∩ sc(n2) = ∅)).

Moreover, for all n ∈ N , Ve(n) ∩ Ve(CNTk(Q, o)) = ∅.

Lemma 7.14. Rewriting rule SR is sound i.e. val(SR(n)) = val(n) whenever its preconditions

are satisfied.

Lemma 7.15. Let Q = (Sov,N) be a query and let o ∈ lin(�Sov). Then, for all k ∈ {0, . . . , |Sov|−

1}, val(CNTk+1(Q, o)) = val(CNTk(Q, o)).

Theorem 7.16. Let Q = (Sov,N) be a query. Then, val(CNT (Q)) = Ans(Q).

Complexity of the macrostructuration process The macrostructure is usable only if its

computation is tractable. Based on the algorithm of Figure 7.4, which implements the macrostruc-

turation of a query, Proposition 7.17 gives an upper bound on the complexity when simplification

rule SR is not used. It shows that rewriting a query as a tree of mono-operator computation nodes

is easy.

begin

root← newNode(∅, ∅, P ∪ U, ∅)
while (sov = sov′ · ⊕x) do

sov ← sov′

if ⊕ 6= ⊗ then

n← newNode(⊕, {x}, ∅, ∅)
foreach n′ ∈ Sons(root) s.t. x ∈ sc(n′) do

sc(n)← sc(n) ∪ sc(n′)
Sons(root)← Sons(root)− {n′}
if op(n′) = ⊕ then

Ve(n)← Ve(n) ∪ Ve(n
′)

Sons(n)← Sons(n) ∪ Sons(n′)

else Sons(n)← Sons(n) ∪ {n′}
sc(n)← sc(n)− {x}
Sons(root)← Sons(root) ∪ {n}

else

foreach n′ ∈ Sons(root) s.t. x ∈ sc(n′) do

if op(n′) = ⊕ then

Ve(n
′)← Ve(n

′) ∪ {x}
sc(n′)← sc(n′)− {x}

else

n← newNode(⊕, {x}, {n′}, sc(n′)− {x})
Sons(root)← (Sons(root)− {n′}) ∪ {n}

return (root)
end

Figure 7.4: MacroStruct(sov, (V, P, U)) (instruction newNode(op, Ve, Sons, sc) creates a
computation node n = (opVe

, Sons) and sets sc(n) to sc.

In the algorithm of Figure 7.4, the root node of the tree of computation nodes is rewritten.

With each node n = (opS , N) are associated an operator op(n) = op, a set of sons Sons(n) = N

modeled as a list, and a set of variables eliminated Ve(n) = S modeled as a list too. The scope of

n is modeled using a table of |V | booleans. As long as the sequence of operator-variables is not

118 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

empty, the rightmost remaining elimination is considered. The pseudo-code just implements the

function rewrite, which dissociates the cases ⊕ 6= ⊗ and ⊕ = ⊗.

Proposition 7.17. If the simplification rule is not used, the time and space complexities of the

rewriting process in the semiring case are O(|V |2 · |P ∪ U |) and O(|V | · |P ∪ U |) respectively (if

P ∪ U 6= ∅ and V 6= ∅).

When SR is used, the complexity is still polynomial. 2

Towards a second structuration step The macrostructure obtained is a tree of mono-operator

computation nodes. We can now try to structure more finely the computations to be performed in

each of these mono-operator nodes. To do so, cluster-tree decomposition techniques can be helpful.

7.3.2 Preliminaries: cluster-tree decompositions

Cluster-tree decomposition techniques are generic tools, used for example for CSPs or BNs, which

exploit the topological properties of graphical models in order to split a problem into several smaller

and easier to solve independent parts [116, 2, 115, 73, 13, 76]. They are designed for problems

involving one combination operator and one elimination operator, which is the case of all individual

mono-operator computation nodes obtained after the macrostructuration phase.

We adapt the usual definition of a cluster-tree decomposition [115] in order to deal directly

with graphical models.

Definition 7.18. A cluster-tree decomposition of a graphical model M = (V,Φ) given a set of

variables S ⊂ V is a triple (T, V (.),Φ(.)) where:

• T = (C,E) is a tree. 3 Each c ∈ C is called a cluster;

• V (.) is a labeling function associating with each cluster c a set of variables V (c) such that

– ∪c∈C V (c) = V ;

– for all c1, c2, c3 ∈ C, if c3 is on the path from c1 to c2, then V (c1)∩V (c2) ⊂ V (c3); this

is called the running intersection property;

– there exists c ∈ C such that S ⊂ V (c);

• Φ(.) is a labeling function associating with each cluster c a set of scoped functions Φ(c) such

that {Φ(c) | c ∈ C} is a partition of Φ and sc(ϕ) ⊂ V (c) for every ϕ ∈ Φ(c).

The width of a cluster-tree decomposition is w = maxc∈C |V (c)| − 1. The tree-width of a graphical

model M given S is the minimal width over all the cluster-tree decompositions of M given S.

2. Indeed, in order to recursively apply SR on a computation node (⊕S , N), we can first detect the set C of
components c such that Fact(c) ⊂ N . This step is O(|N |). Then, for each c ∈ C, we can test whether c can
be removed by traversing N and S. This step is O(|V | · |N | + |S|) = O(|V | · |N |). As there are lesser than |V |
components in the PFU network, an upper bound on the time needed for one recursive application of SR on (⊕S , N)
is O(|V |2 · |N |) = O(|V |2 · |P ∪ U |). As the root always has at most |P ∪ U | sons, each step of recursive application
of SR on all sons of the root is O(|V |2 · |P ∪U |2), and therefore, as at most |V | variables are eliminated in Sov, the
application of SR during the rewriting process is O(|V |3 · |P ∪U |2). This bound is very naive and may be improved.

3. C is the set of vertices of T and E is the set of edges of T .

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 119

A standard result concerning cluster-tree decompositions is that the tree-width of a graphical

modelM given S equals the induced-width of the hypergraph associated withM for the elimination

of the variables in V − S. Therefore, seeking a cluster-tree decomposition with small width is

equivalent to seeking an elimination order yielding a small induced-width.

Several methods to build cluster-tree decompositions exist. One of the most popular is based

on graph triangulation techniques and proceeds as follows. Let G be the primal graph of the

hypergraph G = (V, {sc(ϕ), ϕ ∈ Φ} ∪ {S}) associated with a graphical model M = (V,Φ) given

S. If G is triangulated, i.e. if every cycle of length ≥ 4 has a chord, then it is easy to compute a

cluster-tree decomposition (T, V (.),Φ(.)) of M given S which has a minimal width. It suffices to

perform the following steps: 4

1. For each maximal clique of G, add a cluster c to the set of vertices of T and take V (c) as the

set of variables of the clique. This gives the set of clusters C and the labeling function V (.).

2. Build the weighted undirected graph G′ = (C,E′) for which there is an edge {c, c′} of weight

−|V (c) ∩ V (c′)| in E′ iff clusters c and c′ share common variables.

3. In order to get the edges of T = (C,E), build a minimum spanning tree of G′, for example

by using Prim’s algorithm [110]:

• create a set Ctmp containing one cluster c ∈ C

• while Ctmp 6= C, choose an edge {c, c′} in E′ with a minimum weight, and such that

c ∈ Ctmp and c′ /∈ Ctmp. Add this edge to E and add c′ to Ctmp.

4. Put each scoped function ϕ ∈ Φ in a unique cluster c ∈ C satisfying sc(ϕ) ⊂ V (c).

When G is not triangulated, one can first triangulate G and then build a cluster-tree decomposition

ofM given S based on the triangulated graph. Depending on the triangulation, the decomposition

obtained may have a suboptimal width, and seeking a triangulation which gives an optimal width

is NP-hard [2].

Example 7.19. Consider the CSP (V,Φ) where V = {x1, . . . , x15} and Φ = {ϕx1x2 , ϕx1x3 , ϕx2x4 ,

ϕx3x4 , ϕx4x6 , ϕx5x8x9 , ϕx6x7 , ϕx6x10 , ϕx7x8 , ϕx7x11 , ϕx10x11 , ϕx10x13x14 , ϕx12x13 , ϕx14x15}. Let us com-

pute a cluster-tree decomposition of this CSP given the set of variables {x1, x2}.

The primal graph G of the hypergraph associated with this CSP is given in Figure 7.5(a). G

is not triangulated because for example the cycle x1 → x2 → x4 → x3 of length 4 is chordless. In

order to triangulate G, we add the two dashed edges of Figure 7.5(b).

We then consider the set {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10} of maximal cliques of the triangulated

graph. In order to get an associated cluster-tree decomposition, we first build the weighted undirected

graph representing connected cliques, as in Figure 7.5(c). The weights are given by the number of

common variables between two cliques. Second, we build a minimum spanning tree of this graph

using Prim’s algorithm. This provides us with the edges of the cluster-tree decomposition. Last,

we associate each ϕ ∈ Φ with a cluster c satisfying sc(ϕ) ⊂ V (c) and obtain the cluster-tree

decomposition given in Figure 7.5(d).

4. We assume that G is connected; if not, one cluster-tree decomposition can be built per connected component
of G.

120 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

Φ(c9) = {ϕx12x13}

Φ(c7) = {ϕx7x11 , ϕx10x11}
Φ(c6) = {ϕx5x8x9}
Φ(c5) = {ϕx7x8}
Φ(c4) = {ϕx6x7 , ϕx6x10}
Φ(c3) = {ϕx4x6}

(c)

-1

-1

-1

-1

Φ(c8) = {ϕx10x13x14}

-2

Φ(c1) = {ϕx1x2 , ϕx2x4}
Φ(c2) = {ϕx1x3 , ϕx3x4}

-1

-2

-1

-1

-1
-1

-1

(a)

(d)

(b)

Φ(c10) = {ϕx14x15}

c2c2 c1

c3

c4

c5

c7
c9

c8

c10

c6

c1

c3

c4

c5

c7
c9

c8

c10

c6

V (c1) = {x1, x2, x4}
V (c2) = {x1, x3, x4}
V (c3) = {x4, x6}
V (c4) = {x6, x7, x10}
V (c5) = {x7, x8}
V (c6) = {x5, x8, x9}
V (c7) = {x7, x10, x11}
V (c8) = {x10, x13, x14}
V (c9) = {x12, x13}
V (c10) = {x14, x15}

x3

x8

x6

x7

x10

x11

x12

x13

x14

x15

x2
x3

x4

x1

x8
x9

x5
x2

x15

x14

x13

x12

x11

x10

x7

x6

x5

x1

x4

x9

Figure 7.5: Construction of a cluster-tree decomposition: (a) A primal graph; (b) Triangulation
of the primal graph (dashed edges); (c) Undirected graph corresponding to the set of maximal
cliques, where two cliques having k common variables are connected by an edge of weight −k;
(d) Cluster-tree decomposition, obtained by building a minimum spanning tree of the undirected
graph given in (c) and by assigning each scoped function to exactly one clique.

Cluster tree-decompositions are of interest from a computational point of view because they

implicitly express computational decompositions:

Proposition 7.20. Let (T, V (.),Φ(.)) be a cluster-tree decomposition of a graphical model M =

(V,Φ) given a set of variables S ⊂ V , where the scoped functions in Φ take values in a commutative

semiring (E,⊕,⊗). Let r be a cluster of T such that S ⊂ V (r). Let Sons(c) denote the set of

sons of a cluster c when T is rooted in r. Even if r has no parents, we take the convention

V (pa(r)) = S. The value val(c) of a cluster c is defined as val(c) = ⊕V (c)−V (pa(c))((⊗ϕ∈Φ(c) ϕ) ⊗

(⊗s∈Sons(c) val(s))). Then, val(r) = ⊕V−S(⊗ϕ∈Φ ϕ).

Proposition 7.20 is the key point showing the interest of cluster-tree decompositions. It says

that ⊕V−S(⊗ϕ∈Φ ϕ) can be computed by local computations on a root cluster r and its descendants.

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 121

This result holds thanks to the running intersection property. Moreover, cluster-tree decomposi-

tions induce a natural variable elimination algorithm 5 whose associated induced-width equals the

width of the cluster-tree decomposition.

Example 7.21. For the previous CSP example, Proposition 7.20 implies that maxx3,...,x15(∧ϕ∈Φ ϕ)

can be computed via the following local computations. We take c1 as the root of the cluster-tree.

Once a cluster c has received one value val(s) per son s ∈ Sons(c) in the rooted tree, it computes

its own value val(c) = ⊕V (c)−V (pa(c))((⊗ϕ∈Φ(c) ϕ) ⊗ (⊗s∈Sons(c) val(s))). For example, at the

beginning, cluster c9 can compute val(c9) = maxx12 cx12x13 and cluster c10 can compute val(c10) =

maxx15 ϕx14x15 . Then cluster c8 can compute val(c8) = maxx13,x14(ϕx10,x13,x14 ∧val(c9)∧val(c10)).

At the last step, c1 computes val(c1) = maxx4(ϕx1x2 ∧ ϕx2x4 ∧ val(c2) ∧ val(c3)).

Proposition 7.20 ensures that val(c1) = maxx3,...,x15(∧ϕ∈Φ ϕ). As the width of the cluster-tree

decomposition is 3− 1 = 2, computing val(c1) is time and space O(|Φ| · d3). With a standard tree

search, which does not exploit possible decompositions, the theoretical time complexity is O(|Φ|·d15).

7.3.3 Towards multi-operator cluster trees using cluster-tree decompo-

sitions

Let us come back to the macrostructure obtained after the macrostructuration process. The

application of rewriting rules in the semiring case gives a tree of mono-operator computation

nodes such as (minS ,⊗, N), (maxS ,⊗, N), or (⊕S ,⊗, N). Cluster-tree decomposition techniques

can enable us to take advantage of the freedoms in the elimination order inside each of these

mono-operator computation nodes.

More precisely, given a computation node n = (opS ,⊗, N), we can build a rooted cluster-

tree decomposition of the graphical model (sc(n), {val(n′), n′ ∈ N}) associated with it, given the

variables in sc(n)−S (which are not eliminated by n). This directly provides us with a structuration

of val(n) into local computations.

The structure obtained then contains both a macrostructure given by the computation nodes

and an internal rooted cluster-tree structure given by each of their decompositions. It is called

multi-operator cluster tree.

Definition 7.22. A Multi-operator Cluster Tree (MCTree) is a rooted tree (C,E) with root r,

where every vertex c ∈ C, called a cluster, is labeled with three elements:

• a set of variables V (c),

• a set of scoped functions Φ(c) taking values in a set E,

• and a couple (⊕c,⊗c) of operators on E such that (E,⊕c,⊗c) is a commutative semiring.

The width of a MCTree is defined as w = maxc∈C |V (c)| − 1.

We explicitly specify a combination operator and an elimination operator to be used inside each

cluster. This allows us to properly handle the multi-operator nature of multi-operator queries.

Figure 7.6 shows an example of MCTree which can be obtained from an Extended-SSAT [82]

problem.

5. We also speak of variable elimination algorithms when sets of variables must be eliminated. Such algorithms
are also called non-serial dynamic programming or cluster-tree elimination algorithms.

122 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

Definition 7.23. The value of a cluster c of a MCTree is given by

val(c) = ⊕c
V (c)−V (pa(c))

((

⊗c
ϕ∈Φ(c)

ϕ

)

⊗c
(

⊗c
s∈Sons(c)

val(s)

))

The value of a MCTree is the value of its root node.

Theorem 7.24. Let Q be a query. Let M be a MCTree obtained from CNT (Q). Then, val(M) =

Ans(Q). Moreover, every optimal decision rule in val(M) for a non-duplicated decision variable

is also an optimal decision rule in Ans(Q), and for every duplicated decision variable, there exists

at least one optimal decision rule in val(M) which is also optimal in Ans(Q).

In fact, optimal decision rules can be recorded on the separators of the MCTree (the separator

between two clusters c and s ∈ Sons(c) is V (c) ∩ V (s)).

MCTree :

each computation node
cluster-tree decomposition of

CNT (Q)

ϕx2,x4

P

x13

max
x1,x2,x3

ϕx1,x3

min
x4,x5

ϕx1,x4
ϕx2,x4
ϕx2,x5
ϕx3,x4

minx4

max
x9

ϕx4,x9

P

x11

ϕx5,x8
ϕx7,x8

P

x7,x8

ϕx4,x7

ϕx6,x7

P

x6

minx5 ϕx2,x5

ϕx2,x12

X

x6,x7,x8

ϕx10,x12

P

x10,x12

ϕx10,x11

ϕx10,x13

ϕx1,x3

X

x10,x11
x12, x13

maxx2 maxx3

maxx1

ϕx3,x4

ϕx1,x4 ϕx2,x10

ϕx10,x13

maxx9 ϕx4,x9

ϕx4,x7
ϕx5,x8
ϕx6,x7
ϕx7,x8

ϕx2,x10
ϕx2,x12
ϕx10,x11
ϕx10,x12

Figure 7.6: Example of a MCTree obtained from CNT (Q). Note that a cluster c is represented
by (1) the set V (c) − V (pa(c)) of variables it eliminates, its elimination operator ⊕c, and the set
of functions Φ(c) associated with it, all these elements being put in a dotted box; in the semiring
case, we always have ⊗c = ⊗; (2) the set of its sons.

As a conclusion, the multi-operator query macrostructuration and the use of cluster-tree de-

compositions yield a generic computational architecture called MCTree. Note that if duplicated

variables are relabeled, the MCTrees obtained satisfy the running intersection property (cf. Defi-

nition 7.18 page 118).

7.3.4 Comparison with an unstructured approach

Analyzing the query structure can induce exponential gains in theoretical complexity, as shown

on some examples introduced in Section 6.6. A stronger result can be stated, proving that in

terms of induced-width, the structured approach is always as least as good as the approach used

in algorithm VE-answerQ.

Definition 7.25. The width of a tree of computation nodes CNT , denoted wCNT , is the minimal

width over all MCTrees which can be obtained by cluster-tree decomposing CNT .

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 123

Proposition 7.26. Let Q = (Sov, (V,G, P, ∅, U)) be a query. Computing Ans(Q) with a variable

elimination algorithm on an optimal MCTree associated with Q is time and space O(|P ∪ U | ·

d1+wCNT (Q)).

One can say that 1 + wCNT is the maximum number of variables to consider simultaneously

when using optimal cluster-tree decompositions for each computation node in CNT . Note that

optimizing the cluster-tree decomposition of each computation node is stronger than optimizing

the width of the MCTree alone. Also, one can use parameters which differ from the width to

evaluate the quality of cluster-tree decompositions (more details in the next chapter).

Theorem 7.27 shows that the structuration mechanisms previously introduced can only decrease

the induced-width (or tree-width). This implies that the theoretical complexity of a variable

elimination algorithm on MCTrees is better than the complexity of algorithm VE-answerQ.

Theorem 7.27. Let Q = (Sov,N) be a query on a PFU network N = (V,G, P, ∅, U). Let

G = (V, {sc(ϕ), ϕ ∈ P ∪ U}) be the hypergraph associated with N . Then, wCNT (Q) ≤ wG(�Sov).

For the QCSP example in Figure 7.2, wCNT (Q) = 1, whereas the initial constrained induced-

width is wG(�Sov) = 3: the complexity decreases from O(|Φ| · d4) to O(|Φ| · d2).

More important gaps between wCNT (Q) and wG(�Sov) can be observed on larger problems.

We performed experiments on instances of the QBF library. 6 The results are shown in Table 7.1.

In order to compute widths and constrained induced-widths, we built cluster-tree decompositions

using the so-called min-fill heuristic. The results show that for low numbers of elimination operator

alternations, analyzing the macrostructure of queries brings no gain. It is the case with instances

of the “robot” problem, which involve only three alternations of elimination operators. But as

soon as the number of alternations increases, revealing freedoms in the elimination order can be

greatly beneficial.

Problem instance w w′ nbv,nbc,nba Problem instance w w′ nbv,nbc,nba

adder-2-sat 12 24 332, 113, 5 k-branch-n-1 22 43 133, 314, 7
adder-4-sat 28 101 726, 534, 5 k-branch-n-2 39 103 294, 793, 9
adder-8-sat 60 411 1970, 2300, 5 k-branch-n-3 54 185 515, 1506, 11
adder-10-sat 76 644 2820, 3645, 5 k-branch-n-4 70 296 803, 2565, 13
adder-12-sat 92 929 3822, 5298, 5 k-branch-n-5 89 427 1149, 3874, 15

robots-1-5-2-1.6 2213 2213 6916, 23176, 3 k-branch-n-6 107 582 1557, 5505, 17
robots-1-5-2-1.7 1461 1461 7904, 26810, 3 k-branch-n-7 131 761 2027, 7482, 19
robots-1-5-2-1.8 3933 3933 8892, 30444, 3 k-branch-n-8 146 973 2568, 10117, 21
robots-1-5-2-1.9 1788 1788 9880, 34078, 3 k-branch-n-9 166 1201 3163, 12930, 23

Table 7.1: Comparison between w = wCNT (Q) and w′ = wG(�Sov) on some instances of the QBF
library (nbv, nbc, nba denote respectively the number of variables, the number of clauses, and the
number of elimination operator alternations of an instance).

7.3.5 Comparison with existing approaches

The rewriting rules used in the semiring case can be compared with the quantifier tree approach [6]

recently introduced for QBFs. This approach analyzes hidden structures of “flat” prenex normal

6. See “http://www.qbflib.org/”.

124 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

form QBFs, by using structuration mechanisms. This leads to important gains in terms of solv-

ing time. The structuration techniques used for quantifier trees are exactly the instantiation of

rewriting rule DR to the algebraic structure associated with QBFs, using ⊕ = ∨ and ⊗ = ∧.

MCTrees provide a theoretical explanation to the experimental gains observed when using

quantifier trees on QBFs, in terms of tree-width. Also, since our approach is defined in a generic

algebraic framework, it extends and generalizes the whole quantifier tree proposal. It is indeed

applicable to multiple formalisms, including QCSP, SSAT, or stochastic CSP. Moreover, quantifier

trees use: (1) neither recomposition rule RR together with cluster-tree decompositions, so as to

minimize the width; (2) nor a simplification rule, since there are no normalization conditions on

the clauses of a QBF.

7.3.6 Adding feasibilities

The difficulty in adding feasibilities lies in the use of the duplication mechanism, which is more

complex if feasibilities are involved (see Proposition 6.33 page 107).

A solution to handle feasibilities consists in

• not using the duplication mechanism at all,

• and adding a simplification rule SR′ allowing normalization conditions on feasibilities to be

used:

SR′ [Precond. : (op ∈ {min,max}) ∧ (c ∈ CD(G)) ∧ (c ∩ (S ∪ sc(N)) = ∅)]

(op
c∪S

, N ∪ Fact(c)) (op
S
, N)

All the results previously given then still hold. Another solution not formalized enough yet can be

to specify rewriting rules able to handle both feasibilities and duplications.

7.4 Structuring multi-operator queries in the semigroup case

The structuration of multi-operator queries in the semiring case leads to the MCTree architecture,

which involves several elimination operators and one combination operator. The structuration in

the semigroup case is different (and a bit more difficult) because it also involves several combination

operators (⊗ and ⊕). Again, we have a two-step structuration, involving a macrostructuration

phase and a cluster-tree decomposition phase. In the following, we deal with the case where there

are no feasibility functions, because it simplifies the presentation greatly. The case with feasibility

is considered in Section 7.4.5.

7.4.1 Building the macrostructure of a query using rewriting rules

The initial computation node in the semigroup case is n0 = (Sov(o),⊕, {(∅,⊗, P ∪{Ui}), Ui ∈ U}).

This time, the application of rewriting rules will generate a sequence of DAGs of computation nodes

(CNDAGs), instead of trees of computation nodes. The first CNDAG of the sequence, denoted

CNDAG0(Q, o), is CNDAG0(Q, o) = (Sov(o),⊕, {(∅,⊗, P ∪ {Ui}), Ui ∈ U}).

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 125

In the following, we will manipulate sets of sets of computation nodes for notation issues. We

use character N to denote a set of sets of computation nodes, whereas a set of computation nodes

is denoted by N . If we use sets of sets of computation nodes to express CNDAG0(Q, o), this gives:

CNDAG0(Q, o) = (Sov(o),⊕, {(∅,⊗, N), N ∈ N}), with N = {P ∪ {Ui}, Ui ∈ U}.

We can also define N
+x as N

+x = {N ∈ N |x ∈ sc(N)} and N
−x as N

−x = N−N
+x.

Example 7.28. For the influence diagram associated with the computation of maxd
∑

r2,r1
Pr1 ·

Pr2|r1 · (Ud,r1 + Ud,r2 + Ud) and for the elimination order o : d ≺ r2 ≺ r1, we have

CNDAG0(Q, o) =







maxd
∑

r2

∑

r1
,+,







(∅,×, {Pr1 , Pr2|r1 , Ud,r1}),

(∅,×, {Pr1 , Pr2|r1 , Ud,r2}),

(∅,×, {Pr1 , Pr2|r1 , Ud})













It corresponds to the first computation node in Figure 7.7.

We can also denote it as CNDAG0(Q, o) = (maxd
∑

r2

∑

r1
,+, {(∅,⊗, N), N ∈ N}), where

N = {{Pr1 , Pr2|r1 , Ud,r1}, {Pr1 , Pr2|r1 , Ud,r2}, {Pr1, Pr2|r1 , Ud}}. We then have N
+r1 = N. With

N = {{Pr1 , Ud,r2}, {Pr2 | r1 , Pr1 , Ud,r1}, {Pr1, Ud}}, we would have N
−r2 = {{Pr1 , Ud}} and N

+r2 =

{{Pr1 , Ud,r2}, {Pr2 | r1 , Pr1 , Ud,r1}}.

For all k ∈ {0, . . . , |Sov| − 1}, the macrostructure at step k + 1, denoted CNDAGk+1(Q, o),

is obtained from CNDAGk(Q, o) by considering the rightmost remaining elimination and, as in

the semiring case, by applying three types of rewriting rules (decomposition, recomposition, and

simplification). Rewriting rules are presented first for the case of ⊕-eliminations, and then for the

case of max-eliminations. The case of min-eliminations when min 6= ⊕ is analogous to the case of

max-eliminations.

Rewriting rules for ⊕x When a ⊕-elimination must be performed, a decomposition rule DR⊕

and the rewriting rules of the semiring case are used. The mechanism is illustrated in Figure 7.7,

which corresponds to the influence diagram associated with the computation of

maxd
∑

r2,r1
Pr1 · Pr2|r1 · (Ud,r1 + Ud,r2 + Ud).

1. Decomposition rule DR⊕ simply implements the duplication mechanism, i.e. it uses a mech-

anism looking like ⊕x(P ⊗ (U1 ⊕ U2)) = (⊕x(P ⊗ U1))⊕ (⊕x(P ⊗ U2)):

DR⊕ (sov.⊕x,⊕, {(∅,⊗, N) , N ∈ N})

 (sov,⊕, {(⊕x,⊗, N) , N ∈ N})

In the example of Figure 7.7, the first applied rule is DR⊕. It treats the operator-variable

pair
∑

r1
and transforms CNDAG0(Q, o) into another structure in which r1 is duplicated.

2. The computation nodes created by DR⊕ look like n = (⊕x,⊗, N). This is exactly the

form of a computation node in the semiring case. Hence, each node n created by DR⊕

can be structured thanks to the rewriting rules DR, RR, and SR defined in the semiring

case. In other words, as in the semiring case, n can be transformed into rewrite(n), or into

simplify(rewrite(n)) if one wants the simplification rule to be used.

In Figure 7.7, function rewrite (which uses decomposition rule DR and recomposition rule

RR) enables us to transform the structure obtained after the application of DR⊕ into struc-

ture CNDAG1(Q, o) given just below. CNDAG1(Q, o) is an actual DAG of computation

126 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

× Pr1 ×P

r1

P

r1Pr2|r1

Ud,r1
Pr1
Pr2|r1

+maxd

P

r2

∅ × Ud,r2 ∅ × Ud∅ ×

× Pr1 ×P

r1

P

r1Pr2|r1

Ud,r1
Pr1
Pr2|r1

+maxd

∅ × Pr1
Pr2|r1

Ud,r2 ∅× Pr1
Pr2|r1

Ud,r1∅ × Ud
Pr1
Pr2|r1

+maxd

∅ × Ud∅ × ∅ ×

× Pr2|r1

Pr1Ud,r1
P

r1,r2

Pr1

Pr2|r1

×P

r1,r2
×P

r1,r2

Pr1

Pr2|r1

Ud,r2

∅ × ∅ × Ud∅ ×

×P

r1
Pr1 Ud,r1 ×P

r1,r2

Pr1

Pr2|r1

Ud,r2

CNDAG1(Q, o)

+maxd

P

r2

P

r1

Ud,r2 Ud

+maxd

× Ud× Ud,r2

CNDAG0(Q, o)

DR⊕

DR⊕

CNDAG2(Q, o)

Ud,r1
Pr1
Pr2|r1

Pr2|r1

Pr1 Pr1
Pr2|r1

×P

r1
××P

r1

rewrite

rewrite

simplify

×P

r2

P

r2

P

r2

+maxd

P

r2

P

r1

Figure 7.7: Application of rewriting rules for ⊕ when ⊕ = +.

nodes since common computation nodes such as (
∑

r1
,×, {Pr1 , Pr2 | r1}) are shared. It is not

hard to detect such shared nodes when applying the rewriting rules. After some further

rewriting steps, we get structure CNDAG2(Q, o) given in Figure 7.7.

In the end, in the example of Figure 7.7, no computation involves more than two variables in

CNDAG2(Q, o) if we eliminate r1 first in the node (
∑

r1,r2
,×, {Pr1 , Pr2|r1 , Ud,r2}). With a poten-

tial-based approach, it would be necessary to process three variables simultaneously: indeed, r1

would be involved in potentials (Pr1 , 0), (Pr2|r1 , 0), (1, Ud,r1) if eliminated first, and r2 would be

involved in potentials (Pr2|r1 , 0), (1, Ud,r2) if eliminated first.

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 127

In order to systematize the rules application order, we write that for all k ∈ {0, . . . , |Sov| − 1}

such that CNDAGk(Q, o) = (sov.⊕x,⊕, {(∅,⊗, N) , N ∈ N}), the structure CNDAGk+1(Q, o) at

step k + 1 is defined by 7

CNDAGk+1(Q, o)

=

{

(sov,⊕, {simplify(rewrite (⊕x,⊗, N)), N ∈ N}) if sov = sov′.opx and op 6= ⊕

(sov,⊕, {rewrite (⊕x,⊗, N) , N ∈ N}) otherwise

In other words, when eliminating variable x, we decompose the computations using duplication,

and then use the rewriting rules defined in the semiring case.

Rewriting rules for maxx When a max-marginalization must be performed, a decomposition

rule DRmax and a recomposition rule RRmax are used. No simplification rule is required since no

normalization condition is available on decision variables when there are no feasibilities.

The rewriting rules are a bit more complex than the previous ones and are illustrated in

Figure 7.8, which corresponds to the influence diagram maxd1
∑

r2
maxd2

∑

r1
maxd3 Pr1 · Pr2|r1 ·

(Ud1 + Ud2,d3 + Ur2,d1,d3 + Ur1,d2).

1. Decomposition rule DRmax enables us to consider only scoped functions having x in their

scope when x is eliminated using max.

DRmax (sov.maxx,⊕, {(∅,⊗, N) , N ∈ N})

{

(sov,⊕, {(∅,⊗, N) , N ∈ N}) if N
+x = ∅

(sov,⊕, {(∅,⊗, N) , N ∈ N
−x} ∪ {(∅,⊗, N1 ∪ {(maxx,⊕, N2)})}) otherwise

where N1 = ∩N∈N+xN−x and N2 =
{
(∅,⊗, N −N1) , N ∈ N

+x
}

DRmax says that when x is eliminated, it is not necessary to consider nodes (∅,⊗, N) such

that x /∈ sc(N), and we factor the parts independent from x that the other (∅,⊗, N) nodes

have in common.

In Figure 7.8, DRmax transforms CNDAG0(Q, o) into CNDAG1(Q, o), by treating the elim-

ination maxd3 . It uses the fact that among root sons, only (∅,×, {Pr1, Pr2 | r1 , Ud2,d3}) and

(∅,×, {Pr1, Pr2 | r1 , Ur2,d1,d3}) depend on x3. They share common factors, Pr1 and Pr2 | r1 ,

both independent from x3, which is explicitly taken into account in CNDAG1(Q, o).

Then, DR⊕ can be used to process
∑

r1
and give CNDAG2(Q, o), and DRmax can be used

to process maxd2 .

2. Recomposition rule RRmax enables us to reveal freedoms in the elimination order. Among

7. Given N ∈ N, computation nodes in N can look like (⊕S ,⊗, N ′), as standard nodes of the semiring case.
But they can also look like (maxS ,⊕, N ′). This does not matter to apply the rewriting rules of the semiring case
because these latter nodes will never be recomposed with a node performing eliminations with ⊕.

128 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

Pr1

Ud1

× Pr2|r1
∅

Pr1

Ud1

× Pr2|r1
∅

+maxd3

∅ × Ur2,d1,d3
∅ × Ud2,d3

∅ ×

∅ × Ur2,d1,d3

+maxd3

∅ × Ur2,d1,d3
∅ × Ud2,d3

∅ ×

∅ × Ud2,d3
∅ × Ur2,d1,d3

DRmax

+maxd1

P

r2
∅ ×

+maxd2
∅ × ∅ ×

∅ × Ud1

×Pr2|r1

Pr1
P

r1

×
P

r1

Ur1,d2
Pr1

Pr2|r1

RRmax

+maxd1

P

r2
maxd2

P

r1

Pr1
Pr2|r1
Ur1,d2

×

DRmax

+maxd1

P

r2
maxd2

P

r1
maxd3

Ud2,d3

∅Pr2|r1

Pr1
×∅

Pr1
∅ × Pr2|r1

Ur2,d1,d3

Pr1
Pr2|r1
Ur1,d2

×

∅

+maxd1

P

r2
maxd2

∅ ×∅ × Ud1

×Pr2|r1

P

r1
×

P

r1

Ur1,d2
Pr1
Pr2|r1

Pr1
+maxd3

∅ × Ud2,d3

CNDAG0(Q, o)

CNDAG1(Q, o)

CNDAG2(Q, o)

CNDAG3(Q, o)

DR⊕+rewrite+simplify

∅ × Pr1 Pr2|r1

+maxd1

P

r2

+maxd2,d3

∅ ×

×
P

r1

Ur1,d2
Pr1

Pr2|r1

∅ × Ud1

×Pr2|r1

Pr1
P

r1

Figure 7.8: Application of rewriting rules for max (the application of the rules may create nodes
such as (∅,⊗, {n}), which perform no computations; these nodes can be removed at a final step).

all rewriting rules, RRmax has the most complicated form. Intuitively, RRmax gathers max-

eliminations. The best explanation ofRRmax is actually provided by the proof of Lemma 7.35.

RRmax (maxx,⊕, {(∅,⊗, N) , N ∈ N})

 (max{x}∪(∪N∈N Ve(N [max])),⊕,

{(∅,⊗, N) , (N ∈ N) ∧ (N [max] = ∅)}

∪

{

(∅,⊗, N [¬max] ∪N ′) ,
(N ∈ N) ∧ (N [max] 6= ∅)

∧ (∅,⊗, N ′) ∈ Sons(N [max])

}

)

In Figure 7.8, recomposition rule RRmax yields CNDAG3(Q, o) by revealing the freedom

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 129

in the elimination order between d2 and d3. This freedom was hidden in the initial multi-

operator sequence of eliminations.

A systematic rewriting using DRmax and RRmax is: if max 6= ⊕, then for all k ∈ {0, . . . , |Sov|−

1} such that CNDAGk(Q, o) = (sov.maxx,⊕, {(∅,⊗, N) , N ∈ N}), the DAG of computation nodes

at the next step is

CNDAGk+1(Q, o)

=

{

(sov,⊕, {(∅,⊗, N) , N ∈ N}) if N
+x = ∅

(sov,⊕, {(∅,⊗, N) , N ∈ N
−x} ∪ {(∅,⊗, N1 ∪ {RRmax (maxx,⊕, N2)})}) otherwise

where N1 = ∩N∈N+xN−x and N2 =
{
(∅,⊗, N −N1) , N ∈ N

+x
}

This means that we decompose the computations as specified by DRmax and then recompose

the created node performing the elimination of x by using RRmax. For eliminations using min,

CNDAGk+1(Q, o) has exactly the same form. The only difference is that max must be replaced

by min.

The final macrostructure obtained given a query Q = (Sov,N) and an elimination order o ∈

lin(�Sov) is CNDAG|Sov|(Q, o). It is also denoted CNDAG(Q, o). 8

Some good properties of the macrostructure obtained

Unicity The independence of the macrostructure obtained with regard to the chosen elimination

order compatible with �Sov is provided by Theorem 7.30.

Lemma 7.29. Let Q = (Sov,N) be a query and let o, o′ ∈ lin(�Sov). Let op ∈ {min,max,⊕} and

let k ∈ {0, . . . , |Sov| − 2}. If

{

CNDAGk(Q, o) = (sov · opx · opy,⊕, {(∅,⊗, N), N ∈ N})

CNDAGk(Q, o
′) = (sov · opy · opx,⊕, {(∅,⊗, N), N ∈ N})

,

then CNDAGk+2(Q, o) = CNDAGk+2(Q, o
′).

Theorem 7.30. Let Q = (Sov,N) be a query. Then, for all o, o′ ∈ lin(�Sov), CNDAG(Q, o) =

CNDAG(Q, o′)

This allows us to denote the final macrostructure as CNDAG(Q) instead of CNDAG(Q, o).

Soundness The soundness of the macrostructure obtained is provided by the soundness of the

rewriting rules, which leads us to Theorem 7.38.

Lemma 7.31. Rewriting rule DR⊕ is sound.

Lemma 7.32. Let Q = (Sov,N) be a query and let o ∈ lin(�Sov). Let k ∈ {0, . . . , |Sov|−1} and let

N be a set of sets of computation nodes such that CNDAGk(Q, o) = (sov,⊕, {(∅,⊗, N), N ∈ N}).

Then,

8. Note that the rewriting rules imply that at each step, the root computation node always looks like
{(sov,⊕, {(∅,⊗, N), N ∈ N})}, hence the rewriting rules for ⊕ are applicable if sov = sov′.⊕x, the rewriting
rules for max are applicable if sov = sov′.maxx, and the rewriting rules for min are applicable if sov = sov′.minx.
This shows that CNDAGk+1(Q, o) is defined for every k ∈ {0, . . . , |Sov| − 1}.

130 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

• for all N ∈ N, for all (n1, n2) ∈ N2,

(n1 6= n2)→ ((Ve(n1) ∩ Ve(n2) = ∅) ∧ (Ve(n1) ∩ sc(n2) = ∅))

Moreover, for all (n1, n2) ∈ (N [⊕])2, (n1 6= n2)→ (Sons(n1) ∩ Sons(n2) = ∅),

for all n ∈ N [⊕], Sons(n) ∩N [¬⊕] = ∅.

• if max 6= ⊕, then, for all (N1, N2) ∈ N
2,

(N1 6= N2)→ ((Ve(N1[max]) ∩ Ve(N2[max]) = ∅) ∧ (Ve(N1[max]) ∩ sc(N2) = ∅))

Moreover, for all N ∈ N, |N [max]| ≤ 1

for all (∅,⊗, Ns) ∈ Sons(N [max]), Ns ∩N [¬max] = ∅.

Idem for min when min 6= ⊕.

Lemma 7.33. Let Q = (Sov,N) be a query and let o ∈ lin(�Sov). Let k ∈ {0, . . . , |Sov| − 1}

such that CNDAGk(Q, o) = (sov.⊕x,⊕, {(∅,⊗, N), N ∈ N}). Then, val(CNDAGk+1(Q, o)) =

val(CNDAGk(Q, o)).

Lemma 7.34. Rewriting rule DRmax is sound.

Lemma 7.35. Let RR′
max be the rewriting rule defined as:

RR′
max : (maxS ,⊕, N1 ∪ {(∅,⊗, N2 ∪ {(maxS′ ,⊕, {(∅,⊗, N3), N3 ∈ N})})})

 (maxS∪S′ ,⊕, N1 ∪ {(∅,⊗, N2 ∪N3) , N3 ∈ N})

If S′ ∩ (S ∪ sc(N1) ∪ sc(N2)) = ∅ and ∀N3 ∈ N, N2 ∩ N3 = ∅, then RR′
max is a sound rewriting

rule.

Lemma 7.36. Let Q = (Sov,N) be a query and let o ∈ lin(�Sov). Let k ∈ {0, . . . , |Sov| − 1}

such that CNDAGk(Q, o) = (sov.maxx,⊕, {(∅,⊗, N), N ∈ N}). Then, val(CNDAGk+1(Q, o)) =

val(CNDAGk(Q, o)). Similarly, if CNDAGk(Q, o) = (sov.minx,⊕, {(∅,⊗, N), N ∈ N}), then

val(CNDAGk+1(Q, o)) = val(CNDAGk(Q, o)).

Lemma 7.37. Let Q = (Sov,N) be a query and let o ∈ lin(�Sov). Then, for all k ∈ {0, . . . , |Sov|−

1}, val(CNDAGk+1(Q, o)) = val(CNDAGk(Q, o)).

Theorem 7.38. Let Q = (Sov,N) be a query. Then, val(CNDAG(Q)) = Ans(Q).

Complexity results

An architecture is usable only if it is reasonable to build it. Proposition 7.39 gives upper bounds on

the complexity of the rewriting process when the simplification rule is not used. As in the semiring

case, the complexity is still polynomial when simplification rule is used. An explicit algorithm

implementing the rewriting rule in the semigroup case is given in the proof of Proposition 7.39. It

notably manipulates pointers to computation nodes, so that computation nodes can be shared, i.e.

so that the DAG structure is explicit.

Proposition 7.39. If the simplification rule is not used, the time and space complexities of the

rewriting process in the semigroup case are O(|U | · |V | · (|P |+ |V |) · (1+ |P |)) and O(|U | · |V | · (|V |+

|P |2)) respectively.

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 131

7.4.2 Cluster-tree decompositions to structure DAGs of computation

nodes: towards multi-operator cluster-DAGs (MCDAGs)

In the semigroup case, the rewriting rules yield a DAG of mono-operator computation nodes such

as (minS ,⊕, N), (maxS ,⊕, N), (
∑

S ,⊗, N), and (∅,⊗, N). As in the semiring case, the second

finer structuration step consists of taking advantage of freedoms in the elimination order inside

each of these mono-operator computation nodes by using cluster-tree decompositions.

Given a computation node n = (opS ,⊛, N), it suffices to build a rooted cluster-tree decompo-

sition of the graphical model (sc(n), {val(n′), n′ ∈ N}) associated with it, given the variables in

sc(n) − S which are not eliminated by n. This directly provides us with a structuration of the

computation of val(n). The structure obtained then contains both a macrostructure given by the

computation nodes and an internal cluster-tree structure given by each of their decompositions.

After this second structuration step, we obtain a so-called multi-operator cluster DAG (MCDAG).

Definition 7.40. A Multi-operator Cluster DAG is a DAG where every vertex c, called a cluster,

is labeled with three elements:

• a set of variables V (c),

• a set of scoped functions Φ(c) taking values in a set E,

• and a couple (⊕c,⊗c) of operators on E such that (E,⊕c,⊗c) is a commutative semiring.

The width of a MCDAG is defined by w = maxc∈C |V (c)| − 1. The height of a MCDAG is the

maximum number of variables which appear in a path from the root to a leaf in the MCDAG.

Definition 7.41. The value of a cluster c of a MCDAG is given by

val(c) = ⊕cV (c)−V (pa(c))

((
⊗cϕ∈Φ(c) ϕ

)
⊗c
(
⊗cs∈Sons(c) val(s)

))

The value of a MCDAG is the value of its root node.

We explicitly specify a combination operator and an elimination operator to be used inside

each cluster because these operators may vary depending on the cluster considered. If duplicated

variables are relabeled, then MCDAGs obtained from a query Q satisfy a kind of running intersec-

tion property, which is “for all clusters c1, c2, c3, if c3 is on a path from c1 to c2 which uses only

non convergent connections, then V (c1) ∩ V (c2) ⊂ V (c3)”.

Decreasing the MCDAG width

The next three pages correspond to a technical part which shows that given a computation node

n = (opS ,⊛, N), building a cluster-tree decomposition of (sc(n), {val(n′), n′ ∈ N}) given sc(n)−S

yields MCDAGs which have a suboptimal width. The reason for this is that in the semigroup case,

the computation nodes performing eliminations with min or max have a particular structure. We

begin with an illustrative example.

Example 7.42. Let us consider a computation node n = (maxx,y,z,⊕,







(∅,⊗, {Uz,t})

(∅,⊗, {Uy,t})

(∅,⊗, {nt, Ux,y})

(∅,⊗, {nt, Ux})







),

where nt is a shared computation node of scope {t}, which can typically correspond to a factor

performing operations on plausibility functions.

132 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

Assume that we want to exploit the freedoms in the elimination order between x, y, and z, thanks

to a cluster-tree decomposition. If we use the mechanism previously proposed, then we consider the

graphical model M = ({x, y, z, t}, {ϕz,t, ϕy,t, ϕx,y,t, ϕx,t}) where ϕz,t = val((∅,⊗, {Uz,t})), ϕy,t =

val((∅,⊗, {Uy,t})) , ϕx,y,t = val((∅,⊗, {nt, Ux,y})), and ϕx,t = val((∅,⊗, {nt, Ux})). Then, we

build a cluster-tree decomposition of M given {t}. An optimal cluster-tree decomposition of M

given {t} has a width of 2. This means that at least 2 + 1 = 3 variables need to be considered

simultaneously in order to compute val(n).

However, a decomposition of the computations exists which allows us to consider at most two

variables simultaneously. Indeed, if we use the elimination order z ≺ y ≺ x, we can write:

val(n) = maxz maxy maxx(Uz,t ⊕ Uy,t ⊕ (val(nt)⊗ Ux,y)⊕ (val(nt)⊗ Ux))

= maxz maxy(Uz,t ⊕ Uy,t ⊕maxx((val(nt)⊗ Ux,y)⊕ (val(nt)⊗ Ux)))

= maxz maxy(Uz,t ⊕ Uy,t ⊕ (val(nt)⊗maxx(Ux,y ⊕ Ux)))

= maxz(Uz,t ⊕maxy(Uy,t ⊕ (val(nt)⊗maxx(Ux,y ⊕ Ux))))
The decomposition above considers

• two variables (x and y) to compute maxx(Ux,y ⊕ Ux) = U ′
y,

• two variables (y and t) to compute maxy(Uy,t ⊕ (val(nt)⊗ U ′
y) = U ′

t,

• two variables (z and t) to compute maxz(Uz,t ⊕ U ′
t).

In order to consider only two variables simultaneously, the key mechanism is to use the fact that

nt is a factor of both Ux,y and Ux.

The goal of this technical part is to generalize the decomposition method used in the previous

example, in order to obtain cluster-tree decomposition having a smaller width. We take the

example of computation nodes (maxS ,⊕, N) when max 6= ⊕, but everything that follows applies

to computation nodes (minS ,⊕, N) as well (when min 6= ⊕).

We first need some additional notations, defining the type of a computation node.

Definition 7.43. Let n be a computation node.

• If n is atomic, then the type of n is t(n) = u if n ∈ U , and t(n) = p if n ∈ P .

• Otherwise, if n = (sov,⊛, N) then t(n) = u if there exists n′ ∈ N such that t(n′) = u, and

t(n) = p otherwise.

This means that a computation node is of type u iff at least one utility function is involved in

its descendants.

Actually, the rewriting rules in the semigroup case imply that the computation nodes in

CNDAG(Q) which use max as an elimination operator are always of the form (maxS ,⊕, {(∅,⊗, N),

N ∈ N}). Proposition 7.44 below gives key properties satisfied by these nodes. As we shall see,

these properties allow us to decrease the MCDAG width.

For the remaining of the chapter, we assume that during the application of rewriting rules

in the semigroup case and given a set of computation nodes N , the definitions of N+x/N−x are

updated by N+x = {n ∈ N |x ∈ sc(n)} ∪N0, where N0 = N ∩ Fact(c(x)) if x is the last variable

in c(x) to be eliminated, and N−x = N −N+x. 9

9. This modification is identical to the modification performed in Chapter 6 when using potentials in the semi-
group case.

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 133

Proposition 7.44. Let Q be a query. Let us consider a computation node (opS ,⊕, {(∅,⊗, N), N ∈

N}) in CNDAG(Q), when op 6= ⊕.

Then, for every N ∈ N, there exists a unique n ∈ N such that t(n) = u. This node is denoted

u(N). The set of nodes in N − {u(N)} is denoted P (N). It satisfies S ∩ sc(P (N)) = ∅.

Moreover, for all N1, N2 ∈ N, ((n ∈ N1) ∧ (t(n) = p))→ ((n ∈ N2) ∨ (sc(n) ⊂ sc(u(N2)))).

Informally, Proposition 7.44 shows that given a computation node (maxS ,⊕, {(∅,⊗, N), N ∈

N}), computation nodes of type p are either shared between several N ∈ N, or their scope is

included in another computation node of type u. Furthermore, their scopes do not involve variables

in S.

Then, let x be a variable in S. If x is the first variable to be eliminated, how many variables

need to be considered? The elimination of x can be decomposed as follows:

max
S

(⊕
N∈N

(⊗
n∈N

val(n)))

= max
S−{x}

((⊕
N∈N−x

(⊗
n∈N

val(n)))⊕ (max
x

(⊕
N∈N+x

(⊗
n∈N

val(n)))))

= max
S−{x}

((⊕
N∈N−x

(⊗
n∈N

val(n)))⊕ ((⊗
n∈N1

val(n))⊗max
x

(⊕
N∈N+x

(⊗
n∈N−N1

val(n)))))

where N1 = ∩N∈N+x N−x.

Let n be a node of type p which is in N −N1 for one N ∈ N
+x. Thanks to Proposition 7.44,

we know that x /∈ sc(n). Moreover, as n is not common to all computation nodes in N
+x, we know

that there exists N ′ ∈ N
+x such that x ∈ sc(u(N ′)). Hence, in order to determine the number of

variables to consider to eliminate x and the scope of the function created after the elimination of

x, it actually suffices to consider computation nodes in {u(N), N ∈ N}, instead of computation

nodes in {(∅,⊗, N), N ∈ N}. Roughly speaking, this means that computation nodes of type p play

only a weighing role and do not basically modify the scopes of the functions manipulated.

This leads us to define several steps to obtain MCDAGs with an improved width. In order to

decompose a computation node n = (maxS ,⊕, {(∅,⊗, N), N ∈ N}), we proceed as follows:

1. First, we build a rooted cluster-tree decomposition of the graphical model (sc(n), {val(u(N)),

N ∈ N}) given sc(n)− S.

2. Second, we transform this decomposition into a MCDAG where weights given by plausibility

nodes are reintegrated. To do so, for every cluster c:

• for every ϕ ∈ Φ(c), there exists N ∈ N such that ϕ = val(u(N)). Then, create a

cluster s and add it to Sons(c); remove ϕ from Φ(c) and put it in Φ(s); add in Φ(s)

scoped functions in P (N) ∩ P , and add in Sons(s) scoped functions in P (N) − P .

Informally, this step weighs utility functions with plausibility functions left apart for

the computation of a cluster-tree decomposition;

• for every s ∈ Sons(c), create an intermediate level between c and s: remove s from

Sons(c); create a cluster c′ such that Sons(c′) = {s}; add c′ to Sons(c); take Φ(c′) = ∅

and (⊕c′ ,⊗c′) = (∅,⊗). Informally, this step create intermediate level in the architec-

ture, which will be useful for the next step.

134 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

3. Third, we move the plausibility weights as “high” as possible in the MCDAG: starting from

the leaves, for every cluster c, we remove the plausibilities which weigh every son of c. More

precisely, we transfer the scoped functions in ∩s∈Sons(c) Φ(s) to Φ(pa(c)), and the clusters in

∩s∈Sons(c) Sons(s) to Sons(pa(c)). Finally, we “clean” the obtained structure by removing

useless clusters.

Example 7.45. Let us consider the computation node n = (maxx,y,z,⊕, {(∅,⊗, N), N ∈ N}) given

in Example 7.42 again, where N = {{Uz,t}, {Uy,t}, {nt, Ux,y}, {nt, Ux}}.

We first build a rooted cluster-tree decomposition of the graphical model (sc(n), {val(u(N)), N ∈

N}) given {t}, i.e. of the graphical model ({x, y, z, t}, {Uz,t, Uy,t, Ux,y, Ux}) given {t}. The primal

graph of this graphical model is given in Figure 7.9(a). A rooted cluster-tree decomposition is given

in Figure 7.9(b).

We then add intermediate levels to get a MCDAG, enabling us to weigh the utility functions

and to “prepare” the structure for the weights migration. This is done in Figure 7.9(c).

Last, we put the weights as high as possible in the MCDAG by detecting common weights between

the sons of a given cluster, and we remove useless clusters. This gives the MCDAG in Figure 7.9(d).

This MCDAG exactly corresponds to the smart decomposition given in Example 7.42.

c2

c3

c1

Ux,y

(a)

x

y

t

z

nt

⊕

⊕⊕

⊕

⊕

⊕

⊗∅ Uz,t

∅ ⊗ ∅ ⊗ Uy,t

V (c3) = {z, t}
Φ(c3) = {Uz,t}

V (c2) = {x, y}
Φ(c2) = {Ux,y, Ux}

∅ ⊗ maxz Uz,t

nt

V (c1) = {y, t}
Φ(c1) = {Uy,t}

(c)(b)

maxy

∅ ⊗

maxzmaxx

∅ ⊗ Ux,y⊗∅ Ux

(d)

maxy Uy,t

maxx
Ux

nt

Figure 7.9: Example of a specific cluster-tree decomposition for a max computation node: (a)
primal graph of the graphical model to be decomposed; (b) rooted cluster-tree decomposition; (c)
MCDAG with utility functions weighted by plausibilities; (d) final MCDAG where weights are put
as high as possible and where useless clusters are removed.

Theorem 7.46 proves that the obtained MCDAG still enables us to compute the answer to a

query and to find optimal decision rules for the decision variables. Optimal decision rules can be

recorded on the separators of the MCDAG (the separator between two clusters c and s ∈ Sons(c)

is V (c) ∩ V (s)).

Theorem 7.46. The value of the MCDAG obtained after having decomposed the macrostructure

is equal to the answer to the query. Moreover, for every non duplicated decision variable x, optimal

decision rules for x in the MCDAG are also optimal in Ans(Q).

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 135

Merging some computations

Some clusters in the MCDAG may perform exactly the same computations, even if the computation

nodes they come from are distinct. For example, a computation node n1 = (
∑

x,y,×, {Px, Py|x, Uy,z)

may be decomposed into one cluster c1 such that val(c1) =
∑

x(Px · Py|x) and one cluster c′1 such

that val(c′1) =
∑

y(Uy,z · val(c1)). A computation node n2 = (
∑

x,y,×, {Px, Py|x, Uy,t) may be

decomposed into one cluster c2 such that val(c2) =
∑

x(Px · Py|x) and one cluster c′2 such that

val(c′2) =
∑

y(Uy,t ·val(c
′
2)). As val(c1) = val(c2), clusters c1 and c2 can be merged in order to save

some computations. Detecting common clusters is not as easy as detecting common computation

nodes.

Figure 7.10 is an example of MCDAG obtained from a DAG of computation nodes CNDAG(Q)

thanks to cluster-tree decompositions.

7.4.3 Comparison with an unstructured approach

Definition 7.47. Let Q be a query. The width of CNDAG(Q), denoted wCNDAG(Q), is the mini-

mal width of a MCDAG which can be obtained from CNDAG(Q) using cluster-tree decompositions.

Proposition 7.48. Let Q = (Sov, (V,G, P, F, U)) be a query. Computing Ans(Q) with a variable

elimination algorithm on a MCDAG associated with Q is time O((1+ |U |)·(1+ |P |)·d1+wCNDAG(Q))

and space O(|P ∪ U | · d1+wCNDAG(Q)).

Theorem 7.49 below shows that non surprisingly, structuring multi-operator queries can only

decrease the tree-width. This entails that in terms of tree-width (or induced-width), a variable

elimination algorithm on a MCDAG is as least as good as algorithm VE-answerQ given in the

previous chapter.

Theorem 7.49. Let Q = (Sov,N) be a query on a PFU network N = (V,G, P, ∅, U). Let

G = (V, {sc(ϕ), ϕ ∈ P ∪U}) be the hypergraph associated with N . Then, wCNDAG(Q) ≤ wG(�Sov).

7.4.4 Comparison with existing approaches

Compared to existing architectures for example on influence diagrams, MCDAGs can be exponen-

tially more efficient by strongly decreasing the tree-width, thanks to (1) the duplication technique,

(2) the analysis of extra reordering freedoms, and (3) the use of normalizations conditions. One

can compare these three points with existing works:

• The idea behind duplication is to use all the decompositions (independences) available in

influence diagrams. An influence diagram actually expresses independences both on the

global probability distribution and on the global utility function. MCDAGs separately use

these two kinds of independences, whereas a potential-based approach uses a kind of weaker

“mixed” independence relation. Using the duplication mechanism during the construction of

the MCDAG is better in terms of induced-width than using it “on-the-fly” as in [33]. 10

10. E.g., for the quite simple influence diagram used in Figure 7.7, the algorithm in [33] gives 2 as an induced-
width, whereas MCDAGs give an induced-width of 1. The reason is that MCDAGs allow to eliminate both r1 before
r2 in the subproblem corresponding to Ud,r2

and r2 before r1 in the subproblem corresponding to Ud,r1
.

136 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

CNDAG(Q)

MCDAG

cluster-tree
decomposition

+maxx8x9

Px2x3x5

Px2x4

∑

x1x2x3x4

Px2x3

Px1

Px1x2

Px4

×

×∅

Ux11x14

Ux13x14

Ux12x15

maxx10x11x12x13

x13x14x15x16

Ux15x16

+
Ux10x11x12

Ux11x13

Ux10x18 ×∅ Ux8x19
×∅ Ux8x9

Px2x3x5

Px2x3

Px1

×
∑

x1x2x3x4

Px4

Px1x2

Px2x4

×
∑

x5

×∅

+maxx7 Ux1x7

Ux7x8

maxx6
+

Ux3x6

Ux6x7

∑

x2x3
×

Px2x3x5

Px2x3

∑

x1
× Px1

Px1x2

+maxx8x9

×
∑

x4

Px4

Px2x4

×
Px2x3x5

Px2x3
∑

x2x3

×
∑

x1

Px1

Px1x2

×∅ Ux8x9 ×∅ Ux8x19

maxx10x11x12
+

Ux10x11x12

Ux10x18

maxx15
+ Ux12x15

maxx16
+ Ux15x16

+
Ux11x13

Ux13x14

Ux11x14

maxx13x14

×
∑

x5

minx19
+ Ux17x19

Ux1x7

Ux7x8maxx6x7
+

Ux6x7

Ux3x6

minx18
+

minx17
+

+minx17x18x19

Ux17x18

Ux17x19

Ux17x18

Figure 7.10: Example of a MCDAG obtained from CNDAG(Q) by cluster-tree decomposition
and merging of some clusters performing the same computation.

7.5. CONCLUSION 137

• Weakening constraints on the elimination order can be linked with the usual notion of relevant

information for decision variables. With MCDAGs, this notion is not used only for the sake of

conciseness of decision rules: it is also used to reveal reordering freedoms, which can decrease

the time complexity. Also, some of the ordering freedoms here are obtained by synergism

with the duplication.

• Thanks to simplification rule SR, the normalization conditions enable us not only to avoid

useless computations, but also to improve the architecture structure (SR may indirectly

weaken some constraints on the elimination order). This is stronger than Lazy Propagation

architectures [85], which use the first point only.

Last, the MCDAG architecture contradicts a common belief that using division operations is

necessary to solve influence diagrams with VE algorithms.

If one uses our structuration process to structure the computations performed by MDPs, then

one exactly gets the value iteration algorithm. However, as soon as the MDP becomes factored,

gains can be observed in terms of tree-width. Also, MCDAGs can namely be directly applied

to possibilistic influence diagrams using the possibilistic pessimistic utility theory, or to classical

planning problems using the boolean optimistic expected disjunctive utility (in order to search for

a sequence of decisions to reach one goal of a set of goal states).

7.4.5 Adding feasibilities

As said in the semiring case, feasibilities have a very specific status from the duplication property

point of view. A simple solution to integrate them is to work with potentials, as introduced in

Definition 6.11 page 96, and then to use

• the semiring rewriting rules (without duplication)

• the cluster-tree decomposition techniques for semiring computation nodes.

With this approach, the architecture obtained is a MCTree involving:

• several elimination operators: min, max, and ⊞, the elimination operator on potentials given

in Definition 6.11 page 96;

• but only combination operator ⊠ (the combination operator between potentials).

Finer rewriting rules, not yet mature enough, can be described in the case “semigroup with feasibil-

ities”. They avoid using potentials which prevent from exploiting some available decompositions.

7.5 Conclusion: a generic computational architecture, the

MCDAG architecture

This chapter has shown how to systematically structure multi-operator queries. The structuration

process involves two major steps:

• A macrostructuration step using rewriting rules. This step aims at revealing all possible

decompositions and reordering freedoms, and at exploiting normalization conditions.

138 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

• A cluster-tree decomposition step. This step exploits the freedoms in the elimination or-

der. It provides us with the MCTree architecture in the semiring case (cf. Definition 7.22

page 121), and with the MCDAG architecture in the semigroup case (cf. Definition 7.40

page 131). These two architectures satisfy unicity and soundness properties. Also, they lead

to a better induced-width (or tree-width). Compared to existing variable elimination-based

computational architectures, the MCDAG architecture we introduce is the only one which

uses both multiple elimination operators and multiple combination operators.

As MCTrees are particular instances of MCDAGs, we actually obtain a unique generic com-

putational architecture, the MCDAG one, which can be used both in the semiring and semigroup

cases. This allows us not to consider the semigroup and semiring cases separately anymore, as

illustrated in Figure 7.11.

Ans(Q)

semigroup
case

semiring
case

rewriting
rules for the
semigroup

case

rewriting
rules for the

semiring
case

MCTree

MCDAG

algorithms on MCDAG...

Figure 7.11: Towards a unique computational architecture.

Another way to formulate this conclusion is that the computation of Ans(Q) and of optimal

decision rules for a query Q can be reduced to the following problem:

Let (E,⊕,⊗) be a totally ordered MCS.

Let M be a MCDAG involving scoped functions taking values in E and clusters

using (⊕c,⊗c) ∈ {(min,⊕), (max,⊕), (min,⊗), (max,⊗), (⊕,⊗)}

Compute the value of M and optimal decision rules for the decision variables.

The generic variable algorithm proposed in this chapter consists in saying that as soon as a

cluster c has received val(s) from all its children s ∈ Sons(c), it computes its own value val(c) =

⊕cV (pa(c))−V (c)

((
⊗cϕ∈Φ(c) ϕ

)
⊗c
(
⊗cs∈Sons(c) val(s)

))
and sends it to each of its parents. The

value of the root cluster then equals the answer to the query.

For each cluster c, val(c) can be computed either by eliminating variables in V (pa(c)) − V (c)

step-by-step, as done in this chapter, or by considering all variables in V (pa(c))− V (c) simultane-

ously. The latter approach, known as a Cluster-Tree Elimination (CTE [7]) algorithm, generalizes

VE algorithms and yields the same theoretical time complexity together with a better space com-

plexity, exponential in the size of the largest separator between two clusters in the MCDAG. Such

7.5. CONCLUSION 139

methods were also used in the litterature under the names of dynamic programming, junction tree

algorithm, or perfect relaxation [90].

Even if these algorithms can answer queries, they use neither backtrack nor branch and bound

techniques. The next step is to enhance the MCDAG architecture with tree search techniques able

to prune the search space. Such an enhancement is the objective of the next chapter.

Chapter 8

A generic structured tree search

on the MCDAG architecture

Answering a PFU query is equivalent to computing the value of a MCDAG. This can be achieved

using a quite natural variable elimination (VE) or cluster-tree elimination (CTE) algorithm which

computes stepwise the value of each cluster of the MCDAG, from the leaves to the root. The

VE algorithm offers a time complexity exponential in the MCDAG-width, but at the price of a

space complexity exponential in the MCDAG-width too. The CTE algorithm gives the same time

complexity and a space complexity exponential in the size of the largest separator between two

clusters.

At the same time, a search technique as depth-first tree search provides a linear space com-

plexity. Moreover, despite its greater theoretical time complexity, tree search often outperforms

variable elimination algorithms in practice, especially when it is enhanced with bound techniques

pruning the search space.

In order to benefit both from the practical efficiency of tree search and from the good theoretical

time complexity of variable elimination, we introduce a generic structured tree search algorithm

which takes advantage of the structural decompositions expressed by the MCDAG architecture.

Such an idea is not new. In particular, several tree search schemes exploiting problems structures

were defined in the last decade [26, 65, 38].

However, these existing schemes are basically designed to compute sequences of mono-operator

eliminations on a mono-operator combination of scoped functions. This mono-operator nature

significantly facilitates the way bounds can be used to prune the search space. Also, the existing

schemes tackle either problems using specific combination and elimination operators, or problems

built upon an algebraic structure making assumptions stronger than those made with a totally

ordered MCS (cd Definition 6.6 page 94).

As a result, structured tree search algorithms capable of handling the multi-operator nature of

generic PFU queries (or, equivalently, of generic MCDAGs) are needed. As previously mentioned,

this raises new questions concerning the use of bounds in the context of alternating min-, max-,

and ⊕-eliminations.

141

142 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

8.1 Existing structured tree search algorithms

Before defining a new algorithm on MCDAGs, we briefly explain how existing structured tree

search proposals work. Three proposals are presented: algorithms on AND/OR search spaces [38],

recursive conditioning [26], and BTD (Backtrack bounded by Tree Decomposition [65]).

AND/OR search spaces [38] enable mono-operator eliminations on a mono-operator com-

bination of scoped functions of a graphical model M to be computed, and can be used to solve

problems associated with CSPs or BNs. The simplest form of AND/OR search spaces is AND/OR

search trees. They exploit independences represented thanks to a pseudo-tree of the primal graph

ofM. Such an approach was initially defined in [53].

Definition 8.1. Given an undirected graph G = (V,E), a rooted tree T = (V,E′) is a pseudo-tree

of G iff any edge in E − E′ is an edge connecting a vertex to one of its ancestors in T . 1

Figure 8.1(b) shows an example of pseudo-tree associated with the graphical model depicted in

Figure 8.1(a). A pseudo-tree induces a search space called an AND/OR search tree. An AND/OR

search tree is a tree containing two types of nodes: (1) OR nodes, labeled with a variable x ∈ V ,

and (2) AND nodes, labeled with an assignment (x, a). The successors of an OR node x are AND

nodes (x, a), one for each a ∈ dom(x), while the successors of an AND node (x, a) are OR nodes y,

one for each son of x in the pseudo-tree. The AND/OR search tree associated with the pseudo-tree

of Figure 8.1(b) is given in Figure 8.1(c).

(c)

T = (V, E′)

(b)

G = (V, E)

(a)

x4 x2 x2x4 x5

x3

x1

x4 x2 x2x4 x5

x3

x4 x2

x1

x3 x5x5x3

x2

x4

x1

111 11

1

1

111 11

1

0

000 00

0

000 00

0

Figure 8.1: Example of AND/OR search tree: (a) Primal graph of the graphical model M =
({x1, x2, x3, x4, x5}, {ϕx1x2x3 , ϕx1x3x4 , ϕx1x5}); (b) A pseudo-tree of this primal graph (dotted lines
represent edges of the primal graph which are not in the pseudo-tree); (c) AND/OR search tree
obtained from the pseudo-tree (with boolean variables).

Informally, an AND/OR search tree expresses that the subproblems rooted at an OR node x

are independent and can be processed separately. For instance, as soon as x1 is assigned, variables

in {x2, x3, x4} and x5 become independent, as soon as x1 and x3 are assigned, x2 and x4 become

independent. In this sense, an AND/OR search tree enables one to define a kind of structured tree

search. This is interesting because it can be much faster to explore an AND/OR search tree than

a standard search tree which assigns variables linearly. With an AND/OR search tree, the time

complexity becomes exponential in the height of the pseudo-tree. 2

From AND/OR search trees, other search spaces, yielding different time and space complexities,

can be defined, such as AND/OR search graphs, obtained by merging equivalent nodes in the

1. Examples of pseudo-trees are DFS spanning trees, whose edges are obtained by building a spanning tree of
the primal graph of G, using an edge selection heuristic called Depth First Search (DFS).

2. An optimal height is O(w · log(|V |)), where w is the tree-width of the graphical model [70, 14, 5].

8.1. EXISTING STRUCTURED TREE SEARCH ALGORITHMS 143

AND/OR tree. AND/OR search graphs can induce the same time and space complexities as VE

and CTE algorithms. Algorithms on AND/OR search graphs, which use caching, can be tuned

depending on the memory size available

Recursive conditioning (RC [26]) is an algorithm for exact inference in Bayesian networks.

It exploits the structure of a BN as follows. Given an initial BN, RC conditions on a set of variables

S of the BN (i.e. it assigns a set of variables of the BN), so that the removal of the variables in S

yields two disconnected subnetworks. S is called a cutset. Each disconnected subnetwork is solved

independently by using the same mechanism. This recursive process is applied until subnetworks

contain a unique variable. In the example of Figure 8.1(a), we can first condition on {x1}, and

doing so, we create two disconnected subnetworks. The first subnetwork contains only variable

x5. The second one, containing variables x2, x3, and x4, can itself be split by conditioning on x3,

which creates two disconnected subnetworks containing one variable only.

In fact, an implicit tree structure, called a dtree, exists behind the conditioning mechanism and

can be used to find good cutsets.

Definition 8.2. A dtree for a BN (V,G, P) is a rooted binary tree whose leaves correspond to the

conditional probabilities in P . The set of variables involved in a leaf is the scope of the conditional

probability distribution associated with this leaf.

Given a node in the dtree, the cutset associated with it is the set of variables shared between its

left and right subtrees. In the end, RC can be seen as structured tree search exploring a dtree by

assigning cutsets in a depth-first manner. In order to avoid redundant computations, RC can also

trade time for space by using caching strategies. It can also be tuned depending on the memory

size available. This makes RC an any-space algorithm capable of providing a space complexity

exponential in the size of the largest cutset and a time complexity exponential in the BN tree-

width w, as well as a linear space complexity and a time complexity exponential in w · log(|V |).

The BTD algorithm (Backtrack bounded by Tree Decomposition [65]) also achieves a struc-

tured tree search to solve CSPs or valued CSPs. Compared to AND/OR search spaces and RC,

which use pseudo-trees and dtrees, BTD uses standard cluster-tree decompositions (as defined in

Definition 7.18 page 118), which are the main topic of many existing works [116, 2, 115, 73, 13, 76].

Given a rooted cluster-tree decomposition, the BTD algorithm first performs stepwise assign-

ments of the variables in the root cluster. If the VCSP considered corresponds to a cost mini-

mization task, backtrack occurs if the cost provided by the current assignment is too high. If all

variables in the root cluster c0 are assigned, then a son cluster c1 of c0 is explored. This means

that unassigned variables in c1 are assigned step-by-step. Again, backtrack occurs if the cost of

the current assignment is greater than some upper bound. If all variables in c1 are assigned, then

a son cluster of c1 is explored similarly. If there is no unexplored son cluster, backtrack occurs.

BTD additionally uses recording on cluster separators.

Definition 8.3. The separator between a cluster c and one of its sons s ∈ Sons(c) is the set of

variables defined by sep(c, s) = V (c) ∩ V (s), also denoted improperly c ∩ s.

Given an assignment A of the ancestors of s, the cluster-tree structure entails that the value

val(s)(A) given by cluster s only depends on the assignment A↓sep(c,s) of the separator sep(c, s).

144 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

Hence, if val(s)(A) is computed once and recorded, then it is useless to compute val(s)(A′) for

all assignments A′ such that A↓sep(c,s) = A′↓sep(c,s). Local consistencies are also used during the

search in order to get bounds on the cost of any extension of the current assignment [65, 29]. If

these bounds violate requirements imposed for example by the best solution found so far, then

backtrack occurs.

From existing works to a generic structured tree search on MCDAGs The three pre-

vious algorithms present many similarities, since pseudo-trees, dtrees, and cluster-tree decompo-

sitions share many common properties (but we do not know formal works establishing precisely

equivalence relations between these structures). In order to develop a generic structured tree

search, we choose to start from the BTD algorithm, since the MCDAG obtained after the query

structuration process is closer to a cluster-tree decomposition than to a pseudo-tree or a dtree.

We incrementally present a generalized BTD algorithm on MCDAGs, starting from a structured

tree search without bounds and caching to a structured tree search using both bounds and caching.

As we shall see, the main difficulty in adapting the BTD algorithm to MCDAGs resides in the use

of bounds to prune the search space.

In the sequel, we assume without loss of generality that there are no free variables in the query.

If the set of free variables Vfr is not empty, it suffices to call the forthcoming algorithms once

for each assignment of Vfr. Also, we assume that there are no feasibilities. The integration of

feasibilities is discussed in Section 8.7.

8.2 A first generic structured tree search

The first algorithm we define simply traverses the MCDAG from the root to the leaves, instead of

propagating information from the leaves to the root as in a variable elimination scheme. We first

introduce a definition essential for the understanding of the rest of the chapter.

Definition 8.4. Let c be a cluster of a MCDAG. Let V ⊂ V (c) − V (pa(c)) be a subset of the

variables to eliminate in c. Let Φ ⊂ Φ(c) be a subset of the scoped functions associated with c. Let

A be an assignment of the variables involved in the ancestors of c in the MCDAG and in V (c)−V .

We define val(c, A, V,Φ) by

val(c, A, V,Φ) = ⊕c
V

((

⊗c
ϕ∈Φ

ϕ(A)

)

⊗c
(

⊗c
s∈Sons(c)

val(s)(A)

))

where val(s)(A) is given by Definition 7.41 page 131.

In other words, val(c, A, V,Φ) corresponds to the elimination of the variables in V on the

combination of the scoped functions in Φ together with the values of the son clusters of c. This is

realized for assignment A and using the elimination operator ⊕c and the combination operator ⊗c

of cluster c.

Proposition 8.5. Let M be a MCDAG associated with a query Q. Let c be a cluster in M .

(a) Let r be the root cluster of M . Then, Ans(Q) = val(r, ∅, V (r),Φ(r)).

8.2. A FIRST GENERIC STRUCTURED TREE SEARCH 145

(b) ∀x ∈ V, val(c, A, V,Φ) = ⊕c
a∈dom(x)

((

⊗c
ϕ∈Φ0

ϕ(A.(x, a))

)

⊗c val(c, A.(x, a), V − {x},Φ− Φ0)

)

,

where Φ0 = {ϕ ∈ Φ | sc(ϕ) ∩ (V − {x}) = ∅}

(c) val(c, A, ∅,Φ) =

(

⊗c
ϕ∈Φ

ϕ(A)

)

⊗c
(

⊗c
s∈Sons(c)

val(s,A, V (s)− V (c),Φ(s))

)

Proposition 8.5 helps us define a first generic structured tree search. More precisely, Proposi-

tion 8.5(a) says that in order to answer a query Q whose associated MCDAG has r as a root, it

suffices to compute val(r, ∅, V (r),Φ(r)). A recursive use of Proposition 8.5(b) then gives a method

to compute val(r, ∅, V (r),Φ(r)), by assigning step-by-step the variables in V (r). Once all vari-

ables in V (r) are assigned, quantities like val(r, A, ∅,Φ) must be computed. Proposition 8.5(c),

then says that val(r, A, ∅,Φ) = (⊗cϕ∈Φ ϕ(A)) ⊗c
(
⊗cs∈Sons(r) val(s,A, V (s)− V (r),Φ(s))

)
. Each

val(s,A, V (s) − V (r),Φ(s)) can be computed by using Proposition 8.5(b) again. Therefore, an

alternation of applications of Propositions 8.5(b) and 8.5(c) enables us to compute Ans(Q).

The associated generic structured tree search on MCDAGs, directly defined from Proposi-

tion 8.5, is called TS-mcdag (like “Tree Search on MCDAG”) and is shown in Figure 8.2. As

it uses structured problems, it is expected to be much more efficient than the unstructured tree

search algorithm given in Section 6.1.

TS-mcdag(c, A, V, Φ)
begin

if (V = ∅) then

S ← Sons(c)
val ← ⊗c

ϕ∈Φ ϕ(A)
while S 6= ∅ do

Choose s ∈ S
S ← S − {s}
val← val ⊗c TS-mcdag(s, A, V (s)− V (c), Φ(s))

return (val)

else

Choose x ∈ V

d← dom(x)
Φ0 ← {ϕ ∈ Φ(c) , sc(ϕ) ∩ (V − {x}) = ∅}
val ← ♦
while d 6= ∅ do

Choose a ∈ d

d← d− {a}
val← val⊕c((⊗c

ϕ∈Φ0
ϕ(A.(x, a)))⊗c TS-mcdag(c, A.(x, a), V − {x}, Φ− Φ0))

return (val)

end

Figure 8.2: A generic structured tree search algorithm on a MCDAG.

The first call is TS-mcdag(r, ∅, V (r),Φ(r)). TS-mcdag(c, A, V,Φ) actually computes the

quantity val(c, A, V,Φ). If the set V of unassigned variables is empty, then the value of each son

cluster is computed, as specified in Proposition 8.5(c). Otherwise, if V 6= ∅, then a variable x to

be assigned is chosen, and the computations specified in Proposition 8.5(b) are performed.

Proposition 8.6. Algorithm TS-mcdag is sound and complete, i.e. it returns Ans(Q).

Proposition 8.7. Let M be a MCDAG associated with a query Q = (Sov, (V,G, P, ∅, U)). Then,

the space complexity of algorithm TS-mcdag is O(h · (d+m)), and its time complexity is

146 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

O(m · µ · dh),

where d is the maximum domain size, h is the MCDAG-height, µ is the maximum number of

parents of a node in the MCDAG (µ = 1 if the MCDAG is a MCTree), and m = |P ∪ U | in the

semiring case and m = (1 + |P |)(1 + |U |) in the semigroup case.

Proposition 8.7 shows that in addition to the MCDAG-width, the MCDAG-height can be a

criterion to search for good cluster-tree decompositions.

8.3 Adding caching to the structured tree search

Algorithm TS-mcdag may perform many redundant computations, and it is possible to trade

space for time thanks to some caching.

Indeed, let c be a cluster, let s ∈ Sons(c), and let Vanc(s) be the set of variables involved in the

ancestors of s in the MCDAG. Let Asep be an assignment of sep(c, s). For all assignments A, A′ of

Vanc(s) − V (s), the MCDAG structure entails that val(s)(A.Asep) = val(s)(A′.Asep). TS-mcdag

does not use this structural property at all and computes val(s)(A.Asep) = val(s,A.Asep, V (s) −

V (c),Φ(s)) for every assignment A of Vanc(s)−V (s). If there are 10 boolean variables in Vanc(s)−

V (s), this means that the same computation is performed 210 times instead of once.

A solution to this problem is to record the result of evaluations of quantities such as val(s)(A),

which actually equals val(s)(A↓c∩s). The value recorded for val(s)(A↓c∩s) is denoted rec(s,A↓c∩s).

It equals nil if no value is recorded. The space required for this caching depends on the size of

the separators, which can therefore be another parameter quantifying the quality of a cluster-tree

decomposition. The updated algorithm, called RecTS-mcdag as TS-mcdag with Recording, is

shown in Figure 8.3.

RecTS-mcdag(c, A, V, Φ)
begin

if (V = ∅) then

S ← Sons(c)
val ← ⊗c

ϕ∈Φ ϕ(A)
while S 6= ∅ do

Choose s ∈ S
S ← S − {s}
if (rec(s,A↓c∩s) = nil) then rec(s,A↓c∩s)← RecTS-mcdag(s,A,V(s)−V(c), Φ(s))

val← val ⊗c rec(s, A↓c∩s)

return (val)

else

Choose x ∈ V

d← dom(x)
Φ0 ← {ϕ ∈ Φ , sc(ϕ) ∩ (V − {x}) = ∅}
val ← ♦
while d 6= ∅ do

Choose a ∈ d

d← d− {a}
val← val⊕c((⊗c

ϕ∈Φ0
ϕ(A.(x, a)))⊗c RecTS-mcdag(c, A.(x, a), V − {x}, Φ− Φ0))

return (val)

end

Figure 8.3: A structured tree search algorithm using caching.

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 147

Proposition 8.8. Algorithm RecTS-mcdag is sound and complete, i.e. it returns Ans(Q).

Proposition 8.9. Let M be a MCDAG associated with a query Q = (Sov, (V,G, P, ∅, U)). Let w

be the MCDAG-width. Computing Ans(Q) with algorithm RecTS-mcdag on the MCDAG M is

time O(m · dw+1), where m = |P ∪ U | in the semiring case and m = (1 + |P |) · (1 + |U |) in the

semigroup case. The space complexity is O(N · s · ds), where N is the number of clusters in the

MCDAG and s is the size of the largest separator.

In fact, algorithm RecTS-mcdag has the same time and space complexities as a cluster-tree

elimination algorithm on a MCDAG, and it performs the same computations. The only difference

is the order in which these computations are made (top-down or bottom-up processing in the

MCDAG).

However, an advantage of RecTS-mcdag is that it can easily be tuned to an any-space version:

if the amount of space required for caching is greater than the memory size available, some recorded

values can simply be destroyed, at the price of a greater time complexity.

8.4 A structured tree search using both bounds and caching

One of the main interest of tree search is to prune the search space using bounds, which leads to

so-called branch-and-bound techniques. These techniques can improve both the practical time and

space complexities, since they can allow some recordings on useless parts of the search space to be

avoided. In other words, by pruning the search space, bounds can enable us to avoid considering

all instantiations of all separators.

8.4.1 A small additional algebraic assumption

For some bounds initializations, we need an additional algebraic assumption enabling us to consider

totally �-ordered MCS (E,⊕,⊗) having a minimum element ⊥ and a maximum element ⊤. Some

of the MCS considered, such as ({t, f},∨,∧), already admit such elements. In fact, if 0E � 1E,

then the structure admits ⊥= 0E as a minimum element, and if 1E � 0E, then it admits ⊤ = 0E

as a maximum element.

In the first case (0E � 1E), we can always add to the structure an element ⊤ such that for all

x ∈ E ∪ {⊤}, x � ⊤, ⊤⊕ x = x⊕⊤ = ⊤, and ⊤⊗ x = x⊗⊤ =

{

⊤ if x 6= 0E

0E otherwise
. The structure

obtained is still a totally ordered MCS provided that (x⊗ y = 0E)→ ((x = 0E)∨ (y = 0E)) holds.

The latter property is satisfied in all standard expected utility structures.

In the second case (1E � 0E), it is always possible to invert �, which gives a total order �′

such that 0E �
′ 1E, and then to perform a similar extension.

To sum up, we consider totally ordered MCS equipped with a minimum element ⊥= 0E and a

maximum element ⊤ in the following.

8.4.2 Using bounds in presence of several elimination operators

A first difficulty in adapting branch-and-bound techniques to MCDAGs is to handle bounds in the

context of alternating multiple elimination operators. A good starting point to solve this problem

148 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

is the alpha-beta algorithm [74] used in game theory, where min and max operators alternate. This

algorithm is briefly described below.

Let us consider a two-player game whose game tree is shown in Figure 8.4(a). Each internal

node corresponds to a choice of one player, and branches below this node correspond to the different

possible moves. An internal node is labeled with min or max, depending on which player controls

the associated move. Each leaf node is labeled with a value which evaluates the position obtained

if the players play as indicated by the path from the root to this leaf.

A first method to compute the best first move is to perform a depth-first tree search computing

the value v(n) of each max (resp. min) node n as the maximum (resp. minimum) value of its

children. The value of each node as well as the best first move are given in Figure 8.4(a), which

shows that the max-player can achieve a value of 4. The corresponding algorithm, called the

MiniMax algorithm, explores the whole game tree without using bounds.

The MiniMax algorithm actually performs useless computations because several nodes in the

game tree of Figure 8.4(a) do not need to be considered. For example, in Figure 8.4(b), after the

exploration of the two first branches of A, we know that min-node A can achieve a value lesser

than 4. The exploration of the first value of max-node B shows that the value of B is greater than

5 and consequently is useless for the computation of the value of A. Pruning can occur. Similarly,

after the exploration of the two first branches of min-node C, the value of C is known to be lesser

than 3. This means that if the max-player chooses the move corresponding to the second branch

of the root, the min-player can achieve a value of 3. As the first branch of the root gives a value

of 4, the max player will never choose the second move, and consequently exploring the rest of the

second branch is useless: pruning can occur.

The alpha-beta algorithm enables one to exactly know when the search space can be pruned.

Technically speaking, it uses two bounds called α and β, in Z ∪ {−∞,+∞}. During search, each

node n needs to satisfy a requirement such as α < v(n) < β, which means that α is a lower bound

and β is an upper bound. If α = −∞, this means that there is no lower requirement, and if

β = +∞, this means that there is no upper requirement. During the tree exploration, min-nodes

can decrease the upper bound β, which means that a min-node always seeks values worse than the

ones found so far. At the same time, max-nodes can increase lower bound α, which means that a

max-node always seeks values better than the ones found so far. Pruning occurs when β ≤ α, i.e.

when the requirements on a node value cannot be satisfied.

Alpha-beta techniques have also been adapted for stochastic games [4], where min, max, and

+ operators alternate.

In the context of a structured tree search on MCDAGs, we simply use a lower bound LB and

an upper bound UB, as in the alpha-beta algorithm. This enables us to deal with both several

elimination operators and bounds. Informally, min-clusters will tighten UB while max-clusters

will tighten LB.

Also, in order to have counterparts of −∞ and +∞, which mean that there is no lower or upper

requirement respectively, we introduce two new elements denoted ⊥− and ⊤+. Given a totally

ordered MCS (E,⊕,⊗), ⊥− is an element outside of E which is lesser than any element in E, and

⊤+ is an element outside of E which is greater than any element in E ∪ {⊥−}.

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 149

max

minmin

max max max max max max

min

2 1 7 1 4 1 5 1 1 3 2 1 1256

max

minmin

max max max max max max max max max

min

947 6 3 8 2 9 5

234

(best value)

2 1 7 1 4 1 5 6 9 1 1 3 4 2 1 2 5513928256

7 4 6 3 2

4

4

4

(b)

(a) Optimal move

A

B

C

1

Figure 8.4: Example of alpha-beta pruning: (a) Game tree explored by the MiniMax algorithm;
(b) Pruned game tree explored by the alpha-beta algorithm.

8.4.3 Using bounds without inverse for the combination operations

A second difficulty consists in dealing simultaneously with bounds and combination operations,

mainly because the algebraic structure we use, a MCS (E,⊕,⊗), does not assume the existence

of inverse operations for ⊕ or ⊗. This problem does not appear with the alpha-beta algorithm

because it manipulates a unique global function providing the leaves values.

Due to the factorization into local functions, one may want to impose a requirement like e⊗ ⊗

val ≺ UB on some values val to be computed, where e⊗ is a factor which must be combined with

val using ⊗. Since we do not assume the existence of a division operation ⊘, one cannot directly

impose val ≺ UB ⊘ e⊗ and take UB′ = UB ⊘ e⊗ as a new simple upper bound for val.

The same holds for requirements such as val ⊕ e⊕ ≺ UB, where e⊕ is a factor which must be

combined with val using ⊕, because we do not assume the existence of a difference operation ⊖

inverse of ⊕.

In the end, we need to be able to enforce complex requirements such as e⊗⊗ val⊕ e⊕ ≺ UB or

LB ≺ e⊗⊗ val⊕ e⊕. Furthermore, factors e⊗ and e⊕ may not even be exactly known. Only lower

and upper bounds lb⊗ and ub⊗ on e⊗ and lower and upper bounds lb⊕ and ub⊕ on e⊕ may be

available. In order to manipulate constant factors only (except for the value val to be computed),

one can impose the following weaker requirements:

(LB ≺ ub⊗ ⊗ val ⊕ ub⊕) ∧ (lb⊗ ⊗ val ⊕ lb⊕ ≺ UB) (8.1)

This leads us to define the notion of complex bounds.

Definition 8.10. A complex bound is a tuple (LB,UB, lb⊗, ub⊗, lb⊕, ub⊕) such that LB ≺ UB,

150 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

lb⊗ � ub⊗, and lb⊕ � ub⊕.

Informally, imposing a complex bound (LB,UB, lb⊗, ub⊗, lb⊕, ub⊕) on a quantity val means

imposing Equation 8.1. Thanks to complex bounds, some branches of the search space may be cut.

That is to say, if a branch of the structured tree must compute val(c, A, V,Φ) while satisfying a

complex bound B, then the exact value of val(c, A, V,Φ) is not needed if B is proved to be violated.

In order to represent this, we define the notion of bounded evaluation.

Definition 8.11. Let B = (LB,UB, lb⊗, ub⊗, lb⊕, ub⊕) be a complex bound. An evaluation of

val(c, A, V,Φ) bounded by B, is a couple (lb, ub) ∈ E2 such that lb � val(c, A, V,Φ) � ub, and such

that (lb = ub)∨ (lb⊗⊗ lb⊕ lb⊕ = ub⊗⊗ub⊕ub⊕)∨ (LB � ub⊗⊗ub⊕ub⊕)∨ (UB � lb⊗⊗ lb⊕ lb⊕).

In other words, an evaluation of val(c, A, V,Φ) bounded by B must provide us with lower and

upper bounds lb, ub on val(c, A, V,Φ), such that one of the following conditions holds:

1. lb = ub, i.e. we have the exact value of val(c, A, V,Φ);

2. lb⊗ ⊗ lb⊕ lb⊕ = ub⊗ ⊗ ub⊕ ub⊕: in this case, one can infer that e⊗ ⊗ val(c, A, V,Φ)⊕ e⊕ =

lb⊗⊗ lb⊕ lb⊕ = ub⊗⊗ub⊕ub⊕. Informally, this means that whatever the exact local value of

val(c, A, V,Φ) is, knowing lb and ub suffices to ensure that a unique global degree is obtained

after combination with the rest of the problem;

3. LB � ub⊗ ⊗ ub ⊕ ub⊕, i.e. the upper bound ub proves that val(c, A, V,Φ) does not satisfy

the requirements imposed by B;

4. UB � lb⊗ ⊗ lb⊕ lb⊕, i.e. the lower bound lb proves that val(c, A, V,Φ) does not satisfy the

requirements imposed by B.

8.4.4 Algorithm definition

In order to specify a structured tree search algorithm using bounds and caching, we use several

functions, which satisfy some specifications:

• A main function called BTD-mcdag(), which returns the answer Ans(Q) to a query Q.

• A function bound(c, A, V,Φ, val0), which returns a pair (lb, ub) such that lb � val(c, A, V,

Φ) � ub. Parameter val0 is an additional parameter which will be combined with lb and ub

after the execution of function bound. It can be used to avoid computing too precise bounds

when not needed: for example, if val0 = 0E, then (lb, ub) = (⊥,⊤) is sufficient to infer that

val0 ⊗ lb = val0 ⊗ ub = 0E .

• Three functions evalClusterMin(c, A, V,Φ,B), evalClusterMax (c, A, V,Φ,B), and evalCluster-

Plus(c, A, V,Φ,B), which compute an evaluation of val(c, A, V,Φ) bounded by the complex

bound B. We use the generic notation evalCluster-⊕c to denote one of these functions.

• A function evalSons(c, A,Φ,B), which computes an evaluation of val(c, A, ∅,Φ) bounded by

B. It is called evalSons because computing val(c, A, ∅,Φ) requires computing the combination

of the values of the son clusters of c.

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 151

A function satisfying its specifications is said to be sound and complete. A function satisfying

its specifications for all clusters c of depth h is said to be sound and complete for clusters of depth

h (the depth of a cluster being the size of the longest path from the root of the MCDAG to c). We

informally introduce each function and then establish formal soundness and completeness results.

Function BTD-mcdag (Figure 8.5) Given the root r of a MCDAG, BTD-mcdag() computes

(lb, ub)← evalCluster-⊕r(r, ∅, V (r),Φ(r),B0), using complex bound B0 = (⊥−,⊤+, 1E , 1E, 0E , 0E).

If evalClusterMin, evalClusterMax, and evalClusterPlus satisfy their specifications, then (lb, ub) is

an evaluation of val(r, ∅, V (r),Φ(r)) bounded by B0. As val(r, ∅, V (r),Φ(r)) = Ans(Q) (cf. Propo-

sition 8.5(a) page 144), (lb, ub) is an evaluation of Ans(Q) bounded by B0. It can easily be shown

that this means that lb = ub = Ans(Q), because B0 is an “empty” requirement.

BTD-mcdag()
begin

r ← root(MCDAG)
(lb, ub)← evalCluster-⊕r (r, ∅, V (r),Φ(r), (⊥−,⊤+, 1E , 1E , 0E , 0E))
return (lb)

end

Figure 8.5: Main function: BTD-mcdag.

Function bound This function can simply return (⊥,⊤) as the lower and upper bounds on

a quantity val(c, A, V,Φ). However, more advanced versions can obviously be defined, thanks to

techniques discussed in Section 8.6.

Function evalClusterMax (Figure 8.6) This function must return an evaluation of val(c, A, V,

Φ) bounded by B. If V is empty, then the bounded evaluation is provided by evalSons. Otherwise,

the algorithm chooses an unassigned variable x ∈ V and computes the set Φ0 of scoped functions

whose scope is assigned if x is assigned. As val(c, A, V,Φ) = maxa∈dom(x) val(c, A.(x, a), V − {x},Φ),

we successively evaluate each val(c, A.(x, a).V −{x},Φ) = (⊗cϕ∈Φ0 ϕ(A.(x, a)))⊗cval(c, A.(x, a), V−

{x},Φ− Φ0) (while loop).

Informally, the algorithm is designed so that at each iteration of the while loop, (lb, ub) is

an evaluation of maxa∈dom(x)−d val(c, A.(x, a), V − {x},Φ) bounded by B, where d is the set of

values of x which have not been considered yet. This property holds at the beginning, where

(lb, ub) = (⊥,⊥) and dom(x) − d = ∅.

At each iteration, a value a ∈ d is considered. The combination of the scoped functions in Φ0

gives a value val0. A lower bound lb′ and an upper bound ub′ on val(c, A.(x, a), V − {x},Φ−Φ0)

are computed thanks to the bound function. This implies that val0 ⊗c lb′ and val0 ⊗c ub′ are

respectively lower and upper bounds on val(c, A.(x, a), V − {x},Φ). If these lower and upper

bounds do not define a bounded evaluation of val(c, A.(x, a), V − {x},Φ) (test in the “if” block),

then a more precise evaluation of val(c, A.(x, a), V − {x},Φ) is sought, using an updated complex

bound which depends on the combination operator used by the max-cluster.

After the “if” block, a bounded evaluation of val(c, A.(x, a), V − {x},Φ) is available. Lower

and upper bounds lb and ub are updated, and the max-cluster may tighten lower bound LB′.

152 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

The iterations of the while loop are stopped if all values of x have been considered (case d = ∅),

if the requirements cannot be satisfied (case LB′ � UB), or if the exact value of val(c, A, V,Φ)

is known (case lb = ⊤, which implies that lb = ub = val(c, A, V,Φ) = ⊤). If some values a in

dom(x) have not been considered during the iterations of the while loop, then, as no upper bound

on val(c, A.(x, a), V − {x},Φ) is available, ub is set to ⊤. Finally, (lb, ub) is returned.

evalClusterMax(c,A, V, Φ, (LB, UB, lb⊗, ub⊗, lb⊕, ub⊕))
begin

if (V = ∅) then return (evalSons(c, A,Φ, (LB, UB, lb⊗, ub⊗, lb⊕, ub⊕)))
else

Choose x ∈ V

d← dom(x)
Φ0 ← {ϕ ∈ Φ , sc(ϕ) ∩ (V − {x}) = ∅}
(lb, ub)← (⊥,⊥)
LB′ ← LB

while ((d 6= ∅) ∧ (LB′ ≺ UB) ∧ (lb 6= ⊤)) do

Choose a ∈ d

d← d− {a}
val0 ← ⊗c

ϕ∈Φ0
ϕ(A.(x, a))

(lb′, ub′)← bound(c, A.(x, a), V − {x}, Φ−Φ0, val0)
if ((LB′ ≺ (ub⊗⊗(val0⊗c ub′))⊕ub⊕)∧(lb⊗⊗(val0⊗c lb′)⊕ lb⊕ ≺ UB)∧(val0⊗c lb′ 6=
val0 ⊗c ub′) ∧ (lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕ 6= ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕)) then

if ⊗c = ⊗ then B′ ← (LB′, UB, val0 ⊗ lb⊗, val0 ⊗ ub⊗, lb⊕, ub⊕)
else B′ ← (LB′, UB, lb⊗, ub⊗, lb⊕ ⊕ lb⊗ ⊗ val0, ub⊕ ⊕ ub⊗ ⊗ val0)
(lb′, ub′)← evalClusterMax(c, A.(x, a), V − {x}, Φ− Φ0,B′)

ub← max(ub, val0⊗c ub′)
lb← max(lb, val0⊗c lb′)
LB′ ← max(LB′, lb⊗ ⊗ lb⊕ lb⊕)

if (d 6= ∅) then ub← ⊤
return ((lb, ub))

end

Figure 8.6: Bounded evaluation of a max-cluster.

Function evalClusterMin (Figure 8.7) Function evalClusterMin(c, A, V,Φ,B) must return

an evaluation of val(c, A, V,Φ) bounded by B. Its pseudo-code is similar to evalClusterMax.

The unique difference is that at each iteration of the while loop, (lb, ub) is an evaluation of

mina∈dom(x)−d val(c, A.(x, a), V − {x},Φ) bounded by B (hence the initialization (lb, ub)← (⊤,⊤)).

Moreover, instead of strengthening the global lower bound LB′, evalClusterMin may strengthen

the global upper bound UB′ in order to find assignments with an ever worse value.

Function EvalClusterPlus (Figure 8.8) The evaluation of a cluster having ⊕ as an elimi-

nation operator is different from max or min clusters evaluations when ⊕ /∈ {min,max}. If the

set of unassigned variables is empty, evalClusterPlus(c, A, V,Φ,B) must return an evaluation of

val(c, A, ∅,Φ) bounded by B. Such an evaluation is provided by evalSons(c, A,Φ,B).

Otherwise, we choose a variable x ∈ V . For each value a in dom(x), a lower bound tablb[a] and

an upper bound tabub[a] on val(c, A.(x, a), V −{x},Φ) are computed. This enables us to initialize

a lower bound lb and an upper bound ub on val(c, A, V,Φ) = ⊕a∈dom(x) val(c, A.(x, a), V − {x},Φ).

As long as a bounded evaluation of val(c, A, V,Φ) is not available, the while loop is pro-

cessed, i.e. a value a not yet considered in dom(x) is chosen. A more precise evaluation of

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 153

evalClusterMin(c,A, V, Φ, (LB, UB, lb⊗, ub⊗, lb⊕, ub⊕))
begin

if (V = ∅) then return (evalSons(c, A,Φ, (LB, UB, lb⊗, ub⊗, lb⊕, ub⊕)))
else

Choose x ∈ V

d← dom(x)
Φ0 ← {ϕ ∈ Φ , sc(ϕ) ∩ (V − {x}) = ∅}
(lb, ub)← (⊤,⊤)
UB′ ← UB

while ((d 6= ∅) ∧ (LB ≺ UB′) ∧ (ub 6=⊥)) do

Choose a ∈ d

d← d− {a}
val0 ← ⊗c

ϕ∈Φ0
ϕ(A.(x, a))

(lb′, ub′)← bound(c, A.(x, a), V − {x}, Φ−Φ0, val0)
if ((LB ≺ (ub⊗⊗(val0⊗c ub′))⊕ub⊕)∧(lb⊗⊗(val0⊗c lb′)⊕ lb⊕ ≺ UB′)∧(val0⊗c lb′ 6=
val0 ⊗c ub′) ∧ (lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕ 6= ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕)) then

if ⊗c = ⊗ then B′ ← (LB, UB′, val0 ⊗ lb⊗, val0 ⊗ ub⊗, lb⊕, ub⊕)
else B′ ← (LB, UB′, lb⊗, ub⊗, lb⊕ ⊕ lb⊗ ⊗ val0, ub⊕ ⊕ ub⊗ ⊗ val0)
(lb′, ub′)← evalClusterMin(c, A.(x, a), V − {x}, Φ−Φ0,B′)

ub← min(ub, val0⊗c ub′)
lb← min(lb, val0⊗c lb′)
UB′ ← min(UB′, ub⊗ ⊗ ub⊕ ub⊕)

if (d 6= ∅) then lb←⊥
return ((lb, ub))

end

Figure 8.7: Bounded evaluation of a min-cluster.

val(c, A.(x, a), V − {x},Φ) is computed using an updated complex bound B′. The computa-

tion of this new bound uses lb¬a and ub¬a, which are lower and upper bounds respectively

over ⊕a′∈dom(x)−{a} val(c, A.(x, a
′), V −{x},Φ). Once a bounded evaluation of val(c, A.(x, a), V −

{x},Φ) is available, lb and ub are updated, as well as variable res. It can be shown that when the

conditions of the while loop hold, res always equals ⊕a∈dom(x)−d val(c, A.(x, a), V − {x},Φ).

If the conditions of the while loop are not satisfied, then this exactly means that (lb, ub) is an

evaluation of val(c, A, V,Φ) bounded by B, hence (lb, ub) is returned.

Function evalSons (Figure 8.9) This function must return an evaluation of val(c, A, ∅,Φ) =

(⊗cϕ∈Φ ϕ(A))⊗c (⊗cs∈Sons(c) val(s)(A)) bounded by B = (LB,UB, lb⊗, ub⊗, lb⊕, ub⊕).

It does not record the exact value of val(s)(A↓s∩c) for each son cluster s ∈ Sons(c) using the

caching structure of algorithm RecTS-mcdag, since because of pruning, backtrack can occur be-

fore the exact value of val(s)(A↓s∩c) is known. The caching structure instead records a lower bound

denoted LB(s,A↓s∩c) and an upper bound denoted UB(s,A↓s∩c) on val(s)(A↓s∩c). These bounds

are initialized with ⊥ and ⊤ respectively, and they always satisfy LB(s,A↓s∩c) � val(s)(A↓s∩c) �

UB(s,A↓s∩c). If LB(s,A↓s∩c) = UB(s,A↓s∩c), then val(s)(A↓s∩c) is known. The data structures

used to record LB(s,A↓s∩c) and UB(s,A↓s∩c) can be sparse, since for example Binary Decision

Diagrams [1, 21] or hash tables can be used instead of large tables in which many recorded values

equal ⊥ or ⊤. Moreover, it is possible to forget some bounds when the memory size available

becomes too small.

Function evalSons works as follows. If Sons(c) = ∅, then val(c, A, ∅,Φ) = ⊗cϕ∈Φ ϕ(A) and it

154 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

evalClusterPlus(c,A, V, Φ, (LB, UB, lb⊗, ub⊗, lb⊕, ub⊕))
begin

if (V = ∅) then return (evalSons(c, A, Φ, (LB, UB, lb⊗, ub⊗, lb⊕, ub⊕)))
else

Choose x ∈ V

Φ0 ← {ϕ ∈ Φ , sc(ϕ) ∩ (V − {x}) = ∅}
foreach a ∈ d do (tablb[a], tabub[a])← bound(c, A.(x, a), V − {x}, Φ, 1E)
d0 ← {a ∈ dom(x), tablb[a] = tabub[a]}
res← ⊕a∈d0

tablb[a]
d← dom(x)− d0

(lb, ub)← (res⊕ (⊕a∈d tablb[a]), res⊕ (⊕a∈d tabub[a]))
while ((LB ≺ ub⊗ ⊗ ub ⊕ ub⊕) ∧ (lb⊗ ⊗ lb ⊕ lb⊕ ≺ UB) ∧ (lb 6= ub) ∧ (lb⊗ ⊗ lb ⊕ lb⊕ 6=
ub⊗ ⊗ ub ⊕ ub⊕)) do

Choose a ∈ d

d← d− {a}
val0 ← ⊗ϕ∈Φ0

ϕ(A.(x, a))
(lb¬a , ub¬a)← (res⊕ (⊕a′∈d tablb[a′]) , res⊕ (⊕a′∈d tabub[a′]))
B′ ← (LB, UB, lb⊗ ⊗ val0, ub⊗ ⊗ val0, lb⊕ ⊕ (lb⊗ ⊗ lb¬a), ub⊕ ⊕ (ub⊗ ⊗ ub¬a))
(lba, uba)← evalClusterPlus(c, A.(x, a), V − {x}, Φ− Φ0,B′)
(lb, ub)← (lb¬a ⊕ (val0 ⊗ lba), ub¬a ⊕ (val0 ⊗ uba))
res← res⊕ (val0 ⊗ lba)

return ((lb, ub))

end

Figure 8.8: Bounded evaluation of a ⊕ cluster.

is straightforward that the pair returned is (lb, ub) = (⊗cϕ∈Φ ϕ(A),⊗cϕ∈Φ ϕ(A)).

Otherwise, a son cluster s is considered and a bounded evaluation of val(s)(A) is sought. We

first compute lower and upper bounds lb¬s and ub¬s on (⊗cϕ∈Φ ϕ(A))⊗c(⊗cs′∈Sons(c)−{s} val(s
′)(A)),

i.e. on the part of the problem which does not depend on s. We use lb¬s and ub¬s as parameters

to compute a complex bound to be imposed on the function in charge of providing a bounded

evaluation (lbs, ubs) of val(s)(A) = val(s,A, V (s) − V (c),Φ(s)). Once (lbs, ubs) is available, the

recorded lower and upper bound on val(s)(A) are updated. More precisely, as both val(s)(A) � lbs

and val(s)(A) � LB(s,A↓s∩c), we can infer that val(s)(A) � max(lbs, LB(s,A↓s∩c)). Simi-

larly, as both val(s)(A) � ubs and val(s)(A) � UB(s,A↓s∩c), we can infer that val(s)(A) �

min(ubs, UB(s,A↓s∩c)). This explains the updating of LB(s,A↓s∩c) and UB(s,A↓s∩c). A local

variable res is updated too, and it can be shown that if the conditions of the while loop are satis-

fied, then we have res = (⊗cϕ∈Φ ϕ(A)) ⊗c (⊗cs∈Sons(c)−S val(s)(A)). Lower and upper bounds lb

and ub on val(c, A, ∅,Φ) are also updated, using lb¬s, ub¬s, LB(s,A↓s∩c), and UB(s,A↓s∩c).

When the conditions of the while loop are not satisfied, this exactly means that (lb, ub) is an

evaluation of val(c, A, ∅,Φ) bounded by B, hence (lb, ub) is returned.

Soundness and completeness of algorithm BTD-mcdag

Lemma 8.12. If function bound is sound and complete and if evalSons is sound and complete

for clusters of depth h, then evalClusterMax is sound and complete for clusters of depth h.

Lemma 8.13. If function bound is sound and complete and if evalSons is sound and complete

for clusters of depth h, then evalClusterMin is sound and complete for clusters of depth h.

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 155

evalSons(c,A, Φ, (LB, UB, lb⊗, ub⊗, lb⊕, ub⊕))
begin

S0 ← {s ∈ Sons(c), LB(s, A↓s) = UB(s, A↓s)}
res← (⊗c

ϕ∈Φ ϕ(A))⊗c (⊗c
s∈S0

LB(s,A↓s))
S ← Sons(c) − S0

(lb, ub)← (res⊗c (⊗c
s∈S LB(s, A↓s)), res⊗c (⊗c

s∈S UB(s,A↓s)))
while ((LB ≺ ub⊗⊗ub⊕ub⊕)∧(lb⊗⊗lb⊕lb⊕ ≺ UB)∧(lb 6= ub)∧(lb⊗⊗lb⊕lb⊕ 6= ub⊗⊗ub⊕ub⊕))
do

Choose s ∈ S

S ← S − {s}
(lb¬s, ub¬s)← (res⊗c

“

⊗c
s′∈S LB(s′, A↓s′)

”

, res⊗c
“

⊗c
s′∈S UB(s′, A↓s′)

”

)

if ⊗c = ⊗ then B′ ← (LB, UB, lb¬s ⊗ lb⊗, ub¬s ⊗ ub⊗, lb⊕, ub⊕)
else B′ ← (LB, UB, lb⊗, ub⊗, lb⊕, lb⊕ ⊕ lb⊗ ⊗ lb¬s, ub⊕ ⊕ ub⊗ ⊗ ub¬s)
(lbs, ubs)← EvalCluster-⊕s(s, A, V (s)− V (c), Φ(s),B′)
LB(s, A↓s)← max(lbs, LB(s, A↓s))
UB(s, A↓s)← min(ubs, UB(s, A↓s))
(lb, ub)← (lb¬s⊗c LB(s, A↓s), ub¬s⊗c UB(s, A↓s))
res← res⊗c LB(s, A↓s)

return ((lb, ub))

end

Figure 8.9: Bounded evaluation of the sons of a cluster.

Lemma 8.14. If function bound is sound and complete and if evalSons is sound and complete

for clusters of depth h, then evalClusterPlus is sound and complete for clusters of depth h.

Lemma 8.15. Function evalSons is sound and complete for clusters of maximal depth.

Lemma 8.16. If function bound is sound and complete, if evalClusterMin, evalClusterMax,

and evalClusterPlus are sound and complete for clusters of depth h, then evalSons is sound and

complete for clusters of depth h− 1.

Lemma 8.17. If function bound is sound and complete, then evalSons is sound and complete.

Theorem 8.18. If function bound is sound and complete, then algorithm BTD-mcdag is sound

and complete, i.e. it returns Ans(Q).

Proposition 8.19. Let M be a MCDAG associated with a query Q = (Sov, (V,G, P, ∅, U)). Then,

the time complexity of algorithm BTD-mcdag is O(m · µ · dh), where h is the MCDAG-height, µ

is the maximum number of parents of a node in the MCDAG (µ = 1 if the MCDAG is a MCTree),

and m = |P ∪U | in the semiring case and m = (1+ |P |)(1+ |U |) in the semigroup case. The space

complexity is O(N · s · ds), where N is the number of clusters in the MCDAG and s is the size of

the largest separator.

The theoretical time complexity of algorithm BTD-mcdag is worse than the theoretical time

complexity of algorithm RecTS-mcdag, and both algorithms have the same space complexity. 3

However, this does not mean that RecTS-mcdag always outperforms BTD-mcdag, since these

elements are just theoretical complexities. In practice, a tree search using bounds, despite its worse

theoretical time complexity, often outperforms variable elimination algorithms.

3. When the set E of the MCS (E,⊕,⊗) is known to be finite, it is possible to show that the time complexity
becomes O(m · |E| · dw+1), where w is the width of the MCDAG.

156 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

Note that algorithm BTD-mcdag generalizes both the alpha-beta algorithm used in game

theory and the BTD algorithm used to solve CSPs and VCSPs. It can be used to solve stochastic

SAT problems, stochastic CSPs, QBFs, QCSPs, influence diagrams, factored MDPs, possibilistic

influence diagrams, MAP (Maximum A Posteriori hypothesis) problems, or probabilistic planning

problems. It suffices to replace ⊗c and ⊕c by their instantiations in each of these formalisms. This

shows the interest of defining generic algorithms.

8.5 Using division and difference operators

Complex bounds make it possible to define a structured tree search using bounds and caching.

Nevertheless, using complex bounds is not free, because for each test involving the global lower

bound LB or the global upper bound UB, one ⊗ operation and one ⊕ operation are performed,

in addition to the comparison operation testing whether LB or UB is satisfied.

This section shows how additional algebraic assumptions enable us to use simple bounds

(LB,UB) and simple comparisons such as (LB ≺ ub) ∧ (lb ≺ UB), instead of complex bounds

(LB,UB, lb⊗, ub⊗, lb⊕, ub⊕) and complex comparisons such as (LB ≺ ub⊗ ⊗ ub ⊕ ub⊕) ∧ (lb⊗ ⊗

lb⊕ lb⊕ ≺ UB).

Basically, the additional algebraic assumptions allowing us to use simple bounds are related to

the existence of inverse operations for ⊗ and ⊕. They are similar to the assumptions used in VCSPs

that are said to be fair [25] or in semiring-based CSPs enhanced with a division operation [9]. They

can be enounced as follows:

• Additional axiom on ⊕, denoted “Ax⊖”:

For all x, y ∈ E such that x � y, the set {z ∈ E | y = z⊕x} has a maximum element denoted

y ⊖ x. In other words, we assume that there is a maximal difference of y and x.

• Additional axiom on ⊗, denoted “Ax⊘”, with two disjoint versions:

– Ax⊘1 : either 1E = ⊤ and for all x, y ∈ E such that x � y, the set {z ∈ E |x = z ⊗ y}

has a maximum element denoted x⊘ y (i.e. there is a maximal division of x and y).

– Ax⊘2 : or 1E 6= ⊤ and ⊤+ = ⊤ 4 and for all x, y ∈ E such that y /∈ {0E,⊤}, there exists

a unique z ∈ E, denoted x⊘ y, such that x = y ⊗ z

We also adopt the conventions ⊥− ⊖x =⊥−, ⊤+ ⊖ x = ⊤+, ⊥− ⊘x =⊥−, and ⊤+ ⊘ x = ⊤+ for

all x ∈ E.

Axioms Ax⊖ and Ax⊘ are satisfied in several usual cases. For example, the extra assumption on

⊕ holds with (E,�,⊕) = ([0,+∞],≤,+), (E,�,⊕) = ([0,+∞],≥,min), or (E,�,⊕) = ([0, 1],≤

,max). The extra assumption on ⊗ is satisfied with (E,�,⊗) = ([0,+∞],≥,+) or (E,�,⊗) =

([0, 1],≤,min) for the first case (1E = ⊤), and with (E,�,⊗) = ([0,+∞],≤,×) for the second case

(1E 6= ⊤).

As shown in Table 8.1, as soon as Ax⊖ and Ax⊘ hold, it is possible to avoid using complex

bounds. This table shows that given a quantity val to be computed, requirements such as α⊕val ≺

4. This means that ⊤ is not initially is the MCS and is added as described in Section 8.4.1 page 147.

8.5. USING DIVISION AND DIFFERENCE OPERATORS 157

UB, α⊕val ≻ LB, α⊗val ≺ UB, or α⊗val ≻ LB can be transformed into requirements for which

it suffices to compare val with an updated lower bound LB′ or with an updated upper bound UB′.

For example, row 1 imposes the requirement α⊕ val ≺ UB. If UB � α, then, as α = α⊕ 0E �

α⊕ val, we can infer that the requirement is never satisfied. Hence, we can impose an equivalent

unsatisfiable requirement on val, written as val ≺⊥−. As for row 2, if α ≺ UB, then UB ⊖ α is

defined and α⊕val ≺ UB implies that val ≺ UB⊖α (because if val � UB⊖α, then val⊕α � UB

by monotonicity of ⊕). In general, the inverse implication (val ≺ UB ⊖ α) → (α ⊕ val ≺ UB)

does not hold, which means that the complex requirement α ⊕ val ≺ UB can yield more pruning

than the simpler requirement val ≺ UB ⊖ α. However, as soon as ⊕ is strictly monotonic, the

equivalence (val ≺ UB ⊖ α)↔ (α⊕ val ≺ UB) holds whenever α ≺ UB.

In both cases, rows 1 and 2 enable us to replace α ⊕ val ≺ UB by val ≺ UB′, where UB′ is a

new simple upper bound.

For row 6, the requirement α ⊗ val ≺ UB is imposed and α ≺ UB holds. Then, as 1E = ⊤

with Ax⊘1 , we can infer that α ⊗ val � α ⊗ 1E ≺ UB, hence the requirement is always satisfied.

This is equivalent to impose val ≺ UB′ with UB′ = ⊤+ as a new upper bound.

Case Complex requirement Condition Simpler requirement

Ax⊖ α⊕ val ≺ UB UB � α val ≺⊥−

α ≺ UB val ≺ UB ⊖ α
LB ≺ α⊕ val LB ≺ α val ≻⊥−

α � LB val ≻ LB ⊖ α

Ax⊘1 α⊗ val ≺ UB UB � α val ≺ UB ⊘ α
α ≺ UB val ≺ ⊤+

LB ≺ α⊗ val LB ≺ α val ≻ LB ⊘ α
α � LB val ≻ ⊤+

Ax⊘2 α⊗ val ≺ UB α /∈ {0E,⊤} val ≺ UB ⊘ α
α = 0E val ≺ ⊤+

LB ≺ α⊗ val α /∈ {0E,⊤} val ≻ LB ⊘ α
(α = 0E) ∧ (LB 6=⊥−) val ≻ ⊤+

(α = 0E) ∧ (LB =⊥−) val ≻⊥−

α = ⊤ val ≻⊥−

Table 8.1: From complex bounds to simple bounds using difference and division operations, for
(α, val) ∈ E2 and LB ≺ UB. For Ax⊘2 , the requirement α ⊗ val ≺ UB together with the case
α = ⊤ is not considered because it will never be used in practice (roughly speaking, when Ax⊘2
holds and when α⊗ val ≺ UB will be required required, α will always be a lower bound on some
quantity in E − {⊤}, hence it does not equal ⊤).

In fact, in order to be simpler and to be always able to write (α⊕val ≺ UB)→ (val ≺ UB⊖α)

and (LB ≺ α ⊕ val) → (val ≻ LB ⊖ α), it suffices to extend the definition of ⊖ by y ⊖ x =⊥−

whenever y ≺ x. In order to write (α ⊗ val ≺ UB) → (val ≺ UB ⊘ α) and (LB ≺ α ⊗ val) →

(val ≻ LB⊘α) when Ax⊘1 holds, it suffices to extend the definition of ⊘ by x⊘ y = ⊤+ whenever

y ≺ x. In order to write (α⊗val ≺ UB)→ (val ≺ UB⊘α) and (LB ≺ α⊗val)→ (val ≻ LB⊘α)

when Ax⊘2 holds, it suffices to extend the definition of ⊘ by x⊘0E = ⊤+ if x 6=⊥−, ⊥− ⊘0E =⊥−,

and x⊘⊤ =⊥− if x ≺ ⊤.

Thanks to Ax⊖ and Ax⊘, new algorithms using simple bounds can be specified. Simple bounds

enable us to define a much simpler notion of bounded evaluation.

Definition 8.20. An evaluation of val(c, A, V,Φ) bounded by a simple bound (LB,UB), is a couple

158 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

(lb, ub) ∈ E2 such that lb � val(c, A, V,Φ) � ub and (lb = ub) ∨ (UB � lb) ∨ (ub � LB).

In other words, an evaluation of val(c, A, V,Φ) bounded by (LB,UB) is simply a pair of lower

and upper bounds on val(c, A, V,Φ) which either provides the exact value of val(c, A, V,Φ), or

proves that one of the bounds is not satisfied.

The new functions evalClusterMax(c, A, V,Φ, LB,UB), evalClusterMin(c, A, V,Φ, LB,UB),

and evalClusterPlus(c, A, V,Φ, LB,UB) are required to compute an evaluation of val(c, A, V,Φ)

bounded by (LB,UB), and the new function evalSons(c, A,Φ, LB,UB) is required to compute

an evaluation of val(c, A, ∅,Φ) bounded by (LB,UB). The new main function is called BTD-

answerQ().

Function BTD-answerQ() (Figure 8.10) This main function simply computes an evaluation

of the root cluster using (⊥−,⊤+) as inviolable simple bounds. Therefore, it gets lower and upper

bounds (lb, ub) such that lb = ub = val(r, ∅, V (r),Φ(r)), i.e. lb = ub = Ans(Q).

BTD-answerQ()
begin

r ← root(MCDAG)
(lb, ub)← evalCluster-⊕r (r, ∅, V (r),Φ(r),⊥−,⊤+)
return (lb)

end

Figure 8.10: Main function: BTD-answerQ.

Other functions (Figures 8.11 to 8.14) The other functions are similar to the previous ones.

The differences are the stopping conditions determining whether a bounded evaluation is available,

and the use of division and difference operations to compute new simple bounds. The instructions

associated with the handling of simple bounds are underlined. Given a cluster c, we denote by ⊘c

the operation ⊘ if ⊗c = ⊗, and ⊖ if ⊗c = ⊕.

For example, for evalClusterMax, the new bounds (LB′′, UB′′) computed when further compu-

tations are needed simply mean that a complex requirement such as LB′ ≺ val0⊗cval(c, A.(x, a), V−

{x},Φ−Φ0) ≺ UB is transformed into the simpler requirement LB′ ⊘c val0 ≺ val(c, A.(x, a), V −

{x},Φ− Φ0) ≺ UB ⊘c val0. The modification of evalClusterMin is similar.

As for evalClusterPlus, lb¬a and ub¬a are respectively lower and upper bounds on the quantity

⊕a′∈dom(x)−{a} val(c, A.(x, a
′), V − {x},Φ). We can impose on val(c, A.(x, a), V − {x},Φ) the

requirements LB ≺ val(c, A.(x, a), V −{x},Φ)⊕ub¬a and val(c, A.(x, a), V −{x},Φ)⊕ lb¬a ≺ UB.

Using val(c, A.(x, a), V − {x},Φ) = val0 ⊗ val(c, A.(x, a), V − {x},Φ − Φ0), these requirements

can be transformed into the weaker but simpler requirements val(c, A.(x, a), V − {x},Φ − Φ0) ≻

(LB ⊖ ub¬a)⊘ val0 and val(c, A.(x, a), V − {x},Φ− Φ0) ≺ (UB ⊖ lb¬a)⊘ val0. This explains the

new simple bounds used.

Concerning evalSons, the complex requirements LB ≺ ub¬s ⊗c val(s,A, V (s) − V (c),Φ(s))

and lb¬s ⊗c val(s,A, V (s) − V (c),Φ(s)) ≺ UB can be transformed into the simpler requirements

val(s,A, V (s) − V (c),Φ(s)) ≻ LB ⊘c ub¬s and val(s,A, V (s) − V (c),Φ(s)) ≺ UB ⊘c lb¬s, hence

the new bounds used.

8.5. USING DIVISION AND DIFFERENCE OPERATORS 159

evalClusterMax(c,A, V, Φ, LB, UB)
begin

if (V = ∅) then return (evalSons(c, A,Φ, LB, UB))
else

Choose x ∈ V

d← dom(x)
Φ0 ← {ϕ ∈ Φ , sc(ϕ) ∩ (V − {x}) = ∅}
(lb, ub)← (⊥,⊥)
LB′ ← LB

while ((d 6= ∅) ∧ (LB′ ≺ UB) ∧ (lb 6= ⊤)) do

Choose a ∈ d

d← d− {a}
val0 ← ⊗c

ϕ∈Φ0
ϕ(A.(x, a))

(lb′, ub′)← bound(c, A.(x, a), V − {x}, Φ−Φ0, val0)
if ((LB′ ≺ val0⊗c ub′) ∧ (val0⊗c lb′ ≺ UB) ∧ (val0 ⊗c lb′ 6= val0 ⊗c ub′)) then

(LB′′, UB′′)← (LB′ ⊘c val0,UB⊘c val0)

(lb′, ub′)← evalClusterMax(c, A.(x, a), V − {x}, Φ− Φ0, LB′′, UB′′)

ub← max(ub, val0⊗c ub′)
lb← max(lb, val0⊗c lb′)
LB′ ← max(LB′, lb)

if (d 6= ∅) then ub← ⊤
return ((lb, ub))

end

Figure 8.11: Bounded evaluation of a max-cluster using simple bounds.

evalClusterMin(c,A, V, Φ, LB, UB)
begin

if (V = ∅) then return (evalSons(c, A,Φ, LB, UB))
else

Choose x ∈ V

d← dom(x)
Φ0 ← {ϕ ∈ Φ , sc(ϕ) ∩ (V − {x}) = ∅}
(lb, ub)← (⊤,⊤)
UB′ ← UB

while ((d 6= ∅) ∧ (LB ≺ UB′) ∧ (ub 6=⊥)) do

Choose a ∈ d

d← d− {a}
val0 ← ⊗c

ϕ∈Φ0
ϕ(A.(x, a))

(lb′, ub′)← bound(c, A.(x, a), V − {x}, Φ−Φ0, val0)
if ((LB ≺ (val0⊗c ub′) ∧ (val0⊗c lb′ ≺ UB′) ∧ (val0 ⊗c lb′ 6= val0 ⊗c ub′)) then

(LB′′, UB′′)← (LB⊘c val0,UB′ ⊘c val0)

(lb′, ub′)← evalClusterMin(c, A.(x, a), V − {x}, Φ−Φ0, LB′′, UB′′)

ub← min(ub, val0⊗c ub′)
lb← min(lb, val0⊗c lb′)
UB′ ← min(UB′, ub)

if (d 6= ∅) then lb←⊥
return ((lb, ub))

end

Figure 8.12: Bounded evaluation of a min-cluster using simple bounds.

160 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

evalClusterPlus(c,A, V, Φ, LB, UB)
begin

if (V = ∅) then return (evalSons(c, A, Φ, LB, UB))
else

Choose x ∈ V

Φ0 ← {ϕ ∈ Φ , sc(ϕ) ∩ (V − {x}) = ∅}
foreach a ∈ d do (tablb[a], tabub[a])← bound(c, A.(x, a), V − {x}, Φ, 1E)
d0 ← {a ∈ dom(x), tablb[a] = tabub[a]}
res← ⊕a∈d0

tablb[a]
d← dom(x)− d0

(lb, ub)← (res⊕ (⊕a∈d tablb[a]), res⊕ (⊕a∈d tabub[a]))
while ((LB ≺ ub) ∧ (lb ≺ UB) ∧ (lb 6= ub)) do

Choose a ∈ d

d← d− {a}
val0 ← ⊗ϕ∈Φ0

ϕ(A.(x, a))
(lb¬a , ub¬a)← (res⊕ (⊕a′∈d tablb[a′]) , res⊕ (⊕a′∈d tabub[a′]))
(LB′, UB′)← ((LB⊖ ub¬a)⊘ val0, (UB⊖ lb¬a)⊘ val0)

(lba, uba)← evalClusterPlus(c, A.(x, a), V − {x}, Φ− Φ0, LB′, UB′)
(lb, ub)← (lb¬a ⊕ (val0 ⊗ lba), ub¬a ⊕ (val0 ⊗ uba))
res← res⊕ (val0 ⊗ lba)

return ((lb, ub))

end

Figure 8.13: Bounded evaluation of a ⊕ cluster using simple bounds.

evalSons(c,A, Φ, LB, UB)
begin

S0 ← {s ∈ Sons(c), LB(s, A↓s) = UB(s, A↓s)}
res← (⊗c

ϕ∈Φ ϕ(A))⊗c (⊗c
s∈S0

LB(s,A↓s))
S ← Sons(c) − S0

(lb, ub)← (res⊗c (⊗c
s∈S LB(s, A↓s)), res⊗c (⊗c

s∈S UB(s,A↓s)))
while ((LB ≺ ub) ∧ (lb ≺ UB) ∧ (lb 6= ub)) do

Choose s ∈ S

S ← S − {s}
(lb¬s, ub¬s)← (res⊗c

“

⊗c
s′∈S LB(s′, A↓s′)

”

, res⊗c
“

⊗c
s′∈S UB(s′, A↓s′)

”

)

(LB′,UB′)← (LB⊘c ub¬s,UB⊘c lb¬s)

(lbs, ubs)← EvalCluster-⊕s(s, A, V (s)− V (c), Φ(s), LB′, UB′)
LB(s, A↓s)← max(lbs, LB(s, A↓s))
UB(s, A↓s)← min(ubs, UB(s, A↓s))
(lb, ub)← (lb¬s⊗c LB(s, A↓s), ub¬s⊗c UB(s, A↓s))
res← res⊗c LB(s, A↓s)

return ((lb, ub))

end

Figure 8.14: Bounded evaluation of the sons of a cluster using simple bounds.

8.6. COMPUTING BOUNDS BY INFERENCE MECHANISMS 161

Theorem 8.21. If function bound is sound and complete, then BTD-answerQ is sound and

complete too, i.e. it returns Ans(Q).

8.6 Computing bounds by inference mechanisms

This section defines a catalog of techniques which can be used to provide lower and upper bounds

on the answer Ans(Q) to a query Q. They are also interesting to compute bounds on a quantity

such as val(c, A, V,Φ), because val(c, A, V,Φ) can actually be seen as a query too, if we recompose

the scoped functions and the eliminations which are in the descendants of cluster c in the MCDAG.

The techniques presented enable the bound function to return bounds better than poor (⊥,⊤).

Computing bounds by propagation A first possible mechanism is to propagate information,

in the spirit of constraint propagation [84]. The algebraic structure offers two specific elements,

⊥= 0E and ⊤. The first is an annihilator for ⊗, and the second is an annihilator for ⊕. Hence,

given a query Q = (Sov, (V,G, P, ∅, U)), it is possible to propagate information as follows:

• In the semiring case, whereAns(Q) = Sov(⊗ϕ∈P∪Uϕ), we can enforce any level of consistency

(forward checking, arc consistency, k-consistency...) in order to propagate degree 0E . This

can prune the search space by removing values in the current variables domains. As with usual

constraint propagation techniques, once the domain of a variable is empty, the algorithm can

backtrack because the result of the currently explored subtree then necessarily equals 0E.

• In the semigroup case, where Ans(Q) = Sov((⊗ϕ∈Pϕ)⊗(⊕ϕ∈Uϕ)), we can proceed as follows.

First, as in the semiring case, degree 0E can be propagated amongst plausibility functions

in order to remove values in the variables domains. Second, value ⊤ can be propagated

among utility functions. Backtrack can then occur if we prove that the current assignment

A satisfies either ⊗ϕ∈Pϕ(A) = 0E , or (⊗ϕ∈Pϕ(A) 6= 0E) ∧ (⊕ϕ∈Uϕ(A) = ⊤).

As it has been done for QCSPs, it should be possible to adapt Quantified Arc Consistency

(QAC [15]) to the MCS case. This could lead to better bounds. Works concerning this kind

of generalized arc-consistency are not presented in this thesis for maturity reasons. The main

difficulty resides in the presence of ⊕ eliminations when ⊕ /∈ {min,max}.

Works on soft local consistencies [84, 11, 25, 79] for semiring CSPs or VCSPs could also be

considered in order to prune the search space by propagating all elements of E (and not only 0E

or ⊤).

Computing bounds by switching quantifiers

Proposition 8.22. Let ϕ be a scoped function taking values in a totally �-ordered set E. let S

and S′ be two disjoint sets of finite domain variables. Then,

max
S

min
S′

ϕ � min
S′

max
S

ϕ

max
S
⊕
S′
ϕ � ⊕

S′
max
S

ϕ

⊕
S

min
S′

ϕ � min
S′
⊕
S
ϕ

162 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

By relaxing the constraints on the elimination order, this technique can help to reduce the

tree-width (or induced-width) of the considered computation.

For example, in order to get bounds on val = minx1,...,xn
maxy(∧i∈[1,n]ϕxi,y), one can write

val � lb, with lb = maxy minx1,...,xn
(∧i∈[1,n]ϕxi,y). The tree-width associated with the computa-

tion of val is n, because y is necessarily eliminated first, whereas the tree-width associated with

the computation of lb is 1. Therefore, even if the quantity to be bounded is hard to compute,

computing a bound by switching some eliminations can be easy.

Computing bounds by relaxing quantifiers We continue the catalog of possible techniques

to compute bounds, with a technique consisting in replacing some quantifiers in the sequence of

eliminations to be performed. More precisely, this technique uses Proposition 8.23:

Proposition 8.23. Let (V,G, P, ∅, U) be a PFU network, and let c ∈ CE(G) be an environment

component in G. Then, for every scoped function ϕ,

min
c
ϕ � ⊕c((⊗Pi∈Fact(c)Pi)⊗ ϕ) � max

c
ϕ

Together with the quantifier switching mechanism, this technique can give lower and upper

bounds on the answer to a query:

• In order to get a lower bound on Ans(Q) for a query Q, it suffices to replace all max-

and ⊕-eliminations by min-eliminations and to remove all plausibility functions from the

PFU network. For example, let us consider a query Q = (Sov, (V,G, P, ∅, U)) where Sov =

minx1 maxx2,x3 ⊕x4 maxx5 ⊕x6 minx7 and where P = {Px4 | x2
, Px6 | x4,x3

} contains two local

plausibility functions. We can write:

Ans(Q) � min
x1

min
x2,x3

⊕
x4

min
x5

⊕
x6

min
x7

(Px4 | x2
⊗ Px6 | x4,x3

⊗ (⊕Ui∈UUi))

� min
x1

min
x2,x3

⊕
x4

(Px4 | x2
⊗min

x5

⊕
x6

(Px6 | x4,x3
⊗min

x7

(⊕Ui∈UUi)))

� min
x1

min
x2,x3

min
x4

min
x5

min
x6

min
x7

(⊕Ui∈UUi)

• Similarly, in order to get an upper bound on Ans(Q) for a query Q, it suffices to replace all

min- and ⊕-eliminations by max-eliminations and to remove all plausibility functions from

the PFU network. With the same query as above, we can write:

Ans(Q) � max
x1

max
x2,x3

⊕
x4

max
x5

⊕
x6

max
x7

(Px4 | x2
⊗ Px6 | x4,x3

⊗ (⊕Ui∈UUi))

� max
x1

max
x2,x3

⊕
x4

(Px4 | x2
⊗max

x5

⊕
x6

(Px6 | x4,x3
⊗max

x7

(⊕Ui∈UUi)))

� max
x1

max
x2,x3

max
x4

max
x5

max
x6

max
x7

(⊕Ui∈UUi)

The key point which can make such a mechanism efficient in practice is that in order to obtain

the lower and upper bounds given above, we must compute a mono-operator sequence of elimi-

nations. As there are no constraints on the elimination order, the computation of lb and ub can

be easy even if the initial problem is hard, all the more so, since the plausibility functions are

removed. For example, let us consider the influence diagram associated with the computation of

8.6. COMPUTING BOUNDS BY INFERENCE MECHANISMS 163

maxx1

∑

x2,x3
maxx4

∑

x5
(Px2 · Px5 | x1,x2

· Px3 | x5
· (Ux1,x4 + Ux3 + Ux4,x5)). Using MCDAGs, this

computation has a tree-width of 4. In order to compute lb = minx1,x2,x3,x4,x5(Ux1,x4 +Ux3 +Ux4,x5)

and ub = maxx1,x2,x3,x4,x5(Ux1,x4 + Ux3 + Ux4,x5), the tree-width is only 1.

For QBFs, the mechanism consisting in replacing min by max in order to get bounds has already

been used and proved to be efficient in practice [120]. The corresponding proposal defines a solver

which, at some steps during search, replaces ∀ quantifiers by ∃ quantifiers in order to get an upper

bound on a QBF, this upper bound being computed by using a SAT solver. The authors are not

aware of the use of such methods for stochastic CSPs or influence diagrams.

Mini-buckets [40] Mini-buckets are generic tools which can be used to approximate and bound

a computation to be performed, e.g. in constraint optimization or Bayesian networks. They were

shown to be very successful in practice on various problems.

The idea is to force an inference algorithm such as a VE algorithm to consider only a limited

number of variables simultaneously, which ensures a bounded computation time at the price of

giving only a bound on the exact value which should be computed. The number of variables which

can be considered simultaneously is a parameter of the mini-bucket technique. It defines a trade-off

between the quality of the bound obtained and its computation time.

For example, in order to compute maxx(ϕx,y + ϕx,z + ϕx,t), a VE algorithm needs to consider

four variables simultaneously. The mini-buckets technique can consist in writing maxx(ϕx,y +

ϕx,z + ϕx,t) � (maxx ϕx,y) + (maxx ϕx,z) + (maxx ϕx,t). The right part of this inequality is an

upper bound computable by considering only 2 variables simultaneously. Similarly, in order to

obtain an upper bound on a quantity such as
∑

x(ϕx,y · ϕx,z · ϕx,t) by considering at most two

variables simultaneously, it suffices to compute (
∑

x ϕx,y) · (
∑

x ϕx,z) · (
∑

x ϕx,t).

Transposed to the MCS algebraic structure, the mini-bucket technique can be described as in

Proposition 8.24.

Proposition 8.24. Let (E,⊕,⊗) be a totally ordered MCS having 0E as a minimum element. Let

ϕ1, ϕ2 be two scoped functions onto E. Then, for every set of variables S,

maxS(ϕ1 ⊗ ϕ2) � (maxS ϕ1)⊗ (maxS ϕ2)

maxS(ϕ1 ⊕ ϕ2) � (maxS ϕ1)⊕ (maxS ϕ2)

minS(ϕ1 ⊗ ϕ2) � (minS ϕ1)⊗ (minS ϕ2)

minS(ϕ1 ⊕ ϕ2) � (minS ϕ1)⊕ (minS ϕ2)

⊕S(ϕ1 ⊗ ϕ2) � (⊕Sϕ1)⊗ (⊕Sϕ2)

Obtaining bounds by simplifying the algebraic structure It should also be possible to

reuse approaches modifying the agebraic structure at stake in order to obtain bounds on a given

quantity. As in [8], which introduces the notion of abstraction of semiring CSPs, the basic idea can

be to work on a transformed version of an initial problem (obtained via an algebraic transformation

preserving some properties and easier to solve), and then to bring some information back to the

initial problem.

A similar idea is developed in [30] for bounding the optimum value of a valued CSP. More

precisely, given an initial VCSP P expressed on a valuation structure S, it is possible first to

simplify it to obtain a VCSP P ′ expressed on a simpler valuation structure S′, second to solve

164 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

P ′, and third to induce lower and upper bounds by bringing back some information to the initial

VCSP P . Such an approach is shown to be efficient both on random and real problems.

8.7 Integrating feasibilities

Again, feasibilities have been left apart in this chapter. But again, integrating them in the previous

scheme is possible. Two main mechanisms can be used:

• The first mechanism is easy and works as follows: when variable x is assigned with value a,

we can directly test whether A.(x, a) is feasible, for example by using a SAT solver in parallel

with the BTD algorithm. If A.(x, a) is not feasible, then another value of x is considered.

Otherwise, the search progresses normally. This first technique can be implemented by adding

a single line in the algorithm in order to test whether the current assignment is feasible.

• Second, one can maintain lower and upper bounds on the feasibility of the current assignment.

If the upper bound on this feasibility equals f , then the current assignment is not feasible

and the algorithm backtracks. If the lower bound on the feasibility degree equals t, then it

is sure that the assignment is feasible. Compared to the first method, this second technique

is harder to implement since it modifies the structure of the algorithm itself, but it has the

advantage of not solving a potentially hard satisfiability problem at each step of the search.

8.8 Summary and perspectives

This chapter has shown how a generic structured tree search using bounds can be defined to

compute the value of a MCDAG. The key points are the handling of multiple elimination operators

and the handling of bounds. Complexity results have also been provided. They can vary depending

on the amount of space used by the algorithm and are characterized by the MCDAG-width, the

MCDAG-height, or the maximum separator size.

In another direction, approximate algorithms using sampling and local search could also have

been considered: sampling when eliminations with + (+, and not ⊕) are performed [87, 114], local

search when eliminations with min or max are performed [88]. This is one of the perspectives in

the quest for other generic approaches.

From a practical point of view, the algorithms developed in this chapter present several elements

whose influence remains to be studied:

• Heuristic for the choice of the variable to be assigned in the current cluster, heuristic for the

choice of a value for a variable, heuristic for the choice of a son cluster to be considered...

• Computation of bounds: some clues have been provided concerning the computation of

bounds, but there is still a lot to do in order to determine good settings (e.g. concerning the

degree of local consistency).

Many elements are well-known concerning these parameters in each of the formalisms subsumed

by the PFU framework. In order to get a better knowledge concerning their “generic” influence,

and also in order to test the practical efficiency of the algorithms defined, experiments are needed.

That is why we have developed a generic solver to answer generic PFU queries.

Chapter 9

A generic solver for answering

PFU queries

This chapter briefly introduces the solver developed to answer generic PFU queries. It first fo-

cuses on problems description formats and then briefly presents the generic implemented solver.

The main goal of this chapter is to convince the reader that the PFU framework is not just an

abstraction.

9.1 Description of problems

Before introducing the PFU solver, we describe how instances of PFU networks and PFU queries are

represented. An XML format has been defined, and some existing formats representing problems

in formalisms subsumed by the PFU framework can also be used. The XML format dissociates the

description of PFU networks and the description of queries, because several queries can be asked

on a given PFU network. The algebraic structure is not described as an XML file (more details in

Section 9.2).

9.1.1 XML representation of PFU networks

In order to specify an XML representation of PFU networks, it is important to note that we

dissociate functions from scoped functions. This distinction is done for conciseness reasons because

a function ϕ can be used by several scoped functions (S, ϕ). Similarly, we explicitly define domains

as elements dissociated from variables, because a given domain can be used by several variables.

In fact, the XML representation used is close to the representation used in [16], which defines an

XML representation format for CSPs.

A PFU network is represented, as shown Figure 9.1, by an element called pfunet, which contains

several elements defining the tuple (V,G, P, F, U):

• The elements called name, author, date contain respectively a name for the PFU network,

the name(s) of the author(s), and a date.

165

166 CHAPTER 9. A GENERIC SOLVER FOR ANSWERING PFU QUERIES

<pfunet>

<name>Business Dinner Problem</name>
<author>Cedric Pralet</author>
<date>02-02-2006</date>

<domains nbDom="3">
<domain id="mcval" type="string" description="extension" values="meat fish"/>
<domain id="wval" type="string" description="extension" values="white red"/>
<domain id="bool" type="bool" description="extension" values="true false"/>

</domains>

<plausfunctions nbPlausFunctions="4">
<plausfunction id="pfunc1" domains="bool bool" default_degree="0" nbInst="2">

<instance assignment="true false" degree="0.6"/>
<instance assignment="false true" degree="0.4"/>

</plausfunction>
<plausfunction id="pfunc2" domains="bool bool" default_degree="1" nbInst="1">

<instance assignment="false true" degree="0"/>
</plausfunction>
...

</plausfunctions>

<feasfunctions nbFeasFunctions="1">
<feasfunction id="ffunc1" domains="mcval wval" default_degree="true" nbInst="1">

<instance assignment="fish red" degree="false"/>
</feasfunction>

</feasfunctions>

<utilfunctions nbUtilFunctions="3">
<utilfunction id="ufunc1" domains="bool bool" default_degree="0" nbInst="1">

<instance assignment="true false" degree="bottom"/>
</utilfunction>
<utilfunction id="ufunc2" domains="bool" default_degree="0" nbInst="1">

<instance assignment="true" degree="10"/>
</utilfunction>
...

</utilfunctions>

<variables nbVar="6">
<variable id="mc" nature="decision" domain="mcval" description="main course choice"/>
<variable id="w" nature="decision" domain="wval" description="wine choice"/>
<variable id="bpJ" nature="environment" domain="bool" description="John’s beginning pres."/>
<variable id="bpM" nature="environment" domain="bool" description="Mary’s beginning pres."/>
...

</variables>

<plausibilities nbPlaus="5">
<plausibility id="p1" scope="bpJ bpM" function="pfunc1"/>
<plausibility id="p2" scope="bpJ epJ" function="pfunc2"/>
<plausibility id="p3" scope="bpJ w epJ" function="pfunc3"/>
...

</plausibilities>

<feasibilities nbFeas="1">
<feasibility id="f1" scope="mc w" function="ffunc1"/>

</feasibilities>

<utilities nbUtil="3">
<utility id="u1" scope="bpJ epJ" function="ufunc1"/>
<utility id="u2" scope="epJ" function="ufunc2"/>
...

</utilities>

<components nbComp="4">
<component id="c1" nature="decision" vars="mc w" scoped_f="f1" parents=""/>
<component id="c2" nature="environment" vars="bpJ bpM" scoped_f="p1" parents=""/>
<component id="c3" nature="environment" vars="epJ" scoped_f="p2 p3" parents="c1 c2"/>
...

</components>

</pfunet>

Figure 9.1: XML representation of the PFU network of the dinner problem.

9.1. DESCRIPTION OF PROBLEMS 167

• The element called domains has an attribute called nbDom and contains elements called

domain. Attribute nbDom equals the number of occurrences of elements domain.

Each element domain is empty and contains attributes id (identifier for the domain), type

(the types allowed are string, int, float, double, and bool), description (says if the domain is

represented in extension as a set of values, or in intension as an interval plus a constant step

between two values in the interval), and values (which specifies either the set of values, or

the bounds of the interval and the step).

• The element called plausfunctions has an attribute called nbPlausFunctions and contains

elements called plausfunction. nbPlausFunctions is the number of occurrence of elements

plausfunction.

Each element plausfunction defines an unscoped plausibility function ϕ. It has a set of

attributes called id (identifier), domains (list of domain identifiers), default degree (default

degree given by the function), and nbInst (number of assignments A of the domains such that

ϕ(A) 6= default degree). Each element plausfunction also contains elements called instance.

nbInst is the number of occurrences of elements instance. Each element instance is empty

and admits attributes called assignment and degree, which correspond respectively to an

assignment A of the domains and to ϕ(A).

The elements called feasfunctions and utilfunctions satisfy similar specifications. A possible

improvement of the XML format could be to allow for functions defined by formulas.

• The element called variables admits an attribute nbVar and contains elements variable.

Attribute nbVar is the number of occurrences of elements variable.

Each element variable is empty and has a set of attributes called id (variable name), nature

(decision or environment variable), domain (domain of values of the variable), and description

(what the variable represents).

Therefore, the element called variables defines the set V of variables of a PFU network.

• The element called plausibilities has an attribute nbPlaus and contains occurrences of ele-

ments plausibility. Attribute nbPlaus is the number of occurrences of elements plausibility.

Each element plausibility is empty and has a set of attributes called id (identifier), scope

(scope of the plausibility function, defined by a list of variables), and function (an identifier

which must correspond to a plausfunction element).

In other words, the elements plausibilities define the set P of plausibility functions of the

PFU network. The description of elements feasibilities and utilities is similar, and they define

the sets F and U of feasibility and utility functions of a PFU network respectively.

• The element called components admits an attribute called nbComp and contains elements

called component. Attribute nbComp is the number of occurrences of elements component.

Each element component is empty and has a set of attributes called id (name of a component

c), nature (decision of environment component), vars (variables involved in the component),

scoped f (scoped functions in Fact(c)), and parents (list of parent components of c in the

DAG of the PFU network).

168 CHAPTER 9. A GENERIC SOLVER FOR ANSWERING PFU QUERIES

Therefore, the element called components enables us to model the DAG G of a PFU network.

More formally, the DTD (Document Type Definition) which defines the syntax of the XML

documents describing PFU networks is given in Appendix D.

9.1.2 XML representation of queries

An XML representation of queries is also available. Basically, queries are defined by a PFU network

and by a sequence of operator-variable(s) pairs. We also explicitly specifiy the decision variables

for which optimal decision rules are sought.

Figure 9.2 gives an example of an XML representation of a query on the dinner problem. The

associated query corresponds to a situation where Peter chooses both the wine and the main course

after knowing who is present at the beginning, and optimal decision rules for the main course choice

mc and for the wine choice w are sought. A query is defined by an element called query, which

contains several elements:

• The elements called name, author, and date contain a name for the query, the name(s) of

the author(s), and a date.

• The element called pfunet is an empty element which has an attribute called file. This

attribute indicates the XML file describing the PFU network used by the query.

• The element called sov has an attribute nbStages and contains elements called op var pair.

Attribute nbStages is the number of occurrence of elements op var pair.

Each element op var pair is an empty element which has three attributes: op (elimination

operator equal to “MIN”, “MAX”, or “PLUS”), vars (list of variables to eliminate), and

record (list of variables for which a decision rule must be recorded).

More formally, the DTD associated with XML files describing queries is given in Appendix D.

<query>

<name>If Peter knows who is present at the beginning</name>
<author>Cedric Pralet</author>
<date>19-09-2005</date>

<pfunet file="pfunet.xml"/>

<sov nbStages="3">
<op_vars_pair op="PLUS" vars="bpJ bpM"/>
<op_vars_pair op="MAX" vars="mc w" record="mc w"/>
<op_vars_pair op="PLUS" vars="epJ epM"/>

</sov>

</query>

Figure 9.2: XML description of a query.

9.1.3 Reading others formats

The solver is also able to read existing description formats defined in formalisms subsumed by the

PFU framework: the QDIMACS format, which enables QBFs to be defined, the ERGO format,

which enables Bayesian networks to be defined, and a format “.net” used to specify influence

diagrams. Also, problems can be defined via an XML format called “.dpfu”. Roughly speaking,

9.2. SOLVER DESCRIPTION 169

this format enables us to specify kinds of “dynamic” PFU networks, in which we describe first

a standard PFU network associated with step 0, and second transition functions (as in MDPs)

specifying plausibility and feasibility functions associated with the variables in the PFU network

at step t+ 1, depending on the variables in PFU network at step t.

9.2 Solver description

The solver is written in C++. It is generic because it can work with different instances of elimina-

tion and combination operators, and with different data types (bool, int, float, double). We briefly

describe its main features, by explaining how PFU networks and queries are represented, how the

algebraic structure is defined, how problems are read, and which algorithms are currently imple-

mented. The global structure of the classes involved in our generic solver is given in Figure 9.3

(this figure assumes that the reader is familiar with the UML representation language).

PFU networks and queries The main classes which enable PFU networks and queries to be

defined are:

• A class called Domain, which enables a domain of values to be represented. It has two

specializations called TypedDomainExt (for a domain represented in extension) and Typed-

DomainInt (for a domain represented in intension as an interval and a constant step between

two values in the interval).

• A class called Variable, which enables variables to be represented. A variable notably has an

instance of class Domain in its attributes.

• A class called Scope: instances of this class are list of variables. This class offers some

functions to manipulate scopes.

• A class called Component : an instance of this class corresponds to a component of the PFU

network. A component has a scope which defines the variables involved in the component, a

list of parent components, and a list of scoped functions associated with it.

• A class called Function: instances of this class correspond to functions (without a scope).

This class has a list of domains as an attribute. The cartesian product of these domains

represents the domain of definition of the function.

Class Function has four specializations called Clause, FunctionExt, FunctionTrie, and Mul-

tiFunction. These specializations correspond to different representations of the function:

instances of class Clause are functions represented as boolean clauses (this is useful to treat

QBFs), instance of class FunctionExt are functions represented as a table of values, one for

each element of the cartesian product of the domains, instance of class FunctionTrie are

represented using a sparse data structure classically called a trie, and instance of class Mul-

tiFunction are represented as a set of functions (class MultiFunction is useful for example to

represent the aggregation of all utility functions in a compact way).

• A class called ScopedFunction: instances of this class are scoped functions. In its attributes,

this class has an instance of class Function (the function of the scoped function), an instance

1
7
0

C
H

A
P

T
E

R
9
.

A
G

E
N

E
R

IC
S
O

L
V

E
R

F
O

R
A

N
S
W

E
R

IN
G

P
F
U

Q
U

E
R

IE
S

Recording

TbRecording

ClusterBtdSolver

Solver

Variable Component FunctionScopedFunction

Pfunet

Query

OpVars Scope

Reader

XmlQueryReaderDotnetQueryReader

DpfuQueryReader

QdimacsReader

ErgoReader

Graph

Assignment

Domain

TypedDomainInt

TypedDomainExt

MinOperator

PlusOperator

MaxOperator

TimesOperator

Operator AlgebraicStructure

Clause

FunctionExt

MultiFunction

co
n
ta

in
s
◮

co
n
ta

in
s

◮

has a
◮

re
ad

◮

◭ has a

uses ◮

con
tain

s ◮
co

nt
ai
ns
◮

◭ composed of

has a ◮

◭
u
se

s

rea
d ◮

◭ holds on

is involved in ◮

parent ◮

◭ has a domain

◭
uses

has a ◮

eliminated variables ◮

eliminated variables ◮

◭ associated with

belongs to a ◮

parent ◮

has
an

elim
inatio

n opera
tor
◮

has
a com

binatio
n opera

tor
◮

has a root ◮

*

*

1 *

*
*

*
* 1 *

*

*

1

0..1

* *
*

1
*

*

11
*

1

1

*
1

**

*

*
*

*

*

1 1

*

1

so
lv

es
◮

*
*

** *

*

1

1

* 1 *

*

1

Reader

Query and PFU network

Solver

Algebraic structure

F
ig

u
re

9
.3

:
S
tru

ctu
re

o
f
th

e
so

lv
er.

9.2. SOLVER DESCRIPTION 171

of class Scope (the scope of the scoped function), and an instance of class Component (the

component to which the scoped function is associated, if it is a plausibility or a feasibility

function).

• A class called Pfunet : instances of this class represent PFU networks. In its attributes, this

class has a list of domains, a list of variables, a list of components, three lists of scoped

functions (one for each type of scoped function), and lists of functions used by the scoped

functions.

• A class called OpVars, which defines operator-variables pairs. The variables of an operator-

variables pair are represented by a scope.

• A class called Query, whose instances are queries on PFU networks. In its attributes, this

class has an instance of class Pfunet and an instance of class OpVars.

Readers Several classes enable us to read PFU networks and queries. The corresponding

classes are Reader, QdimacsReader (to read QBFs in the QDIMACS format), ErgoReader (to

read Bayesian networks in the ERGO format), DotnetQueryReader (to read influence diagrams

in the “.net” format), XmlQueryReader (to read queries specified in the XML format previously

described), and DpfuQueryReader (in order to read queries expressed in the “.dpfu” format).

Algebraic structure An included file “globaldef.h” contains the type deg t of the plausibility

and utility degrees manipulated (we assume that plausibilities and utilities have the same type).

The solver is currently able to deal with deg t ∈ {bool, int, float, double}.

The operators used can be defined in two ways:

• First, operators ⊗p, ⊗u, ⊗pu, ⊕p, and ⊕u, as well as 0p, 1p, and 0u, can be explicitly defined

as parameterized macros. This enables a user to directly specify a new expected utility

structure if needed.

• When the algebraic structure is a totally ordered MCS, we use another representation. A class

AlgebraicStructure defines algebraic structures. In its attributes, this class has two instances

of class Operator. These instances define the operators ⊕ and ⊗ of the MCS. The exact

operators used in the executable are defined by a macro called ALGEBRAICSTRUCTURE,

involved in the preprocessor conditional compilation directives.

Macro ALGEBRAICSTRUCTURE refers to an element in a hard-coded list of algebraic

structures: (1) probabilistic expected additive utility, (2) probabilistic expected satisfaction,

(3) possibilistic optimistic expected utility, (4) possibilistic pessimistic expected utility, (5)

expected utility structure with kappa-rankings and only positive utility degrees. Note that

when deg t = bool, algebraic structures (3) and (4) allow boolean optimistic and pessimistic

expected conjunctive utilities to be used.

Class Operator has several specializations: MinOperator, MaxOperator, PlusOperator, and

TimesOperator. Each of these specializations must implement a function merge(T a,T b),

which combines a and b with the operator associated with the class (T is a generic type).

In fact, MinOperator, MaxOperator, PlusOperator, and TimesOperator perform this merging

172 CHAPTER 9. A GENERIC SOLVER FOR ANSWERING PFU QUERIES

using min, max, +, and × respectively. Extending this list is possible by hard-coding other

operators.

Solver The solver itself involves several elements. First, a class Solver is defined. It has an

instance of class Query in its attributes, which corresponds to the query to be solved by the solver.

Class Solver is able to answer queries in the very general case, i.e. with an algebraic structure

which is only an expected utility structure and with feasibilities, thanks to a method implementing

algorithm TreeSearch-answerQ given in Chapter 6 page 90.

This class is specialized by class BtdSolver, which contains methods capable of computing the

answer to a query when there are no feasibilities. The algorithms currently available are TS-

mcdag, RecTS-mcdag, BTD-mcdag, and BTD-answerQ (see previous chapter). Hence, all

the algorithms based on tree search are implemented. These methods are valid when the algebraic

structure is a totally ordered MCS. Class BtdSolver uses a class Cluster which enables MCDAG

clusters to be represented.

Class Cluster has in its attributes a parent cluster, an operator to use as the cluster elimination

operator ⊕c, an operator to use as the cluster combination operator ⊗c, and instances of class

Recording, which enable to record lower and upper bounds over the separator of the cluster with

its parents.

Class Recording has two specializations, which correspond to a recording performed via tables

and via tries respectively. The second data structure is interesting because it is sparse.

A class called Graph is also used to perform operations on graphs, like computing cluster-tree

decompositions. Cluster-tree decompositions are computed using the so-called min-fill heuristic.

The solver can use heuristics for choice points:

• Choice of the next variable to assign inside a given cluster: lexicographic or choice of a

variable having a minimal current domain (ties broken lexicographically).

• Choice of a value to assign to a given variable: lexicographic or choice of a value having a

minimal or a maximal utility degree obtained by inference.

• Choice of a son cluster to explore: lexicographic or choice of a son of minimum height in the

MCDAG.

The unique form of constraint propagation implemented (for the bound function) is the propa-

gation of 0E using backward checking, forward checking, or arc consistency, and a form of valued

forward checking [123] restricted to the currently explored cluster.

9.3 Perspectives

Some experiments have been performed, but much more are needed in order to obtain practical

results on several points:

• Compare the algorithms previously defined in terms of pratical complexity:

– quantify the gains in using MCDAGs exploiting the query structure,

– compare VE algorithms with structured tree search methods,

9.3. PERSPECTIVES 173

– compare structured tree search algorithms for various parameter settings: caching or

not, complex or simple bounds, heuristics for variable, value, or cluster choices, and

techniques used to compute bounds (soft local consistency, quantifier switching...).

• Compare the implemented methods with existing algorithms designed in a specific formalism.

• Evaluate the complexity given by an expected utility (EU) structure. More precisely, EU

structures vary from structures which are more qualitative (such as possibilistic EU) to

structures which are more quantitative (such as probabilistic EU) or structures which mix

qualitative and quantitative approaches (such as EU based on κ-rankings). We could compare

the pratical time and space complexities of these plausibility-utility models, in order to

analyze the gains and costs in using a more or less qualitative or quantitative approach.

Conclusion

Synthesis of the contributions

In the last decades, AI has witnessed the design and study of numerous formalisms for reasoning

about decision making problems. In this thesis, we have built a generic flexible framework to model

sequential decision making problems involving plausibilities, feasibilities, and utilities. This frame-

work covers many existing approaches, including hard, valued, quantified, mixed, and stochastic

CSPs, Bayesian networks, Markov random fields, finite horizon probabilistic or possibilistic MDPs,

or influence diagrams, as well as unpublished formalisms. The result is an algebraic framework built

upon decision-theoretic foundations: the PFU framework. The two facets of the PFU framework

are explicit in Theorem 5.9, which states that the operational definition of the answer to a query

is equivalent to the decision tree-based semantics. This is the result of a design that accounts both

for expressivity and for computational aspects. Compared to related works [127, 32, 75], the PFU

framework is the only algebraic framework which directly deals with different types of variables

(decision and environment variables), different types of local functions (plausibilities, feasibilities,

utilities), and different types of combination and elimination operators.

From an algorithmic point of view, generic algorithms based on tree search and variable elim-

ination have been defined. Decomposability conditions enabling factorizations to be exploited

have been identified and used in a generic unified variable elimination algorithm (potentially us-

ing so-called potentials). In another direction, a generic approach to query optimization has led

to the definition of original architectures for answering queries, called multi-operator cluster trees

and multi-operator cluster DAGs. These architectures have been built thanks to a two-step struc-

turation process using rewriting rules and cluster-tree decomposition techniques, and they lead

to an improved width. Based on these architectures, structured tree search algorithms have been

designed, using more or less sophisticated mechanisms such as recording or bounds. The main dif-

ficulty has lain in handling the multi-operator nature of PFU queries, both in terms of elimination

and combination. Obviously, some assumptions made by the PFU framework could be discussed.

But it should be noted that the assumptions made have enabled various algorithmic approaches

to be considered. Finally, a generic solver able to answer PFU queries has been developed.

All these contributions are summed up in Figure 9.4

From a more global point of view, the conclusions of this thesis can be stated as follows:

1. Building a generic framework encompassing many existing AI formalisms is possible, and

the obtained framework is not intractable. It is just a generic form of algebraic composite

graphical model.

175

1
7
6

C
O

N
C

L
U

S
IO

N

Algebraic structure

and expected utility structures

Definition of plausibility structures, utility structures,

Extension of previously existing structures

in order to handle sequential decision making

and for algorithmic considerations

Definition of XML formats

Implementation of a generic solver

(the framework is not just an abstraction)

Solver

Structured tree search on MCDAGs

Definition of a generic structured tree search

possibly using caching and bounds (complex or simple)

Soundness and theoretical complexity results

Existing formalisms for sequential decision making
with uncertainties, feasibilities, and utilities

Basic ingredients of a generic encompassing framework

and conditional independence

Equivalence between factorization

DAG encoding normalization conditions)

(basic elements: variables, scoped functions,

PFU networks

Definition of a generic composite graphical model

Subsumption of many existing queries

of eliminations on combinations of scoped functions

Queries

Equivalence between decision trees and sequences

Knowledge representation (Part I) Algorithms (Part II)

Analysis of existing formalisms (based on SAT, CSPs,

BNs, classical planning, MDPs, valuation algebras...)
A generic tree−search scheme

First generic algorithms

Task: answer a query and find optimal decision rules

A generic VE algorithm able to answer queries using

all factorizations if decomposability conditions hold

Soundness and theoretical complexity results

and adaptation of cluster−tree decomposition techniques

Structuration of multi−operator queries

Rewriting rules in the semiring and semigroup cases,

Definition of a generic computational architecture: MCDAGs

Soundness, unicity, and theoretical complexity results

F
ig

u
re

9
.4

:
S
u
m

m
a
ry

o
f
co

n
trib

u
tio

n
s.

CONCLUSION 177

2. Generic unified algorithms can be defined in this framework, and, as in usual algebraic

approaches, topological parameters such as width play an important role in the theoretical

time and space complexities. In terms of width, an accurate analysis of the multi-operator

queries considered can be helpful.

3. Answering multi-operator queries can be reduced to answering several mono-operator queries

organized in a generic architecture called the MCDAG architecture. The latter can be system-

atically obtained, and once it is, existing methods for the mono-operator case are reusable.

The main difficulty yielded by this architecture is the handling of bounds. The reason is that

bounds must face the multi-operator nature of queries (both in terms of combination and

elimination), because they are used globally in the whole architecture. In fact, MCDAGs can

be used whatever the resolution method is (variable elimination, tree search, or local search),

because they just express decompositions.

Perspectives

The perspectives of this work are multiple:

• As mentioned at the end of Chapter 9, performing experiments is one of the short term

objective, in order to get a better knowledge concerning the algorithms developed.

• The structuration methods reason at the variables level. We could also try to exploit a finer

structure, at the function values level, using approaches such as Binary Decision Diagrams

(BDDs [1, 21]) or Negation Normal Forms (NNFs [28]).

• Also, we could study more precisely the results provided by the structuration methods for

PFU queries and networks replicated from one step to another, as in factored Markov decision

processes.

• A lot of work remains to be performed concerning bounds, in order to develop a kind of

generalized quantified soft local consistency.

• At a higher level, two opposite attitudes can be adopted concerning the framework itself.

These attitudes are not incompatible, and correspond respectively to a generalization and a

specialization strategy:

– We can continue the quest for genericity, in order to be more expressive. Also, we could

define kinds of “multi-queries” allowing several queries to be asked simultaneously as is

done in BNs to compute several marginal probability distributions simultaneously.

– Or we can identify some basic problems and focus on them. More precisely, the MCDAG

architecture shows that the elementary problems to be solved often consist of computing

quantities such as
∑

S(
∏

ϕ∈Φ ϕ), maxS(
∑

ϕ∈Φ ϕ), or maxS(minϕ∈Φ ϕ). These elemen-

tary problems correspond to the kind of computations performed in BNs [96], weighted

CSPs [80], and fuzzy CSPs [42] respectively. In order to justify this specialization ap-

proach, we must exhibit morphisms between generic MCDAGs and MCDAGs using just

the three elementary problems listed above [25]. Provided that this algebraic step is per-

formed, one can see the MCDAG architecture as a melting pot of these three elementary

problems, at the frontier between BNs and soft CSPs.

178 CONCLUSION

In the next years, the PFU framework will maybe enable other algorithmic ideas to be integrated

in an efficient and flexible generic solver. This would be an opportunity to gather many efforts

performed in different communities, and to benefit from the fertile links between algebra, graphical

models, and combinatorial optimization.

List of Tables

3.1 Examples of expected utility structures. 60

6.1 Expected utility structures satisfying AxSR or AxSG. 93

6.2 Use of the generic variable elimination algorithm VE-answerQ. 98

7.1 Impact of the structuration process on some instances of the QBF library. 123

8.1 From complex bounds to simple bounds. 157

A.1 Notations. 193

179

List of Figures

1.1 A composite graphical model. 20

2.1 Graph coloring problem. 25

2.2 An optimal policy for a stochastic CSP. 32

2.3 DAG of the Bayesian network of Mr Holmes’ alarm problem. 33

2.4 An influence diagram. 37

2.5 A copper (Cu) / manganese (Mn) spin glass. 38

2.6 A blocks world problem. 42

2.7 Representation of a 4-step MDP. 44

2.8 A sequential decision problem modelable with MDPs. 46

2.9 Factored and unfactored MDPs. 49

4.1 A PFU network. 71

6.1 A generic tree search algorithm to answer a query. 90

6.2 A first generic variable elimination algorithm for answering a query. 91

6.3 A generic variable elimination algorithm using factorization. 95

6.4 Illustration of the induced-width under an elimination order. 102

6.5 Stochastic CSP example. 105

6.6 Influence diagram example (before and after duplication). 106

7.1 A computation node (sov,⊛, N). 110

7.2 Example of application of the rewriting rules in the semiring case. 113

7.3 Macrostructuration of a query using simplification rule SR. 115

7.4 Macrostructuration algorithm in the semiring case. 117

7.5 Construction of a cluster-tree decomposition. 120

7.6 Example of a Multi-operator Cluster Tree (MCTree). 122

7.7 Application of rewriting rules for ⊕-eliminations in the semigroup case. 126

7.8 Application of rewriting rules for max-eliminations in the semigroup case. 128

7.9 Example of a specific cluster-tree decomposition for a max computation node in the

semigroup case. 134

7.10 Example of a Multi-operator Cluster DAG (MCDAG). 136

7.11 Towards a unique computational architecture. 138

8.1 Example of AND/OR search tree. 142

181

182 LIST OF FIGURES

8.2 A generic structured tree search algorithm on a MCDAG. 145

8.3 A structured tree search algorithm using caching. 146

8.4 Example of alpha-beta pruning. 149

8.5 Main function: BTD-mcdag. 151

8.6 Bounded evaluation of a max-cluster. 152

8.7 Bounded evaluation of a min-cluster. 153

8.8 Bounded evaluation of a ⊕ cluster. 154

8.9 Bounded evaluation of the sons of a cluster. 155

8.10 Main function: BTD-answerQ. 158

8.11 Bounded evaluation of a max-cluster using simple bounds. 159

8.12 Bounded evaluation of a min-cluster using simple bounds. 159

8.13 Bounded evaluation of a ⊕ cluster using simple bounds. 160

8.14 Bounded evaluation of the sons of a cluster using simple bounds. 160

9.1 XML representation of the PFU network of the dinner problem. 166

9.2 XML description of a query. 168

9.3 Structure of the solver. 170

9.4 Summary of contributions. 176

B.1 MacroStruct(sov, V, P, U). 233

B.2 Function which builds CNDAG0(Q, o). 234

B.3 Function implementing the rewriting for an elimination ⊕x. 235

B.4 Function implementing the rewriting for an elimination with an operator distinct

from ⊕. 236

C.1 View of the goal constellation. 264

C.2 On an orbital plane, launch of a satellite and transfer of a spare satellite from the

spare orbit to the operational one. 264

C.3 Network of scoped functions. 268

C.4 DAG representing normalization conditions. 268

D.1 DTD (Document Type Definition) for the XML representation of queries. 269

D.2 DTD (Document Type Definition) for the XML representation of PFU networks. . 270

Bibliography

[1] S.B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, 27(6), 1978.

[2] S.A. Arnborg. Efficient Algorithms for Combinatorial Problems on Graphs with Bounded

Decomposability - A Survey. BIT, 25:2–23, 1985.

[3] F. Bacchus and A. Grove. Graphical Models for Preference and Utility. In Proc. of the

11th International Conference on Uncertainty in Artificial Intelligence (UAI-95), pages 3–

10, Montréal, Canada, 1995.

[4] B.W. Ballard. The *-Minimax Search Procedure for Trees Containing Chance Nodes. Arti-

ficial Intelligence, 21(3):327–350, 1983.

[5] R.J. Bayardo and D.P. Miranker. On the Space-Time Trade-off in Solving Constraint Sat-

isfaction Problems. In Proc. of the 14th International Joint Conference on Artificial Intelli-

gence (IJCAI-95), pages 558–562, Montréal, Canada, 1995.

[6] M. Benedetti. Quantifier Trees for QBF. In Proc. of the 8th International Conference on

Theory and Applications of Satisfiability Testing (SAT-05), St. Andrews, Scotland, 2005.

[7] U. Bertelé and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.

[8] S. Bistarelli, P. Codognet, and F. Rossi. Abstracting Soft Constraints: Framework, Proper-

ties, Examples. Artificial Intelligence, 139:175–211, 2002.

[9] S. Bistarelli and F. Gadducci. Enhancing Constraints Manipulation in Semiring-based For-

malisms. In Proc. of the 17th European Conference on Artificial Intelligence (ECAI-06),

Riva del Garda, Italy, 2006.

[10] S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings. In Proc. of

the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 624–630,

Montréal, Canada, 1995.

[11] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Satisfaction and Opti-

mization. Journal of ACM, 44(2):201–236, 1997.

[12] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier. Semiring-Based

CSPs and Valued CSPs: Frameworks, Properties and Comparison. Constraints, 4(3):199–

240, 1999.

[13] H. L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybernetica, 11:1–21, 1993.

183

184 BIBLIOGRAPHY

[14] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating Treewidth,

Pathwidth, Frontsize, and Shortest Elimination Tree. Journal of Algorithms, 18:238–255,

1995.

[15] L. Bordeaux and E. Monfroy. Beyond NP: Arc-consistency for Quantified Constraints. In

Proc. of the 8th International Conference on Principles and Practice of Constraint Program-

ming (CP-02), Ithaca, New York, USA, 2002.

[16] F. Boussemart, F. Hemery, and C. Lecoutre. Description and Representation of the Problems

selected for the First International Constraint Satisfaction Solver Competition, 2005.

[17] C. Boutilier, R. Brafman, H. Hoos, and D. Poole. Reasoning With Conditional Ceteris

Paribus Preference Statements. In Proc. of the 15th International Conference on Uncertainty

in Artificial Intelligence (UAI-99), Stockholm, Sweden, 1999.

[18] C. Boutilier, T. Dean, and S. Hanks. Decision-Theoretic Planning: Structural Assumptions

and Computational Leverage. Journal of Artificial Intelligence Research, 11:1–94, 1999.

[19] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic Dynamic Programming with Fac-

tored Representations. Artificial Intelligence, 121(1-2):49–107, 2000.

[20] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-Specific Independence in

Bayesian Networks. In Proc. of the 12th International Conference on Uncertainty in Artificial

Intelligence (UAI-96), pages 115–123, Portland, Oregon, USA, 1996.

[21] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions

on Computers, C-35(8):677–691, 1986.

[22] R. Chellappa and A. Jain. Markov Random Fields: Theory and Applications. Academic

Press, 1993.

[23] F. Chu and J. Halpern. Great Expectations. Part I: On the Customizability of Generalized

Expected Utility. In Proc. of the 18th International Joint Conference on Artificial Intelligence

(IJCAI-03), Acapulco, Mexico, 2003.

[24] F. Chu and J. Halpern. Great Expectations. Part II: Generalized Expected Utility as a

Universal Decision Rule. In Proc. of the 18th International Joint Conference on Artificial

Intelligence (IJCAI-03), pages 291–296, Acapulco, Mexico, 2003.

[25] M. Cooper and T. Schiex. Arc Consistency for Soft Constraints. Artificial Intelligence,

154(1-2):199–227, 2004.

[26] A. Darwiche. Recursive Conditioning. Artificial Intelligence, 126(1-2):5–41, 2001.

[27] A. Darwiche and M.L. Ginsberg. A Symbolic Generalization of Probability Theory. In Proc.

of the 10th National Conference on Artificial Intelligence (AAAI-92), pages 622–627, San

Jose, CA, USA, 1992.

[28] A. Darwiche and P. Marquis. A Knowledge Compilation Map. Artificial Intelligence, 17:229–

264, 2002.

BIBLIOGRAPHY 185

[29] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition and Soft Local Con-

sistency in Weighted CSP. In Proc. of the 21st National Conference on Artificial Intelligence

(AAAI-06), Boston, MA, USA, 2006.

[30] S. de Givry, G. Verfaillie, and T. Schiex. Bounding the Optimum of Constraint Optimiza-

tion Problems. In Proc. of the 3rd International Conference on Principles and Practice of

Constraint Programming (CP-97), Schloss Hagenberg, Austria, 1997.

[31] T. Dean and K. Kanazawa. A Model for Reasoning about Persistence and Causation. Com-

putational Intelligence, 5(3):142–150, 1989.

[32] R. Dechter. Bucket Elimination: a Unifying Framework for Reasoning. Artificial Intelligence,

113(1-2):41–85, 1999.

[33] R. Dechter. A New Perspective on Algorithms for Optimizing Policies under Uncertainty. In

Proc. of the 5th International Conference on Artificial Intelligence Planning and Scheduling

(AIPS-00), pages 72–81, Breckenridge, CO, USA, 2000.

[34] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[35] R. Dechter and Y. El Fattah. Topological Parameters for Time-Space Tradeoff. Artificial

Intelligence, 125(1-2):93–118, 2001.

[36] R. Dechter and D. Larkin. Hybrid Processing of Beliefs and Constraints. In Proc. of the 17th

International Conference on Uncertainty in Artificial Intelligence (UAI-01), pages 112–119,

Seattle, WA, USA, 2001.

[37] R. Dechter and R. Mateescu. Mixtures of Deterministic-Probabilistic Networks and their

AND/OR Search Space. In Proc. of the 20th International Conference on Uncertainty in

Artificial Intelligence (UAI-04), Banff, Canada, 2004.

[38] R. Dechter and R. Mateescu. AND/OR Search Spaces for Graphical Models. To appear in

Artificial Intelligence Journal, 2006.

[39] R. Dechter, I. Meiry, and J. Pearl. Temporal Constraint Networks. Artificial Intelligence,

49:61–95, 1991.

[40] R. Dechter and I. Rish. Mini-Buckets: A General Scheme for Bounded Inference. Journal of

the ACM, 50(2):107 – 153, 2003.

[41] R. Demirer and P.P. Shenoy. Sequential Valuation Networks: A New Graphical Technique for

Asymmetric Decision Problems. In Proc. of the 6th European Conference on Symbolic and

Quantitavive Approaches to Reasoning with Uncertainty (ECSQARU-01), pages 252–265,

London, UK, 2001.

[42] D. Dubois, H. Fargier, and H. Prade. The Calculus of Fuzzy Restrictions as a Basis for

Flexible Constraint Satisfaction. In Proc. of the 2nd IEEE Conference on Fuzzy Sets, pages

1131–1136, San Francisco, CA, 1993.

186 BIBLIOGRAPHY

[43] D. Dubois and H. Prade. Possibility Theory as a Basis for Qualitative Decision Theory. In

Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), pages

1925–1930, Montréal, Canada, 1995.

[44] H. Fargier and J. Lang. Uncertainty in Constraint Satisfaction Problems: A Probabilistic

Approach. In Proc. of the European Conference on Symbolic and Quantitavive Approaches

of Reasoning under Uncertainty (ECSQARU-93), pages 97–104, Grenade, Spain, 1993.

[45] H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiex. Mixed Constraint Satisfaction :

a Framework for Decision Problems under Uncertainty. In Proc. of the 11th International

Conference on Uncertainty in Artificial Intelligence (UAI-95), Montréal, Canada, 1995.

[46] H. Fargier, J. Lang, and T. Schiex. Selecting Preferred Solutions in Fuzzy Constraint Satisfac-

tion Problems. In Proc. of the 1st European Congress on Fuzzy and Intelligent Technologies

(EUFIT-93), Germany, 1993.

[47] H. Fargier, J. Lang, and T. Schiex. Mixed Constraint Satisfaction: a Framework for Decision

Problems under Incomplete Knowledge. In Proc. of the 13th National Conference on Artificial

Intelligence (AAAI-96), pages 175–180, Portland, OR, USA, 1996.

[48] H. Fargier and P. Perny. Qualitative Models for Decision Under Uncertainty without the

Commensurability Assumption. In Proc. of the 15th International Conference on Uncertainty

in Artificial Intelligence (UAI-99), pages 188–195, Stockholm, Sweden, 1999.

[49] R. Fikes and N. Nilsson. STRIPS: a New Approach to the Application of Theorem Proving.

Artificial Intelligence, 2(3-4):189–208, 1971.

[50] P.C. Fishburn. The Foundations of Expected Utility. D. Reidel Publishing Company, Dor-

drecht, 1982.

[51] P. Fonk. Réseaux d’Inférence pour le Raisonnement Possibiliste. PhD thesis, Université de

Liège, Belgique, Faculté des sciences, 1994.

[52] E. Freuder and R. Wallace. Partial Constraint Satisfaction. Artificial Intelligence, 58:21–70,

1992.

[53] E.C. Freuder and M.J. Quinn. Taking Advantage of Stable Sets of Variables in Constraint

Satisfaction Problems. In Proc. of the 9th International Joint Conference on Artificial Intel-

ligence (IJCAI-85), pages 1076–1078, Los Angeles, CA, USA, 1985.

[54] N. Friedman and J. Halpern. Plausibility Measures: A User’s Guide. In Proc. of the 11th

International Conference on Uncertainty in Artificial Intelligence (UAI-95), pages 175–184,

Montréal, Canada, 1995.

[55] M. Frydenberg. The Chain Graph Markov Property. Scandinavian Journal of Statistics,

17:333–353, 1990.

[56] L. Garcia and R. Sabbadin. Possibilistic Influence Diagrams. In Proc. of the 17th European

Conference on Artificial Intelligence (ECAI-06), pages 372–376, Riva del Garda, Italy, 2006.

BIBLIOGRAPHY 187

[57] M. Garey and D. Johnson. Computers and Intractability : A Guide to the Theory of NP-

completeness. W.H. Freeman and Company, 1979.

[58] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice. Morgan

Kaufmann, 2004.

[59] P.H. Giang and P.P. Shenoy. A Qualitative Linear Utility Theory for Spohn’s Theory of

Epistemic Beliefs. In Proc. of the 16th International Conference on Uncertainty in Artificial

Intelligence (UAI-00), pages 220–229, Stanford, California, USA, 2000.

[60] R.P. Goldman and M.S. Boddy. Expressive Planning and Explicit Knowledge. In Proc. of the

3rd International Conference on Artificial Intelligence Planning Systems (AIPS-96), pages

110–117, Edinburgh, Scotland, 1996.

[61] G.Verfaillie, F.Garcia, and L.Peret. Deployment and Maintenance of a Constellation of Satel-

lites: a Benchmark. In Workshop on Planning under Uncertainty and Incomplete Information

(ICAPS’03), pages 119–127, Trento, Italie), 2003.

[62] J. Halpern. Conditional Plausibility Measures and Bayesian Networks. Journal of Artificial

Intelligence Research, 14:359–389, 2001.

[63] J.M. Hammersley and P. Clifford. Markov Fields on Finite Graphs and Lattices. Unpublished,

1971.

[64] R. Howard and J. Matheson. Influence Diagrams. In Readings on the Principles and Ap-

plications of Decision Analysis, pages 721–762. Strategic Decisions Group, Menlo Park, CA,

USA, 1984.

[65] P. Jégou and C. Terrioux. Hybrid Backtracking bounded by Tree-decomposition of Constraint

Networks. Artificial Intelligence, 146(1):43–75, 2003.

[66] F. Jensen, F.V. Jensen, and S. Dittmer. From Influence Diagrams to Junction Trees. In

Proc. of the 10th International Conference on Uncertainty in Artificial Intelligence (UAI-94),

pages 367–373, Seattle, WA, USA, 1994.

[67] F.V. Jensen, T.D. Nielsen, and P.P. Shenoy. Sequential Influence Diagrams: A Unified

Asymmetry Framework. In Proceedings of the Second European Workshop on Probabilistic

Graphical Models (PGM-04), pages 121–128, Leiden, Netherlands, 2004.

[68] F.V. Jensen and M. Vomlelova. Unconstrained Influence Diagrams. In Proc. of the 18th

International Conference on Uncertainty in Artificial Intelligence (UAI-02), pages 234–241,

Seattle, WA, USA, 2002.

[69] J.Gebhardt and R.Kruse. Background and Perspectives of Possibilistic Graphical Models.

In Proc. of the European Conference on Symbolic and Quantitavive Approaches of Reasoning

under Uncertainty (ECSQARU-97), pages 108–121, Bad Honnef, Germany, 1997.

[70] C. Jordan. Sur les Assemblages de Lignes. Journal für die Reine und angewandte Mathematik,

70:185–190, 1869.

188 BIBLIOGRAPHY

[71] L. Kaelbling, M. Littman, and A. Cassandra. Planning and Acting in Partially Observable

Stochastic Domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[72] L. Khatib, P. Morris, R. Morris, and F. Rossi. Temporal Constraint Reasoning with Prefer-

ences. In Proc. of the 17th International Joint Conference on Artificial Intelligence (IJCAI-

01), Seattle, WA, USA, 2001.

[73] U. Kjaerulff. Triangulation of Graphs - Algorithms Giving Small Total State Space. Tech-

nical Report Tech. Report. R 90-09, Dept. of Mathematics and Computer Science, Aalborg

University, Denmark, 1990.

[74] D. Knuth and R. Moore. An Analysis of Alpha-Beta Pruning. Artificial Intelligence, 8(4):293–

326, 1975.

[75] J. Kolhas. Information Algebras: Generic Structures for Inference. Springer, 2003.

[76] A.M.C.A. Koster, H.L. Bodlaender, and S.P.M. Van Hoesel. Treewidth: Computational

Experiments. Technical report, Zentrum für Informationstechnik, Berlin, 2001.

[77] N. Kushmerick, S. Hanks, and D. Weld. An Algorithm for Probabilistic Planning. Artificial

Intelligence, 76(1-2):239–286, 1995.

[78] J. Larrosa. On the Time Complexity of Bucket Elimination Algorithms. Technical report,

An ICS technical report, 2001.

[79] J. Larrosa and T. Schiex. In the quest of the best form of local consistency for weighted csp.

In Proc. of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03),

Acapulco, Mexico, 2003.

[80] J. Larrosa and T. Schiex. In the Quest of the Best Form of Local Consistency for Weighted

CSP. In Proc. of the 18th International Joint Conference on Artificial Intelligence (IJCAI-

03), pages 239–244, Acapulco, Mexico, 2003.

[81] S. Lauritzen and D. Nilsson. Representing and Solving Decision Problems with Limited

Information. Management Science, 47(9):1235–1251, 2001.

[82] M. Littman, S. Majercik, and T. Pitassi. Stochastic Boolean Satisfiability. Journal of Auto-

mated Reasoning, 27(3):251–296, 2001.

[83] W. Lovejoy. A Survey of Algorithmic Methods for Partially Observed Markov Decision

Processes. Annals of Operations Research, 28(1-4):47–66, 1991.

[84] A. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8(1):99–118,

1977.

[85] A. Madsen and F.V. Jensen. Lazy Evaluation of Symmetric Bayesian Decision Problems. In

Proc. of the 15th International Conference on Uncertainty in Artificial Intelligence (UAI-99),

pages 382–390, Stockholm, Sweden, 1999.

[86] D. McDermott. PDDL, the Planning Domain Definition Language. Technical report, Yale

Center for Computational Vision and Control, 1998.

BIBLIOGRAPHY 189

[87] N. Metropolis and S. Ulam. The Monte Carlo Method. Journal of the American Statistical

Association, 44, 1949.

[88] S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing Conflicts: a Heuristic Repair

Method for Constraint Satisfaction and Scheduling Problems. Artificial Intelligence, 58:160–

205, 1992.

[89] G. Monahan. A Survey of Partially Observable Markov Decision Processes: Theory, Models,

and Algorithms. Management Science, 28(1):1–16, 1982.

[90] U. Montanari and F. Rossi. Constraint Relaxation may be Perfect. Artificial Intelligence,

48:143–170, 1991.

[91] P. Ndilikilikesha. Potential Influence Diagrams. International Journal of Approximated

Reasoning, 10:251–285, 1994.

[92] T.D. Nielsen and F.V. Jensen. Representing and solving asymmetric decision problems.

International Journal of Information Technology and Decision Making, 2:217–263, 2003.

[93] C. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.

[94] J. Park and A. Darwiche. Complexity Results and Approximation Strategies for MAP Ex-

planations. Journal of Artificial Intelligence Research, 21:101–133, 2004.

[95] J. Pearl. Fusion, Propagation and Structuring in Belief Networks. Artificial Intelligence,

29:241–288, 1986.

[96] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, 1988.

[97] P. Perny, O. Spanjaard, and P. Weng. Algebraic Markov Decision Processes. In Proc. of

the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh,

Scotland, 2005.

[98] M.S. Pini, F. Rossi, K.B. Venable, and S. Bistarelli. Bipolar Preference Problems. In Proc.

of the 17th European Conference on Artificial Intelligence (ECAI-06), Riva del Garda, Italy,

2006.

[99] C. Pralet, T. Schiex, and G. Verfaillie. Algorithmes et Complexités Génériques pour

Différents Cadres de Décision Séquentielle dans l’Incertain. Revue d’Intelligence Artificielle,

à parâıtre.

[100] C. Pralet, T. Schiex, and G. Verfaillie. Decomposition of Multi-Operator Queries on Semiring-

based Graphical Models. In Proc. of the 12th International Conference on Principles and

Practice of Constraint Programming (CP-06), pages 437–452, Nantes, France, 2006.

[101] C. Pralet, T. Schiex, and G. Verfaillie. From Influence Diagrams to Multioperator Cluster

DAGs. In Proc. of the 22nd International Conference on Uncertainty in Artificial Intelligence

(UAI-06), Cambridge, MA, USA, 2006.

190 BIBLIOGRAPHY

[102] C. Pralet, T. Schiex, and G. Verfaillie. Une Nouvelle Architecture de Calcul pour Résoudre

des Diagrammes d’Influence. In Journées Francophones sur la Planification, la Décision et

l’Apprentissage pour la conduite de systèmes (JFPDA-06), Toulouse, France, 2006.

[103] C. Pralet, G. Verfaillie, and T. Schiex. An Algebraic Graphical Model for Decision with Un-

certainties, Feasibilities, and Utilities. Journal of Artificial Intelligence Research, to appear.

[104] C. Pralet, G. Verfaillie, and T. Schiex. Un Cadre Graphique et Algébrique pour les Problèmes

de Décision incluant Incertitudes, Faisabilités et Utilités. Revue d’Intelligence Artificielle, à

parâıtre.

[105] C. Pralet, G. Verfaillie, and T. Schiex. Composite Graphical Models for Reasoning about

Uncertainties, Feasibilities, and Utilities. In Proc. of the CP-05 International Workshop on

”Preferences and Soft Constraints”, Sitges, Spain, 2005.

[106] C. Pralet, G. Verfaillie, and T. Schiex. Requêtes Complexes sur des Réseaux de Croyance-

Faisabilité-Désir. In Journées Francophones de Programmation par Contraintes (JFPC-05),

Lens, France, 2005.

[107] C. Pralet, G. Verfaillie, and T. Schiex. Décision avec Incertitudes, Faisabilités et Utilités:

vers un Cadre Algébrique Unifié. In Journées Francophones sur la Planification, la Décision

et l’Apprentissage pour la conduite de systèmes (JFPDA-06), Toulouse, France, 2006.

[108] C. Pralet, G. Verfaillie, and T. Schiex. Decision with Uncertainties, Feasibilities, and Utilities:

Towards a Unified Algebraic Framework. In Proc. of the 17th European Conference on

Artificial Intelligence (ECAI-06), pages 427–431, Riva del Garda, Italy, 2006.

[109] C. Pralet, G. Verfailllie, and T. Schiex. Belief and Desire Networks for Answering Com-

plex Queries. In Proc. of the CP-04 Workshop on ”Constraint Solving under Change and

Uncertainty”, Toronto, Canada, 2004.

[110] R.C. Prim. Shortest Connection Networks and some Generalisations. Bell System Technical

Journal, 36:1389–1401, 1957.

[111] M. Puterman. Markov Decision Processes, Discrete Stochastic Dynamic Programming. John

Wiley & Sons, 1994.

[112] L.R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition. In IEEE, volume 77(2), pages 257–286, 1989.

[113] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.

Algebraic Decision Diagrams and Their Applications. In IEEE /ACM International Confer-

ence on CAD, pages 188–191, Santa Clara, California, USA, 1993. IEEE Computer Society

Press.

[114] C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, second

edition, 2004.

[115] N. Robertson and P.D. Seymour. Graph Minors ii: Algorithmic Aspects of Treewidth.

Journal of Algorithms, 7:309–322, 1986.

BIBLIOGRAPHY 191

[116] D.J. Rose. Triangulated Graphs and the Elimination Process. Journal of Mathematical

Analysis and Applications, 32, 1970.

[117] F. Rossi, B. Venable, and N. Yorke-Smith. Simple Temporal Problems with Preferences and

Uncertainty. In Proc. of the CP-03 Workshop on ”Handling Change and Uncertainty”, Cork,

Ireland, 2003.

[118] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach (second edition).

Prentice-Hall, 2003.

[119] R. Sabbadin. A Possibilistic Model for Qualitative Sequential Decision Problems under Un-

certainty in Partially Observable Environments. In Proc. of the 15th International Conference

on Uncertainty in Artificial Intelligence (UAI-99), pages 567–574, Stockholm, Sweden, 1999.

[120] H. Samulowitz and F. Bacchus. Using SAT in QBF. In Proc. of the 11th International

Conference on Principles and Practice of Constraint Programming (CP-05), pages 578–592,

Sitges, Spain, 2005.

[121] T. Sang, P. Beame, and H. Kautz. Solving Bayesian Networks by Weighted Model Counting.

In Proc. of the 20th National Conference on Artificial Intelligence (AAAI-05), pages 475–482,

Pittsburgh, PA, USA, 2005.

[122] T. Schiex. Possibilistic Constraint Satisfaction Problems or “How to handle soft con-

straints ?”. In Proc. of the 8th International Conference on Uncertainty in Artificial In-

telligence (UAI-92), Stanford, CA, USA, 1992.

[123] T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems : Hard and

Easy Problems. In Proc. of the 14th International Joint Conference on Artificial Intelligence

(IJCAI-95), pages 631–637, Montréal, Canada, 1995.

[124] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, 1998.

[125] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.

[126] L. Shapiro and R. Haralick. Structural Descriptions and Inexact Matching. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 3:504–519, 1981.

[127] P. Shenoy. Valuation-based Systems for Discrete Optimization. Uncertainty in Artificial

Intelligence, 6:385–400, 1991.

[128] P. Shenoy. Valuation-based Systems for Bayesian Decision Analysis. Operations Research,

40(3):463–484, 1992.

[129] P. Shenoy. Conditional Independence in Valuation-Based Systems. International Journal of

Approximated Reasoning, 10(3):203–234, 1994.

[130] P.P. Shenoy. Valuation Network Representation and Solution of Asymmetric Decision Prob-

lems. European Journal of Operational Research, 121:579–608, 2000.

[131] J.E. Smith, S. Holtzman, and J.E. Matheson. Structuring Conditional Relationships in

Influence Diagrams. Operations Research, 41:280–297, 1993.

192 BIBLIOGRAPHY

[132] E.J. Sondik. The Optimal Control of Partially Observable Markov Processes. PhD thesis,

Stanford University, 1971.

[133] W. Spohn. A General Non-Probabilistic Theory of Inductive Reasoning. In Proc. of the 6th

International Conference on Uncertainty in Artificial Intelligence (UAI-90), pages 149–158,

Cambridge, MA, USA, 1990.

[134] T.Vidal and M.Ghallab. Dealing with Uncertain Durations in Temporal Constraint Networks

dedicated to Planning. In Proc. of the 12th European Conference on Artificial Intelligence

(ECAI-96), Budapest, Hungary, 1996.

[135] G. Verfaillie and C. Pralet. The Basic Ingredients of a Constraint-based Framework for

Decision-making under Uncertainty. In Proc. of the CP-05 International Workshop on ”Con-

straint solving under Change and Uncertainty”, Sitges, Spain, 2005.

[136] T. Vidal and H. Fargier. Handling Contingency in Temporal Constraint Networks: From

Consistency to Controllabilities. Journal of Experimental and Theoretical Artificial Intelli-

gence, 11(1):23–45, 1999.

[137] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behaviour. Princeton

University Press, 1944.

[138] T. Walsh. Stochastic Constraint Programming. In Proc. of the 15th European Conference

on Artificial Intelligence (ECAI-02), pages 111–115, Lyon, France, 2002.

[139] P. Weng. Axiomatic Foundations for a Class of Generalized Expected Utility: Algebraic

Expected Utility. In Proc. of the 22nd International Conference on Uncertainty in Artificial

Intelligence (UAI-06), Cambridge, MA, USA, 2006.

[140] E. Weydert. General Belief Measures. In Proc. of the 10th International Conference on

Uncertainty in Artificial Intelligence (UAI-94), pages 575–582, 1994.

[141] N. Wilson. Decision-Making with Belief Functions and Pignistic Probabilities. In Proc.

of the European Conference on Symbolic and Quantitavive Approaches of Reasoning under

Uncertainty (ECSQARU-93), pages 364–371, Grenade, Spain, 1993.

[142] N. Wilson. An Order of Magnitude Calculus. In Proc. of the 11th International Conference

on Uncertainty in Artificial Intelligence (UAI-95), pages 548–555, Montréal, Canada, 1995.

[143] H.L.S. Younes and M.L. Littman. PPDDL: An Extension to PDDL for Expressing Planning

Domains with Probabilistic Effects. Technical Report CMU-CS-04-167, Carnegie Mellon

University, Pittsburgh, PA, 2004.

[144] N.L. Zhang, R. Qi, and D. Poole. A computational theory of decision networks. International

Journal of Approximated Reasoning, 2(11):83–158, 1994.

Appendix A

Notations

Symbol Meaning

⊕p Elimination operator on plausibilities
⊕u Elimination operator on utilities
⊗p Combination operator for plausibilities
⊗u Combination operator for utilities
⊗pu Combination operator between plausibilities and utilities
�p Partial order on plausibilities
�u Partial order on utilities
⋆ Truncation operator
♦ Unfeasible value

VE Environment variables
VD Decision variables

dom(x) Domain of values of a variable x

dom(S)
Q

x∈S
dom(x)

G Directed Acyclic Graph (DAG)
paG(x) Parents of x in the DAG G

ndG(x) Non-descendant of x in the DAG G

CE(G) Set of environment components of G

CD(G) Set of decision components of G

Pi Plausibility function
Fi Feasibility function
Ui Utility function

Fact(c) Pi or Fi factors associated with a component c

sc(Li) Scope of a local function Li

PS Plausibility distribution over S

PS1 | S2
Conditional plausibility distribution of S1 given S2

FS Feasibility distribution over S

FS1 |S2
Conditional feasibility distribution of S1 given S2

Sov Sequence of operator-variable(s) pairs
Sem-Ans(Q) Semantic answer to a query Q (decision trees)
Op-Ans(Q) Operational answer to a query Q

Ans(Q) Answer to a query Q

Table A.1: Notations.

193

Appendix B

Proofs

B.1 Proofs of Chapter 3

Proof of Proposition 3.10 (page 59). It is sufficient to verify each of the required axioms succes-

sively.

Proof of Proposition 3.7 (page 56). Given that ⊕p is associative and commutative, ⊕pS′ PS′ =

⊕pS′ (⊕pS−S′ PS) = ⊕pS PS = 1p. Thus, PS′ : dom(S′) → Ep is a plausibility distribution over

S′.

B.2 Proofs of Chapter 4

Proof of Theorem 4.3 (page 64). Let PS be a plausibility distribution over S. For all S1, S2 disjoint

subsets of S and for all A ∈ dom(S1 ∪ S2) satisfying PS2(A) 6= 0p, let us define PS1 |S2
(A) =

max{p ∈ Ep | PS1,S2(A) = p⊗p PS2(A)}. We must show that the PS1 | S2
functions satisfy axioms

a, b, c, d, e of Definition 4.2.

(a) By definition of PS1 |S2
and by distributivity of ⊗p over ⊕p, one can write

PS2 = ⊕pS1
PS1,S2 = ⊕pS1

(PS1 |S2
⊗p PS2) = (⊕pS1

PS1 |S2
)⊗p PS2 .

As PS2 �p PS2 , one can infer that ⊕pS1
PS1 |S2

�p 1p. Let A2 be an assignment of S2 satis-

fying PS2(A2) 6= 0p. Assume that the hypothesis (H): “⊕pS1
PS1 |S2

(A2) ≺p 1p” holds.

Then, for all A1 ∈ dom(S1), PS1,S2(A1.A2) ≺p PS2(A2), since if PS1,S2(A1.A2) = PS2(A2),

then PS1 |S2
(A1.A2) = 1p, which implies that ⊕pS1

PS1 |S2
(A2) �p 1p by monotonicity of ⊕p.

Moreover, (H) implies that there exists a unique p ∈ Ep satisfying (⊕pS1
PS1 |S2

(A2))⊕p p =

1p. Combining this equation by PS2(A2) gives PS2(A2) ⊕p PS2(A2) ⊗p p = PS2(A2), i.e.

PS2(A2)⊗p (1p ⊕p p) = PS2(A2). This implies that 1p ⊕p p �p 1p. Given that 1p ⊕p p �p 1p

(by monotonicity of ⊕p), we obtain 1p ⊕p p = 1p. We analyze two cases.

• If p ≺p 1p, there exists a unique p′ satisfying p′⊕pp = 1p. As both (⊕pS1
PS1 |S2

(A2))⊕p p

= 1p and 1p⊕p p = 1p, this entails that ⊕pS1
PS1 |S2

(A2) = 1p, which contradicts (H).

• If p = 1p, then 1p⊕p 1p = 1p. This entails that ⊕p is idempotent. Let dom′ be a subset

of dom(S1) such that ⊕pA1∈dom′ PS1,S2(A1.A2) = PS2(A2). Let A′
1 ∈ dom

′. One can

195

196 APPENDIX B. PROOFS

write:{
PS1,S2(A

′
1.A2)⊕p (⊕pA1∈dom′−{A′

1}
PS1,S2(A1.A2)) = PS2(A2)

PS1,S2(A
′
1.A2)⊕p (⊕pA1∈dom′ PS1,S2(A1.A2)) = PS2(A2) (as ⊕p is idempotent)

.

As PS1,S2(A
′
1.A2) ≺p PS2(A2), there exists a unique p′′ ∈ Ep such that PS1,S2(A

′
1.A2)⊕p

p′′ = PS2(A2). Therefore, ⊕pA1∈dom′ PS1,S2(A1.A2) = ⊕pA1∈dom′−{A′
1}
PS1,S2(A1.A2),

which gives ⊕pA1∈dom′−{A′
1}
PS1,S2(A1.A2) = PS2(A2).

The assumption ⊕pA1∈dom′ PS1,S2(A1.A2) = PS2(A2) holds for dom′ = dom(S1). Re-

cursively applying the previous mechanism by removing one assignment in dom′ at each

iteration leads to ⊕pA1∈dom′ PS1,S2(A1.A2) = PS2(A2) with |dom′| = 1, i.e. it leads to

PS1,S2(A
′′
1 .A2) = PS2(A2) with dom′ = {A′′

1}. As a result, we obtain a contradiction.

In both cases, a contradiction with (H) is obtained, whereby ⊕pS1
PS1 |S2

(A2) = 1p.

(b) PS1 = PS1 | ∅ ⊗p P∅ = PS1 | ∅ ⊗p (⊕pS PS) = PS1 | ∅ ⊗p 1p = PS1 | ∅.

(d) Let A ∈ dom(S1∪S2∪S3) satisfying PS2,S3(A) 6= 0p. Then, PS1,S2 |S3
(A) = PS1 |S2,S3

(A)⊗p

PS2 |S3
(A) holds, because:

• If PS1,S2,S3(A) ≺p PS3(A), then, there exists a unique p ∈ Ep such that PS1,S2,S3(A) =

p⊗pPS3(A). As both PS1,S2,S3(A) = PS1,S2 |S3
(A)⊗pPS3(A) (by definition of PS1,S2 |S3

)

and PS1,S2,S3(A) = PS1 |S2,S3
(A) ⊗p PS2 |S3

(A) ⊗p PS3(A) (by definition of PS1 |S2,S3

and PS2 |S3
), this implies that PS1,S2 |S3

(A) = PS1 |S2,S3
(A)⊗p PS2 |S3

(A).

• Otherwise, PS1,S2,S3(A) = PS3(A). This implies that 1p �p PS1,S2 |S3
(A) and, as

PS1,S2 | S3
(A) �p 1p, that PS1,S2 |S3

(A) = 1p. Similarly, this entails that PS2 |S3
(A) = 1p

and PS1 |S2,S3
(A) = 1p (the monotonicity of ⊕p implies that PS1,S2,S3(A) = PS2,S3(A) =

PS3(A)). As 1p = 1p ⊗p 1p, we get PS1,S2 |S3
(A) = PS1 |S2,S3

(A) ⊗p PS2 |S3
(A).

(c) ⊕pS1
PS1,S2 |S3

= ⊕pS1
(PS1 |S2,S3

⊗p PS2 |S3
) (using (d))

= (⊕pS1
PS1 |S2,S3

)⊗p PS2 |S3
(because ⊗p distributes over ⊕p)

= PS2 |S3
(using (a))

(e) Assume that PS1,S2,S3 = PS1 |S3
⊗p PS2 |S3

⊗p PS3 . Let A ∈ dom(S1 ∪ S2 ∪ S3) such that

PS3(A) 6= 0p. Then, PS1,S2 |S3
(A) = PS1 |S3

(A)⊗p PS2 |S3
(A) holds, because:

• If PS1,S2,S3(A) ≺p PS3(A), there exists a unique p ∈ Ep such that PS1,S2,S3(A) =

p⊗p PS3(A), and therefore PS1,S2 |S3
(A) = PS1 |S3

(A) ⊗p PS2 |S3
(A).

• Otherwise, one can write PS1 |S3
(A) = PS2 |S3

(A) = PS1,S2 | S3
(A) = 1p by using a rea-

soning similar to the one of (d), and therefore PS1,S2 |S3
(A) = PS1 |S3

(A) = PS2 |S3
(A).

Proof of Proposition 4.5 (page 65).

1. Symmetry axiom: directly satisfied by commutativity of ⊗p.

B.2. PROOFS OF CHAPTER 4 197

2. Decomposition axiom: Assume that I(S1, S2 ∪ S3 |S4) holds. Then,

PS1,S2 |S4
= ⊕pS3

PS1,S2,S3 |S4

= ⊕pS3
(PS1 |S4

⊗p PS2,S3 | S4
) (since I(S1, S2 ∪ S3 |S4))

= PS1 |S4
⊗p (⊕pS3

PS2,S3 | S4
) (by distributivity of ⊗p over ⊕p)

= PS1 |S4
⊗p PS2 |S4

It proves that I(S1, S2 |S4) holds.

3. Weak union axiom: Assume that I(S1, S2 ∪ S3 |S4) holds. The decomposition axiom entails

that I(S1, S3 |S4) is also satisfied. Then,

PS1,S2,S3,S4 = PS1,S2,S3 |S4
⊗p PS4 (chain rule)

= PS1 |S4
⊗p PS2,S3 |S4

⊗p PS4 (since I(S1, S2 ∪ S3 |S4))

= PS1 |S4
⊗p PS3 |S4

⊗p PS4 ⊗p PS2 |S3,S4
(chain rule)

= PS1,S3 |S4
⊗p PS4 ⊗p PS2 |S3,S4

(since I(S1, S3 |S4))

= PS1 |S3,S4
⊗p PS2 |S3,S4

⊗p PS3,S4 (chain rule)

From axiom (e) in Definition 4.2, one can infer that PS1,S2 |S3,S4
= PS1 |S3,S4

⊗p PS2 |S3,S4
,

i.e. I(S1, S2 |S3 ∪ S4) holds.

4. Contraction axiom Assume that I(S1, S2 |S4) and I(S1, S3 |S2 ∪ S4) hold. Then,

PS1,S2,S3 |S4
= PS1,S3 |S2,S4

⊗p PS2 |S4
(chain rule)

= PS1 |S2,S4
⊗p PS3 |S2,S4

⊗p PS2 |S4
(since I(S1, S3 |S2 ∪ S4))

= PS1,S2 |S4
⊗p PS3 |S2,S4

(chain rule)

= PS1 |S4
⊗p PS2 |S4

⊗p PS3 | S2,S4
(since I(S1, S2 |S4))

= PS1 |S4
⊗p PS2,S3 |S4

(chain rule)

It proves that I(S1, S2 ∪ S3 |S4) holds.

Proof of Theorem 4.8 (page 66).

(a) First, if |C(G)| = 1, G contains a unique component c1. Then, ⊗pc∈C(G)Pc | paG(c) = Pc1 | ∅ =

Pc1 : the proposition holds for |C(G)| = 1.

Assume that the proposition holds for all DAGs with n components. Let G be a DAG of

components compatible with a plausibility distribution PS and such that |C(G)| = n + 1.

Let c0 be a component labeling a leaf of G. As G is compatible with PS , one can write

I(c0, ndG(c0) − paG(c0) | paG(c0)). As c0 is a leaf, ndG(c0) = S − c0, and consequently

I(c0, (S − c0) − paG(c0) | paG(c0)). This means that PS−paG(c0) | paG(c0) = Pc0 | paG(c0) ⊗p

P(S−c0)−paG(c0) | paG(c0). Combining each side of the equation by PpaG(c0) gives

PS = Pc0 | paG(c0) ⊗p PS−c0.

Let G′ be the DAG obtained from G by deleting the node labeled with c0. Then, for every

component c ∈ C(G′), paG′(c) = paG(c) (since the deleted component c0 is a leaf). Moreover

ndG′(c) equals either ndG(c) or ndG(c)− c0 (again, since the deleted component c0 is a leaf).

In the first case (ndG′(c) = ndG(c)), the property I(c, ndG(c) − paG(c) | paG(c)) directly

implies I(c, ndG′(c)− paG′(c) | paG′(c)). In the second case (ndG′(c) = ndG(c)− c0), the de-

composition axiom allows us to write I(c, ndG′(c) − paG′(c) | paG′(c)) from I(c, ndG(c) −

paG(c) | paG(c)). Consequently, G′ is a DAG compatible with PS−c0 . As |C(G′)| = n,

198 APPENDIX B. PROOFS

the recurrence assumption gives PS−c0 = ⊗pc∈C(G′) Pc | paG(c), which implies that PS =

⊗pc∈C(G)Pc | paG(c). This ends the proof by recurrence.

(b) Assume that for every component c, Lc,paG(c)(A) is a plausibility distribution over c for all

assignments A of paG(c). For |C(G)| = 1, C(G) = {c1}. Then, γS = Lc1 is a plausibility

distribution over c1. Moreover, as γ∅ | ∅ = 1p, one can write γc1∪∅ | ∅ = γc1 | ∅ ⊗p γ∅ | ∅, i.e.

I(c1, ∅ | ∅). Therefore, G is compatible with γc1 : the proposition holds for |C(G)| = 1.

Assume that the proposition holds for all DAGs with n components. Let us consider a DAG

G with n + 1 components. We first show that γS is a plausibility distribution over S, i.e.

⊕pS (⊗pc∈C(G) Lc,paG(c)) = 1p. Let c0 be a leaf component in G. As c0 is a leaf, the unique

scoped function whose scope contains a variable in c0 is Lc0,paG(c0). By distributivity of ⊗p

over ⊕p, this implies that

⊕pc0 (⊗pc∈C(G) Lc,paG(c)) = (⊕pc0 Lc0,paG(c0))⊗p (⊗pc∈C(G)−{c0}
Lc,paG(c))

Given that Lc0,paG(c0)(A) is a plausibility distribution over c0 for all assignmentsA of paG(c0),

⊕pc0 Lc0,paG(c0) = 1p. Consequently,

⊕pc0 (⊗pc∈C(G) Lc,paG(c)) = ⊗pc∈C(G)−{c0}
Lc,paG(c)

Applying the recurrence hypothesis to the DAG with n components obtained from G by

deleting c0, one can infer that ⊕pS−c0 (⊗pc∈C(G)−{c0}
Lc,paG(c)) = 1p. This allows us to write

⊕pS−c0 (⊕pc0 (⊗pc∈C(G) Lc,paG(c))) = 1p, i.e. ⊕pS γS = 1p: γS is a plausibility distribution

over S. It remains to prove that G is a DAG of components compatible with γS . Let c ∈ C(G).

We must show that I(c, ndG(c)− paG(c) | paG(c)) holds. Two cases are analyzed.

1. If c = c0, we must prove γc0,ndG(c0)−paG(c0) | paG(c0) = γc0 | paG(c0)⊗pγndG(c0)−paG(c0) | paG(c0).

First,

γc0,paG(c0) = ⊕pS−(c0∪paG(c0))
(⊗pc∈C(G) Lc,paG(c))

= (⊕pS−(c0∪paG(c0))
(⊗pc∈C(G)−{c0}

Lc,paG(c)))⊗p Lc0,paG(c0)

(because ⊗p distributes over ⊕p and sc(Lc0,paG(c0)) ⊂ c0 ∪ paG(c0)

= (⊕pS−paG(c0)
(⊗pc∈C(G) Lc,paG(c)))⊗p Lc0,paG(c0)

(because ⊗p distributes over ⊕p and ⊕c0 Lc0,paG(c0) = 1p)

= γpaG(c0) ⊗p Lc0,paG(c0)

From this, it is possible to write:

γndG(c0)−paG(c0) | paG(c0) ⊗p γc0 | paG(c0) ⊗p γpaG(c0)

= γndG(c0)−paG(c0) | paG(c0) ⊗p γc0,paG(c0)

= γndG(c0)−paG(c0) | paG(c0) ⊗p γpaG(c0) ⊗p Lc0,paG(c0)

= γndG(c0) ⊗p Lc0,paG(c0)

= γS−{c0} ⊗p Lc0,paG(c0) (because c0 is a leaf in G)

= (⊗pc∈C(G)−{c0}
Lc,paG(c))⊗p Lc0,paG(c0)

= ⊗pc∈C(G) Lc,paG(c)

= γS
Using axiom (e) of Definition 4.2, this entails that γndG(c0)−paG(c0) | paG(c0)⊗pγc0 | paG(c0) =

γS−paG(c0) | paG(c0), i.e., as S = c0 ∪ ndG(c0), that I(c0, ndG(c0)− paG(c0) | paG(c0)).

2. Otherwise, c 6= c0. Let G′ be the DAG obtained from G by deleting c0. G
′ contains n

components: the recurrence hypothesis enables us to write I(c, ndG′(c)−paG′(c) | paG′(c)).

B.2. PROOFS OF CHAPTER 4 199

As c0 is a leaf in G, c0 /∈ paG(c), which implies paG′(c) = paG(c). Thus, I(c, ndG′(c)−

paG(c) | paG(c)).

(i) If ndG′(c) = ndG(c), then I(c, ndG(c)− paG(c) | paG(c)) directly holds.

(ii) Otherwise, ndG′(c) 6= ndG(c). As c0 is a leaf in G, this is equivalent to say that

ndG(c) = ndG′(c) ∪ c0. This means that c is not an ancestor of c0, and a for-

tiori c /∈ paG(c0). In the following, the four semigraphoid axioms are used to

prove the required result. From the decomposition axiom, from I(c0, ndG(c0) −

paG(c0) | paG(c0)), and from (c ∪ ndG′(c)) ⊂ ndG(c0) (because ndG(c0) = S − c0),

it is possible to infer that I(c0, (c ∪ ndG′(c)) − paG(c0) | paG(c0)), or, in other

words, as c ∩ paG(c0) = ∅, that I(c0, c ∪ (ndG′(c) − paG(c0)) | paG(c0)). Using

the weak union axiom leads to I(c0, c | (ndG′(c)−paG(c0))∪paG(c0)) and, using the

symmetry axiom, to I(c, c0 | (ndG′(c) − paG(c0)) ∪ paG(c0)). As shown previously,

I(c, ndG′(c)−paG(c) | paG(c)). Together with I(c, c0 | (ndG′(c)−paG(c0))∪paG(c0)),

the contraction axiom allows us to infer I(c, (ndG′(c)−paG(c))∪c0 | paG(c)). As c0 /∈

paG(c) and ndG(c) = ndG′(c) ∪ c0, this means that I(c, ndG(c)− paG(c)) | paG(c)).

We have proved that G is compatible with γS . Consequently, the proposition holds if there

are n+ 1 components in G, which ends the proof by recurrence.

Proof of Proposition 4.10 (page 67). Let n ∈ N∗. If ⊕pi∈[1,n] 1p = 1p, then p0 = 1p satisfies the

required property. Moreover, in this case, the distributivity of ⊗p over ⊕p implies that for all

p ∈ Ep, ⊕pi∈[1,n] p = p. Therefore, if ⊕pi∈[1,n] p = 1p, then p = 1p, which shows that p0 is unique.

Otherwise, ⊕pi∈[1,n] 1p 6= 1p. In this case, as 1p �p ⊕pi∈[1,n] 1p by monotonicity of ⊕p, one can

write 1p ≺p ⊕pi∈[1,n] 1p. The second item of Theorem 4.3 then implies that there exists a unique

p0 ∈ Ep such that 1p = p0 ⊗p (⊕pi∈[1,n] 1p), i.e. such that 1p = ⊕pi∈[1,n] p0.

Proof of Proposition 4.12 (page 68). PVE ,VD
= PVE ||VD

⊗p p0, where p0 is the element of Ep such

that ⊕pi∈[1,|dom(VD)|] p0 = 1p. Then,

⊕pVE∪VD
PVE ,VD

= ⊕pVE∪VD
(PVE ||VD

⊗p p0)

= ⊕pVD
((⊕pVE

PVE ||VD
)⊗p p0)

= ⊕pVD
p0

= ⊕pi∈[1,|dom(VD)|] p0

= 1p
This proves that PVE ,VD

is a plausibility distribution over VE ∪ VD.

As PVE ,VD
= PVE ||VD

⊗p p0 and PVE ,VD
= PVE |VD

⊗p PVD
, one can write PVE ||VD

⊗p p0 =

PVE | VD
⊗p PVD

. Moreover, PVD
= ⊕pVE

PVE ,VD
= ⊕pVE

(PVE ||VD
⊗p p0) = p0. Thus, PVE ||VD

⊗p

p0 = PVE |VD
⊗pp0. Summing this equation |dom(VD)| times with ⊕p gives PVE ||VD

= PVE |VD
.

Proof of Proposition 4.14 (page 68). The result is proved only for PVE |VD
(the proof for FVD |VE

is similar). The completion of PVE ||VD
looks like PVE ,VD

= PVE ||VD
⊗p p0. Gp being compatible

with this completion, Theorem 4.8a entails that PVE ,VD
= ⊗pc∈C(Gp) Pc | paGp (c). As the decision

components are roots inGp, one can infer, by successively eliminating the environment components,

that PVD
= ⊕pVE

PVE ,VD
= ⊗pc∈CD(Gp) Pc.

200 APPENDIX B. PROOFS

On the other hand, PVD
= ⊕pVE

(
PVE ||VD

⊗p p0

)
= p0. This proves that ⊗pc∈CD(Gp) Pc = p0.

Therefore, PVE ,VD
= PVE |VD

⊗p p0 = (⊗pc∈CE(Gp) Pc | paGp (c)) ⊗p p0. Summing this equation

|dom(VD)| times with ⊕p gives PVE |VD
= ⊗pc∈CE(Gp) Pc | paGp (c). As CE(Gp) = CE(G) and

paGp
(c) = paG(c) for every c ∈ CE(G), this entails that PVE |VD

= ⊗pc∈CE(G) Pc | paG(c).

B.3 Proofs of Chapter 5

Proof of Proposition 5.3 (page 77). Proposition 5.3 is entailed by the DAG structure: indeed, as

variables are organized in a DAG, it is sufficient to build a sequence Sov as follows. At the

beginning, Sov = ∅ and G is the DAG of the PFU network. While the DAG G is not empty,

(1) select a leaf component c in G; (2) if c is a decision component, then Sov ← (max, c).Sov;

otherwise, Sov ← (⊕u, c).Sov; (3) delete c from G.

Proof of Proposition 5.5 (page 78). We denote by p0 the element in Ep such that the completion

of PVE ||VD
equals PVE ||VD

⊗ p0. Note that p0 6= 0p, since it must satisfy ⊕pi∈[1,|dom(VD)|] p0 = 1p.

Lemma B.1. Let (Ep,⊕p,⊗p) be a conditionable plausibility structure. Then, (p1 ⊗p p2 = 0p)↔

((p1 = 0p) ∨ (p2 = 0p)).

Proof of Lemma B.1. First, if p1 = 0p or p2 = 0p, then p1 ⊗p p2 = 0p. Conversely, assume that

p1 ⊗p p2 = 0p. Then, if p1 ≻p 0p, the conditionability of the plausibility structure together

with p1 ⊗p 0p = 0p entails that p2 = 0p. Similarly, if p2 ≻p 0p, then p1 = 0p. Therefore

(p1 ⊗p p2 = 0p)→ ((p1 = 0p) ∨ (p2 = 0p)).

Lemma B.2. Assume that the plausibility structure is conditionable. Let S1, S2 be disjoint subsets

of VE. Then, PS1 |S2 ||VD
= PS1 |S2,VD

.

Proof of Lemma B.2. On one hand, PS1,S2 |VD
= PS1 |S2,VD

⊗p PS2 |VD
. On the other hand,

PS1,S2 |VD
= PS1,S2 ||VD

= PS1 |S2 ||VD
⊗p PS2 ||VD

= PS1 |S2 ||VD
⊗p PS2 |VD

.

Let A be an assignment of V . If PS1,S2 |VD
(A) ≺p PS2 |VD

(A), then the conditionability of

the plausibility structure entails that PS1 |S2,VD
(A) = PS1 |S2 ||VD

(A). Otherwise, PS1,S2 |VD
(A) =

PS2 |VD
(A), which also entails that PS1,S2 ||VD

(A) = PS2 ||VD
(A). In this case, PS1 |S2,VD

(A) =

PS1 ||S2,VD
(A) = 1p. Therefore, PS1 |S2,VD

= PS1 |S2 ||VD
.

(1) Assume that VE 6= ∅. Let Si be the leftmost set of environment variables appearing in Sov and

let A ∈ dom(l(Si)). Using l(Si) ∩ VE = ∅, one can write Pl(Si)(A) = ⊕pV−l(Si)
PVE ,VD

(A) =

⊕pVD−l(Si)
(⊕pVE

PVE ,VD
(A)) = ⊕pVD−l(Si)

p0 6= 0p. Therefore, PSi | l(Si)(A) is well-defined.

(4) Let lE(Si) = l(Si)∩VE and lD(Si) = l(Si)∩VD. For a set of variables S, we denote by dG(S)

the set of variables in V which are descendant in the DAG G of at least one variable in S.

First, PSi,lE(Si) ||VD
= ⊕pVE−(Si∪lE(Si))

PVE ||VD
= ⊕pVE−(Si∪lE(Si))

(⊗pPj∈P
Pj). By def-

inition of a query, variables in VE ∩ dG(VD − lD(Si)) do not belong to Si ∪ lE(Si) (the

environment variables that are descendant of as-yet-unassigned decision variables are not

assigned yet, either).

Thus, PSi,lE(Si) ||VD
= ⊕pVE−(Si∪lE(Si)∪dG(VD−lD(Si)))

(⊗pPj /∈Fact(c),c⊂VE∩dG(VD−lD(Si))
Pj).

This equality is obtained by successively eliminating (using the normalization conditions)

B.3. PROOFS OF CHAPTER 5 201

the environment components included in dG(VD − lD(Si)). As the scope of a plausibility

function Pj ∈ Fact(c) is included in c ∪ paG(c), this equality entails that PSi,lE(Si) ||VD
does

not depend on the assignment of VD−lD(Si). Morever, PlE(Si) ||VD
= ⊕Si

PSi,lE(Si) ||VD
does

not depend on the assignment of VD too. As PSi | lE(Si) ||VD
= max{p ∈ Ep | PSi,lE(Si) ||VD

=

p⊗p PlE(Si) ||VD
}, this also entails that PSi | lE(Si) ||VD

does not depend on the assignment of

VD. It can be denoted PSi | lE(Si) || lD(Si).

Let us show that PSi | l(Si) = PSi | lE(Si) || lD(Si). First,

PSi,l(Si) = ⊕pVD−lD(Si)
PSi,lE(Si),VD

= ⊕pVD−lD(Si)
(PSi | lE(Si),VD

⊗p PlE(Si),VD
)

= ⊕pVD−lD(Si)
(PSi | lE(Si) ||VD

⊗p PlE(Si),VD
) (using Lemma B.2)

= PSi | lE(Si) ||VD
⊗p (⊕pVD−lD(Si)

PlE(Si),VD
)

(since PSi | lE(Si) ||VD
does not depend on the assignment of VD − l(Si))

= PSi | lE(Si) ||VD
⊗p Pl(Si)

Let A be an assignment of V .

– If PSi,l(Si)(A) ≺p Pl(Si)(A), then the conditionability of the plausibility structure di-

rectly entails that PSi | l(Si)(A) = PSi | lE(Si) ||VD
(A).

– Otherwise, PSi,l(Si)(A) = Pl(Si)(A). In this case, PSi | l(Si)(A) = 1p. Next, on one hand,

Pl(Si) = ⊕pV−l(Si)
(PVE ||VD

⊗p p0) = ⊕pVD−lD(Si)
(PlE(Si) ||VD

⊗p p0). On the other

hand, PSi,l(Si) = ⊕pV−(Si∪l(Si))
(PVE ||VD

⊗p p0) = ⊕pVD−lD(Si)
(PSi,lE(Si) ||VD

⊗p p0).

As PSi,l(Si)(A) = Pl(Si)(A), one can infer that ⊕pVD−lD(Si)
(PlE(Si) ||VD

(A) ⊗p p0) =

⊕pVD−lD(Si)
(PSi,lE(Si) ||VD

(A)⊗p p0). As neither PlE(Si) ||VD
nor PSi,lE(Si) ||VD

depends

on the assignment of VD− lD(Si), this entails that PlE(Si) ||VD
(A)⊗p (⊕pVD−lD(Si)

p0) =

PSi,lE(Si) ||VD
(A)⊗p (⊕pVD−lD(Si)

p0). Summing this equation |dom(lD(Si))| times gives

PSi,lE(Si) ||VD
(A) = PlE(Si) ||VD

(A), and thus PSi | lE(Si) ||VD
(A) = 1p = PSi | l(Si)(A).

The results can be extended to feasibilities.

(2) Let i, j ∈ [1, k] such that i < j, Si ⊂ VE , Sj ⊂ VE , and r(Si) ∩ l(Sj) ⊂ VD (Sj is the first set

of environment variables appearing at the right of Si in Sov). Let (A,A′) ∈ dom(l(Si)) ×

dom(Si) such that PSi | l(Si)(A) is well-defined (i.e. Pl(Si)(A) 6= 0p) and PSi | l(Si)(A.A
′) 6= 0p.

Let A′′ be an extension of A.A′ over l(Sj). We must show that PSj | l(Sj)(A
′′) is well-defined,

i.e. that Pl(Sj)(A
′′) 6= 0p. As PSi | l(Si)(A.A

′) 6= 0p and Pl(Si)(A) 6= 0p, Lemma B.1 implies

that PSi,l(Si)(A.A
′) 6= 0p. Similarly to the proof of point (4), it is possible to show that Pl(Sj)

does not depend on the assignment of l(Sj)− (Si ∪ l(Si)). Therefore, for every A′′ extending

A.A′ over l(Sj), ⊕pl(Sj)−(Si∪l(Si))
Pl(Sj)(A

′′) 6= 0p, which implies that Pl(Sj)(A
′′) 6= 0p.

(3) Proof similar to point (2), except that plausibilities are replaced by feasibilities and decision

variables are replaced by environment ones.

Proof of Theorem 5.9 (page 81). Let Afr be an assignment of the set of free variables Vfr such

that FVfr
(Afr) = f . The semantic based definition gives (Sem-Ans(Q))(Afr) = ♦. Given that

FVfr
(Afr) = ∨V−Vfr

FVE ,VD
(Afr) = ∨V−Vfr

FVD ||VE
(Afr) = ∨V−Vfr

(∧Fi∈F Fi(Afr)) (since the

completion of FVD ||VE
gives FVD ||VE

= FVD ,VE
), one can infer that for every complete assignment

202 APPENDIX B. PROOFS

A′′ extending Afr, ∧Fi∈F Fi(A
′′) = f and (∧Fi∈F Fi(A

′′))⋆(⊗pPi∈P
Pi(A

′′))⊗pu(⊗uUi∈U Ui(A
′′)) =

♦. As min(♦,♦) = max(♦,♦) = ♦⊕u ♦ = ♦, this entails that (Op-Ans(Q))(Afr) = ♦ too.

We now analyze the case FVfr
(Afr) = t. We use A′′ to denote a complete assignment which

must be considered with the semantic definition. Using the properties:

• p⊗pu min(u1, u2) = min(p⊗pu u1, p⊗pu u2) (right monotonicity of ⊗pu),

• p⊗pu max(u1, u2) = max(p⊗pu u1, p⊗pu u2) (right monotonicity of ⊗pu),

• p⊗pu (u1 ⊕u u2) = (p⊗pu u1)⊕u (p⊗pu u2) (distributivity of ⊗pu over ⊕u),

• p1 ⊗pu (p2 ⊗pu u) = (p1 ⊗p p2)⊗pu u,

one can “move” all the PSi | l(Si)(A.A
′) to get, starting from the semantic definition,

(⊗pi∈[1,k],Si⊂VE
PSi | l(Si))(A

′′)⊗pu UV (A′′)

on the right of the elimination operators.

Let us prove that this quantity equals PVE |VD
(A′′) ⊗pu UV (A′′). Let S be the rightmost set

of quantified environment variables. The chain rule enables us to write PVE |VD
= PS | lE(S),VD

⊗p

PlE(S) |VD
, where lE(S) = l(S) ∩ VE . Moreover, using Lemma B.2 and Proposition 5.5(4), one

can write PS | lE(S),VD
= PS | lE(S) ||VD

= PS | l(S). Therefore, PVE | VD
= PS | l(S) ⊗p PlE(S) |VD

.

Recursively applying this mechanism leads to: PVE |VD
= ⊗pi∈[1,k],Si⊂VE

PSi | l(Si). Therefore, we

obtain PVE |VD
(A′′)⊗pu UV (A′′) on the right of the elimination operators.

The semantic definition of the query meaning can be updated a bit, thanks to Lemma B.1. This

lemma implies that conditions like PS | l(S)(A.A
′) 6= 0p, which are used only when Pl(S)(A) 6= 0p,

are equivalent to PS,l(S)(A.A
′) 6= 0p, since PS,l(S)(A.A

′) = PS | l(S)(A.A
′)⊗p Pl(S)(A). As a result,

the operators ⊕uA′∈dom(S),PS | l(S)(A.A′) 6=0p
can be replaced by ⊕uA′∈dom(S),PS,l(S)(A.A′) 6=0p

.

Similarly, in the eliminations minA′∈dom(S),FS | l(S)(A.A′)=t, the conditions FS | l(S)(A.A
′) = t can

be replaced by FS,l(S)(A.A
′) = t. The same holds for the eliminations maxa∈dom(xi),FS | l(S)(A.A′)=t.

We now start from the operational definition and show that it can be reformulated as above.

The operational definition applies a sequence of eliminations over the variables domains, on the

global function (∧Fi∈F Fi) ⋆ (⊗pPi∈P
Pi)⊗pu (∧Ui∈U Ui), which also equals FVD |VE

⋆ PVE |VD
⊗pu

UV . Let S be the leftmost set of quantified decision variables. Let A be an assignment of l(S).

Assume that S is quantified by min. Let A0 ∈ dom(S) such that FS,l(S)(A.A0) = f . It can be

inferred that for all complete assignment A′′ extending A.A0, FVE,VD
(A′′) = f , and consequently

FVD |VE
(A′′) = f . This implies that FVD |VE

(A′′) ⋆ PVE |VD
(A′′) ⊗pu UV (A′′) = ♦. Given that

min(♦,♦) = max(♦,♦) = ♦ ⊕u ♦ = ♦, we obtain Qor(N , Sov,A.A0) = ♦. As min(d,♦) = d,

this entails that minA′∈dom(S)Qor(N , Sov,A.A
′) = minA′∈dom(S)−{A0}Qor(N , Sov,A.A

′). Thus,

minA′∈dom(S) can be replaced by minA′∈dom(S),FS,l(S)(A.A′)=t (as FVfr
(A) = t, there exists at

least one assignment A′ ∈ dom(S) such that FS,l(S)(A.A
′) = t). The same result holds if S is

quantified by max. Applying this mechanism to each set of quantified decision variables from

the left to the right of Sov, we obtain that minA′∈dom(S) and maxA′∈dom(S) can be replaced

by minA′∈dom(S),FS,l(S)(A.A′)=t and maxA′∈dom(S),FS,l(S)(A.A′)=t respectively. Moreover, it can be

shown that for every complete assignment A′′ which is now considered, FVD | VE
(A′′) = t. It is then

possible to replace FVD |VE
(A′′) ⋆ PVE |VD

(A′′)⊗pu UV (A′′) by PVE |VD
(A′′)⊗pu UV (A′′).

B.3. PROOFS OF CHAPTER 5 203

We now update each ⊕uA′∈dom(S)Qor(N , Sov,A.A
′). Let S be the leftmost set of quan-

tified environment variables. Let A be an assignment of l(S). Let A0 ∈ dom(S) such that

PS,l(S)(A.A0) = 0p. Then, for all complete assignments A′′ extending A.A0, PVE |VD
(A′′) = 0p,

and thus PVE |VD
(A′′)⊗puUV (A′′) = 0u. As min(0u, 0u) = max(0u, 0u) = 0u⊕u 0u = 0u, we obtain

Qor(N , Sov,A.A0) = 0u. As d ⊕u 0u = d, computing ⊕uA′∈dom(S)Qor(N , Sov,A.A
′) is equiva-

lent to computing ⊕uA′∈dom(S)−{A0}Qor(N , Sov,A.A
′). Thus, ⊕uA′∈dom(S) can be replaced by

⊕uA′∈dom(S),PS,l(S)(A.A′) 6=0p
(as Pl(S)(A) 6= 0p, there exists at least one assignment A ∈ dom(S)

satisfying PS,l(S)(A.A
′) 6= 0p). Applying this mechanism, considering each set of quantified envi-

ronment variables from the left to the right of Sov, enables us to get ⊕uA′∈dom(S),PS,l(S)(A,A′) 6=0p

instead of ⊕uA′∈dom(S).

Consequently, we have found a function Φ such that Sem-Ans(Q) = Φ and Op-Ans(Q) = Φ.

Moreover, the optimal policies for the decisions for Sem-Ans(Q) are optimal policies for decisions

for Φ. Indeed, the transformation rules used preserve the set of optimal policies. The same holds

for Op-Ans(Q) and Φ. It entails that Sem-Ans(Q) = Op-Ans(Q), and that the optimal policies

for Sem-Ans(Q) are the same as those for Op-Ans(Q).

Proof of Theorem 5.12 (page 82).

Lemma B.3. Let (Ep, Eu,⊕u,⊗pu) be an expected utility structure such that Eu is totally ordered

by �u. Let γS1,S2 be a local function on Eu, whose scope is S1 ∪ S2. Then,

max
φ:dom(S2)→dom(S1)

⊕u
A∈dom(S2)

γS1,S2(φ(A).A) = ⊕u
S2

max
S1

γS1,S2

Moreover, ψ : dom(S2) → dom(S1) satisfies (maxS1 γS1,S2)(A) = γS1,S2(ψ(A).A) for all A ∈

dom(S2) iff maxφ:dom(S2)→dom(S1)⊕uA∈dom(S2) γS1,S2(φ(A).A) = ⊕uA∈dom(S2) γS1,S2(ψ(A).A). In

other words, the two sides of the equality have the same set of optimal policies for S1.

Proof of Lemma B.3 (page 203). Let φ0 : dom(S2)→ dom(S1) be a function such that

maxφ:dom(S2)→dom(S1)⊕uA∈dom(S2) γS1,S2(φ(A).A) = ⊕uA∈dom(S2) γS1,S2(φ0(A).A).

Given that for all A ∈ dom(S2), γS1,S2(φ0(A).A) �u maxA′∈dom(S1) γS1,S2(A
′.A), the monotonic-

ity of ⊕u entails that ⊕uA∈dom(S2) γS1,S2(φ0(A).A) �u ⊕uA∈dom(S2) maxA′∈dom(S1) γS1,S2(A
′.A).

Thus,

maxφ:dom(S2)→dom(S1)⊕uA∈dom(S2) γS1,S2(φ(A).A) �u ⊕uS2
maxS1 γS1,S2 .

On the other hand, let ψ0 : dom(S2) → dom(S1) be a function such that ∀A ∈ dom(S2),

(maxS1 γS1,S2)(A) = γS1,S2(ψ0(A).A). Then,

⊕uS2
maxS1 γS1,S2 = ⊕u

A∈dom(S2)
γS1,S2(ψ0(A).A) �u max

φ:dom(S2)→dom(S1)
⊕u

A∈dom(S2)
γS1,S2(φ(A).A).

The antisymmetry of �u implies the required equality. The equality of the set of optimal

policies over S1 is directly implied by the equality.

We now give the proof of the theorem, which uses for some cases the previous lemma.

1. (CSP based problems [84])

Let us consider a CSP over a set of variables V and with a set of constraints {C1, . . . , Cm}.

204 APPENDIX B. PROOFS

(a) (Consistency, solution finding) Consistency can be checked with the queryQ = (N , (max, V)),

where N = (V,G, ∅, ∅, U) (all variables in V are decision variables, G is reduced to a

unique decision component containing all variables, and U = {C1, . . . , Cm}), and where

the expected utility structure is boolean optimistic expected conjunctive utility (row 6 in

Table 3.1). Computing Ans(Q) = maxV (C1 ∧ . . . ∧ Cm) is equivalent to checking con-

sistency, because Ans(Q) = t iff there exists an assignment of V satisfying C1∧ . . .∧Cm,

i.e. iff the CSP is consistent. In order to get a solution when Ans(Q) = t, it suffices

to record an optimal decision rule for V . Integer Linear Programming [124] with finite

domain variables can be formulated as a CSP.

(b) (Counting the number of solutions) The expected utility structure considered for this

task is probabilistic expected satisfaction (row 2 in Table 3.1). The PFU network is

N = (V,G, P, ∅, U), where all variables in V are environment variables, G is a DAG with

a unique component c0 = V , P = {L0}, L0 being a constant factor equal to 1/|dom(V)|

such that Fact(c0) = {L0}, and U = {C1, . . . , Cm}. Implicitly, L0 specifies that the

complete assignments are equiprobable. It enables the normalization condition “for all

c ∈ CE(G), ⊕pc⊗pPi∈Fact(c)
Pi = 1p” to be satisfied, since

∑

V (1/|dom(V)|) = 1. The

query to consider is then Q = (N , (+, V)). It is not hard to check that this satisfies the

conditions imposed on queries and Ans(Q) =
∑

V (1/L0 × (C1 × . . .× Cm)) gives the

percentage of solutions of the CSP. L0 ×Ans(Q) gives the number of solutions.

2. (Solving a Valued CSP (VCSP [123]))

In order to model this problem, the only difficulty lies in the definition of an expected utility

structure. In a VCSP, a triple (E,⊛,≻) called a valuation structure is introduced. It satisfies

properties such as (E,⊛) is a commutative semigroup, ≻ is a total order on E, and E has

a minimum element denoted ⊤. The expected utility structure to consider is the following

one: (Ep,⊕p,⊗p) = ({t, f},∨,∧), (Eu,⊗u) = (E,⊛), and the expected utility structure is

(Ep, Eu,⊕u,⊗pu), with ⊕u = min and ⊗pu defined by “false⊗puu = ⊤ and true⊗pu u = u”

(it is not hard to verify that this structure is an expected utility structure). Next, the

PFU network is N = (V,G, ∅, ∅, U), where V is the set of variables of the VCSP, G is a

DAG with only one decision component containing all the variables, and U contains the soft

constraints. The query Q = (min, V) enables us to find the minimum violation degree of the

soft constraints. A solution for the VCSP is an optimal (argmin) decision rule for V .

3. (Problems from the SAT framework [82])

In the SAT framework, queries on a conjunctive normal form boolean formula φ over a set

of variables V = {x1, . . . , xn} are asked.

Let us first prove that an extended SSAT formula can be evaluated with a PFU query.

An extended SSAT formula is defined by a triple (φ, θ, q) where φ is a boolean formula in

conjunctive normal form, θ is a threshold in [0, 1], and q = (q1x1) . . . (qnxn) is a sequence

of quantifier/variable pairs (the quantifiers are ∃, ∀, or R; the meaning of Rappears below).

If one takes f ≺ t, the value of φ under the quantification sequence q, val(φ, q), is defined

recursively by: (i) val(φ, ∅) = 1 if φ is t, 0 otherwise; (ii) val(φ, (∃x) q′) = maxx val(φ, q
′);

(iii) val(φ, (∀x) q′) = minx val(φ, q
′); (iv) val(φ, (Rx) q′) =

∑

x 0.5 · val(φ, q′). Intuitively,

the last case means that Rquantifies boolean variables taking equiprobable values. An

B.3. PROOFS OF CHAPTER 5 205

extended SSAT formula (φ, θ, q) is t iff val(φ, q) ≥ θ. If S denotes the set of variables

quantified by R, an equivalent definition of val(φ, q) is: (i’) val(φ, ∅) = 0.5|S| if φ is t, 0

otherwise; (ii’) val(φ, (∃x) q′) = maxx val(φ, q
′); (iii’) val(φ, (∀x) q′) = minx val(φ, q

′); (iv’)

val(φ, (Rx) q′) =
∑

x val(φ, q
′).

This second definition proves that val(φ, q) can be computed with the PFU query defined

by: (a) expected utility structure: probabilistic expected satisfaction (row 2 in Table 3.1);

(b) PFU network: N = (V,G, P, ∅, U), with V the set of variables of the formula φ (the

decision variables are the variables quantified by ∃ or ∀), G a DAG without arcs, with one

decision component per decision variable and a unique environment component containing

all variables quantified by R, P = {L0}, L0 being a constant factor equal to 0.5|VE |, and U

the set of clauses of φ; (c) query: Q = (N , Sov), Sov being obtained from q by replacing ∃,

∀, and Rby max, min, and + respectively. Then, Ans(Q) = val(φ, q), which implies that the

value of an extended SSAT formula (φ, θ, q) is the value of the bounded query (N , Sov, θ).

SSAT is a particular case of extended-SSAT and is therefore covered. SAT, MAJSAT, E-

MAJSAT, QBF are also particular cases of extended SSAT. As a result, they are covered

by PFU bounded queries. More precisely, SAT corresponds to a bounded query of the form

Q = (N , (max, V), 1); MAJSAT (“given a boolean formula over a set of variables V , is it

satisfied for at least half of the assignments of V ”) corresponds to a bounded query of the form

(N , (+, V), 0.5); E-MAJSAT (“given a boolean formula over V = VE ∪ VD, does there exist

an assignment of VD such that the formula is satisfied for at least half of the assignments

of VE?”) corresponds to a bounded query of the form (N , (max, VD).(+, VE), 0.5); QBF

corresponds to a bounded query in which max over existentially quantified variables and min

over universally quantified variables alternate.

4. (Solving a Quantified CSP (QCSP [15]))

A QCSP represents a formula of the form Q1x1 . . . Qnxn (C1 ∧ . . .∧Cm), where each Qi is a

quantifier (∀ or ∃) and each Ci is a constraint. The value of a QCSP is defined recursively as

follows: the value of a QCSP without variables (i.e. containing only t, f , and connectives)

is given by the definition of the connectives. A QCSP ∃x qcsp is t iff either qcsp((x, t)) = t

or qcsp((x, f)) = t. Assuming f ≺ t, it gives that ∃x qcsp is t iff maxx qcsp = t. A

QCSP ∀x qcsp is t iff qcsp((x, t)) = t and qcsp((x, f)) = t. Equivalently, ∀x qcsp is t

iff minx qcsp = t. It implies that the value of a QCSP is actually given by the formula

op(Q1)x1 . . . op(Qn)xn
(C1 ∧ . . . ∧ Cm), with op(∃) = max and op(∀) = min. It corresponds

to the answer to the query (N , (op(Q1), x1).(op(Qn), xn)), where N = (V,G, ∅, ∅, U) (V

is the set of variables of the QBF, G is a DAG with only one decision component containing

all variables, and U is the set of constraints), and where the expected utility structure is

boolean optimistic expected conjunctive utility (row 6 in Table 3.1).

5. (Solving a mixed CSP or a probabilistic mixed CSP [47])

A probabilistic mixed CSP is defined by (i) a set of variables partitioned into a set W of

contingent variables and a set X of decision variables; an assignment AW of W is called

a world and an assignment AX of X is called a decision; (ii) a set C = {C1, . . . , Cm} of

constraints involving at least one decision variable; (iii) a probability distribution PW over

206 APPENDIX B. PROOFS

the worlds; a possible world AW (i.e. such that PW (AW) > 0) is covered by a decision AX

iff the assignment AW .AX satisfies all the constraints in C.

On one hand, if a decision must be made without knowing the world, the task is to find

an optimal non-conditional decision, i.e. to find an assignment AX of the decision variables

that maximizes the probability that the world is covered by AX . This probability is equal to
∑

AW | (C1×...×Cm)(AX ,AW)=1 PW (AW) =
∑

W (PW × C1 × . . .× Cm). As a result, an optimal

non-conditional decision can be found by recording an optimal decision rule for X for the

formula maxX
∑

W (PW × C1 × . . .× Cm). The previous formula actually specifies how to

solve such a problem with PFUs. The algebraic structure is probabilistic expected utility

(row 2 in Table 3.1), the PFU network is N = (V,G, P, ∅, U), with VD = X , VE = W , G

a DAG without arc, with one decision component X and a set of environment components

that depends on how PW is specified, P is the set of factors that define PW , and finally

U = {C1, . . . , Cm}. The query is then Q = (N , (max, X).(+,W)).

On the other hand, if the world is known when the decision is made, the task is to look for an

optimal conditional decision, i.e. to look for a decision rule φ0 : dom(W) → dom(X) which

maximizes the probability that the world is covered. In other words, the goal is to compute

maxφ:dom(W)→dom(X)

∑

AW ∈dom(W) | (C1×...×Cm)(AW .φ(AW))=1 PW (AW) =

maxφ:dom(W)→dom(X)

∑

AW ∈dom(W) (PW × C1 × . . .× Cm) (AW .φ(AW)). Due to Lemma B.3,

it also equals
∑

W maxX (PW × C1 × . . .× Cm), and φ0 can be found by recording an opti-

mal decision rule for X . It proves that the query Q = (N , (+,W).(max, X)) enables us to

compute an optimal conditional decision.

With Mixed CSP, PW is replaced by a set K of constraints defining the possible worlds. The

goal is then to look for a decision, either conditional or non-conditional, that maximizes the

number of covered worlds. This task is equivalent, ignoring a normalizing constant, to find a

decision that maximizes the percentage of covered worlds. This can be solved using the set

of plausibility functions P = K ∪ {N0}, with N0 a normalizing constant ensuring that the

normalization condition on plausibilities holds. N0 is the number of possible worlds, but it

does actually not need to be computed, since it is a constant factor and we are only interested

in optimal decisions.

6. (Stochastic CSP (SCSP) and stochastic COP (SCOP) [138])

Formally, a SCSP is a tuple (V, S, P, C, θ), where V is a list of variables (each variable x

having a finite domain dom(x)), S is the set of stochastic variables in V , P = {Ps | s ∈ S}

is a set of probability distributions (in a more advanced version of SCSP, probabilities over

S may be defined by a Bayesian network; the subsumption result is still valid for this case),

C = {C1, . . . , Cm} is a set of constraints, and θ is a threshold in [0, 1].

A SCSP-policy is a tree with internal nodes labeled with variables. The root is labeled with

the first variable in V , and the parents of the leaves are labeled with the last variable in

V . Nodes labeled with a decision variable have only one child, whereas nodes labeled with

a stochastic variable s have |dom(s)| children. Leaf nodes are labeled with 1 if the complete

assignment they define satisfies all the constraints in C, and with 0 otherwise. With each leaf

node can be associated a probability
∏

s∈S Ps(AS), where AS stands for the assignment of S

implicitly defined by the path from the root to the leaf. The satisfaction of a SCSP-policy

B.3. PROOFS OF CHAPTER 5 207

is the sum of the values of the leaves weighted by their probabilities. A SCSP is satisfiable

iff there exists a SCSP-policy with a satisfaction of at least θ. The optimal satisfaction of a

SCSP is the maximum satisfaction of all SCSP-policies.

For the subsumption proof, we first consider the problem of looking for the optimal sat-

isfaction of a SCSP. In a SCSP-policy, each decision variable x can take one value per

assignment of the set preds(x) of stochastic variables which precede x in the list of vari-

ables V . Instead of being described as a tree, a SCSP-policy can be viewed as a set of

functions ∆ = {φx : dom(preds(x)) → dom(x)), x ∈ V − S}, and its value is val(∆) =
∑

AS∈dom(S) (
∏

s∈S Ps ×
∏

Ci∈C
Ci)(AS .(·

x∈V−S
φx(AS))). The goal is to maximize the pre-

vious quantity among the sets ∆. Let y be the last decision variable in V , and let Φy be the

set of local functions φy : dom(preds(y))→ dom(y) defining a decision rule for y. Then,

max
φy∈Φy

val(∆) = max
φy∈Φy

∑

AS∈dom(preds(y))

(
∑

S−preds(y)

∏

s∈S

Ps ×
∏

Ci∈C

Ci)(AS .(·
x∈V−S

φx(AS))).

By Lemma B.3, the previous quantity also equals:
∑

preds(y)) maxy
∑

S−preds(y)

(∏

s∈S Ps ×
∏

Ci∈C
Ci
)
. A recursive application of this mecha-

nism shows that the answer Ans(Q) to the query Q described below is equal to the optimal

satisfaction of a SCSP:

• expected utility structure: row 2 in Table 3.1 (probabilistic expected satisfaction)

• PFU network: N = (V ′, G, P, ∅, U), with V ′ the set of variables of the SCSP; VE = S

and VD = V ′ − S; G is a DAG without arcs, with one component per variable; P =

{Ps | s ∈ S}; Fact({s}) = {Ps}; U is the set of constraints of the SCSP;

• query: Q =(N , Sov), with Sov=t(V) (V is the list of variables of the SCSP), t(V) being

recursively defined by t(∅) = ∅ and t(x.V ′′) =

{

(+, {x}).t(V ′′) if x ∈ S

(max, {x}).t(V ′′) otherwise
.

An optimal SCSP-policy can be recorded during the evaluation of Ans(Q). The satisfiability

of a SCSP can be answered with the bounded query (N , Sov, θ). Again, a corresponding

SCSP-policy can be obtained by recording optimal decision rules.

With Stochastic Constraint Optimization Problem (SCOP), the constraints in C are additive

soft constraints. The subsumption proof is similar.

7. (Classical planning problems (STRIPS-like planning [49, 58]))

In order to search for a plan of length lesser than k, one can simply model a classical planning

problem as a CSP. Such a transformation is already available in the literature [58]. However,

one can also model a classical planning problem more directly in the PFU framework. More

precisely, the state at one step is described by a set of boolean environment variables, one

per ground atom. For each step, there is a unique decision variable whose set of values

corresponds to the name of all ground instances of operators. Plausibility functions are

deterministic functions which link variables in step t to variables in step t+1 (these functions

simply specify the positive and negative effects of ground operators). The initial state is also

represented by a plausibility function linking variables in step 1. Feasibility functions define

preconditions for an action to be feasible. They link variables in a step t to the decision

variable of that step. Utility functions are boolean functions describing the goal state. They

208 APPENDIX B. PROOFS

hold over variables in step k. In order to search for a plan of length lesser than k, the sequence

of elimination is a max-elimination on all variables. The expected utility structure used is

the boolean optimistic expected disjunctive utility.

8. (Influence diagrams [64])

We start from the definition of influence diagrams of Section ??. With each decision variable

d, one can associate a decision rule δd : dom(paG(d))→ dom(d). An influence diagram policy

(ID-policy) is a set ∆ = {δd | d ∈ D} of decision rules (one for each decision variable). The

value val(∆) of an ID-policy ∆ is given by the probabilistic expectation of the utility:

val(∆) =
∑

AS∈dom(S)

((
∏

s∈S

Ps | paG(s))× (
∑

Ui∈U

Ui))(AS .(·
d∈D

δd(AS))).

To solve an influence diagram, one must compute the maximum value of the previous quan-

tity and find an associated optimal ID-policy. Using Lemma B.3 and the DAG structure, it

is possible to show, using the same ideas as in the SCSP subsumption proof, that the optimal

expected utility is given by the answer to the query Q below (associated optimal decision

rules can be recorded during the evaluation of Ans(Q)):

• expected utility structure: row 1 in Table 3.1 (probabilistic expected utility);

• PFU network: N = (V,G′, P, ∅, U); V is the set of variables of the influence diagram,

G′ is the DAG obtained from the DAG of the influence diagram by removing utility

nodes and arcs into decision nodes; in G′, there is one component per variable; P =

{Ps | paG(s), s ∈ VE} and Fact({s}) = {Ps | paG(s)}; U is the set of utility functions

associated with utility nodes.

• PFU query: Q = (N , Sov), with Sov obtained from the DAG of the influence diagram as

follows. Initially, Sov = ∅. In the DAG of an influence diagram, the decisions are totally

ordered. Let d be the first decision variable in the DAG G of the influence diagram (i.e.

the decision variable with no parent decision variable). Then, repeatedly update Sov

by Sov ← Sov.(+, paG(d)).(max, {d}) and delete d and the variables in paG(d) from G

until no decision variable remains. Then, perform Sov ← Sov.(+, S), where S is the set

of chance variables that have not been deleted from G.

9. (Finite horizon MDP [111, 89, 119, 19, 18]) In order to prove that the encoding in the

PFU framework given in Sections 4.6 and 5.6 actually enables us to solve a T time-steps

probabilistic MDP, we start by reminding the algorithm used to compute an optimal MDP-

policy. Usually, a decision rule for dT is chosen by computing V ∗
sT

= maxdT
RsT ,dT

. V ∗
sT

is

the optimal reward which can be obtained in state sT . At a time-step i ∈ [1, T [, a decision

rule for di is chosen by computing V ∗
si

= maxdi
(Rsi,di

+
∑

si+1
Psi+1 | si,di

× V ∗
si+1

). Last, the

optimal expected value of the reward, which depends on the initial state s1, is V ∗
s1 .

Let us prove by recurrence that for all i ∈ [1, T − 1],

V ∗
s1 = maxd1

∑

s2
. . .maxdi

∑

si+1
((
∏

k∈[1,i] Psk+1 | sk,dk
)× ((

∑

k∈[1,i] Rsk,dk
) + V ∗

si+1
)).

This proposition holds for i = 1, since

V ∗
s1 = maxd1 (Rs1,d1 +

∑

s2
Ps2 | s1,d1 × V

∗
s2)

= maxd1
∑

s2
(Ps2 | s1,d1 × (Rs1,d1 + V ∗

s2)) (since
∑

s2
Ps2 | s1,d1 = 1)

Moreover, if the proposition holds at step i− 1 (with i > 1), then

V ∗
s1 = maxd1

∑

s2
. . .maxdi−1

∑

si
((
∏

k∈[1,i−1] Psk+1 | sk,dk
)× ((

∑

k∈[1,i−1]Rsk,dk
) + V ∗

si
)).

B.3. PROOFS OF CHAPTER 5 209

Given that
(
∑

k∈[1,i−1]Rsk,dk
) + V ∗

si
= (

∑

k∈[1,i−1] Rsk,dk
) + maxdi

(Rsi,di
+
∑

si+1
Psi+1 | si,di

× V ∗
si+1

)

= maxdi
((
∑

k∈[1,i]Rsk,dk
) +

∑

si+1
Psi+1 | si,di

× V ∗
si+1

)

= maxdi

∑

si+1
Psi+1 | si,di

× ((
∑

k∈[1,i] Rsk,dk
) + V ∗

si+1
)

(the last equality holds since
∑

si+1
Psi+1 | si,di

= 1), it can be inferred that

(
∏

k∈[1,i−1] Psk+1 | sk,dk
)× ((

∑

k∈[1,i−1]Rsk,dk
) + V ∗

si
)

= maxdi

∑

si+1
((
∏

k∈[1,i] Psk+1 | sk,dk
)× ((

∑

k∈[1,i] Rsk,dk
) + V ∗

si+1
))

which proves that the proposition holds at step i. This proves that the proposition holds at

step T , and therefore V ∗
s1 = Ans(Q). Furthermore, as each step in the proof preserves the

set of optimal decision rules, an optimal MDP-policy can be recorded during the evaluation

of Ans(Q).

We now study the case of partially observable finite horizon MDP (finite horizon POMDP).

In a POMDP, one adds for each time step t > 1 a conditional probability distribution Pot | st

of making observation ot at time step t given the state st. The value of st remains unob-

served. We also assume that a probability distribution Ps1 over the initial state is available.

The subsumption proof for this case is more difficult. We consider the approach of POMDP

which consists in finding an optimal policy tree. This approach is equivalent to compute,

for each decision variable dt, a decision rule for dt depending on the observations made so

far, i.e. a function φdt : dom({o2, . . . , ot}) → dom(dt). The set of such functions is denoted

Φdt . A set ∆ = {φd1 , . . . , φdT } is called a POMDP-policy. The value of a POMDP-policy

is recursively defined as follows. First, the value of the reward at the last decision step,

which depends on the assignment AsT
of sT and on the observations O2→T made from the

beginning, is V (∆)sT ,o2,...,ot
(AsT

.O2→T) = RsT ,dT
(AsT

, φdT (O2→T)). At a time step i, the

obtained reward depends on the actual state Asi
and on the observations O2→i made so far.

Its expression is:

V (∆)si,o2,...,oi
(Asi

.O2→i)

= (Rsi,di
+
∑

si+1
Psi+1 | si,di

×
∑

oi+1
Poi+1 | si+1

× V (∆)si+1,o1,...,oi+1)(A)

where A = Asi
.φdi(O2→i).O2→i (this equation is equivalent to the recursive formula used to

define the value of a policy tree for a POMDP; see [71] for a more complete presentation

of policy trees for finite horizon POMDP). Finally, the expected reward of the POMDP-

policy ∆ is V (∆) =
∑

s1
Ps1 × V (∆)s1 . To solve a finite horizon POMDP consists in

computing the optimal expected reward among all POMDP-policies (i.e. in computing

V ∗ = maxφd1 ,...,φdT V ({φd1 , . . . , φdT })), as well as associated optimal decision rules.

Using a recurrence as in the observable MDP case, it is first possible to prove that for a

problem with T steps,

V ∗ = maxφd1 ,...,φdT

∑

o2,...,oT

∑

s1,...,sT
βV

with βV = (Ps1 ×
∏

i∈[1,T [Psi+1 | si,di
×
∏

i∈[1,T [Poi+1 | si+1
)× (

∑

i∈[1,T]Rsi,di
)

From this, a recursive use of Lemma B.3 enables us to infer that

V ∗ = maxd1
∑

o2
maxd2

∑

o3
maxd3 . . .

∑

oT
maxdT

∑

s1,...,sT
βV .

It proves that the query defined below enables us to compute V ∗ as well as an optimal policy:

• algebraic structure: probabilistic expected utility (row 1 in Table 3.1);

• PFU network: N = (V,G, P, ∅, U); V equals {si | i ∈ [1, T]} ∪ {oi | i ∈ [2, T]} ∪ {di | i ∈

210 APPENDIX B. PROOFS

[1, T]}, with VD = {di | i ∈ [1, T]}; G is a DAG with one variable per component; a

decision component does not have any parents, an environment component {oi} has

{si} as parent, and a component {si+1} has {si} and {di} as parents; P = {Ps1} ∪

{Psi+1 | si,di
, i ∈ [1, T − 1]} ∪ {Poi | si

| i ∈ [2, T]}; Fact({s1}) = {Ps1}, Fact({si+1}) =

{Psi+1 | si,di
}, and Fact({oi}) = {Poi | si

}; last, U = {Rsi,di
| i ∈ [1, T]};

• PFU query: based on the DAG, a necessary condition for a query to be defined is that

each decision di must appear at the left of the variables in {sk | k ∈ [i+1, T]}∪{ok | k ∈

[i+ 1, T]}; the query considered is Q = (N , Sov), with

Sov = (max, d1).(+, o2).(max, d2).(+, oT).(max, dT).(+, {s1, . . . , sT }).

The proofs for finite horizon (PO)MDP based on possibilities or on κ-rankings are similar.

As for the subsumption of factored MDP, one can first argue that every factored MDP can

be represented as a usual MDP, and therefore as a PFU query on a PFU network. Even

if this is a sufficient argument, we can define a better representation of factored MDPs in

the PFU framework: it corresponds to a representation where the variables describing states

are directly used together with the local plausibility functions and rewards, which can be

modeled by scoped functions (defined as decision trees, binary decision diagrams. . .).

10. (Queries on Bayesian networks, Markov random fields, and chain graphs [96, 55])

It suffices to consider chain graphs, since Bayesian networks and Markov random fields are

particular cases of chain graphs. The subsumption proofs are provided for the general case

of plausibility distributions defined on a totally ordered conditionable plausibility structure.

(a) (MAP, MPE, and probability of an evidence) As MPE (Most Probable Explanation)

and the computation of the probability of an evidence are particular cases of MAP

(Maximum A Posteriori hypothesis), it suffices to prove that MAP is subsumed. The

probabilistic MAP problem consists in finding, given a probability distribution PV ,

a Maximum A Posteriori explanation to an assignment of a subset O of V which has

been observed (also called evidence). More formally, let D denote the set of variables on

which an explanation is sought and let e denote the observed assignment of O. The MAP

problem consists in finding an assignment A∗ of D such that maxA∈dom(D) PD |O(A.e) =

PD |O(A∗.e). As PD |O = PD,O/PO, one can write:

maxA∈dom(D) PD |O(A.e) = (maxA∈dom(D) PD,O(A.e))/PO(e)

= (maxA∈dom(D)

∑

A′∈dom(V−(D∪O)) PV (A.e.A′))/PO(e)

Thus, computing maxD
∑

V−(D∪O) PV (e) is sufficient (the difference lies only in a nor-

malizing constant). This result can be generalized to all totally ordered conditionable

plausibility structures.

Indeed, as ⊗p is monotonic, maxA∈dom(D)PD,O(A.e) = (maxA∈dom(D)PD |O(A.e)) ⊗p

PO(e). If maxA∈dom(D)PD,O(A.e) ≺p PO(e), then there exists a unique p ∈ Ep such

that maxA∈dom(D)PD,O(A.e) = p⊗pPO(e). This gives us p = maxA∈dom(D)PD |O(A.e).

Otherwise, if maxA∈dom(D)PD,O(A.e) = PO(e), then one can infer that there exists

A∗ ∈ dom(D) such that PD,O(A∗.e) = PO(e), and therefore PD |O(A∗.e) = 1p. Thus,

maxA∈dom(D)PD |O(A.e) = 1p too. This shows that determining maxA∈dom(D)PD,O(A.e)

gives maxA∈dom(D)PD |O(A.e).

B.3. PROOFS OF CHAPTER 5 211

Moreover, if A∗ ∈ argmax{PD,O(A′.e), A′ ∈ dom(D)}, then max{p ∈ Ep | PD,O(A∗.e) =

p ⊗p PO(e)} �p max{p ∈ Ep | PD,O(A.e) = p ⊗p PO(e)} for all A ∈ dom(D). There-

fore, an optimal assignment of D for maxD PD,O(e) is also an optimal assignment of D

for maxD PD |O(e). As a result, the MAP problem can be reduced to the computation of

maxD PD,O(e) = maxD ⊕pV−(D∪O)PV (e) = maxD ⊕pV−D (PV ⊗p δO)

where δO is the scoped function with scope O such that δO(e′) = 1p if e′ = e, 0p other-

wise. We define a PFU query whose answer is Ans(Q) = maxD ⊕pV−D(PV ⊗p δO):

• the plausibility structure is (Ep,⊕p,⊗p), the utility structure is (Eu,⊗u) = (Ep,⊗p),

and the expected utility structure is (Ep, Eu,⊕u,⊗pu) = (Ep, Ep,⊕p,⊗p);

• PFU network: the difficulty in the definition of the PFU network lies in the fact

that normalization conditions on components must be satisfied. The idea is that

only the components in which a variable in D ∪O is involved have to be modified.

The PFU network is N = (V,G, P, ∅, U); V the set of variables of the chain graph;

VD = D and VE = V − D; G is a DAG of components obtained from the DAG

G′ of the chain graph by splitting every component c in which a variable in D ∪O

is involved: such a component c is transformed into |c| components containing

only one variable; all these |c| components become parents of the child components

of c; for a component {x0} included in one of these |c| components, if x0 ∈ D,

then {x0} is a decision component; otherwise, {x0} is an environment component,

and one creates a plausibility function Pi, equal to a constant p0(x0) such that

⊕pi∈[1,|dom(x0)|]
p0(x0) = 1p, and such that Fact({x0}) = {p0(x0)}; P contains first

the constants defined above, and second the factors expressing Pc | paG′ (c) in the

chain graph for the components c satisfying c ∩ (D ∪ O) = ∅; last, U contains

the factors expressing Pc | paG′ (c) in the chain graph for the components c such

that c ∩ (D ∪ O) 6= ∅, and a constant factor p1(x0) satisfying p1(x0) ⊗p p0(x0) =

1p for each component {x0} created in the splitting process described above, and

hard constraints representing δO; with this PFU network, the local normalization

conditions are satisfied, and the combination of the local functions equals PV ⊗p δO;

• PFU query: the query is simply Q = (N , (max, D).(⊕u, V −D)).

An optimal decision rule for D can be recorded during the computation of Ans(Q).

(b) (Plausibility distribution computation task) Given a plausibility distribution PV ex-

pressed as a combination of plausibility functions as in chain graphs, the goal is to

compute the plausibility distribution PS over a set S ⊂ V . The basic formula PS =

⊕pV−S PV proves that the query defined below actually computes PS . This query shows

the usefulness of free variables.

• the plausibility structure is (Ep,⊕p,⊗p), the utility structure is (Eu,⊗u) = (Ep,⊗p),

and the expected utility structure is (Ep, Eu,⊕u,⊗pu) = (Ep, Ep,⊕p,⊗p);

• PFU network: N = (V,G, P, ∅, U), with VE = V − S, VD = S, and with the DAG

G and the sets P , U obtained similarly as for the MAP case;

• PFU query: Q = (N , (⊕u, V − S))

11. (Hybrid networks [36])

A hybrid network is a triple (G,P, F), where G is a DAG on a set of variables V partitioned

212 APPENDIX B. PROOFS

into R and D, P is a set of probability distributions expressing Pr | paG(r) for all r ∈ R, and

F is a set of functions fpaG(d) for all d ∈ D (variables in D are deterministic, in the sense

that their value is completely determined by the assignment of their parents). The most

general task on hybrid networks is the task of belief assessment conditioned on a formula

φ in conjunctive normal form. It consists of computing the probability distribution of a

variable x given a complex evidence φ (complex because it may involve several variables).

Ignoring a normalizing constant, it requires to compute, for all assignments (x, a) of x,
∑

A∈dom(V−{x}) |φ(A.(x,a))=tPV (A.(x, a)). If C = {C1, . . . , Cm} denotes the set of clauses of

φ, it also equals (
∑

V−{x} (
∏

r∈R Pr | paG(r))× (
∏

d∈D fpaG(d))× (
∏

Ci∈C
Ci))((x, a)).

The query corresponding to this computation uses the probabilistic expected satisfaction

structure (row 2 in Table 3.1), and the PFU network N = (V,G, P, ∅, U), with VE = V , VD =

{x}, P = {Pr | paG(r) | r ∈ R−{x}}∪{fpaG(d) | d ∈ D−{x}}, and either U = C ∪{Px | paG(x)}

if x ∈ R or U = C ∪ {fpaG(x)} if x ∈ D. The query is Q = (N , (+, V − {x})).

B.4 Proofs of Chapter 6

Proof of Proposition 6.1 (page 92). First, for all f1, f2 ∈ {t, f} and for all u ∈ Eu, (f1 ∧ f2) ⋆ u =

f1⋆(f2⋆u): indeed, if f1 = f or f2 = f , then (f1∧f2)⋆u and f1⋆(f2⋆u) both equal ♦, and otherwise

(f1 = t and f2 = t), they both equal u. This enables us to write opx(F ⋆ P ⊗pu U) = opx((F
−x ∧

F+x)⋆P⊗puU) = opx(F
−x⋆(F+x⋆P⊗puU)). Then, opx(F ⋆P⊗puU) = F−x⋆opx(F

+x⋆P⊗puU),

because for all assignment A of V − {x},

• If F−x(A) = f , then, F−x(A) ⋆ (opx(F
+x ⋆ P ⊗pu U))(A) = ♦. Moreover, for all a ∈ dom(x),

(F−x⋆(F+x⋆P⊗puU))(A.(x, a)) = ♦, which implies that (opx(F
−x⋆(F+x⋆P⊗puU)))(A) = ♦

too.

• Otherwise, F−x(A) = t. In this case, (opx(F
−x ⋆ (F+x ⋆ P ⊗pu U)))(A) = (opx(F

+x ⋆ P ⊗pu

U))(A) = F−x(A) ⋆ (opx(F
+x ⋆ P ⊗pu U))(A).

Next, opx(F
+x ⋆P ⊗puU) = P−x⊗pu opx(F

+x ⋆P+x⊗puU), because for all A ∈ dom(V −{x}),

• If F+x(A.(x, a)) = f for all a ∈ dom(x), then (opx(F
+x ⋆ P ⊗pu U))(A) = ♦ = (P−x ⊗pu

(opx(F
+x ⋆ P+x ⊗pu U)))(A).

• Otherwise, one can write

opx(F
+x ⋆ P ⊗pu U)(A)

= opa∈dom(x),F+x(A.(x,a)) 6=f(P ⊗pu U)(A.(x, a))

= opa∈dom(x),F+x(A.(x,a)) 6=f(P
−x(A)⊗pu (P+x(A.(x, a)) ⊗pu U(A.(x, a))))

= P−x(A)⊗pu opa∈dom(x),F+x(A.(x,a)) 6=f)(P
+x(A.(x, a)) ⊗pu U(A.(x, a)))

by right monotonicity of ⊗pu for op ∈ {min,max} and by distributivity

of ⊗pu over ⊕u when op = ⊕u

= (P−x ⊗pu opx(F
+x ⋆ P+x ⊗pu U))(A)

In the end, this proves that opx(F ⋆P⊗puU) = F−x⋆P−x⊗puopx(F
+x⋆P+x⊗puU). Moreover,

if P+x = ∅ and op ∈ {min,max}, then, for all assignment A of V − {x},

B.4. PROOFS OF CHAPTER 6 213

• If F+x(A.(x, a)) = f for all a ∈ dom(x), then

(opx(F
+x ⋆ U))(A) = ♦ = (U−x ⊗u (opx (F+x ⋆ U+x)))(A).

• Otherwise,

opx(F
+x ⋆ U)(A)

= opa∈dom(x),F+x(A.(x,a)) 6=f U(A.(x, a))

= opa∈dom(x),F+x(A.(x,a)) 6=f(U
−x(A)⊗u U+x(A.(x, a)))

= U−x(A)⊗u opa∈dom(x),F+x(A.(x,a)) 6=f U
+x(A.(x, a)) (by monotonicity of ⊗u)

= (U−x ⊗u (opx (F+x ⋆ U+x)))(A)

Proof of Proposition 6.2 (page 92). A decision variable x appears in the scope of a plausibility

function Pi iff x is a parent of one environment component having Pi as a factor. If a rightmost

eliminated variable x is in VD, then no plausibility function can involve x in its scope: otherwise, x

should be a parent of an environment component, and the variables of this component should then

appear at the right of x in Sov by definition of queries. The case x ∈ VE is proved similarly.

Proof of Proposition 6.3 (page 93). (Eu,⊕u) and (Eu,⊗u) are commutative monoids by definition

of an utility structure and of an expected utility structure. Then, for all u ∈ Eu, 0u ⊗u u =

(0p⊗pu 1u)⊗uu = 0p⊗pu (1u⊗uu) = 0u (the next to last equality holds because p⊗pu (u1⊗uu2) =

(p⊗pu u1)⊗u u2). Last, ⊗u distributes over ⊕u.

Proof of Proposition 6.4 (page 93). If AxSR holds, then:

⊕ux(P
+x ⊗pu U) = ⊕ux(P

+x ⊗pu (U+x ⊗u U
−x)

= ⊕ux((P
+x ⊗pu U

+x)⊗u U
−x) (since p⊗pu (u1 ⊗u u2) = (p⊗pu u1)⊗u u2)

= (⊕ux(P
+x ⊗pu U

+x))⊗u U
−x (since ⊗u distributes over ⊕u)

If AxSG holds, then:

⊕ux(P
+x ⊗pu U) = ⊕ux(P

+x ⊗pu (U−x ⊗u U
+x))

= ⊕ux(P
+x ⊗pu (U−x ⊕u U

+x))

= ⊕ux((P
+x ⊗pu U

−x)⊕u (P+x ⊗pu U
+x))

= (⊕ux(P
+x ⊗pu U

−x))⊕u (⊕ux(P
+x ⊗pu U

+x))

= ((⊕pxP
+x)⊗pu U

−x)⊕u (⊕ux(P
+x ⊗pu U

+x))

Proof of Theorem 6.5 (page 94). Theorem 6.5(a) holds because if AxSR
′

holds, then first, ⊗u dis-

tributed over ⊕u since ⊗p distributed over ⊕p, and second, p⊗pu (u1⊗u u2) = p⊗pu (u1⊗pu u2) =

(p⊗pu u1)⊗pu u2 = (p⊗pu u1)⊗u u2.

As for Theorem 6.5(b), let us assume that AxSR holds.

• Proposition 6.3 entails that (Eu,⊕u,⊗u) is a commutative semiring. Moreover, E = Eu is

equipped with a total order �u. If 0u �u 1u, let us take �=�u and if 1u �u 0u, let us

214 APPENDIX B. PROOFS

take � defined by (u1 � u2) ↔ (u2 �u u1). In all cases, 0u � 1u holds. As ⊗u and ⊕u are

monotonic with respect to �u, they are also monotonic with respect to �. Using 0u � 1u,

one can infer that, for all u ∈ Eu, 0u ⊗ u � 1u ⊗ u, i.e. 0u � u (we have 0u ⊗ u = 0u since

(Eu,⊕u,⊗u) is a commutative semiring). This implies that 0u = min(E). Consequently,

(E,⊕,⊗) is a plausibility structure. Next, (E,⊗) is a utility structure because (Eu,⊗u) is

one. Last, (E,E,⊕,⊗) is a totally ordered expected utility structure with (E,⊕,⊗) as a

plausibility structure and (E,⊗) as a utility structure, since it easily satisfies all properties

of Definition 3.3 page 53: indeed, (E,⊕) is a commutative monoid, ⊗ distributes over ⊕,

e1 ⊗ (e2 ⊗ e3) = (e1 ⊗ e2)⊗ e3, 0u ⊗ e = 0u, and 1u ⊗ e = e.

• Let N = (V,G, P, F, U) be a PFU network on S. Let N ′ = (V,G, {φ(Pi) |Pi ∈ P}, F, U).

In order to prove that N ′ is a PFU network on S′, it suffices to prove that for every en-

vironment component c, ⊕c(⊗Pi∈Fact(c) φ(Pi)) = 1E. This holds because on one hand,

φ(1p) = 1p ⊗pu 1u = 1u = 1E , and on the other hand, for every environment component

c, φ(1p) = φ(⊕pc(⊗pPi∈Fact(c)
Pi))) = ⊕c(⊗Pi∈Fact(c) φ(Pi)). The last equality holds be-

cause φ(p1 ⊕p p2) = (p1 ⊕p p2) ⊗pu 1u = (p1 ⊗pu 1u) ⊕u (p2 ⊗pu 1u) = φ(p1) ⊕u φ(p2), and

φ(p1⊗p p2) = (p1⊗p p2)⊗pu 1u = p1⊗pu (p2⊗pu 1u) = p1⊗pu φ(p2) = p1⊗pu (1u⊗u φ(p2)) =

(p1 ⊗pu 1u)⊗u φ(p2) = φ(p1)⊗u φ(p2).

• Let Q = (Sov,N) be a query on a PFU network N defined on S. Let Q′ = (Sov, φ(N)).

First, Q′ is a query on φ(N) by definition of a query and because Q is a query. Then, as

p⊗puu = p⊗pu (1u⊗uu) = (p⊗pu1u)⊗uu = φ(p)⊗u, and as φ(p1⊗pp2) = φ(p1)⊗φ(p2), one

can write (∧Fi∈F Fi)⋆(⊗pPi∈P
Pi)⊗pu(⊗uUi∈U Ui) = (∧Fi∈F Fi)⋆(⊗Pi∈P φ(Pi))⊗(⊗Ui∈U Ui).

This implies that Ans(Q) = Ans(Q′) and that the set of optimal policies are the same with

Q and Q′.

Proof of Proposition 6.7 (page 95). On one hand, if (Ep, Eu,⊕u,⊗pu) is a totally ordered ex-

pected utility structure satisfying AxSR
′

(the underlying plausibility and utility structures being

(Ep,⊕p,⊗p) and (Eu,⊗u)), then (E,⊕,⊗) = (Eu,⊕u,⊗u) is a commutative semiring by Propo-

sition 6.3. It is equipped with a total order �u, and ⊗ and ⊕ are monotonic with respect to �u.

Hence, (E,⊕,⊗) is a totally ordered MCS. On the other hand, assume that (E,⊕,⊗) is a totally

ordered MCS. There is no difficulty in checking that all the properties of a plausibility structure

are satisfied by (E,⊕,⊗), that all the properties of a utility structure are satisfied by (E,⊗), and

that all the properties of an expected utility structure are satisfied by (E,E,⊕,⊗).

Proof of Proposition 6.8 (page 95). First, ⊕ and ⊗ remain commutative and associative on E ∪

{♦}. ⊕ has ♦ as an identity and ♦ is an annihilator for ⊗. ⊗ has 1E has an identity (notably using

1E ⊗ ♦ = 1E). Last, ⊗ distributes over ⊕ on E ∪ {♦}, because first, ⊗ distributes over ⊕ on E,

second, u1⊗(♦⊕u3) = u1⊗u3 = (u1⊗♦)⊕(u1⊗u3), and third, ♦⊗(u2⊕u3) = ♦ = (♦⊗u2)⊕(♦⊗u3).

Therefore, (E ∪ {♦},⊕,⊗) is a commutative semiring.

Let us show that (E ∪ {♦},max,⊗) is a commutative semiring too. max is commutative and

associative, and as max considered as an elimination operator satisfies max(u,♦) = u for all u ∈ Eu,

one can infer that ♦ is an identity for max. Last, ⊗ distributes over max, i.e. u1 ⊗max(u2, u3) =

B.4. PROOFS OF CHAPTER 6 215

max(u1 ⊗ u2, u1 ⊗ u3). Indeed, this holds if (u1, u2, u3) ∈ E3, because ⊗ is monotonic on E, this

holds if u2 or u3 equals ♦, and this holds if u1 = ♦. Therefore, (E ∪{♦},max,⊗) is a commutative

semiring. The proof for (E ∪ {♦},min,⊗) is similar.

Proof of Corollary 6.9 (page 95). Entailed by Proposition 6.8.

Proof of Proposition 6.10 (page 95). Entailed by Corollary 6.9.

Proof of Proposition 6.12 (page 96). Let N = (V,G, P, F, U) be a PFU network. Assume that a

component c ∈ CE(G) is not connected. Let c1 and c2 be two disjoint subsets forming a partition

of c such that there is no plausibility function in Fact(c) involving both one variable in c1 and one

variable in c2. This entails that the normalization condition on c can be written as

(⊕p
c1

(⊗p
Pi∈Fact(c),sc(Pi)∩c1 6=∅

Pi))

⊗p(⊕p
c2

(⊗p
Pi∈Fact(c),sc(Pi)∩c2 6=∅

Pi))

⊗p(⊗p
Pi∈Fact(c),sc(Pi)⊂paG(c)

Pi)

= 1p

If one updates the DAG G of the PFU network N in order to get the DAG G′ such that

• every component c′ in G except from c is in G′ too, and has parents such that paG′(c′) =

paG(c);

• component c in G is replaced in G′ by the two components c1 and c2, which both get paG(c)

as a set of parents. Moreover, we take

– Fact(c1) = {Pi ∈ Fact(P) | sc(Pi)∩c1 6= ∅}∪{⊕pc2(⊗pPi∈Fact(c),sc(Pi)∩c2 6=∅ Pi)}∪{Pi ∈

Fact(c), sc(Pi) ⊂ paG(c)};

– Fact(c2) = {Pi ∈ Fact(P) | sc(Pi)∩c2 6= ∅}∪{⊕pc1(⊗pPi∈Fact(c),sc(Pi)∩c1 6=∅ Pi)}∪{Pi ∈

Fact(c), sc(Pi) ⊂ paG(c)}.

With such settings, the normalization conditions on c1 and c2 are satisfied and (1) for every

Pi ∈ Fact(c1), sc(Pi) ⊂ c1 ∪ paG(c1); (2) for every Pi ∈ Fact(c2), sc(Pi) ⊂ c2 ∪ paG(c2); (3)

the global expressed plausibility function ⊗pPi∈P
Pi does not vary.

This mechanism can be recursively applied until every environment component is connected.

The same “non-connected component splitting technique” can be used for decision component

because the feasibility structure is a particular case of plausibility structure. However, in the case

of decision components, the updating is easier, since if c1 and c2 are two disjoint subsets forming a

partition of a decision component c such that there is no feasibility function in Fact(c) involving

both one variable in c1 and one variable in c2, then one can write

(

∨
c1

(∧
Fi∈Fact(c),sc(Fi)∩c1 6=∅

Fi)

)

∧

(

∨
c2

(∧
Fi∈Fact(c),sc(Fi)∩c2 6=∅

Fi)

)

∧

(

∨
Fi∈Fact(c),sc(Fi)⊂paG(c)

Fi

)

= t

216 APPENDIX B. PROOFS

hence 





∨c1(∧Fi∈Fact(c),sc(Fi)∩c1 6=∅ Fi) = t,

∨c2(∧Fi∈Fact(c),sc(Fi)∩c2 6=∅ Fi)) = t,

∨Fi∈Fact(c),sc(Fi)⊂paG(c) Fi) = t

The modification of the PFU network finally simply looks like Fact(c1) = {Pi ∈ Fact(P) | sc(Pi)∩

c1 6= ∅} and Fact(c2) = {Pi ∈ Fact(P) | sc(Pi) ∩ c2 6= ∅}. Moreover, the feasibility functions

Fi ∈ Fact(c) such that sc(Fi) ⊂ paG(c) can be removed. This does not modify the global feasibil-

ity degree.

Proof of Proposition 6.13 (page 97). It is not hard to show that ⊠ and ⊞ are commutative and

associative. As ⊕u = ⊗u holds, 0u = 1u holds too. This entails that for every plausibility functions

P1, P2, (P1, 1u) ⊠ (P2, 1u) = (P1 ⊗p P2, (P1 ⊗pu 1u) ⊗u (P2 ⊗pu 1u)) = (P1 ⊗p P2, (P1 ⊗pu 0u) ⊗u

(P2⊗pu 0u)) = (P1⊗p P2, 0u) = (P1⊗p P2, 1u). This implies that ⊠Pi∈P (Pi, 1u) = (⊗pPi∈P
Pi, 1u).

In another direction, for every utility functions U1, U2, one can write (1p, U1) ⊠ (1p, U2) =

(1p, U1 ⊗u U2), which entails that ⊠Ui∈U (1p, Ui) = (1p,⊗uUi∈U Ui).

Therefore, (⊠Pi∈P (Pi, 1u))⊠ (⊠Ui∈U (1p, Ui)) = (⊗pPi∈P
Pi, (⊗pPi∈P

Pi)⊗pu (⊗uUi∈U (1p, Ui)))

(namely using 0u = 1u). This implies that (⊠Fi∈F Fi) ⊠ (⊠Pi∈P (Pi, 1u)) ⊠ (⊠Ui∈U (1p, Ui)) =

(⊠Fi∈F Fi)⊠ (⊗pPi∈P
Pi, (⊗pPi∈P

Pi)⊗pu (⊗uUi∈U Ui)).

Let S be the rightmost set of decision variables in Sov, let x ∈ S, and let S′ be the union of the

sets of environment variables appearing at the right of S in Sov. We assume that x in quantified

with max. The elimination of the environment variables in S′ gives

(⊠
Fi∈F

Fi)⊠⊞S′(⊗p
Pi∈P

Pi, (⊗p
Pi∈P

Pi)⊗pu (⊗u
Ui∈U

Ui))

= (⊠
Fi∈F

Fi)⊠ (⊕p
S′

(⊗p
Pi∈P

Pi),⊕u
S′

((⊗p
Pi∈P

Pi)⊗pu (⊗u
Ui∈U

Ui)))

• If x is not the parent of any environment variable, then for all Pi ∈ P , x /∈ sc(Pi), and a

fortiori x /∈ sc(⊕pS′(⊗pPi∈P
Pi)).

This implies that maxx⊞S′((⊠Fi∈F Fi)⊠(⊗pPi∈P
Pi, (⊗pPi∈P

Pi)⊗pu(⊗uUi∈U Ui))) is defined

and it can be shown to equal (maxx (⊠Fi∈F Fi))⊠ (⊕pS′(⊗pPi∈P
Pi),maxx⊕uS′((∧Fi∈F Fi)⋆

(⊗pPi∈P
Pi) ⊗pu (⊗uUi∈U Ui))). The maxx (⊠Fi∈F Fi) factor is a trick ensuring that if no

assignment of x is feasible, then the answer is ♦ and not (1p,♦).

• Otherwise, x is the parent of at least one environment component c. c is included in S′

by definition of a query. Hence ⊕pS′(⊗pPi∈P
Pi) = ⊕pS′−(c∪desc(c)⊕pc∪desc(c)(⊗pPi∈P

Pi) =

⊕pS′−(c∪desc(c)(⊗pPi∈P,Pi /∈∪c′⊂c∪desc(c) Fact(c
′) Pi) (by recursively using the normalization con-

ditions on c and its descendants desc(c)).

Doing so, every environment component whose x is a parent can be considered, in order to ob-

tain ⊕pS′(⊗pPi∈P
Pi) = ⊕pS′−∪x∈paG(c)(c∪desc(c))

(⊗pPi∈P,Pi /∈∪x∈paG(c) ∪c′⊂c∪desc(c) Fact(c
′) Pi).

As the only environment components c having plausibility functions involving x can be the

ones such that x ∈ paG(c), we obtain that for all a, a′ ∈ dom(x), (⊕pS′(⊗pPi∈P
Pi))((x, a)) =

(⊕pS′(⊗pPi∈P
Pi))((x, a

′)),

This implies that maxx⊞S′(⊠Fi∈F Fi) ⊠ (⊗pPi∈P
Pi, (⊗pPi∈P

Pi) ⊗pu (⊗uUi∈U Ui)) is de-

fined and equals (maxx⊠Fi∈F Fi)⊠(⊕pS′(⊗pPi∈P
Pi),maxx⊕uS′(∧Fi∈F Fi)⋆(⊗pPi∈P

Pi)⊗pu

B.4. PROOFS OF CHAPTER 6 217

(⊗uUi∈U Ui))).

This mechanism can be applied recursively when eliminating variables in the order given by

Sov. In the end, we get (maxVD−Vfr
⊠Fi∈F Fi) ⊠ (⊕pVE

(⊗pPi∈P
Pi), Ans(Q)), i.e. a function ψ

such that

• ψ(A) = (1p, Ans(Q)(A)) if Ans(Q)(A) 6= ♦, because Ans(Q)(A) 6= ♦ implies that there exists

an assignment A′ of V − Vfr s.t. ∧Fi∈F Fi(A.A
′) = t and therefore maxVD−Vfr

(⊠Fi∈F Fi) =

1⊠ = (1p, 1u).

• ψ(A) = ♦ if Ans(Q)(A) = ♦, because Ans(Q)(A) = ♦ implies that for all assignments A′ of

V − Vfr, ∧Fi∈F Fi(A.A
′) = f and therefore maxVD−Vfr

(⊠Fi∈F Fi) = ♦.

Proof of Lemma 6.14 (page 97). Let us first show that ⊠ distributes over ⊞ on (Ep × Eu) ∪ {♦}.

Let (p1, u1), (p2, u2), and (p3, u3) be elements of Ep × Eu. Then,

(p1, u1)⊠ ((p2, u2)⊞ (p3, u3))

= (p1, u1)⊠ (p2 ⊕p p3, u2 ⊕u u3)

= (p1 ⊗p (p2 ⊕p p3), (p1 ⊗pu (u2 ⊕u u3))⊗u ((p2 ⊕p p3)⊗pu u1))

= ((p1 ⊗p p2)⊕p (p1 ⊗p p3), (p1 ⊗pu u2)⊕u (p1 ⊗pu u3)⊕u (p2 ⊗pu u1)⊕u (p3 ⊗pu u1))

= (p1 ⊗p p2, (p1 ⊗pu u2)⊕u (p2 ⊗pu u1))⊞ (p1 ⊗p p3, (p1 ⊗pu u3)⊕u (p3 ⊗pu u1))

= ((p1, u1)⊠ (p2, u2))⊞ ((p1, u1)⊠ (p3, u3))

Next, (p1, u1) ⊠ (♦ ⊞ (p3, u3)) = (p1, u1) ⊠ (p3, u3) = ((p1, u1) ⊠ ♦) ⊞ ((p1, u1) ⊠ (p3, u3)) and

♦⊠((p2, u2)⊞(p3, u3)) = ♦ = (♦⊠(p2, u2))⊞(♦⊠(p3, u3)). All these results prove that⊠ distributes

over ⊞ on (Ep × Eu) ∪ {♦}. Hence for every set of potentials Π, ⊞x(Π) = Π−x ⊠⊞x(Π
+x).

Let us show that ⊠ also satisfies a kind of restricted distributivity over max.

max((p1, u1)⊗ (p, u2), (p1, u1)⊗ (p, u3))

= max((p1 ⊗p p, (p1 ⊗pu u2)⊗u (p⊗pu u1)), (p1 ⊗p p, (p1 ⊗pu u3)⊗u (p⊗pu u1)))

= (p1 ⊗p p,max((p1 ⊗pu u2)⊗u (p⊗pu u1), (p1 ⊗pu u3)⊗u (p⊗pu u1)))

= (p1 ⊗p p,max(p1 ⊗pu u2, p1 ⊗pu u3)⊗u (p⊗pu u1))

= (p1 ⊗p p, (p1 ⊗pu max(u2, u3))⊗u (p⊗pu u1))

= (p1, u1)⊠ (p,max(u2, u3))

Moreover, when max is used as an elimination operator, max((p1, u1) ⊠ ♦, (p1, u1) ⊠ (p, u3)) =

(p1, u1) ⊗ (p, u3) = (p1, u1) ⊠ max(♦, (p, u3)), and max(♦ ⊠ (p, u2),♦ ⊠ (p, u3)) = ♦ = ♦ ⊠

(p,max(u2, u3)). All these results prove that ⊠ distributes over max when the plausibility part

does not vary, and therefore if x /∈ sc(P0) for all (P0, U0) ∈ Π, then maxx(Π) exists and maxx(Π) =

Π−x ⊠minx(Π
+x). The proof for min is similar.

Proof of Proposition 6.15 (page 97). Let us show that at each step i, property (Hi) is satisfied:

(Hi) : “⊠π∈Πi+1 π is defined and equals op(xi)xi
. . . op(x1)x1

(⊠π∈Π1 π)”.

If Hi holds for all i ∈ {0, |Sov|}, then, using Proposition 6.13, we directly obtain the required

result.

First, it is straightforward that H0 holds. Let k = max{j ∈ {0, . . . , |Sov|} | {x1, . . . , xj} ⊂ VE}.

According to Lemma 6.14, Hi also holds for all i ∈ {1, . . . , k}.

If k = |Sov|, then the result is obtained. Otherwise, k < |Sov|. According to Lemma 6.14 again,

Hk+1 holds iff op(xk+1)xk+1
Π

+xk+1

k+1 is defined. By definition of queries, all environment components

218 APPENDIX B. PROOFS

in desc(c(x)) are included in {x1, . . . , xk}. As we work on refined PFU networks, there is exactly one

potential in Πk+1 whose plausibility part can be written ⊕pS(⊗pPi∈Φ Pi), with desc(c(x)) ⊂ S and

∪c′⊂desc(c(x)){Fact(c
′)} ⊂ Φ. Therefore, by using the normalization conditions, the plausibility

part can also be written ⊕pS−desc(c(x))(⊗pPi∈Φ−∪c′⊂desc(c(x)){Fact(c
′)} Pi). This entails that the

plausibility part does not depend on x. A similar reasoning can be made for the other decision

variables, which proves that Hi holds for all i ∈ {1, . . . , |Sov|}.

Proof of Proposition 6.16 (page 98). Directly entailed by Proposition 6.15.

Proof of Proposition 6.18 (page 99). First, ⊗+
u is an operator on E+

u , since if u1, u2 ∈ E+
u , then

u1 ⊗+
u u2 = u1 ⊗u u2 = u1 ⊕u u2 � 0u ⊕u 0u = 0u. Similarly, ⊕+

u = ⊗+
u is closed on E+

u , and if

(p, u) ∈ Ep × E+
u , then p⊗+

pu u = p⊗pu u � p⊗pu 0u = 0u by right monotonicity of ⊗pu.

As ⊗u = ⊕u is associative, commutative, and monotonic, ⊗+
u and ⊕+

u are associative, com-

mutative, and monotonic too. Moreover, as 0u = 1u ∈ E+
u , ⊗+

u and ⊕+
u both have an identity

in E+
u . It is not hard to check that all the axioms of expected utility structures are satisfied by

(Ep, E
+
u ,⊕

+
u ,⊗

+
pu).

The proof for (Ep, E
−
u ,⊕

−
u ,⊗

−
pu) is similar.

Proof of Proposition 6.19 (page 99). We prove only the first item, when (H+) holds, since the

proof for (H−) is similar.

N+ is a PFU network because the transformation from N to N+ only changes the value taken

by utility functions. It is also straightforward that Q+ is a query. Last,

Ans(Q) = Sov(F ⋆ P ⊗pu (⊗uUi∈U Ui))

= Sov(F ⋆ P ⊗pu (⊗uUi∈U translate(Ui)⊗u U
−
i))

= Sov((F ⋆ P ⊗pu (⊗uUi∈U translate+(Ui)))⊗u (F ⋆ P ⊗pu (⊗uUi∈U U
−
i))

= Sov((F ⋆ P ⊗pu (⊗uUi∈U translate+(Ui)))⊗u (⊗uUi∈U U
−
i)

(thanks to the normalization conditions)

= Ans(Q+)⊗u (⊗uUi∈U U
−
i)

The formula obtained also shows that the set of optimal policies for Q+ is included in the set of

optimal policies for Q.

Proof of Proposition 6.20 (page 100). It is first straightforward that Proposition 6.20a) is satisfied.

Assume now that S satisfies AxSG and that all conditions of Proposition 6.20b) hold. Then,

• φ(1p) is an identity for ⊗ since for all u ∈ E, φ(1p)⊗ u = 1p ⊗pu u = u. Also, for all u ∈ E,

φ(0p)⊗u = 0p⊗u = 0u, hence we have first φ(0p) = φ(0p)⊗1E = 0u, and second 0u⊗u = 0u,

hence ⊗ has 0u = φ(0p) as a neutral element.

Given the other conditions required on ⊗ and given that ⊕ = ⊕u, (E,⊕,⊗) is a monotonic

commutative semiring. Moreover, given that the expected utility structure is non bipolar, we

can assume 0u = min(Eu), i.e. 0E = min(E) (either it is already satisfied, or we can inverse

�u). This proves that (E,⊕,⊗) is a plausibility structure. All conditions are satisfied for

(E,⊕) to be a utility structure, and last all conditions are satisfied for (E,E,⊕,⊗) to be an

expected utility structure satisfying AxSG.

B.4. PROOFS OF CHAPTER 6 219

• In order to show that N ′ is a PFU network, it suffices to show that for every environment

component c, ⊕c(⊗Pi∈Fact(c) φ(Pi)) = 1E . This holds because φ(p1 ⊕p p2) = φ(p1) ⊕ φ(p2)

and φ(p1 ⊗p p2) = φ(p1)⊗ φ(p2) for all p1, p2 ∈ Ep, and because φ(1p) = 1E .

• Ans(Q) = Ans(Q′) simply because p⊗pu u = φ(p)⊗ u. The set of optimal policies does not

vary since the global combined plausibility-feasibility-utility function does not vary either.

Proof of Proposition 6.21 (page 100). If (E,⊕,⊗) is a plausibility structure, then (E,⊕,⊗) is a

MCS. Conversely, if (E,⊕,⊗) is a MCS, then it is not hard to check that (E,⊕) is a utility

structure, that (E,⊕,⊗) is a plausibility structure, and that (E,E,⊕,⊗) is an expected utility

structure (it suffices to check each axiom successively).

Proof of Proposition 6.30 (page 104). Let o∗ be an elimination order such that wG(�Sov) = wG(o∗).

Let us eliminate variables in the order given by o∗. When a variable x is eliminated, nbv ≤

1 +wG(o∗) variables are considered. For each of the dnbv assignments of these variables, one must

combine the value given by r scoped functions. In the end, the time complexity of a variable

elimination step is O(dnbv · r) ≤ O(d1+wG(o) · r). Summing on all the elimination steps gives a time

complexity O(|Φ| · d1+wG(o)). Similarly, the space complexity is O(|Φ| · d1+wG(o)) too.

Proof of Proposition 6.31 (page 105). If �2 is weaker than �1, then lin(�1) ⊂ lin(�2) and there-

fore

mino∈lin(�2) wG(o) ≤ mino∈lin(�1)wG(o).

Proof of Proposition 6.32 (page 107). If ⊛ = ⊙, then ⊛x (ϕ1 ⊛ ϕ2) = (⊛x ϕ1) ⊛ (⊛x ϕ2) by com-

mutativity and associativity of ⊛.

Conversely, assume that for all scoped functions ϕ1, ϕ2, ⊛x (ϕ1 ⊙ ϕ2) = (⊛x ϕ1)⊙(⊛x ϕ2). The

identity of ⊛ in E is denoted 1⊛ and the identity of ⊙ in E is denoted 1⊙. Let us consider a boolean

variable x and two scoped functions ϕ1, ϕ2 of scope x, s.t. ϕ1((x, t)) = a, ϕ1((x, f)) = ϕ2((x, t)) =

1⊙, ϕ2((x, f)) = b. Then, the initial assumption implies that (a⊙1⊙)⊛(1⊙⊙b) = (a⊛1⊙)⊙(1⊙⊛b),

i.e. a⊛ b = (a⊛ 1⊙)⊙ (1⊙ ⊛ b). Taking a = b = 1⊛ gives 1⊛ = 1⊙. Consequently, for all a, b ∈ E,

a⊛ b = (a⊛ 1⊙)⊙ (1⊙ ⊛ b) = (a⊛ 1⊛)⊙ (1⊛ ⊛ b) = a⊙ b, i.e. ⊛ = ⊙.

Proof of Proposition 6.33 (page 107). Let ϕ1, ϕ2 be scoped functions such that (ϕ1(A) = ♦) ↔

(ϕ2(A) = ♦). Let A be an assignment of (sc(ϕ1) ∪ sc(ϕ2)) − {x}. If ϕ1(A.(x, a)) = ♦ for all

a ∈ dom(x), then ⊛x (ϕ1 ⊙ ϕ2)(A) = ♦ = ♦⊙♦ = (⊛x ϕ1)(A)⊙ (⊛x ϕ2)(A). Otherwise, if ⊛ = ⊙,

then
⊛x (ϕ1 ⊙ ϕ2)(A) = ⊛a∈dom(x),ϕ1(A.(x,a)) 6=♦ (ϕ1 ⊙ ϕ2)(A)

= (⊛a∈dom(x),ϕ1(A.(x,a)) 6=♦ ϕ1(A)) ⊙ (⊛a∈dom(x),ϕ1(A.(x,a)) 6=♦ ϕ2(A))

= (⊛a∈dom(x),ϕ1(A.(x,a)) 6=♦ ϕ1(A)) ⊙ (⊛a∈dom(x),ϕ2(A.(x,a)) 6=♦ ϕ2(A))

= (⊛x ϕ1(A)) ⊙ (⊛x ϕ2(A))

Proof of Proposition 6.34 (page 107). For all A ∈ dom(S1 ∪ . . . ∪ Sm), computing

⊛x (φx,S1(A)⊛ . . .⊛φx,Sm
(A))

220 APPENDIX B. PROOFS

requires |dom(x)|(m − 1) operations to compute the function φx,S1(A)⊛ . . .⊛φx,Sm
(A) ((m − 1)

operations for each assignment of x) and (|dom(x)| − 1) operations to perform ⊛x. Therefore, the

raw computation of ⊛x (φx,S1 ⊛ . . .⊛φx,Sm
) requires

n1 = |dom(S1 ∪ . . . ∪ Sm)|(m|dom(x)| − 1) operations.

For each assignment A ∈ dom(Si), the raw computation of ⊛x φx,Si
(A) requires |dom(x)| − 1

operations. It entails that the raw computation of φi = ⊛x φx,Si
requires |dom(Si)|(|dom(x)| − 1)

operations and that the raw computation of m quantities in the set {⊛x φx,Si
| 1 ≤ i ≤ m} requires

n2 =
∑

1≤i≤m |dom(Si)|(|dom(x)| − 1) operations.

Then, for each assignment A ∈ dom(S1 ∪ . . . ∪ Sm), the raw computation of φ1(A)⊛ . . .⊛φm(A)

requires (m − 1) operations. In the end, the raw computation of (⊛x φx,S1)⊛ . . .⊛ (⊛x φx,Sm
)

requires

n3 = n2 + |dom(S1 ∪ . . . ∪ Sm)|(m− 1) operations.

n1−n3 equals (|dom(x)|−1)(m|dom(S1∪. . .∪Sm)|−
∑

1≤i≤m |dom(Si)|, which is always positive.

Consequently, the raw computation of ⊛x(φx,S1 ⊛ . . .⊛φx,Sm
) always requires more operations

than the raw computation of (⊛x φx,S1)⊛ . . .⊛ (
∑

x φx,Sm
).

Furthermore, n1 = O(m · d1+|S1∪...∪Sm|) and n2 = O(m · d1+maxi∈[1,m] |Si|).

B.5 Proofs of Chapter 7

Proof of Proposition 7.5 (page 114). SR cannot be applied an infinite number of times because

each computation node involves a finite number of variables.

If n uses an operator different from ⊕, then SR cannot be applied on n, hence n1 = n2 = n.

Otherwise, n equals (⊕S , N). Let c
(1)
i be the i-th component eliminated in order to get n1 and let

c
(2)
j be the j-th component eliminated in order to get n2. Let nc(1) be the number of components

eliminated from n to n1 and let nc(2) be the number of components eliminated from n to n2. Let

us prove by recurrence that if 0 ≤ k ≤ nc(1), then for all i ∈ [1, k], there exists j ∈ [1, nc(2)] which

satisfies c
(1)
i = c

(2)
j :

• The property obviously holds for k = 0.

• Assume that the property holds for k < nc(1). Is it satisfied at step k + 1?

Due to the recurrence hypothesis, there exists a step jmax ∈ [1, nc(2)] such that

{c
(1)
1 , . . . , c

(1)
k } ⊂ {c

(2)
1 , . . . , c

(2)
jmax}

– If c
(1)
k+1 ∈ {c

(2)
1 , . . . , c

(2)
jmax}, then the property holds at step k + 1.

– Otherwise, c
(1)
k+1 /∈ {c

(2)
1 , . . . , c

(2)
jmax}. Assume that c

(1)
k+1 /∈ {c

(2)
jmax, . . . , c

(2)

nc(2)
}. Then,

as c
(1)
k+1 has been removed from n1, one can infer that Fact(c

(1)
k+1) ⊂ N , c

(1)
k+1 ⊂ S,

c
(1)
k+1 ∈ CE(G), and c

(1)
k+1 ∩ sc(N − ∪1≤l≤k Fact(c

(1)
l)) = ∅. This implies that c

(1)
k+1 ∩

sc(N −∪1≤l≤nc(2) Fact(c
(2)
l)) = ∅, which leads to a contradiction with the fact that SR

cannot be applied anymore on n2. Hence, c
(1)
k+1 ∈ {c

(2)
jmax, . . . , c

(2)

nc(2)
}.

In both cases, there exists a step j ∈ [1, nc(2)] such that c
(1)
k+1 = c

(2)
j . Therefore, the property

holds at step k + 1.

B.5. PROOFS OF CHAPTER 7 221

For k = nc(1), this implies that for all i ∈ [1, nc(1)], there exists j ∈ [1, nc(2)] satisfying

c
(1)
i = c

(2)
j . In other words, {c

(1)
1 , . . . , c

(1)

nc(1)
} ⊂ {c

(2)
1 , . . . , c

(2)

nc(2)
}. Similarly, it is possible to prove

that {c
(2)
1 , . . . , c

(2)

nc(2)
} ⊂ {c

(1)
1 , . . . , c

(1)

nc(1)
}, hence {c

(2)
1 , . . . , c

(2)

nc(2)
} = {c

(1)
1 , . . . , c

(1)

nc(1)
}. As the same

set of components are removed from n to n1 and from n to n2, one can infer that n1 = n2.

Proof of Lemma 7.7 (page 116). In the following, we denote (N−x)−y by N−x−y, (N−x)+y by

N−x+y, (N+x)−y by N+x−y, (N+x)+y by N+x+y, and N−x+y ∪N+x−y ∪N+x+y by N+{x,y}.

Assume first that op 6= ⊗. Then, rewrite(CNT) = (sov · opx, N
−y ∪ {n}), where n =

(op{y}∪Ve(N+y [op]), N
+y[¬op] ∪ Sons(N+y[op])).

• If N+x+y = ∅, then N+y = N−x+y and x /∈ sc(n). In this case, the expression obtained after

the second rewriting step is rewrite2(CNT) = (sov,N−x−y ∪ {n, n′}), with
{

n = (op{y}∪Ve(N−x+y [op]), N
−x+y[¬op] ∪ Sons(N−x+y[op]))

n′ = (op{x}∪Ve(N+x−y [op]), N
+x−y[¬op] ∪ Sons(N+x−y[op]))

The expression obtained for rewrite2(CNT) being symmetric in x/y, one can infer that

rewrite2(CNT) = rewrite2(CNT ′).

• Otherwise, N+x+y 6= ∅. In this case, x ∈ sc(n), and rewrite2(CNT) = (sov,N−x−y ∪ {n′}),

where n′ = (op{x}∪Ve(N+x−y[op])∪Ve(n), N
+x−y[¬op] ∪ Sons(N+x−y[op]) ∪ Sons(n)).

Given that first,

{x} ∪ Ve(N+x−y[op]) ∪ Ve(n)

= {x} ∪ Ve(N
+x−y[op]) ∪ {y} ∪ Ve(N

+y[op])

= {x, y} ∪ Ve(N+x−y[op] ∪N+y[op])

= {x, y} ∪ Ve(N
+{x,y}[op])

and second,

N+x−y[¬op] ∪ Sons(N+x−y[op]) ∪ Sons(n)

= N+x−y[¬op] ∪ Sons(N+x−y[op]) ∪N+y[¬op] ∪ Sons(N+y[op])

= N+{x,y}[¬op] ∪ Sons(N+x−y[op] ∪N+y[op])

= N+{x,y}[¬op] ∪ Sons(N+{x,y}[op])

,

the expression of n′ is symmetric in x/y. This implies that rewrite2(CNT) = rewrite2(CNT ′).

In the case op = ⊗, rewrite(CNT) = (sov · opx, N
−y ∪{(op{y}∪Ve(n), Sons(n)), n ∈ N+y[op]}∪

{(op{y}, {n}), n ∈ N
+y[¬op]}).

The second rewriting step gives:

rewrite2(CNT) =

















sov,

N−x−y

∪{(op{x}∪Ve(n), Sons(n)), n ∈ N+x−y[op]}

∪{(op{x}, {n}), n ∈ N
+x−y[¬op]}

∪{(op{x,y}∪Ve(n), Sons(n)), n ∈ N+x+y[op]}

∪{(op{x,y}, {n}), n ∈ N
+x+y[¬op]}

∪{(op{y}∪Ve(n), Sons(n)), n ∈ N−x+y[op]}

∪{(op{y}, {n}), n ∈ N
−x+y[¬op]}

















.

As this expression is symmetric in x/y, one can infer that rewrite2(CNT) = rewrite2(CNT ′).

Proof of Lemma 7.8 (page 116). Let o, o′ be two elimination orders on a set of variables S (without

constraints on the elimination order). Then, one can obtain o′ by successive permutations of

222 APPENDIX B. PROOFS

eliminations in o. Indeed, this obviously holds if |S| = 0. Assume that the property holds for any

elimination order on a set of variables of cardinal k. Does it hold at step k + 1? Let o, o′ be two

elimination orders on S with |S| = k + 1. Let x be the first variable eliminated in o′ (x = o′(1)).

By successive permutations, o can be transformed into an elimination order t(o) such that t(o) and

o′ eliminate the same first variable. Then, the recurrence assumption allows us to transform, by

successive permutations, the elimination order t(o) restricted over S − {x} into o′ restricted over

S − {x} Therefore, the property holds for |S| = k + 1, hence the proof by recurrence.

Assume that Sov = (op1, S1) · (op2, S2) · · · (opq, Sq). Let o, o′ be two elimination orders in

lin(�Sov). o can be transformed into o′ by using the previous recurrence for each set of variable

Si.

Proof of Theorem 7.9 (page 116). Lemma 7.8 allows us to recursively apply Lemma 7.7 and to

obtain CNT (Q, o) = CNT (Q, o′) (also by using the fact the simplification rule is applied at the

end of each block of variables eliminated using the same operator, hence the step where SR∗ is

applied does not vary between o and o′, which are both in lin(�Sov)).

Proof of Lemma 7.10 (page 116). Because of the MCS structure of (E,⊕,⊗), ⊗ distributes over

every op ∈ {min,max,⊕}. Then,

val((sov · opx, N)) = sov · opx (⊗n∈Nval(n))

= sov((⊗n∈N−xval(n))⊗ opx(⊗n∈N+xval(n)))
(eq1)

• If op = ⊗, Proposition 6.32 implies that

opx (⊗n∈N+xval(n)) = ⊗n∈N+x (opx val(n))

= val({(opx, {n}) |n ∈ N
+x})

Therefore, using (eq1),

val ((sov · opx, N)) = val ((sov,N−x ∪ {(opx, n) |n ∈ N+x})).

• Otherwise (op 6= ⊗), one can just write

opx (⊗n∈N+xval(n)) = val ((opx, N
+x))

This means that (eq1) can be written as

val ((sov · opx, N)) = val ((sov,N−x ∪ {(opx, N
+x)}))

Proof of Lemma 7.11 (page 116). Given that ⊗ distributes over op and S′ ∩ sc(N1) = ∅, one can

write
val((opS , N1 ∪ {(opS′ , N2)})) = opS ((⊗n∈N1val(n))⊗ opS′ (⊗n∈N2val(n)))

= opS · opS′ ((⊗n∈N1val(n))⊗ (⊗n∈N2val(n)))

As N1 ∩ N2 = ∅ and S ∩ S′ = ∅, the latter quantity also equals opS∪S′ (⊗n∈N1∪N2val(n)), i.e.

val((opS∪S′ , N1 ∪N2)).

Proof of Lemma 7.12 (page 116). It suffices to recursively apply Lemma 7.11 to get the required

result.

Proof of Lemma 7.13 (page 117). The property holds for k = 0 since CNT0(Q, o) = (Sov, P ∪ U)

and Ve(n) = ∅ for all n ∈ P ∪U . If it holds at step k, then it holds at k+1 because if the elimination

operator used is different from ⊗, then DR splits the nodes with x in their scopes and those without

x in their scopes. Moreover, it is straightforward that variables whose elimination has not been

B.5. PROOFS OF CHAPTER 7 223

considered yet (variables in Ve(CNTk(Q, o))) are not eliminated in an internal node of the tree of

computation nodes, i.e. for all (sov,N) in CNTk(Q, o), Ve(CNTk(Q, o)) ∩ Ve(N) = ∅.

Proof of Lemma 7.14 (page 117). Assume that c ∈ CE(G) and c ∩ (S ∪ sc(N)) = ∅. Then,

val((⊕S∪c, N ∪ Fact(c))) = ⊕S∪c
(
(⊗n∈Nval(n))⊗

(
⊗ϕ∈Fact(c)ϕ

))

= ⊕S
(
⊕c
(
(⊗n∈Nval(n))⊗

(
⊗ϕ∈Fact(c)ϕ

)))
(since c ∩ S = ∅)

= ⊕S
(
(⊗n∈Nval(n))⊗

(
⊕c
(
⊗ϕ∈Fact(c)ϕ

)))
(since c ∩ sc(N) = ∅)

= ⊕S((⊗n∈Nval(n))⊗ 1E)

= val((⊕S , N))

Proof of Lemma 7.15 (page 117). Let k ∈ {0, . . . , |Sov| − 1}. CNTk+1(Q, o) is obtained from

CNTk(Q, o) by using rewriting rules DR, RR, and SR only.

Thanks to Lemma 7.13 and the fact that all computation nodes are distinct, the hypotheses of

Lemma 7.12 hold when RR is applied.

As DR and SR are sound too (cf Lemmas 7.10 and 7.14),

val(CNTk+1(Q, o)) = val(CNTk(Q, o))

Proof of Theorem 7.16 (page 117). Follows from Lemma 7.15 and from val(CNT0(Q, o)) = Ans(Q)

for all o ∈ lin(�Sov).

Proof of Proposition 7.17 (page 118). At each rewriting step and for each son n′ of the root node,

tests like “x ∈ sc(n′)” and operations like “sc(n) ← sc(n) ∪ sc(n′)” or “sc(n′) ← sc(n′) − {x}”

are O(|V |), since a scope is represented as a table of size |V |. Operations like “Sons(root) ←

Sons(root) − {n′}”, “Sons(root) ← Sons(root) ∪ {n}”, “Ve(n) ← Ve(n) ∪ Ve(n′)” (with Ve(n) ∩

Ve(n
′) = ∅), or “Ve(n) ← Ve(n) ∪ {x}” are O(1), since Ve and Sons are represented as lists.

Therefore, the operations performed for each rewriting step and for each son of the root are O(|V |).

As at each step, |Sons(root)| ≤ |P ∪U |, and as there are |V | rewriting steps, the algorithm is time

O(|V |2 · |P ∪ U |).

As for the space complexity, given that only the scopes of the root sons are used, we need a

space O(|V | · |P ∪ U |) for the scopes. As it can be shown that the number of nodes in the tree

of computation nodes is always O(|V |+ |P ∪ U |), recording op(n) and Sons(n) for all nodes n is

O(|V |+ |P ∪ U |) too. Last, recording Ve(n) for all nodes n is O(|V | · |P ∪ U |) because the sum of

the number of variables eliminated in all nodes is lesser than |V | · |P ∪ U | (the worst case occurs

when all variables are duplicated). Hence, the overall space complexity is O(|V | · |P ∪ U |).

Proof of Proposition 7.20 (page 120). The result obviously holds if the cluster-tree decomposition

contains one cluster c0, since in this case, V (c0) = V , Φ(c0) = Φ, and Sons(c0) = ∅.

Assume that the property holds if there are k clusters in the cluster-tree decomposition. Let

us consider a cluster-tree decomposition of a graphical model (V,Φ) given S, such that this de-

composition contains k + 1 clusters. Let c be a leaf cluster in this tree-decomposition. Then, for

all ϕ /∈ Φ(c), sc(ϕ) ∩ (V (c)− V (pa(c)) = ∅. Indeed, if ϕ /∈ Φ(c), then there exists a cluster c′ such

224 APPENDIX B. PROOFS

that ϕ ∈ Φ(c′), and hence sc(ϕ) ⊂ V (c′). The running intersection property allows us to infer that

∀x ∈ V (c) − V (pa(c)), x /∈ V (c′) (otherwise, as pa(c) is necessarily on the path from c to c′, we

should have (V (c) − V (pa(c))) ∩ V (pa(c)) 6= ∅). This entails that V (c′) ∩ (V (c) − V (pa(c)) = ∅,

and therefore sc(ϕ)) ∩ (V (c)− V (pa(c)) = ∅.

For all ϕ /∈ Φ(c), sc(ϕ) ∩ (V (c)− V (pa(c)) = ∅, one can write:

⊕V−S(⊗ϕ∈Φ ϕ) = ⊕(V−S)−(V (c)−V (pa(c)))⊕V (c)−V (pa(c))(⊗ϕ∈Φ ϕ)

= ⊕(V−S)−(V (c)−V (pa(c)))((⊗ϕ/∈Φ(c) ϕ)⊗ (⊕V (c)−V (pa(c))(⊗ϕ∈Φ(c) ϕ)))

= ⊕(V−S)−(V (c)−V (pa(c)))((⊗ϕ/∈Φ(c) ϕ)⊗ val(c))

The result is then obtained by using the recurrence hypothesis on the graphical model (V −(V (c)−

V (pa(c))), (Φ − Φ(c)) ∪ {val(c)}).

Proof of Theorem 7.24 (page 122). Entailed by the soundness of the macrostructuration process

(Theorem 7.16 page 117), and by Proposition 7.20 (page 120) concerning cluster-tree decomposi-

tions. As for the policies, the macrostructuration process guarantees the result concerning policies,

because if x /∈ sc(ϕ0), then

argmaxxϕ ⊂ argmaxx(ϕ0 ⊗ ϕ)

(and such a form is the only decomposition used for non-duplicated decision variables). As

for duplicated decision variables, we know for example that if max = ⊗ and ϕ1, ϕ2 are two

scoped functions, then ((argmaxxϕ1) ∪ (argmaxxϕ2)) ∩ argmaxx(ϕ1 ⊗ ϕ2) 6= ∅. Indeed, let A ∈

dom(sc(ϕ1 ⊗ ϕ2) − {x}). Let a1 ∈ argmaxxϕ1(A) and a2 ∈ argmaxxϕ2(A). Then, for all

a ∈ dom(x), ϕ1(a1.A) � ϕ1(a.A) and ϕ2(a2.A) � ϕ2(a.A). Therefore, for all a ∈ dom(x),

max(ϕ1(a1.A), ϕ2(a2.A)) � max(ϕ1(a.A), ϕ2(a.A)), which implies that either (ϕ1 ⊗ ϕ2)(a1.A) �

(ϕ1 ⊗ ϕ2)(a.A), or (ϕ1 ⊗ ϕ2)(a2.A) � (ϕ1 ⊗ ϕ2)(a.A). As a result, a1 ∈ argmaxx(ϕ1 ⊗ ϕ2)(A) or

a2 ∈ argmaxx(ϕ1 ⊗ ϕ2)(A).

Proof of Proposition 7.26 (page 123). Let c be a cluster of a MCTree. According to the definition

of val(c), computing the value of c given the values of its sons is time O(d1+wCNT (Q)) · (|Φ(c)| +

|Sons(c)|−1)). Hence, computing the value of all clusters c ∈ C of a MCTree is time O(d1+wCNT (Q))·
∑

c∈C(|Φ(c)|+ |Sons(c)| − 1)).

It can be shown that
∑

c∈C(|Φ(c)| + |Sons(c)| − 1)) ≤ 2 · |P ∪ U |:

• First,
∑

c∈C |Φ(c)| ≤ |P ∪ U |.

• Second, given a tree having nl leaves, it can easily be shown (by recurrence) that the sum

of the number of sons of each node minus 1 equals nl − 1. Therefore, as the MCTree has at

most |P ∪ U | leaves, one can infer that
∑

c∈C(|Sons(c)| − 1) ≤ |P ∪ U | − 1 ≤ |P ∪ U |,

Therefore, the time complexity is O(2 · |P ∪ U | · d1+wCNT(Q)) = O(|P ∪ U | · d1+wCNT (Q)).

The space complexity is also O(|P ∪ U | · d1+wCNT(Q)) because the functions which must be

manipulated always have a scope of size lesser than 1 + wCNT (Q).

Proof of Theorem 7.27 (page 123). Let o∗ be an elimination order s.t. wG(�Sov) = wG(o∗). The

idea is to apply the rewriting rules on CNT0(Q, o
∗). Let G0 = G and, if Gk = (Vk, Hk) and x = o∗(k)

is eliminated, then Gk+1 = (Vk − {x}, (Hk −H
+x
k) ∪ {hk+1}), where hk+1 = ∪h∈H+x

k
h− {x} is the

hyperedge created from step k to k + 1. It can be proved that for all k ∈ {0, . . . , |Sov| − 1}, if

CNTk(Q, o
∗) = (sov · opx, N), then for all n ∈ N , there exists h ∈ Hk s.t. sc(n) ⊂ sc(h). Indeed,

B.5. PROOFS OF CHAPTER 7 225

this property easily holds at step 0, and if it holds at step k, then sc((opx, N
+x)) ⊂ sc(hk+1).

Moreover, if duplication is used, then for all n ∈ N+x, sc((opx, {n})) ⊂ sc(hk+1). Rewriting rules

RR and SR can be shown to be always advantageous in terms of induced-width. This entails the

required result.

Proof of Lemma 7.29 (page 129). Let us start from CNDAGk(Q, o).

Case op = ⊕ As the elimination at the left of ⊕y is a ⊕-elimination too, we have

CNDAGk+1(Q, o) = (sov · ⊕x,⊕, {rewrite((⊕y,⊗, N)), N ∈ N}

= (sov · ⊕x,⊕, {(∅,⊗, N−y ∪ {RR((⊕y,⊗, N+y))}), N ∈ N})

.

If the elimination at the left of ⊕x is a ⊕ elimination, we get:

CNDAGk+2(Q, o) = (sov,⊕, {rewrite((⊕x,⊗, N−y ∪ {RR((⊕y,⊗, N+y))})), N ∈ N}).

As (⊕x,⊗, N−y ∪ {RR((⊕y,⊗, N+y))}) = rewrite((⊕x⊕y,⊗, N)), one can write:

CNDAGk+2(Q, o) = (sov,⊕, {rewrite2((⊕x⊕y,⊗, N)), N ∈ N}).

Similarly,

CNDAGk+2(Q, o
′) = (sov,⊕, {rewrite2((⊕y ⊕x,⊗, N)), N ∈ N}).

Lemma 7.7 enables us to conclude that CNDAGk+2(Q, o) = CNDAGk+2(Q, o
′). If the elimi-

nation at the left of ⊕x is not a ⊕ elimination, then we get:

CNDAGk+2(Q, o) = (sov,⊕, {simplify(rewrite2((⊕x⊕y,⊗, N))), N ∈ N}).

and similarly, we have CNDAGk+2(Q, o) = CNDAGk+2(Q, o
′).

Case op = max (when max 6= ⊕) In this case,

CNDAGk(Q, o) = (sov ·maxx ·maxy,⊕, {(∅,⊗, N), N ∈ N})

First, if N
+x+y = ∅, then the result obtained for CNDAGk+2(Q, o) is symmetric in x/y.

Indeed, when maxy is considered, structural modifications are made on the part depending on y

only, i.e. on the nodes associated with N
+y = N

−x+y, and when maxx is considered, structural

modifications are made on the part depending on x only, i.e. on the nodes associated with N
+x−y.

This implies that CNDAGk+2(Q, o) = CNDAGk+2(Q, o
′).

Otherwise, we have N
+x+y 6= ∅. The application of DRmax on CNDAGk(Q, o) gives

(sov.maxx,⊕, {(∅,⊗, N) , N ∈ N
−y} ∪ {(∅,⊗, N1 ∪ {(maxy,⊕, N2)})})

where N1 = ∩N∈N+y N−y and N2 = {(∅,⊗, N −N1) , N ∈ N
+y}.

N1 does not involve any max node, because when max 6= ⊕, the definition of DRmax and

RRmax implies that variables eliminated with max appear exactly once in the structure. Therefore,

(N −N1)[max] = N [max].

Using this result, the application of RRmax transforms (maxy,⊕, N2) into: (maxSa
,⊕, Na),

where





Sa = {y} ∪ Ve(∪N∈N+y(N −N1)[max])

Na = {(∅,⊗, N −N1) , (N ∈ N
+y) ∧ (N [max] = ∅)}

∪ {(∅,⊗, ((N −N1)−N [max]) ∪N ′) ,

(N ∈ N
+y) ∧ (N [max] 6= ∅) ∧ ((∅,⊗, N ′) ∈ Sons(N [max]))}

Therefore, we get

CNDAGk+1(Q, o) = (sov.maxx,⊕, {(∅,⊗, N) , N ∈ N
−y} ∪ {(∅,⊗, N1 ∪ {(maxSa

,⊕, Na)})})

After these steps, the elimination of x is considered. After the application of DRmax, we obtain

(sov,⊕, {(∅,⊗, N) , N ∈ N
−x−y} ∪ {(∅,⊗, N ′

1 ∪ {(maxx,⊕, N ′
2)})})

226 APPENDIX B. PROOFS

where

• N ′
1 = (∩N∈N+x−y N−x) ∩ (N1 ∪ {(maxSa

,⊕, Na)})−x. As y is eliminated exactly once in

the structure, (∩N∈N+x−y N−x) ∩ {(maxSa
,⊕, Na)} = ∅. This allows us to write N ′

1 =

(∩N∈N+x−y N−x) ∩N−x
1 . Therefore, N ′

1 = (∩N∈N+x−y N−x) ∩ (∩N∈N+y N−y)−x

= (∩N∈N+x−y N−x−y) ∩ (∩N∈N+y N−x−y)

= ∩N∈N+{x,y} N−x−y

.

Hence, the expression of N ′
1 is symmetric in x/y.

• N ′
2 = {(∅,⊗, N −N ′

1) , N ∈ N
+x−y} ∪ {(∅,⊗, (N1 −N ′

1) ∪ {(maxSa
,⊕, Na)})}.

After the application of RRmax, (maxx,⊕, N ′
2) is transformed into (maxSb

,⊕, Nb), where (we

use the fact that N1[max] = N ′
1[max] = ∅):

• Sb = {x}∪Ve(∪N∈N+x−yN [max])∪{y}∪Ve(∪N∈N+yN [max]) = {x, y}∪Ve(∪N∈N+{x,y}N [max]).

This shows that the expression of Sb is symmetric in x/y.

• Nb = {(∅,⊗, N −N ′
1) , (N ∈ N

+x−y) ∧ (N [max] = ∅)}

∪ {(∅,⊗, ((N −N ′
1)−N [max]) ∪N ′) ,

(N ∈ N
+x−y) ∧ (N [max] 6= ∅) ∧ ((∅,⊗, N ′) ∈ Sons(N [max]))}

∪ {(∅,⊗, (N1 −N ′
1) ∪ (N −N1)) , (N ∈ N

+y) ∧ (N [max] = ∅)}

∪ {(∅,⊗, (N1 −N ′
1) ∪ ((N −N1)−N [max]) ∪N ′) ,

(N ∈ N
+y) ∧ (N [max] 6= ∅) ∧ ((∅,⊗, N ′) ∈ Sons(N [max]))}

=
{
(∅,⊗, N −N ′

1) , (N ∈ N
+{x,y}) ∧ (N [max] = ∅)

}

∪{(∅,⊗, ((N −N ′
1)−N [max]) ∪N ′) ,

(N ∈ N
+{x,y}) ∧ (N [max] 6= ∅) ∧ ((∅,⊗, N ′) ∈ Sons(N [max]))

}

This expression is symmetric in x/y.

As a result,

CNDAGk+2(Q, o) = (sov,⊕, {(∅,⊗, N) , N ∈ N
−x−y} ∪ {(∅,⊗, N ′

1 ∪ {(maxSb
,⊕, Nb)})})

As the expressions of N ′
1, Sb, and Nb are symmetric in x/y. this entails that CNDAGk+2(Q, o) =

CNDAGk+2(Q, o
′).

Case op = min (when min 6= ⊕) This case is dealt with exactly as the case op = max.

Proof of Theorem 7.30 (page 129). Lemma 7.8 established in the semiring case allows us to recur-

sively apply Lemma 7.29 and to obtain CNDAG(Q, o) = CNDAG(Q, o′).

Proof of Lemma 7.31 (page 129).

val((sov.⊕x,⊕, {(∅,⊗, N) , N ∈ N})) = sov.⊕
x

(

⊕
N∈N

(

⊗
n∈N

val(n)

))

= sov

(

⊕
N∈N

(

⊕
x

(

⊗
n∈N

val(n)

)))

= val((sov,⊕, {(∅,⊗, {(⊕x,⊗, N)}) , N ∈ N}))

B.5. PROOFS OF CHAPTER 7 227

Proof of Lemma 7.32 (page 129). The property holds for k = 0, because

CNDAG0(Q, o) = (Sov,⊕, {(∅,⊗, N), N ∈ N}) with N = {P ∪ {Ui}, Ui ∈ U},

and therefore, (1) for all N ∈ N, for all n ∈ N , Ve(n) = ∅ and Sons(n) = ∅, and (2) for all N ∈ N,

N [max] = ∅.

Assume that the property holds for k < |Sov|−1 and that CNDAGk(Q, o) = (sov,⊕, {(∅,⊗, N), N ∈

N}). This recurrence assumption is denoted (RA). Does the property hold at step k + 1?

Case sov = sov′.⊕x After the application of DR⊕ and rewrite, we obtain CNDAGk+1(Q, o) =

(sov′,⊕, {(∅,⊗, N), N ∈ N
′}), with N

′ = {N−x ∪ {RR((⊕x,⊗, N+x))}, N ∈ N}.

Let N ′ ∈ N
′, i.e. N ′ = N−x ∪ {RR((⊕x,⊗, N+x))} for some N ∈ N. Let (n1, n2) ∈ N ′2 such

that n1 6= n2.

• If (n1, n2) ∈ (N−x)2, then (n1, n2) ∈ N2: (RA) directly implies that Ve(n1)∩Ve(n2) = ∅ and

Ve(n1) ∩ sc(n2) = ∅. Similarly, if (n1, n2) ∈ (N−x[⊕])2, then (n1, n2) ∈ (N [⊕])2, hence (RA)

implies that Sons(n1) ∩ Sons(n2) = ∅.

• If n1 ∈ N−x and n2 = RR((⊕x,⊗, N+x))

Then, as Ve(n2) ⊂ {x} ∪ (∪n∈N+x Ve(n)), as x /∈ Ve(n1) (because x had not been considered

before step k), and as Ve(n1) ∩ Ve(n) = ∅ for every n ∈ N+x (thanks to (RA)), this entails

that Ve(n1) ∩ Ve(n2) = ∅.

Similarly, as sc(n2) ⊂ ∪n∈N+x sc(n), (RA) enables us to infer that Ve(n1) ∩ sc(n2) = ∅.

Next, assume that (n1, n2) ∈ N ′[⊕]. This means that n1 ∈ N−x[⊕] ⊂ N [⊕]. We have

Sons(n2) = N+x[¬⊕] ∪ (∪n∈N+x[⊕] Sons(n)). According to (RA), we have, for all n ∈

N+x[⊕], Sons(n1)∩Sons(n) = ∅ and Sons(n1)∩N+x[¬⊕] = ∅ (since Sons(n1)∩N [¬⊕] = ∅).

This enables us to infer that Sons(n1) ∩ Sons(n2) = ∅.

• If n1 = RR((⊕x,⊗, N+x)) and n2 ∈ N−x

Then, it has already been shown (previous item) that Ve(n1) ∩ Ve(n2) = ∅ and that if

(n1, n2) ∈ N ′[⊕], (n1 6= n2)→ (Sons(n1) ∩ Sons(n2) = ∅).

As Ve(n1) ⊂ {x} ∪ (∪n∈N+x Ve(n)), as x /∈ sc(n2) (because n2 ∈ N−x), and as Ve(n) ∩

sc(n2) = ∅ for every n ∈ N+x (due to the recurrence assumption), it is possible to infer that

Ve(n1) ∩ sc(n2) = ∅.

Let n ∈ N ′[⊕]. If n ∈ N−x[⊕], then (RA) directly implies that Sons(n) ∩ N−x[¬⊕] = ∅,

and therefore that Sons(n) ∩ N ′[¬⊕] = ∅. Otherwise, n = RR((⊕x,⊗, N+x)). In this case,

Sons(n) = N+x[¬⊕] ∪ (∪n′∈N+x[⊕] Sons(n
′)). First, N+x[¬⊕] ∩N−x[¬⊕] = ∅. Second, for every

n′ ∈ N+x[⊕], Sons(n′)∩N [¬⊕] = ∅ thanks to (RA), and hence Sons(n′)∩N−x[¬⊕] = ∅. Therefore,

Sons(n) ∩N−x[¬⊕] = ∅, i.e. Sons(n) ∩N ′[¬⊕] = ∅.

As N ′ = N−x ∪ {RR((⊕x,⊗, N+x))}, we can write N ′[max] = N−x[max] ⊂ N [max], hence

|N ′[max]| ≤ 1. Let (∅,⊗, Ns) ∈ Sons(N ′[max]). Then, (∅,⊗, Ns) ∈ Sons(N [max]). From this, the

recurrence assumption entails thatNs∩N [¬max] = ∅, and consequently thatNs∩N−x[¬max] = ∅.

Moreover, it is straightforward that RR((⊕x,⊗, N+x)) /∈ Ns. Hence, Ns ∩N ′[¬max] = ∅.

Let (N ′
1, N

′
2) ∈ N

′ such that N ′
1 6= N ′

2. This entails that N ′
1 = N−x

1 ∪{RR((⊕x,⊗, N
+x
1))} and

N ′
2 = N−x

2 ∪ {RR((⊕x,⊗, N
+x
2))} for some (N1, N2) ∈ N

2 such that N1 6= N2. Then, N ′
1[max] =

228 APPENDIX B. PROOFS

N−x
1 [max] ⊂ N1[max] and N ′

2[max] = N−x
2 [max] ⊂ N2[max]. The recurrence assumption then

directly entails that Ve(N
′
1[max]) ∩ Ve(N ′

2[max]) = ∅. Moreover, as sc(N ′
2) = sc(N2) − {x}, this

also entails that Ve(N
′
1[max]) ∩ sc(N ′

2) = ∅.

All these results show that the property holds at step k + 1. The property still holds if simpli-

fication rule SR is applied, since SR can only reduce the set of eliminated variables, the scopes of

nodes, and the sets of sons.

Case sov = sov′.maxx (when max 6= ⊕) If N
+x = ∅, then the structure is unchanged at step

k + 1, hence the property is still satisfied.

Otherwise, the application ofDRmax and RRmax gives (sov′,⊕, {(∅,⊗, N), N ∈ N
′}), with N

′ =

N
−x∪{Na ∪ {RRmax((maxx,⊕, Nb))}}, whereNa = ∩N∈N+xN−x andNb = {(∅,⊗, N −Na) , N ∈ N

+x}.

Let N ′ ∈ N
′.

• Either N ′ ∈ N
−x. In this case, (RA) directly implies that for all (n1, n2) ∈ N ′ such that

n1 6= n2, Ve(n1)∩Ve(n2) = ∅ and Ve(n1)∩ sc(n2) = ∅, that for all (n1, n2) ∈ N ′[⊕] such that

n1 6= n2, Sons(n1) ∩ Sons(n2) = ∅, and that for all n ∈ N ′[⊕], Sons(n) ∩N [¬⊕] = ∅.

• Or N ′ = Na ∪ {RRmax (maxx,⊕, Nb)}.

Let (n1, n2) ∈ N ′ such that n1 6= n2.

– If (n1, n2) ∈ N2
a , then there exists N ∈ N

+x such that (n1, n2) ∈ N2. In this case, the

recurrence assumption directly implies that Ve(n1)∩Ve(n2) = ∅ and Ve(n1)∩sc(n2) = ∅,

and that if (n1, n2) ∈ N ′[⊕], then Sons(n1) ∩ Sons(n2) = ∅.

– If n1 ∈ Na and n2 = RRmax((maxx,⊕, Nb)).

We have Ve(n2) ⊂ {x} ∪ (∪N∈N+xVe(N [max])). Given that x /∈ Ve(n1) and for all

N ∈ N
+x, for all n ∈ N [max], Ve(n) ∩ Ve(n1) = ∅ (because n1 ∈ N and n 6= n1), we

obtain Ve(n1) ∩ Ve(n2) = ∅.

Next, sc(n2) ⊂ ∪n∈Nb
sc(n) = ∪N∈N+x sc(N −Na). We know that for all N ∈ N

+x, for

all n ∈ N −Na, n 6= n1 and consequently, as n1 ∈ N , Ve(n1) ∩ sc(n) = ∅. This entails

that Ve(n1) ∩ sc(n2) = ∅.

Moreover, n2 /∈ N ′[⊕] (because max 6= ⊕).

– If n1 = RR((maxx,⊕, Nb)) and n2 ∈ Na.

It has already been shown (see previous item), that Ve(n1) ∩ Ve(n2) = ∅. Moreover,

Ve(n1) = {x} ∪ (∪N∈N+x Ve(N [max])). We know that x /∈ sc(n2) (since n2 ∈ Na),

and, thanks to (RA), that for all N ∈ N
+x, if N [max] 6= ∅, then N [max] = {n1} and

Ve(N1) ∩ sc(n2) = ∅. Hence, Ve(n1) ∩ sc(n2) = ∅.

Let n ∈ N ′[⊕]. We then have n ∈ Na[⊕]. Together with (RA), this implies that Sons(n) ∩

Na[¬⊕] = ∅. Moreover, it is straightforward that RRmax (maxx,⊕, Nb) /∈ Sons(n). Therefore,

Sons(n) ∩N ′[¬⊕] = ∅.

Let (N1, N2) ∈ (N′)2 such that N1 6= N2.

• If (N1, N2) ∈ (N−x)2, then (N1, N2) ∈ N
2, and (RA) implies that Ve(N1[max])∩Ve(N2[max]) =

∅ and Ve(N1[max]) ∩ sc(N2) = ∅.

B.5. PROOFS OF CHAPTER 7 229

• If N1 ∈ N
−x and N2 = Na ∪ {RRmax((maxx,⊕, Nb))}

We know that Ve(N2[max]) = {x}∪ (∪N∈N+x Ve(N [max])). Due to (RA), one can write that

for all N ∈ N
+x, Ve(N1[max]) ∩ Ve(N [max]) = ∅. Furthermore, x /∈ Ve(N1[max]). This

entails that Ve(N1[max]) ∩ Ve(N2[max]) = ∅.

Similarly, sc(N2) ⊂ ∪N∈N+x sc(N [max]). (RA) implies that for everyN ∈ N
+x, Ve(N1[max])∩

sc(N) = ∅. Hence, Ve(N1[max] ∩ sc(N2) = ∅.

• If N1 = Na ∪ {RRmax((maxx,⊕, Nb))} and N2 ∈ N
−x

It has already been shown (previous item) that Ve(N1[max]) ∩ Ve(N2[max]) = ∅.

Ve(N1[max]) = {x}∪(∪N∈N+x Ve(N [max])). Due to (RA), one can write, for everyN ∈ N
+x,

Ve(N [max]) ∩ sc(N2) = ∅. Moreover, x /∈ sc(N2). Thus, Ve(N1[max]) ∩ sc(N2) = ∅.

Let N ′ ∈ N ′.

• If N ′ ∈ N
−x, then N ′ ∈ N and consequently, thanks to (RA), |N ′[max]| ≤ 1 and for all

(∅,⊗, Ns) ∈ Sons(N ′[max]), Ns ∩N ′[¬max] = ∅.

• Otherwise, N ′ = Na ∪ {RRmax((maxx,⊕, Nb))}.

In this case, N ′[max] = {RRmax((maxx,⊕, Nb))}. This implies that |N ′[max]| = 1.

Let (∅,⊗, Ns) ∈ Sons(N ′[max]), i.e. (∅,⊗, Ns) ∈ Sons(RRmax((maxx,⊕, Nb))).

We know that Sons(RRmax((maxx,⊕, Nb)) = {(∅,⊗, N − Na), (N ∈ N
+x) ∧ (N [max] =

∅)}∪{(∅,⊗, (N [¬max]−Na)∪N ′′), (N ∈ N
+x)∧(N [max] = ∅)∧(∅,⊗, N ′′) ∈ Sons(N [max])}.

We know that for every N ∈ N
+x, (N −Na)∩Na = ∅. Therefore, if (∅,⊗, Ns) ∈ {(∅,⊗, N −

Na), (N ∈ N
+x) ∧ (N [max] = ∅)}, then Ns ∩Na = ∅, i.e. Ns ∩N ′[¬max] = ∅.

Otherwise, there exists N ∈ N
+x such that N [max] 6= ∅ and (∅,⊗, Ns) = (∅,⊗, (N [¬max]−

Na) ∪N ′′) with (∅,⊗, N ′′) ∈ Sons(N [max]). This means that Ns = (N [¬max]−Na) ∪N ′′

with (∅,⊗, N ′′) ∈ Sons(N [max]). Then, Ns ∩N ′[¬max] = Ns ∩ Na = ((N [¬max] − Na) ∪

N ′′) ∩ Na = ((N [¬max] − Na) ∩ Na) ∪ (N ′′ ∩ Na) = N ′′ ∩ Na. We have (∅,⊗, N ′′) ∈

Sons(N [max]) and Na ∈ N [¬max]. (RA) enables us to infer that N ′′ ∩ Na = ∅, and

consequently Ns ∩N ′[¬max] = ∅.

All these results show that the property also holds at step k + 1 if sov = sov′.maxx.

Case sov = sov′.minx (when min 6= ⊕) Similar to the case sov = sov′.maxx.

Proof of Lemma 7.33 (page 130). The result follows from Lemmas 7.31 and 7.32.

Indeed, if simplification is not applied, then we have

CNDAGk+1(Q, o) = (sov,⊕, {rewrite((⊕x,⊗, N)), N ∈ N})

As function rewrite gives a sound result (thanks to Proposition 7.10, Proposition 7.12, and Lemma 7.32),

this implies that

val(CNDAGk+1(Q, o)) = val((sov,⊕, {rewrite((⊕x,⊗, N)), N ∈ N}))

= val((sov,⊕, {(⊕x,⊗, N), N ∈ N})
The result is still valid if simplify is applied, because simplification rule SR is sound.

230 APPENDIX B. PROOFS

As DR⊕ is sound (thanks to Lemma 7.31), this also entails that

val(CNDAGk+1(Q, o)) = val((sov.⊕x,⊕, {(∅,⊗, N), N ∈ N}) = val(CNDAGk(Q, o))

Proof of Lemma 7.34 (page 130).

val((sov.maxx,⊕, {(∅,⊗, N) , N ∈ N})) = sovmax
x

(

⊕
N∈N

(

⊗
n∈N

val(n)

))

If N
+x = ∅, then one can infer:

val((sov.maxx,⊕, {(∅,⊗, N) , N ∈ N})) = sov

(

⊕
N∈N

(

⊗
n∈N

val(n)

))

= val((sov,⊕, {(∅,⊗, N) , N ∈ N}))

Otherwise, N
+x 6= ∅. In this case, the monotonicity of ⊕ enables us to write:

val((sov.maxx,⊕, {(∅,⊗, N) , N ∈ N}))

= sov

((

⊕
N∈N−x

(

⊗
n∈N

val(n)

))

⊕max
x

(

⊕
N∈N+x

(

⊗
n∈N

val(n)

)))

Furthermore, if N1 = ∩N∈N+xN−x and N2 = {(∅,⊗, N −N1) , N ∈ N
+x}, then

max
x

(

⊕
N∈N+x

(

⊗
n∈N

val(n)

))

= max
x

(

⊕
N∈N+x

((

⊗
n∈N1

val(n)

)

⊗

(

⊗
n∈N−N1

val(n)

)))

= max
x

((

⊗
n∈N1

val(n)

)

⊗ ⊕
N∈N+x

(

⊗
n∈N−N1

val(n)

))

=

(

⊗
n∈N1

val(n)

)

⊗max
x

(

⊕
N∈N+x

(

⊗
n∈N−N1

val(n)

))

(since ⊗ is monotonic and x /∈ sc(N1))

= val((∅,⊗, N1 ∪ {(maxx,⊕, N2)}))

Consequently, if N
+x 6= ∅,

val((sov.maxx,⊕, {(∅,⊗, N) , N ∈ N}))

= sov

((

⊕
N∈N−x

(

⊗
n∈N

val(n)

))

⊕ val((∅,⊗, N1 ∪ {(maxx,⊕, N2)}))

)

= val(
(
sov,⊕,

{
(∅,⊗, N) , N ∈ N

−x
}
∪ {(∅,⊗, N1 ∪ {(maxx,⊕, N2)})}

)
)

Proof of Lemma 7.35 (page 130). Assume that S′ ∩ (S ∪ sc(N1)∪ sc(N2)) = ∅ and ∀N3 ∈ N, N2 ∩

B.5. PROOFS OF CHAPTER 7 231

N3 = ∅. Then,

val((maxS ,⊕, N1 ∪ {(∅,⊗, N2 ∪ {(maxS′ ,⊕, {(∅,⊗, N3), N3 ∈ N})})}))

= max
S

((

⊕
n∈N1

val(n)

)

⊕

(

⊗
n′∈N2

val(n′)

)

⊗max
S′

(

⊕
N3∈N

(

⊗
n′′∈N3

val(n′′)

)))

= max
S

((

⊕
n∈N1

val(n)

)

⊕max
S′

((

⊗
n′∈N2

val(n′)

)

⊗ ⊕
N3∈N

(

⊗
n′′∈N3

val(n′′)

)))

(since ⊗ is monotonic and S′ ∩ sc(N2) = ∅)

= max
S

((

⊕
n∈N1

val(n)

)

⊕max
S′

⊕
N3∈N

((

⊗
n′∈N2

val(n′)

)

⊗

(

⊗
n′′∈N3

val(n′′)

)))

= max
S

((

⊕
n∈N1

val(n)

)

⊕max
S′

⊕
N3∈N

(

⊗
n′∈N2∪N3

val(n′)

))

(since ∀N3 ∈ N, N2 ∩N3 = ∅)

= max
S

max
S′

((

⊕
n∈N1

val(n)

)

⊕ ⊕
N3∈N

(

⊗
n′∈N2∪N3

val(n′)

))

(since ⊕ is monotonic and S′ ∩ sc(N1) = ∅)

= max
S∪S′

((

⊕
n∈N1

val(n)

)

⊕ ⊕
N3∈N

(

⊗
n′∈N2∪N3

val(n′)

))

(since S ∩ S′ = ∅)

= val((maxS∪S′ ,⊕, N1 ∪ {(∅,⊗, N2 ∪N3) , N3 ∈ N}))

Proof of Lemma 7.36 (page 130). If max = ⊕, then the result is implied by Lemma 7.33. Other-

wise , max 6= ⊕. The result is straightforward if N
+x = ∅. Otherwise, N

+x 6= ∅.

According to Lemma 7.34 which states that DRmax is sound, one can write

val(CNDAGk(Q, o)) = val((sov,⊕, {(∅,⊗, N) , N ∈ N
−x} ∪ {(∅,⊗, Na ∪ {(maxx,⊕, Nb)})}))

where Na = ∩N∈N+xN−x and Nb = {(∅,⊗, N −Na) , N ∈ N
+x}

Let us denote by n the node n = (maxx,⊕, Nb). In order to prove that val(CNDAGk+1(Q, o)) =

val(CNDAGk(Q, o)), it suffices to prove that val(n) = val(RRmax(n)).

Let us denote by N0 the set of sets of nodes N0 = {N −Na, N ∈ N
+x}. n can then be written

as n = (maxx,⊕, {(∅,⊗, N) , N ∈ N0}).

Let N0 = {N1, . . . , Nr}. Let us define, for all i ∈ {0, . . . , r},

ni = (max{x}∪Ve(∪N∈{N1,...,Ni}
N [max]),⊕,

{(∅,⊗, N) , (N ∈ {N1, . . . , Ni}) ∧ (N [max] = ∅)}

∪ {(∅,⊗, N [¬max] ∪N ′) , (N ∈ {N1, . . . , Ni}) ∧ (N [max] 6= ∅) ∧ ((∅,⊗, N ′) ∈ Sons(N [max]))}

∪{(∅,⊗, N), N ∈ {Ni+1, . . . , Nr}})

.

Let us show that for all i ∈ {0, . . . , r}, val(n) = val(ni).

The property holds for i = 0, because n0 = n. Assume that the property holds for i < r. Let

us show that it holds at step i+ 1.

If Ni+1[max] = ∅, then the result is obvious because in this case, Ve(Ni+1[max]) = ∅.

Otherwise, Ni+1[max] 6= ∅. This means that Ni+1 can be written as Ni+1 = Ni+1[¬max] ∪

{(maxVe(Ni+1[max]),⊕, Sons(Ni+1[max]))}. Hence, ni can be written as:

232 APPENDIX B. PROOFS

ni = (maxS∪Ve(∪N∈{N1,...,Ni}
N [max]),⊕,

{(∅,⊗, N) , (N ∈ {N1, . . . , Ni}) ∧ (N [max] = ∅)}

∪ {(∅,⊗, N [¬max] ∪N ′) , (N ∈ {N1, . . . , Ni}) ∧ (N [max] 6= ∅) ∧ ((∅,⊗, N ′) ∈ Sons(N [max]))}

∪{(∅,⊗, N), N ∈ {Ni+2, . . . , Nr}}

∪{(∅,⊗, Ni+1[¬max] ∪ {(maxVe(Ni+1[max]),⊕, Sons(Ni+1[max]))})

.

According to Lemma 7.35, in order to show that val(ni) = val(ni+1), it suffices to prove that:

1. Ve(Ni+1[max]) ∩ (S ∪ Ve(∪N∈{N1,...,Ni}N [max])) = ∅,

2. for every N ∈ {N1, . . . , Ni} such that N [max] = ∅, Ve(Ni+1[max]) ∩ sc((∅,⊗, N)) = ∅,

3. for every N ∈ {N1, . . . , Ni} such that N [max] 6= ∅, and for every (∅,⊗, N ′) ∈ Sons(N [max]),

Ve(Ni+1[max]) ∩ sc((∅,⊗, N [¬max] ∪N ′)) = ∅,

4. for all N ∈ {Ni+2, . . . , Nr}, Ve(Ni+1[max]) ∩ sc((∅,⊗, N)) = ∅,

5. Ve(Ni+1[max]) ∩ sc(Ni+1[¬max]) = ∅,

6. if (∅,⊗, N ′′
i+1) ∈ Sons(Ni+1[max]), then Ni+1[¬max] ∩N ′′

i+1 = ∅.

In order to show these properties, we use Lemma 7.32. We know that there exists N ′
i+1 ∈ N

such that Ni+1 = N ′
i+1 −Na.

1. Point 1 holds because thanks to Lemma 7.32. Indeed, let j ∈ {1, . . . , i}. We have Nj =

N ′
j − Na for one N ′

j ∈ N. Moreover, as Na[max] = ∅, Nj [max] = N ′
j [max]. Lemma 7.32

enables us to write Ve(N
′
j [max])∩Ve(N ′

i+1[max]) = ∅, i.e. Ve(Nj [max])∩Ve(Ni+1[max]) = ∅.

Therefore, Ve(Ni+1[max]) ∩ Ve(∪N∈{N1,...,Ni}N [max]) = ∅. Moreover, x /∈ Ve(Ni+1[max])

(because x had not been considered yet). Thus, point 1 holds.

2. For point 2, let N ∈ {N1, . . . , Ni} such that N [max] = ∅. We have N = N ′ − Na for one

N ′ ∈ N. Lemma 7.32 enables us to write Ve(N
′
i+1[max])∩sc(N ′) = ∅, hence Ve(Ni+1[max])∩

sc((∅,⊗, N)) = ∅. As this holds for every N ∈ {N1, . . . , Ni}, point 2 is satisfied.

3. For point 3, let N ∈ {N1, . . . , Ni} such that N [max] 6= ∅, and let (∅,⊗, N ′) ∈ Sons(N [max]).

We have N = N ′′ −Na for one N ′′ ∈ N. Lemma 7.32 enables us to write Ve(N
′
i+1[max]) ∩

sc(N ′′) = ∅ and Ve(N
′
i+1[max]) ∩ Ve(N ′′[max]) = ∅. Therefore, Ve(N

′
i+1[max]) ∩ (sc(N ′′) ∪

Ve(N
′′[max])) = ∅. This entails that Ve(Ni+1[max])∩(sc(N [¬max])∪sc(N [max])∪Ve(N [max])) =

∅, i.e. Ve(Ni+1[max])∩ (sc(N [¬max])∪sc(Sons(N [max]))) = ∅, and hence, Ve(Ni+1[max])∩

sc((∅,⊗, N [¬max]∪N ′)) = ∅. As this holds for every N ∈ {N1, . . . , Ni}, point 3 is satisfied.

4. Point 4 directly holds thanks to the Lemma 7.32. Indeed, for every N ∈ {Ni+2, . . . , Nr},

N = N ′−Na for one N ′ ∈ N, and this lemma enables us to write Ve(N
′
i+1[max])∩sc(N ′) = ∅,

which implies that Ve(Ni+1[max]) ∩ sc((∅,⊗, N) = ∅ too.

5. For point 5, we use the following property, given by Lemma 7.32, that for all (nt, nu) ∈ N ′
i+1,

(nt 6= nu) → (Ve(nt) ∩ sc(nu) = ∅). For nt such that {nt} = Ni+1[max], this leads to: for

all nu ∈ N ′
i+1 − {nt}, Ve(nt) ∩ sc(nu) = ∅, i.e. Ve(Ni+1[max]) ∩ sc(N ′

i+1[¬max]) = ∅, which

implies that Ve(Ni+1[max]) ∩ sc(Ni+1[¬max]) = ∅.

B.5. PROOFS OF CHAPTER 7 233

6. Finally, point 6 is also entailed by Lemma 7.32. Indeed, Lemma 7.32 says that for all

(∅,⊗, Ns) ∈ Sons(N ′
i+1[max]), Ns ∩ N ′

i+1[¬max] = ∅. As N ′
i+1[max] = Ni+1[max] and

Ni+1[¬max] ⊂ N ′
i+1[¬max], this implies that for all (∅,⊗, Ns) ∈ Sons(Ni+1[max]), Ns ∩

Ni+1[¬max] = ∅.

As a result, Lemma 7.35 allows us to transform ni into the following computation node, while

ensuring that the node value is preserved

(maxS∪Ve(∪N∈{N1,...,Ni}
N [max])∪Ve(Ni+1[max]),⊕,

{(∅,⊗, N) , (N ∈ {N1, . . . , Ni}) ∧ (N [max] = ∅)}

∪ {(∅,⊗, N [¬max] ∪N ′) , (N ∈ {N1, . . . , Ni}) ∧ (N [max] 6= ∅) ∧ ((∅,⊗, N ′) ∈ Sons(N [max]))}

∪{(∅,⊗, N), N ∈ {Ni+2, . . . , Nr}}

∪{(∅,⊗, Ni+1[¬max] ∪N ′), N ′ ∈ Sons(Ni+1[max])})

.

i.e. it enables us to transform ni into ni+1 while ensuring that val(ni) = val(ni+1). As val(ni) =

val(n) thanks to the recurrence hypothesis, we get val(ni+1) = val(n), i.e. the property holds at

step i+ 1.

Consequently, the property holds for every i ∈ {0, . . . , r}. For i = r, it provides us with

val(RRmax(n)) = val(n).

The case of a min-elimination is similar.

Proof of Lemma 7.37 (page 130). Follows directly from Lemmas 7.33 and 7.36.

Proof of Theorem 7.38 (page 130). Follows from Lemma 7.37 and from val(CNDAG0(Q, o)) =

Ans(Q) for all o ∈ lin(�Sov).

Proof of Proposition 7.39 (page 130). The macrostructure of a query is obtained by using algo-

rithm MacroStruct(sov, V, P, U), which calls auxiliary functions. We detail the time and space

complexities of each of these functions. All elements are recorded as lists, except for the scope

of each computation node, which is recorded as a table of |V | booleans. Moreover, in order to

explicitly handle a DAG of computation nodes, the sons of a computation node are represented

by pointers to computation nodes instead of computation nodes. Given a node n, &n denotes

the memory address where n is stored. The instruction newNode(op, Ve,⊛, Sons, sc) creates a

computation node (opVe
,⊛, Sons) and set its scope to sc.

begin

(root, PTRP)← initialize()
while (sov = sov′ · opx) do

sov ← sov′

if op = ⊕ then (root, PTRP)← structure ⊕()
else root← structure n⊕()
return (root)

end

Figure B.1: MacroStruct(sov, V, P, U).

We can assume that |V | 6= 0, since if |V | = 0, then the time and space complexities are directly

0.

234 APPENDIX B. PROOFS

Initialize()
begin

root← newNode(∅, ∅,⊕, ∅, ∅)
PTRP ← ∅
scp← ∅
foreach ϕ ∈ P do

PTRP ← PTRP ∪ {&ϕ}
scp← scp ∪ {sc(ϕ)}

foreach ϕ ∈ U do

n← newNode(∅, ∅,⊗, PTRP ∪ {&ϕ}, scp ∪ sc(ϕ))
Sons(root)← Sons(root) ∪ {&n}

return ((root, PTRP))

end

Figure B.2: Function which builds CNDAG0(Q, o).

Complexity of the initialization As adding an element to a list is O(1), as computing the union

of two scopes is O(|V |), and as the instruction newNode(...) is O(|P |+ 1 + |V |), the initialization

is time |P | · (O(1) +O(|V |)) + |U | · (O(|P |+ 1 + |V |) +O(1)) = O((|P | + |U |) · |V |+ |U | · |P |).

The space complexity is O(|P | · |V |+ |U | · (1 + |P |+ |V |)).

Complexity of structure ⊕ The two first instructions are O(1).

Each iteration of the first foreach loop is time O(|V |), since the only operations performed are

(1) union of scopes or tests to know whether a variable is in the scope; these operations are O(|V |);

(2) removal of an element of a list or concatenation of two lists; these operations are O(1). As it

is applied at most |P | times, the first foreach loop is time O(|P | · |V |)

Let us now analyze the second foreach loop. Let us consider one iteration of this second foreach

loop. As each son of the root has itself at most 1 + |P | sons, the internal foreach loop is time

O(|V | · (1 + |P |)). Then, the test “PTRtmp = PTRPx” is O(1 + |P |), mainly because the list of

pointers can be handled so that all pointers appear in the same order in all nodes. The instructions

performed after this test can be shown to be O(|V | · (1 + |P |)). Last, the updating of sc(∗ptr) is

O(|V |). Hence, each iteration of the second foreach loop is time O(|V | · (1 + |P |)+ |V | · (1 + |P |) +

|V |) = O(|V | · (1 + |P |)). As the second foreach loop is performed at most |U | times, the time

complexity of function structure ⊕ is O(|P | · |V |+ |U | · |V | · (1 + |P |)) = O(|U | · |V | · (1 + |P |)).

The space complexity of the creation of np is O(|V |) because the space required to record a

scope as a table of |V | booleans is O(|V |). Then, the instruction of the first foreach loop are O(1),

because they just correspond to concatenation of already existing lists. Hence, the first foreach loop

is space O(|P |) . In the second foreach loop, the instructions requiring a space not O(1) are the

creation of n (space complexity O(|V |)), and the instruction Sons(n) ← Sons(n) ∪ {ptr′}, which

is O(1) but which may be performed at most 1+ |P | times. This implies that the space complexity

of the second foreach loop, which is performed lesser than |U | times, is O(|U | · (|V |+ 1 + |P |)).

Complexity of structure n⊕ The first foreach loop is time O(|U | · |V |), since the root has at

most |U | sons, the test “x ∈ sc(∗ptr)” is O(|V |), and the other operations are O(1). Its space

complexity is 0.

The computation of commonPTR is time O(|P | · |U |) (we assume that the lists of pointers

B.5. PROOFS OF CHAPTER 7 235

structure ⊕()
begin

np← newNode(⊕, {x},⊗, ∅, ∅)
PTRPx ← ∅
foreach ptrp ∈ PTRP do

if x ∈ sc(∗ptrp) then

PTRP ← PTRP − {ptrp}
PTRPx ← PTRPx ∪ {ptrp}
Ve(np)← Ve(np) ∪ Ve(∗ptrp)
Sons(np)← Sons(np) ∪ Sons(∗ptrp)
sc(np)← sc(np) ∪ sc(∗ptrp)

PTRP ← PTRP ∪ {&np}
foreach ptr ∈ Sons(root) do

PTRtmp ← ∅
foreach ptr′ ∈ Sons(∗ptr) do

if x ∈ sc(∗ptr′) then

Sons(∗ptr)← Sons(∗ptr)− {ptr′}
PTRtmp ← PTRtmp ∪ {ptr′}

if PTRtmp = PTRPx then

Sons(∗ptr)← Sons(∗ptr) ∪ {&np}
else

n← newNode(⊕, {x},⊗, ∅, ∅)
foreach ptr′ ∈ PTRtmp do

if op(∗ptr′) = ⊕ then

Sons(n)← Sons(n) ∪ Sons(∗ptr′)
Ve(n)← Ve(n) ∪ Ve(∗ptr′)

else

Sons(n)← Sons(n) ∪ {ptr′}
sc(n)← sc(n) ∪ sc(∗ptr′)

Sons(∗ptr)← Sons(∗ptr) ∪ {&n}
sc(∗ptr)← sc(∗ptr)− {x}

return ((root, PTRP))

end

Figure B.3: Function implementing the rewriting for an elimination ⊕x.

are ordered), and the computation of newsc is time O((1 + |P |) · |U | · |V |). The initialization of

newopnode is O(|V |) and the initialization of newrootson is O(|P |+1+ |V |). The space complexity

of all these operations can be shown to be O(|P | + |V |).

Hence, the instructions from the beginning to the second foreach loop are time O((1 + |P |) ·

|U | · |V |) and space O(|P | + |V |).

Let us consider an iteration of the second foreach loop. The first instruction is time O(1+ |P |).

The time complexity to test whether there is a node performing an elimination with op is O(1+|P |).

If the answer is no, the operation performed is time O(1). Otherwise, the time complexity to get

ptrop and PTRnop is O(1 + |P |). The concatenation of the variables to eliminate is O(1). Then,

there are at most 1 + |P | elements in Sons(∗ptrop), and for each of these elements, the operations

performed are time O(1+|P |)+O(1) = O(1+|P |), hence a time complexityO((1+|P |)2). Therefore,

one iteration of the second foreach loop is O((1 + |P |)2). As this second foreach loop is performed

at most |U | times, the time complexity is O(|U | · (1 + |P |)2). The space complexity can also be

shown to be O(|U | ·(1+ |P |)2) (the instruction which requires the more space is n← newNode(...);

236 APPENDIX B. PROOFS

structure n⊕()
begin

foreach ptr ∈ Sons(root) do

if x ∈ sc(∗ptr) then

Sons(root)← Sons(root)− {ptr}
PTRtmp ← PTRtmp ∪ {ptr}

if PTRtmp 6= ∅ then

commonPTR← ∩ptr∈PTRtmp Sons(∗ptr)
newsc = ∪ptr∈PTRtmp sc(∗ptr)
newopnode← newNode(op, {x},⊕, ∅, newsc− {x})
newrootson← newNode(∅, ∅,⊗, commonPTR ∪ {&newopnode}, newsc)
Sons(root)← Sons(root) ∪ {&newrootson}
foreach ptr ∈ PTRtmp do

Sons(∗ptr)← Sons(∗ptr)− commonPTR

if Sons(∗ptr)[op] = ∅ then

Sons(newopnode)← Sons(newopnode) ∪ {ptr}
else

{ptrop} ← Sons(∗ptr)[op]
PTRnop← Sons(∗ptr)[¬op]
Ve(newopnode)← Ve(newopdnode) ∪ Ve(∗ptrop)
foreach ptropson ∈ Sons(∗ptrop) do

n← newNode(∅, ∅,⊗, PTRnop ∪ {ptropson}, ∅)
Sons(newopnode)← Sons(newopnode) ∪ {&n}

return (root)

end

Figure B.4: Function implementing the rewriting for an elimination with an operator distinct
from ⊕.

each of such instructions is O(|P |+ 1), and it can be performed |PTRtmp| · |Sons(∗ptrpop)| times,

which is lesser than |U | · (1 + |P |)).

As a result, the time and space complexities of function structure n⊕ are O((1+ |P |) · |U | · |V |+

|U | · (1 + |P |)2) and O(|P |+ |V |+ |U | · (1 + |P |)2) respectively, i.e. O((1 + |P |) · |U | · (|P |+ |V |))

and O(|V |+ |U | · (1 + |P |)2).

Global complexities It suffices to sum the complexities obtained to have the global time and

space complexities:

• Time complexity: O((|P | + |U |) · |V |+ |U | · |P |) + |V | · |U | · |V | · (1 + |P |) + |V | · (1 + |P |) ·

|U | · (|P |+ |V |)) = O(|U | · |V | · (|P |+ |V |) · (1 + |P |));

• Space complexity:

O(|P | · |V |+ |U | · (1 + |P |+ |V |) + |V | · |U | · (|V |+ 1 + |P |) + |V | · (|V |+ |U | · (1 + |P |)2)) =

O(|U | · |V | · (|V |+ |P |2)).

Proof of Proposition 7.44 (page 133). Let o be an elimination order in lin(�Sov), where Sov is the

sequence of eliminations used by the query.

The property holds in CNDAG0(Q, o). Indeed, CNDAG0(Q, o) = (Sov(o),⊕, {(∅,⊗, N), N ∈

N}) with N = {P ∪ {Ui}, Ui ∈ U}. Therefore, for every N ∈ N, there exists a unique n such that

B.5. PROOFS OF CHAPTER 7 237

t(n) = u. If max 6= ⊕, then one can infer that S ∩ sc(P) = ∅, hence for all N ∈ N, none of the

variables eliminated in Sov are in sc(P (N)). Moreover, if N,N ′ ∈ N, then P (N) = P (N ′) = P ,

hence ((n ∈ N) ∧ (t(n) = p))→ (n ∈ N ′). obviously hold.

Assume that the property holds in CNDAGk(Q, o), for k ∈ {0, . . . , |Sov| − 1}. Does it hold at

step k + 1?

If the sequence of remaining eliminations in CNDAGk(Q, o) is of the form sov.⊕x, then no new

max computation node is created and the existing max computation nodes are unchanged, because

rules DR⊕, DR, RR, and SR, which can be applied for the elimination of x, do not modify the

max computation nodes.

If the sequence of remaining eliminations in CNDAGk(Q, o) is of the form sov.minx, then the

same conclusion can be derived.

The only case which requires more work is the case where the sequence of remaining eliminations

in CNDAGk(Q, o) is of the form sov.maxx. The new max node created isRRmax((maxx,⊕, {(∅,⊗, N−

N1), N ∈ N+x})), where N1 = ∩N∈N+xN−x. Let us denote by Na the set of sets of computation

nodes Na = {N−N1, N ∈ N+x}. Hence, the max node created isRRmax((maxx,⊕, {(∅,⊗, Na), Na ∈

Na})). Does it satisfy the required property?

Let Na ∈ Na. Then, there exists N ∈ N such that Na = N − N1. If u(N) ∈ N1, then

this means that N
+x = {N} (because if N

+x contains another element N ′ , then (N 6= N ′) →

(u(N) 6= u(N ′))). This implies that x /∈ sc(u(N)). As x /∈ sc(P (N)), thanks to the recurrence

assumption, this implies that x /∈ sc(N), which is a contradiction because N ∈ N
+x. Therefore,

the initial hypothesis u(N) ∈ N1 is false, i.e. u(N) ∈ N − N1. This proves that there exists a

unique computation node of type u in Na.

Do we have S ∩ sc(P (N)) = ∅?

Let CNDAGk(Q, o) = (sov.maxx,⊕, {(∅,⊗, N), N ∈ N}). If max 6= ⊕, then for all N ∈ N,

for all n ∈ N , (t(n) = p)→ (x /∈ sc(n))

Indeed, assume that t(n) = p and x ∈ sc(n). Then, by connectivity of the components and

thanks to the updating of the definition of N+x, we know that n = (⊕S ,⊗, N), where S contains

at least one environment component c0 in the descendants of c(x) and that N contains Fact(c0).

Moreover, c0 can be chosen the deeper as possible, so that for all n ∈ N −Fact(c0), c0∩sc(n) = ∅.

This leads to a contradiction because c0 should have been eliminated. Therefore, (t(n) = p) →

(x /∈ sc(n)).

Let us show that for all computation nodes (∅,⊗, N) in CNDAGk(Q, o), there exists a unique

computation node n in N such that t(n) = u.

The property holds for k = 0 since the (∅,⊗, N) nodes involved in the initial DAG of com-

putation nodes are of the form (∅,⊗, P ∪ {Ui}) with Ui ∈ U , hence the only node of type u is

Ui.

Assume that the property holds at step k. We must show that the (∅,⊗, N) nodes created from

CNDAGk(Q, o) to CNDAGk+1(Q, o) satisfy the required property.

• If CNDAGk(Q, o) = (sov.⊕x,⊕, {(∅,⊗, N), N ∈ N}), then, if no simplification is used,

CNDAGk+1(Q, o) = (sov,⊕, {(∅,⊗, N−x ∪ {RR((⊕x,⊗, N+x))}), N ∈ N}). The unique

computation nodes of the form (∅,⊗, N) which differ fromCNDAGk(Q, o) to CNDAGk+1(Q, o)

are the nodes of the form (∅,⊗, N−x ∪ {RR((⊕x.⊗, N+x))}) for N ∈ N.

238 APPENDIX B. PROOFS

Given N ∈ N, let N ′ = N−x ∪ {RR((⊕x,⊗, N+x))}. It it is straightforward that either

u(N) ∈ N−x, and hence u(N ′) = u(N), or u(N) ∈ N+x and hence u(N ′) = RR((⊕x,⊗, N+x)).

If function simplify is used, then the result still holds because this function does neither

modify the type of a node, nor remove nodes of type u.

Hence, the property holds at step k + 1.

• If max 6= ⊕ and CNDAGk(Q, o) = (sov.maxx,⊕, {(∅,⊗, N), N ∈ N}), then, either N
+x = ∅

and the property is directly satisfied at step k+1, or CNDAGk(Q, o) = (sov.⊕x,⊕, {(∅,⊗, N), N ∈

N
−x})∪{(∅,⊗, N1∪{RRmax((maxx,⊕, {((∅,⊗, N−N1), N ∈ N

+x}))})}, withN1 = ∩N∈N+x N−x.

In this case, we know that for each n ∈ N1, t(n) = p. As t((∅,⊗, N)) = u, this implies that

t((∅,⊗, N − N1)) = u. As N
+x 6= ∅, this implies that t(RRmax((maxx,⊕, {((∅,⊗, N −

N1), N ∈ N
+x}))) = u, and therefore the node created from step k to step k + 1, which is

(∅,⊗, N1∪{RRmax((maxx,⊕, {((∅,⊗, N−N1), N ∈ N
+x}))}), satisfies the required property.

But some nodes are updated, due to the recomposition rule RRmax, which transforms

(maxx,⊕, {((∅,⊗, N − N1), N ∈ N
+x}) into another node (maxS ,⊕, {(∅,⊗, N ′), N ′ ∈ N

′}).

We must show that for every N ′ ∈ N
′, (∅,⊗, N ′) satisfies the required property.

Let N ′ ∈ N
′. Then, N ′ can be of the form N ′′[¬max] ∪ Ns with N ′′ = N − N1 for some

N ∈ N
+x and (∅,⊗, Ns) ∈ Sons(N [max]). Due to the recurrence assumption, we know that

there exists a unique n ∈ Ns such that t(n) = u. This implies that t(N ′′[max]) = u, and

therefore, by unicity, for all n ∈ N ′′[¬max], t(n) = p. This entails that there exists a unique

n ∈ N ′′[¬max] ∪Ns such that t(n) = u.

But N ′′ can also be of the form (∅,⊗, N −N1) with N ∈ N
+x. As t(n) = p for every n ∈ N1,

this implies that the unique node of type u which was is N is now in N −N1, and it is still

unique.

Consequently, the property holds at step k + 1.

• Idem for an elimination minx when ⊕ 6= min.

Hence the proof by recurrence that if (opS ,⊕, {(∅,⊗, N), N ∈ N}) is in CNDAG(Q), then for

all N ∈ N, there exists a unique n ∈ N such that t(n) = u.

Given that all max computation nodes are of the form (maxS ,⊕, {(∅,⊗, N), N ∈ N}), this

implies that, at each step k, all max-nodes in CNDAGk(Q, o) are of type u, and therefore given

a computation node (∅,⊗, N), if N [max] 6= ∅, then N [max] = {u(N)}.

Let us show an invariant for the sons of the root: let us show that if CNDAGk(Q, o) =

(sov,⊕, {(∅,⊗, N), N ∈ N}), then the following properties hold: for all N1, N2 ∈ N,

(C1) If N1[max] = N2[max] = ∅, then

[(n ∈ N1) ∧ (t(n) = p)]→ [(n ∈ N2) ∨ (sc(n) ⊂ sc(u(N2)))]

(C2) If N1[max] = ∅ and N2[max] 6= ∅, then, for all (∅,⊗, Ns2) ∈ Sons(N2[max]),

[(n ∈ N1) ∧ (t(n) = p)]→ [(n ∈ N2[¬max] ∪Ns2) ∨ (sc(n) ⊂ sc(u(N2)))]

(C3) If N1[max] 6= ∅ and N2[max] = ∅, then, for all (∅,⊗, Ns1) ∈ Sons(N1[max]),

[(n ∈ N1[¬max] ∪Ns1) ∧ (t(n) = p)]→ [(n ∈ N2) ∨ (sc(n) ⊂ sc(u(N2)))]

B.5. PROOFS OF CHAPTER 7 239

(C4) If N1[max] 6= ∅ and N2[max] 6= ∅, then, for all (∅,⊗, Ns1) ∈ Sons(N1[max]), for all

(∅,⊗, Ns2) ∈ Sons(N2[max]),

[(n ∈ N1[¬max] ∪Ns1) ∧ (t(n) = p)]→ [(n ∈ N2[¬max] ∪Ns2) ∨ (sc(n) ⊂ sc(u(N2)))]

The property holds at step k = 0, because if N1, N2 ∈ N, then N1 = P ∪ {U1} and N2 =

P ∪ {U2}, with U1, U2 ∈ U , and therefore we have first, N1[max] = N2[max] = ∅, and second

(n ∈ N1) ∧ (t(n) = p) implies that n ∈ P , and therefore n ∈ N2.

Assume that the property holds at step k. Let us show that it holds at step k + 1.

Let CNDAGk(Q, o) = (sov.opx,⊕, {(∅,⊗, N), N ∈ Nk}). We study several cases depending

on op.

• Case opx = ⊕x

Assume that function simplify is not used. In this case, we have

CNDAGk+1 = (sov,⊕, {(∅,⊗, N), N ∈ Nk+1})

with

Nk+1 = {N−x ∪ {RR((⊕x,⊗, N+x))}, N ∈ Nk}

Let N1, N2 ∈ Nk+1. There exist N,N ′ ∈ Nk such that

N1 = N−x ∪ {RR((⊕x,⊗, N+x))}

N2 = N ′−x ∪ {RR((⊕x,⊗, N ′+x))}

We analyze the four cases corresponding to (C1), (C2), (C3), and (C4).

1. If N [max] = N ′[max] = ∅, then N1[max] = N2[max] = ∅.

Let n ∈ N1 such that t(n) = p.

– Either n ∈ N−x.

This means that n ∈ N and x /∈ sc(n). As n ∈ N , the recurrence assumption

implies that (a) either n ∈ N ′, and hence n ∈ N ′−x, which implies that n ∈ N2;

(b) or sc(n) ⊂ sc(u(N ′)), and in this case, it is not hard to see that sc(u(N ′)) ⊂

sc(u(N2)) ∪ {x}, which implies that sc(n) ⊂ sc(u(N2)) ∪ {x}, and, as x /∈ sc(n),

that sc(n) ⊂ sc(u(N2)).

– Or n = RR((⊕x,⊗, N+x)).

In this case, as t(n) = p, we know that for all na ∈ N+x, t(na) = p, and hence for

all na ∈ N+x, we have (na ∈ N ′+x) ∨ (sc(na) ⊂ sc(u(N ′))). This notably implies

that sc(N+x) ⊂ sc(N ′+x)

If there exists na ∈ N+x such that sc(na) ⊂ sc(u(N ′)), then we can infer that

t(RR((⊕x,⊗, N ′+x))) = u. Moreover, as sc(N+x) ⊂ sc(N ′+x), this implies that

sc(n) ⊂ sc(u(N2))

Otherwise, for all na ∈ N+x, we have na ∈ N ′+x. This implies that N+x ⊂ N ′+x.

In another direction, if nb ∈ N ′+x, then we can write (nb ∈ N+x) ∨ (sc(nb) ⊂

sc(u(N))). As x ∈ sc(nb) and x /∈ sc(u(N)) (otherwise n would not be of type p),

this implies that nb ∈ N+x. Therefore, N ′+x ⊂ N+x also holds, which implies that

N+x = N ′+x, and consequently n = RR((⊕x,⊗, N+x) = RR((⊕x,⊗, N ′+x)) ∈ N2.

Hence, we have (n ∈ N2) ∨ (sc(n) ⊂ sc(u(N2)))

240 APPENDIX B. PROOFS

2. If N [max] = ∅ and N ′[max] 6= ∅.

Then, we have N1[max] = ∅. Let n ∈ N1 such that t(n) = p.

Let us first analyze the case N2[max] = ∅. In this case, we have u(N ′) ∈ N ′+x (because

the max node, which is necessarily of type u, has disappeared in N2). Then,

– Either n ∈ N−x.

In this case, we know that for all (∅,⊗, N ′
s) ∈ Sons(N

′[max]),

(n ∈ N ′[¬max] ∪N ′
s) ∨ (sc(n) ⊂ sc(u(N ′)))

If n ∈ N ′[¬max], then, as x /∈ sc(n), we have n ∈ N ′−x, hence n ∈ N2.

Otherwise, if n ∈ N ′
s, then sc(n) ⊂ sc(u(N ′) ∪ Ve(N ′[max])). As t(n) = p, one can

infer that sc(n)∩Ve(N ′[max]) = ∅. Therefore, sc(n) ⊂ sc(u(N ′)). As u(N ′) ∈ N ′+x,

we can infer that sc(n) ⊂ sc(N ′+x). As x /∈ sc(n), this entails that sc(n) ⊂

sc(RR((⊕x,⊗, N ′+x))), i.e. sc(n) ⊂ sc(u(N2)).

– Or n = RR((⊕x,⊗, N+x)).

The recurrence assumption implies that for all na ∈ N+x, for all (∅,⊗, N ′
s) ∈

Sons(N ′[max]),

(na ∈ N
′[¬max] ∪N ′

s) ∨ (sc(na) ⊂ sc(u(N
′)))

In both cases, as x ∈ sc(na), we can infer that sc(na) ⊂ sc(N ′+x). Consequently,

sc(N+x) ⊂ sc(N ′+x). This implies that sc(n) ⊂ sc(u(N2)).

Otherwise, N2[max] 6= ∅. In this case, we have N2[max] = {u(N2)} = N ′[max] = u(N ′).

– Either n ∈ N−x.

Let (∅,⊗, Ns2) ∈ Sons(N2[max]). Then, (∅,⊗, Ns2) ∈ Sons(N ′[max]), which im-

plies, as n ∈ N , that (n ∈ N ′[¬max] ∪ Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))). Given that

N ′[¬max] = (N2[¬max]−{RR((⊕x,⊗, N ′+x))})∪N ′+x[¬max] and that x /∈ sc(n),

this entails that n ∈ N2[¬max]. Therefore, (n ∈ N2[¬max] ∪ Ns2) ∨ (sc(n) ⊂

sc(u(Ns2))).

– Or n = RR((⊕x,⊗, N+x)).

Let (∅,⊗, Ns2) ∈ Sons(N2[max]). Then, (∅,⊗, Ns2) ∈ Sons(N
′[max]), which im-

plies that for all na ∈ N+x, (na ∈ N ′[¬max] ∪Ns2) ∨ (sc(na) ⊂ sc(u(Ns2))).

As x ∈ sc(na) and x /∈ sc(u(Ns2)) (because N2[max] 6= ∅), we can infer that

na ∈ N ′[¬max], and therefore na ∈ N ′+x[¬max], and therefore na ∈ N ′+x. This

entails that N+x ⊂ N ′+x.

Moreover, if nb ∈ N ′+x, then nb ∈ N ′+x[¬max]. The recurrence assumption implies

that nb ∈ N+x or sc(nb) ⊂ sc(u(N)). As x ∈ sc(nb) and x /∈ sc(u(N)) (because

t(RR((⊕x,⊗, N+x))) = p), this entails that nb ∈ N+x, hence N ′+x ⊂ N+x.

Therefore, N+x = N−x, which entails that n ∈ N2.

This proves the required result for the case N [max] = ∅ and N ′[max] 6= ∅.

3. If N [max] 6= ∅ and N ′[max] = ∅

In this case, N2[max] = ∅. We analyze two cases, depending on whether N1[max] = ∅

or not.

First, if N1[max] = ∅, then, as N [max] 6= ∅, we have N [max] ⊂ N+x, or equivalently

x ∈ sc(u(N)). Let n ∈ N1 such that t(n) = p. We must show that (n ∈ N2) ∨ (sc(n) ⊂

sc(u(N2))).

B.5. PROOFS OF CHAPTER 7 241

– Either n ∈ N−x

In this case, we know that n ∈ N [¬max] (because x ∈ N [max]). The recurrence

assumption therefore implies that (n ∈ N ′)∨(sc(n) ⊂ sc(u(N ′))), i.e. (n ∈ N ′−x)∨

(sc(n) ⊂ sc(u(N ′))), which entails that (n ∈ N2) ∨ (sc(n) ⊂ sc(u(N ′))). As x /∈

sc(n), it is not hard to infer that sc(n) ⊂ sc(u(N2)). As a result, (n ∈ N2)∨(sc(n) ⊂

sc(u(N2))).

– Or n = RR((⊕x,⊗, N
+x))

This node cannot be of type p, otherwise we would not have N1[max] = ∅.

Second, let us assume that N1[max] 6= ∅. Then, N1[max] = N [max] = {u(N)} =

{u(N1)}, and x /∈ sc(u(N)).

Let (∅,⊗, Ns1) ∈ Sons(N1[max]). Then, (∅,⊗, Ns1) ∈ Sons(N [max]). This implies that

if n ∈ N [¬max] ∪Ns1 and t(n) = p, then (n ∈ N ′) ∨ (sc(n) ⊂ sc(u(N ′))).

– If n ∈ N−x[¬max] ∪ Ns1, then x /∈ sc(n), and therefore (n ∈ N ′+x) ∨ (sc(n) ⊂

sc(u(N2))), which implies that (n ∈ N2) ∨ (sc(n) ⊂ sc(u(N2))).

– Otherwise, if n ∈ (N1[¬max]∪Ns1)−(N−x[¬max]∪Ns1), then this means that n ∈

N1[¬max]−N−x[¬max], i.e. n ∈ (N1−N−x)[¬max], i.e. n = RR((⊕x,⊗, N+x)).

Does (n ∈ N2)∨ (sc(n) ⊂ sc(u(N2))) hold? Given that N1[max] 6= ∅, we know that

N+x[¬max] = N+x. Due to the recurrence assumption, this enables us to infer

that for all na ∈ N+x, (na ∈ N ′+x) ∨ (sc(na) ⊂ sc(u(N ′))).

∗ If x ∈ sc(u(N ′)), then one can directly infer that sc(n) ⊂ sc(u(n2)).

∗ Otherwise, x /∈ sc(u(N ′)). In this case, for all na ∈ N+x, (na ∈ N ′+x),

which means that N+x ⊂ N ′+x. Conversely, let nb ∈ N ′+x. The recur-

rence assumption enables us to infer that given (∅,⊗, Ns) ∈ Sons(N [max]), i.e.

given (∅,⊗, Ns) ∈ Sons(N1[max]), we have (nb ∈ N [¬max] ∪ Ns) ∨ (sc(nb) ⊂

sc(u(N))). As x ∈ sc(nb) and x /∈ sc(u(N)) (because otherwise, we would have

N1[max] = ∅), we have nb ∈ N [¬max], and therefore nb ∈ N+x[¬max], hence

nb ∈ N+x. As a result, N ′+x = N+x.

As N+x = N ′+x, we obtain n ∈ N2.

This shows that the property hold at step k + 1 when N [max] 6= ∅ and N ′[max] = ∅.

4. If N [max] 6= ∅ and N ′[max] 6= ∅

In this case, we can have N1[max] = ∅ or not and N2[max] = ∅ or not: we must analyze

four cases.

(a) Case 1: N1[max] = N2[max] = ∅

In this case, we know that x ∈ sc(u(N)) and x ∈ sc(u(N)).

Let n ∈ N1 such that t(n) = p.

– Either n ∈ N−x

In this case, n ∈ N [¬max]. The recurrence assumption implies that given

(∅,⊗, N ′
s) ∈ Sons(N

′[max]), we have (n ∈ N ′[¬max]∪N ′
s)∨(sc(n) ⊂ sc(u(N ′

s))).

As x ∈ sc(N [max]) and N [max] = {u(N)}, this allows us to write, if n /∈

N ′[¬max], that sc(n) ⊂ sc(u(N2)). Otherwise, if n ∈ N ′[¬max], then we can

write n ∈ N ′−x[¬max], which implies that n ∈ N2.

242 APPENDIX B. PROOFS

As a result, (n ∈ N2) ∨ (sc(n) ⊂ sc(u(N2))).

– Or n = RR(⊕x,⊗, N
+x)

This case is impossible because as N1[max] = ∅, we have N [max] ∈ N+x, and

hence t(n) = u.

(b) Case 2: N1[max] = ∅ and N2[max] 6= ∅

In this case, x ∈ sc(u(N)) and N2[max] = N ′[max] = {u(N)} = {u(N2)} and

x /∈ sc(u(N)).

Let n ∈ N1 such that t(n) = p and let (∅,⊗, Ns2) ∈ Sons(N2[max]) (we also have

(∅,⊗, Ns2) ∈ Sons(N ′[max])). Does (n ∈ N2[¬max] ∪Ns2) ∨ (sc(n) ⊂ sc(u(Ns2)))

hold?

As N1[max] = ∅ and N [max] 6= ∅, one can infer that t(RR((⊕x,⊗, N+x))) = u,

hence if n ∈ N1 and t(n) = p, then n ∈ N−x, and therefore n ∈ N−x[¬max]. The

recurrence assumption implies that (n ∈ N ′[¬max] ∪Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))).

As x /∈ sc(n), this entails that (n ∈ N ′−x[¬max]∪Ns2)∨ (sc(n) ⊂ sc(u(Ns2))), and

therefore (n ∈ N ′−x ∪Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))), and therefore (n ∈ N2 ∪Ns2) ∨

(sc(n) ⊂ sc(u(Ns2))). Hence the required result.

(c) Case 3: N1[max] 6= ∅ and N2[max] = ∅

In this case, x ∈ sc(u(N ′)), N1[max] = N [max] = {u(N1)} = {u(N2)}, and x /∈

sc(u(N)).

Let (∅,⊗, Ns1) ∈ Sons(N1[max]) and let n ∈ N1[¬max] ∪Ns1 such that t(n) = p.

Does (n ∈ N2) ∨ (sc(n) ⊂ sc(u(N2))) holds?

– If n ∈ N−x

In this case, we have (∅,⊗, Ns1) ∈ Sons(N [max]) and n ∈ N−x[¬max] ∪

Ns1 ⊂ N [¬max] ∪ Ns1. Due to the recurrence assumption, this implies that

given (∅,⊗, N ′
s) ∈ Sons(N ′[max]), we have (n ∈ N ′[¬max] ∪ N ′

s) ∨ (sc(n) ⊂

sc(u(N ′
s))), i.e. (n ∈ N ′[¬max]) ∨ (n ∈ N ′

s) ∨ (sc(n) ⊂ sc(u(N ′
s))).

If n ∈ N ′[¬max], then n ∈ N ′−x[¬max], and therefore n ∈ N2. Other-

wise, (n ∈ N ′
s) ∨ (sc(n) ⊂ sc(u(N ′

s))). Hence, sc(n) ⊂ sc(N ′
s). As u(N2) =

RR((⊕x,⊗, N ′+x)) and N ′[max] ⊂ N+x, this allows us to infer that sc(n) ⊂

sc(u(N2)).

As a result, (n ∈ N2) ∨ (sc(n) ⊂ sc(u(N2))).

– Otherwise, n ∈ (N1[¬max] ∪ Ns1) − N−x = (N1[¬max] − N−x) ∪ Ns1 =

{RR((⊕x,⊗, N+x))} ∪Ns1.

As N1[max] 6= ∅, this means that for every na ∈ N+x, we have na ∈ N [¬max]

and t(na) = p. Due to the recurrence assumption, this entails that given

(∅,⊗, N ′
s) ∈ Sons(N ′[max]), we have (na ∈ N ′[¬max] ∪ N ′

s) ∨ (sc(na) ⊂

sc(u(N ′
s))). As x ∈ sc(na), we can have neither na ∈ N ′

s, nor sc(na) ⊂

sc(u(N ′
s)) (since otherwise, we would have N ′[max] = ∅). Therefore, na ∈

N ′[¬max], and also na ∈ N ′+x[¬max]. This implies that N+x ⊂ N ′+x.

Let nb ∈ N ′+x. Then, as N ′[max] 6= ∅, we can write nb ∈ N ′+x[¬max]. The

recurrence assumption entails that given (∅,⊗, Ns) ∈ Sons(N [max]), we have

(nb ∈ N [¬max] ∪Ns) ∨ (sc(nb) ⊂ sc(u(Ns))).

B.5. PROOFS OF CHAPTER 7 243

If there exists nb ∈ N ′+x such that nb ∈ Ns or sc(nb) ⊂ sc(u(Ns)), then we can

directly infer that sc(n) ⊂ sc(u(N2)) (because u(N2) = RR((⊕x,⊗, N ′+x)) and

sc(Ns) ⊂ sc(N ′+x)).

Otherwise, we obtain that for all nb ∈ N ′+x, nb ∈ N [¬max], and therefore

nb ∈ N+x[¬max], and therefore nb ∈ N+x. In this case, N+x = N ′+x, which

entails that n ∈ N2.

Hence, (n ∈ N2) ∨ (sc(n) ⊂ sc(u(N2))) is always satisfied.

(d) Case 4: N1[max] 6= ∅ and N2[max] 6= ∅

In this case, x /∈ sc(u(N)) and x /∈ sc(u(N ′)).

Let (∅,⊗, Ns1) ∈ Sons(N1[max]) and let (∅,⊗, Ns2) ∈ Sons(N2[max]). Let n ∈

N1[¬max] ∪Ns1 such that t(n) = p.

– If n ∈ N−x

Then, n ∈ N [¬max]∪Ns1 and t(n) = p. As N1[max] = N [max] and N2[max] =

N ′[max], the recurrence assumption enables us to infer that if n ∈ N [¬max] ∪

Ns1 and t(n) = p, then (n ∈ N ′[¬max] ∪ Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))), which

implies that (n ∈ N ′−x[¬max] ∪ Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))), and therefore

(n ∈ N2 ∪Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))).

– Otherwise, n = RR((⊕x,⊗, N+x))

If na ∈ N
+x, then na ∈ N [¬max] (because otherwise, we would haveN1[max] =

∅). The recurrence assumption entails that (na ∈ N ′[¬max]∪Ns2)∨ (sc(na) ⊂

sc(u(Ns2))). As x ∈ sc(na), neither na ∈ Ns2 , nor sc(na) ⊂ sc(u(Ns2)) can

be satisfied (otherwise, we should have N2[max] = ∅). Hence, na ∈ N ′[¬max].

This implies that na ∈ N ′+x[¬max], and therefore na ∈ N ′+x. As a result,

N+x ⊂ N ′+x.

Similarly, it is possible to prove that for all nb ∈ N ′+x, we have nb ∈ N+x, and

hence N+x = N ′+x. This entails that n ∈ N2.

As a result, (n ∈ N2[¬max] ∪Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))).

If function simplify is used, then the result still holds because as soon as a simplification occurs

in a computation node of type u, then the same simplification can be done in computation

nodes of type p.

• Case opx = maxx, with max 6= ⊕

If N
+x = ∅, then the property is obviously satisfied at the next step.

Otherwise, we have CNDAGk+1 = (sov,⊕, {(∅,⊗, N), N ∈ Nk+1}) with

Nk+1 = N
−x
k ∪ {N0 ∪ {RRmax((maxx,⊕, {(∅,⊗, N −N0), N ∈ N

+x}))}}

where N0 = ∩N∈N+x N−x.

Let N1, N2 ∈ Nk+1.

– If N1, N2 ∈ N
−x
k , then the property is directly satisfied.

– If N1 ∈ N
−x
k and N2 = N0 ∪ {RRmax((maxx,⊕, {(∅,⊗, N −N0), N ∈ N

+x}))}.

In this case, N2[max] 6= ∅.

244 APPENDIX B. PROOFS

∗ If N1[max] = ∅

Let n ∈ N1 such that t(n) = p. Let (∅,⊗, Ns2) ∈ Sons(N2[max]).

· Either Ns2 = N −N0 with N ∈ N
+x
k , and (N −N0)[max] = ∅. Then, we have

N [max] = ∅. According to the recurrence assumption, this implies that (n ∈

N)∨ (sc(n) ⊂ sc(u(N))). Therefore, (n ∈ N0∪ (N −N0))∨ (sc(n) ⊂ sc(u(N))).

AsN0 = N2[¬max] andN−N0 = Ns2, we have (n ∈ N2[¬max]∪Ns2)∨(sc(n) ⊂

sc(u(N))).

As sc(u(N)) = sc(u(N −N0)) = sc(u(Ns2)), this entails that (n ∈ N2[¬max]∪

Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))).

· OrNs2 = (N−N0)[¬max]∪Ns withN [max] 6= ∅ and (∅,⊗, Ns) ∈ Sons(N [max]).

The recurrence assumption implies that (n ∈ N [¬max]∪Ns)∨(sc(n) ⊂ sc(u(Ns))).

First, we have u(Ns2) = u((N − N0)[¬max] ∪ Ns) = u(Ns). Second, we

have N [¬max] ∪ Ns = N0 ∪ Ns2 = N2[¬max] ∪ Ns2. This implies that

(n ∈ N2[¬max] ∪Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))).

Therefore, in both cases, (n ∈ N2[¬max] ∪Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))).

∗ Otherwise, N1[max] 6= ∅

Let (∅,⊗, Ns1) ∈ Sons(N1[max]) and (∅,⊗, Ns2) ∈ Sons(N2[max]). Let n ∈

N1[¬max] ∪Ns1.

Does (n ∈ N2[¬max] ∪Ns2) ∨ (sc(n) ⊂ sc(u(Ns2))) hold?

· Either Ns2 = N − N0 with N ∈ N
+x
k with (N − N0)[max] = ∅ Then, we

have N [max] = ∅. According to the recurrence assumption, this implies that

(n ∈ N) ∨ (sc(n) ⊂ sc(u(N))). As N = N0 ∪ Ns2 = N2[¬max] ∪ Ns2 and

u(N) = u(Ns2), this entails the required result.

· OrNs2 = (N−N0)[¬max]∪Ns withN [max] 6= ∅ and (∅,⊗, Ns) ∈ Sons(N [max]).

The recurrence assumption implies that (n ∈ N [¬max]∪Ns)∨(sc(n) ⊂ sc(u(Ns))).

In this case, as Ns2 = (N −N0)[¬max] ∪Ns = (N [¬max]∪Ns)−N0, we have

N [¬max] ∪ Ns = Ns2 ∪ N0 = Ns2 ∪ N2[¬max]. Moreover, as in the previous

case, it can be shown that u(Ns) = u(Ns2), which implies the required result.

– If N1 = N0 ∪ {RRmax((maxx,⊕, {(∅,⊗, N − N0), N ∈ N
+x}))} and N2 ∈ N

−x
k . The

result is proved in a similar way as the previous case.

• Case opx = minx, with min 6= ⊕

Same proof as in the case opx = maxx.

As a result, we have prove the invariant for the root. Thanks to this invariant, it is possible

to infer that for the internal max node (maxS ,⊕, {(∅,⊗, N), N ∈ N}) (which are recomposed, i.e.

which satisfy N [max] = ∅), case (C1) holds, i.e. for all N1, N2 ∈ N, [(n ∈ N)∧ (t(n) = p)]→ [(n ∈

N ′) ∨ (sc(n) ⊂ sc(u(N ′)))].

Proof of Theorem 7.39 (page 130). The only nodes for which a justification is needed are the max

computation nodes (if max 6= ⊕) and the min computation nodes (if min 6= ⊕). We prove the

result for max computation nodes only.

Let n = (maxS ,⊕, {(∅,⊗, N), N ∈ N}) be a max computation node.

B.5. PROOFS OF CHAPTER 7 245

Let us consider the graphical modelM = (sc(n)∪{S}, {val(u(N)), N ∈ N}). Let (T, V (.),Φ(.))

be a cluster-tree decomposition of M given sc(n) − S. Let r be the root of this decomposition.

We have val(r) = maxS(⊕N∈N val(u(N))). Let N ∈ N and let n ∈ N such that t(n) = p. We

know that S ∩ sc(n) = ∅. Therefore, if we add levels in the cluster-tree decomposition where

each val(u(N)) is combined with val(N − {u(N)}), the value of the new root r′ is val(r′) =

maxS(⊕N∈N((⊗n′∈N−{u(N)} val(n
′))⊗val(u(N))) = maxS(⊕N∈N(⊗n′∈N val(n

′)) = val(n). Then,

moving some weights is the structure does not change the result.

Concerning optimal decision rules, the argument is still that argmaxx U
+x = argmaxx(U

−x ⊕

U+x).

Proof of Proposition 7.48 (page 135). Let C denote the set of clusters of the MCDAG. Each cluster

c of the MCDAG must perform |Sons(c)|+ |Φ(c)| − 1 combination operations for each assignment

of its variables. Therefore, the computations performed by one cluster c are time O((|Φ(c)| +

|Sons(c)| − 1) · d1+wCNDAG). Summing on all clusters of the MCDAG gives a time complexity

O((
∑

c∈C(|Φ(c)| + |Sons(c)| − 1)) · d1+wCNDAG).

Let us show that
∑

c∈C(|Φ(c)| + |Sons(c)| − 1) ≤ 2 · (1 + |P |) · (1 + |U |):

• First, the number of scoped function in the MCDAG is lesser than |P | · |U | + |U |, because

each utility functions appears exactly once in the MCDAG and each plausibility function can

be duplicated |U | times. Hence
∑

c∈C |Φ(c)| ≤ |P | · |U |+ |U |.

• Second, let Cp and Cu denote the sets of clusters of type p and u respectively (a cluster of

type p involves only plausibility functions, whereas a cluster c is of type u involves a utility

function either in Φ(c) or in its descendants). Given a cluster c, let us denote Sonsp(c) and

Sonsu(c) the sets of sons of c which are of type p and u respectively. Then,
∑

c∈C(|Sons(c)| − 1)

=
∑

c∈Cp
(|Sons(c)| − 1) +

∑

c∈Cu
(|Sons(c)| − 1)

=
∑

c∈Cp
(|Sonsp(c)| − 1) +

∑

c∈Cu
(|Sons(c)| − 1)

(because the sons of clusters of type p are of type p)

≤ (|P | − 1) +
∑

c∈Cu
(|Sons(c)| − 1)

(because the structure obtained when keeping only clusters of type p is a forest

which has at most |P | leafs)

≤ (|P | − 1) +
∑

c∈Cu
(|Sonsu(c)| − 1) +

∑

c∈Cu
|Sonsp(c)|

≤ (|P | − 1) + (|U | − 1) +
∑

c∈Cu
|Sonsp(c)|

(because the structure obtained when keeping only clusters of type u is a tree

which has at most |U | leafs)

≤ (|P | − 1) + (|U | − 1) + |P | · |U |

The last inequality holds for several reasons. First, if one keeps only the clusters in Cp, then

one obtains a forest with at most |P | trees (because there are at most |P | leaves). Second,

each of the tree in this forest is connected at most once with each branch of the tree obtained

by keeping only clusters in Cu (because a plausibility cluster cannot weight twice the same

branch). As the tree obtained by keeping only clusters in Cu has at most |U | different branches

(because it has at most |U | leaves), the number of connections between one cluster in Cp and

one cluster in Cu is lesser than |P | · |U |, which means that
∑

c∈Cu
|Sonsp(c)| ≤ |P | · |U |.

246 APPENDIX B. PROOFS

As a result,
∑

c∈C(|Φ(c)| + |Sons(c)| − 1) ≤ |P | · |U | + |U | + (|P | − 1) + (|U | − 1) + |P | · |U |,

which implies that

∑

c∈C

(|Φ(c)|+ |Sons(c)| − 1) ≤ 2 · (1 + |P |) · (1 + |U |) = O((1 + |P |) · (1 + |U |))

Thus, the time complexity is O((1 + |P |) · (1 + |U |) · d1+wCNDAG).

The space complexity is O((|P ∪ U |) · d1+wCNDAG) because the scope functions manipulated

have a scope of size lesser than 1 + wCNDAG.

Proof of Theorem 7.49 (page 135). Let o ∈ lin(�Sov). We denote by Πk(o) the set of potentials

obtained at step k with the elimination order o. More precisely, Π0(o) = {(Pi, 1u)|Pi ∈ P} ∪

{(1p, Ui)|Ui ∈ U} and if x = o(k) is the kth variable eliminated in o, Πk+1(o) = (Πk(o)−Πk(o)
+x)∪

{πck+1(o)}, where πck+1(o) is the potential created from step k to step k+1 and equal to πck+1(o) =

op(x)(⊠π∈Πk(o)+x π).

Let us show that for all k ∈ {0, . . . , |Sov|}, for all (∅,⊗, N) ∈ Sons(CNDAGk(Q, o)), and for

all n ∈ N , there exists π ∈ Πk(o) such that sc(n) ⊂ sc(π).

The property holds for k = 0. Indeed, let (∅,×, N) ∈ Sons(CNDAG0(Q, o)) and let n ∈ N .

Then, either n = Pi ∈ P or n = Ui ∈ U . In the first case, sc(n) ⊂ sc((Pi, 1u)). In the second case,

sc(n) ⊂ sc((1p, Ui)).

Assume that the property holds at step k. Let CNDAGk(Q, o) = (sov.opx,⊕, {(∅,⊗, N), N ∈

N}).

We analyze several cases, depending on the elimination performed at step k:

• Case opx = ⊕x

Let N ∈ N. If no simplification is used, the computation node created from N is (∅,⊗, N−x∪

{RR((⊕x,⊗, N+x))}).

Let us show that for all n ∈ N−x ∪ {RR((⊕x,⊗, N+x))}, there exists π ∈ Πk+1(o) such that

sc(n) ⊂ sc(π).

– Let n ∈ N−x. Then, ∃π ∈ Πk(o), sc(n) ⊂ sc(π) (because the property holds at step

k). Given that x /∈ sc(n), (1) either x /∈ sc(π): in this case, π ∈ Πk+1(o), (2) or

x ∈ sc(π): in this case, π is combined with other potentials to give πck+1(o) ∈ Πk+1(o),

and (sc(π) − {x}) ⊂ sc(πck+1(o)); as sc(n) ⊂ sc(π) and x /∈ sc(n), it follows that

sc(n) ⊂ sc(πck+1(o)).

In both cases, ∃π ∈ Πk+1(o), sc(n) ⊂ sc(π).

– Let n = RR((⊕x,⊗, N+x)). For all n′ ∈ N+x, there exists π(n′) ∈ Πk(o) such that

sc(n′) ⊂ sc(π(n′)) (and namely x ∈ sc(π(n′))). The potential created at step k + 1

looks like πck+1(o) = ⊞x
(
⊠π∈Πk(o)+xπ

)
. As {π(n′), n′ ∈ N+x} ⊂ Πk(o)

+x, this entails

that (sc(N+x)− {x}) ⊂ sc(πck+1(o)), i.e. sc(n) ⊂ sc(πck+1(o)). If the simplification rule

is used, then the property still holds because function simplify can only remove variables

from a scope.

• Case opx = maxx

B.6. PROOFS OF CHAPTER 8 247

Let us first analyze the sons of the root of CNDAGk(Q, o) non impacted by DRmax, which

look like (∅,⊗, N) with x /∈ sc(N). Let n ∈ N . Then, ∃π ∈ Πk(o), sc(n) ⊂ sc(π). In

Πk+1(o), either π is still here or it has been combined with other potentials to give πck+1(o).

In both cases, there exists π′ ∈ Πk+1(o) such that sc(n) ⊂ sc(π′).

Next, we analyze the node which may be created to eliminate x, which looks like (∅,×, N1 ∪

{RRmax((maxx,⊕, {(∅,⊗, N −N1), N ∈ N
+x}))}).

– If n ∈ N1, then a reasoning similar to the previous one enables to prove that there exists

π ∈ Πk+1(o) such that sc(n) ⊂ sc(π).

– If n = RRmax((maxx,+, {(∅,×, N −N1), N ∈ N
+x})).

We know that sc(n) = sc({u(N−N1), N ∈ N
+x})−{x} = sc({u(N), N ∈ N

+x})−{x},

thanks to Proposition 7.44. For each N ∈ N
+x, there exists π ∈ Πk(o) such that

sc(u(N)) ⊂ sc(π), thanks to the recurrence assumption. Moreover, x ∈ sc(u(N)),

since otherwise, as x /∈ sc(P (N)), this would contradict N ∈ N
+x. This implies that

sc({u(N), N ∈ N
+x}) ⊂ sc(Πk(o)

+x), hence sc(n) ⊂ sc(πck+1(o)).

Therefore, the property holds at step k + 1.

Then, let o∗ ∈ lin(�Sov) be an elimination order such that wG(�Sov) = wG(o∗). If the cluster-

tree decompositions transforming CNDAG(Q) = CNDAG(Q, o∗) into a MCDAG use the elimi-

nation order given by o∗ (which is always possible), then, according to the previous result, we now

that the width w of this MCDAG satisfies w ≤ maxk∈{0,...,|Sov|−1} |sc(π
c
k+1(o

∗))|, and therefore

that w ≤ wG(�Sov). As wCNDAG(Q) ≤ w, this entails that wCNDAG(Q) ≤ wG(�Sov).

B.6 Proofs of Chapter 8

Proof of Proposition 8.5 (page 144). Item (a) holds because by definition of val(c, A, V,Φ), we have

val(r, ∅, V (r),Φ(r)) = val(r) = Ans(Q).

Let x ∈ V . Then,

val(c, A, V,Φ)

= ⊕cV
(
(⊗cϕ∈Φ ϕ(A))⊗c

(
⊗cs∈Sons(c) val(s)(A)

))

= ⊕cx⊕cV−{x}

(
(⊗cϕ∈Φ ϕ(A))⊗c

(
⊗cs∈Sons(c) val(s)(A)

))

= ⊕cx
(
(⊗cϕ∈Φ0 ϕ(A))⊗c

(
⊕cV−{x}

(
(⊗cϕ∈Φ−Φ0 ϕ(A))⊗c

(
⊗cs∈Sons(c) val(s)(A)

))))

= ⊕ca∈dom(x) ((⊗cϕ∈Φ0 ϕ(A.(x, a)))⊗c val(c, A.(x, a), V − {x},Φ− Φ0))

Therefore, item (b) holds. Last, item (c) holds because by definition of val(s)(A), we have

val(s)(A) = val(s,A, V (s)− V (c),Φ(s)).

Proof of Proposition 8.6 (page 145). Directly entailed by Proposition 8.5.

Proof of Proposition 8.7 (page 145). Each cluster c is considered at most µ · dαc times, where µ

is the number of paths from the root to c and αc is the maximum number of variables appearing

in such paths. The variables in c can be assigned with d|V (c)| assignments. For each of these

assignments, |Φ(c)| + |Sons(c)| − 1 combination operations must be performed.

248 APPENDIX B. PROOFS

Therefore, the global time complexity is O(
∑

c∈C(µ · dαc · d|V (c)| · (|Φ(c)|+ |Sons(c)| − 1))). As

α + |V (c)| is lesser than the height h of the MCDAG, this time complexity can also be written

O(
∑

c∈C(µ · dh · (|Φ(c)| + |Sons(c)| − 1))).

As shown in the proofs of Propositions 7.26 and 7.48,
∑

c∈C(|Φ(c)|+ |Sons(c)|−1)) ≤ 2 · |P ∪U |

in the semiring case and
∑

c∈C(|Φ(c)| + |Sons(c)| − 1) ≤ 2 · (1 + |P |) · (1 + |U |) in the semigroup

case, hence the argued time complexity.

The linear space complexity result is straightforward. Indeed, as the MCDAG is of height h,

we need to record the current domain of at most h variables simultaneously. Hence, recording the

stack of current domains is O(h · d). Recording V − {x} or V (s) − V (c) for each recursive call

of TS-mcdag is also O(h), and recording Φ − Φ0 or Φ(s) for each recursive call of TS-mcdag is

O(h ·m). Recording the current assignment is also O(h). As it can be shown that a given cluster

has less than m sons, recording the set of unexplored sons of a cluster is O(h ·m). In the end, the

space complexity of TS-mcdag is O(h · (d+m)).

Proof of Proposition 8.8 (page 147). Directly entailed by Proposition 8.5, and by the fact that

given a cluster c and a cluster s ∈ Sons(c), val(s)(A) = val(s)(A′) for all assignments A, A′ of c

and its ascendants such that A↓c∩s = A′↓c∩s.

Proof of Proposition 8.9 (page 147). Thanks to caching, the value of each cluster c is computed

only once per assignment of its variables. There are at most dw+1 assignments of its variables.

For each of these assignments, the cluster must perform |Φ(c)| + |Sons(c)| − 1 combination oper-

ations. Therefore, the time complexity is O((
∑

c∈C(|Φ(c)| + |Sons(c)| − 1)) · dw+1). The factor
∑

c∈C(|Φ(c)|+ |Sons(c)| − 1) can be bounded as in the proof of Propositions 7.26 and 7.48, which

provides the given time complexity.

The space complexity is given by the space required for caching. For each separator, at most ds

elements are recorded. Each of these elements takes a space s+1 (in order to record the assignment

and its value). Finally, if the MCDAG containsN nodes, then there areN−1 separators. Therefore,

the space complexity is O(N · s · ds).

Proof of Lemma 8.12 (page 154). Let us assume that function bound is sound and complete, and

that function evalSons is sound and complete for all clusters c of depth h. Let us assume that

evalClusterMax (c, A, V,Φ,B) is called, where c is a cluster of height h. Does it returns an evaluation

of val(c, A, V,Φ) bounded by B?

The answer is yes if |V | = 0, because if there are no more variables to assign in the current

cluster (test V = ∅), then evalClusterMax returns evalSons(c, A, ∅,Φ,B), which is an evaluation of

val(c, A, ∅,Φ) bounded by B according to our initial hypothesis.

Assume that the answer is yes for all sets of variables of size k. Let us consider a set of variables

V of size k + 1. In this case, the set V of unassigned variables is not empty. Let x ∈ V and let

Φ0 = {ϕ ∈ Φ, sc(ϕ) ∩ (V − {x}) = ∅} be the set of scoped functions in Φ whose scope will be

assigned when x will be assigned. We can use the following formulas, which hold directly from

Definition 8.4:

val(c, A, V,Φ) = max
a∈dom(x)

val(c, A.(x, a), V − {x},Φ)

B.6. PROOFS OF CHAPTER 8 249

and, for all a ∈ dom(x),

val(c, A.(x, a).V − {x},Φ) =

(

⊗c
ϕ∈Φ0

ϕ(A, (x, a))

)

⊗c val(c, A.(x, a), V − {x},Φ− Φ0)

In order to compute an evaluation of maxa∈dom(x) val(c, A.(x, a).V − {x},Φ) bounded by B,

values in dom(x) are considered stepwise. At each iteration of the while loop, d is the set of values

of x which have not been considered yet.

Let us consider the following set of properties, denoted PW (properties at the beginning of each

iteration of the while loop):

• (lb, ub) is an evaluation of maxa′∈dom(x)−d val(c, A.(x, a
′), V − {x},Φ) bounded by B

• (LB′ � LB) ∧ ((LB′ = LB) ∨ (LB′ = lb⊗ ⊗ lb⊕ lb⊕))

PW holds before entering the while block, since at that point, we have LB′ = LB and lb =

ub =⊥= maxa′∈∅ val(c, A.(x, a
′), V − {x},Φ).

Assume that PW holds at the beginning of one iteration of the while loop. Let us prove that

it holds at the end of the iteration of the while loop, i.e. that

• first, (max(lb, val0⊗c lb′),max(ub, val0⊗cub′)) is an evaluation of maxa′∈dom(x)−(d∪{a}) val(c,

A.(x, a′), V −{x}, Φ) bounded by B, where a is the value in d chosen during the iteration of

the while loop;

• and second, LB′ � LB and either LB′ = LB, or LB′ = lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕.

It is straightforward that the second condition holds at the end of the while loop iteration,

because the unique instruction updating LB′ is “LB′ ← max(LB′, lb⊗⊗ lb⊕ lb⊕)”, and it appears

just after the instruction “lb ← max(lb, val0 ⊗c lb′)”. Therefore, we only have to check whether

the first condition is satisfied.

During the iteration of the while loop, val0 = ⊗cϕ∈Φ0 ϕ(A, (x, a)) is computed. A lower bound

lb′ and an upper bound ub′ on val(c, A.(x, a).V − {x},Φ − Φ0) are computed thanks to function

bound, and they can be updated by the call to evalClusterMax (c, A.(x, a), V −{x},Φ−Φ0). As func-

tion bound is sound and complete and as |V −{x}| = k, one can infer that lb′ � val(c, A.(x, a).V −

{x},Φ−Φ0) � ub′. As val(c, A.(x, a), V − {x},Φ) = val0 ⊗c val(c, A.(x, a).V − {x},Φ− Φ0), this

implies that val0⊗c lb′ and val0⊗c ub′ are lower and upper bounds for val(c, A.(x, a), V −{x},Φ).

Moreover, lb � maxa∈dom(x)−d val(c, A, (x, a), V − {x},Φ) � ub because of PW. This makes

it possible to infer that max(lb, val0 ⊗c lb′) � maxa′∈dom(x)−(d−{a}) val(c, A, (x, a
′), V − {x},Φ) �

max(ub, val0 ⊗c lb′). The main conclusion of this is that in order to prove that PW is satisfied at

the end of the iteration of the while loop, it suffices to show that one of the following conditions

hold:

(BE1) max(lb, val0 ⊗c lb′) = max(ub, val0 ⊗c lb′);

(BE2) lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕ = ub⊗ ⊗max(ub, val0 ⊗c ub′)⊕ ub⊕;

(BE3) LB � ub⊗ ⊗max(ub, val0 ⊗
c ub′)⊕ ub⊕;

(BE4) UB � lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕.

250 APPENDIX B. PROOFS

Let us analyze more finely an iteration of the while loop. The algorithm achieves some tests

and may perform further computations concerning value a. Just after the “if” block, we have:

(a) if the conditions of the “if” block have not been satisfied, then this means that one of the

following conditions holds:

• val0 ⊗c lb′ = val0 ⊗c ub′;

• lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕ = ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕;

• LB′ � ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕

• UB � lb⊗ ⊗ (val0 ⊗
c lb′)⊕ lb⊕;

(b) if the conditions of the “if” block have been satisfied, then (lb′, ub′) is an evaluation of

val(c, A.(x, a), V − {x},Φ− Φ0) bounded by B′, because |V − {x}| = k.

If ⊗c = ⊗, then B′ = (LB′, UB, val0 ⊗ lb⊗, val0 ⊗ ub⊗, lb⊕, ub⊕), and therefore one of the

following conditions holds:

• lb′ = ub′;

• (val0 ⊗ lb⊗) ⊗ lb′ ⊕ lb⊕ = (val0 ⊗ ub⊗) ⊗ ub′ ⊕ ub⊕, i.e. lb⊗ ⊗ (val0 ⊗c lb′) ⊕ lb⊕ =

ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕;

• LB′ � (val0 ⊗ ub⊗)⊗ ub′ ⊕ ub⊕, i.e. LB′ � ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕;

• UB � (val0 ⊗ lb⊗)⊗ lb′ ⊕ lb⊕, i.e. UB � lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕.

If ⊗c = ⊕, then B′ = (LB′, UB, lb⊗, ub⊗, lb⊕ ⊕ lb⊗ ⊗ val0, ub⊕ ⊕ ub⊗ ⊗ val0), and therefore

one of the following conditions holds:

• lb′ = ub′;

• lb⊗ ⊗ lb′ ⊕ lb⊕ ⊕ lb⊗ ⊗ val0 = ub⊗ ⊗ ub′ ⊕ ub⊕ ⊕ ub⊗ ⊗ val0, which can also be written

lb⊗ ⊗ (val0 ⊗
c lb′)⊕ lb⊕ = ub⊗ ⊗ (val0 ⊗

c ub′)⊕ ub⊕;

• LB′ � ub⊗ ⊗ ub′ ⊕ ub⊕ ⊕ ub⊗ ⊗ val0, i.e. LB′ � ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕;

• UB � lb⊗ ⊗ lb′ ⊕ lb⊕ ⊕ lb⊗ ⊗ val0, i.e. UB � lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕.

Thus, in both cases (⊗c = ⊗ and ⊗c = ⊕), one of the following conditions holds:

• lb′ = ub′, and hence val0 ⊗c lb′ = val0 ⊗c ub′;

• lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕ = ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕;

• LB′ � ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕;

• UB � lb⊗ ⊗ (val0 ⊗
c lb′)⊕ lb⊕.

A synthesis of cases (a) and (b) shows that at the end of the “if” block, we have:

(val0 ⊗c lb′ = val0 ⊗c ub′)

∨(lb⊗ ⊗ (val0 ⊗
c lb′)⊕ lb⊕ = ub⊗ ⊗ (val0 ⊗

c ub′)⊕ ub⊕)

∨(LB′ � ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕)

∨(UB � lb⊗ ⊗ (val0 ⊗
c lb′)⊕ lb⊕)

(B.1)

B.6. PROOFS OF CHAPTER 8 251

As said previously, we also have:

val0 ⊗
c lb′ � val(c, A.(x, a), V − {x},Φ) � val0 ⊗

c ub′ (B.2)

Moreover, as PW holds at the beginning of the while loop iteration, we have, before the update

of lb and ub:

(lb = ub)

∨(lb⊗ ⊗ lb⊕ lb⊕ = ub⊗ ⊗ ub⊕ ub⊕)

∨(LB � ub⊗ ⊗ ub⊕ ub⊕)

∨(UB � lb⊗ ⊗ lb⊕ lb⊕)

(B.3)

and

lb � max
a′∈dom(x)−d

val(c, A.(x, a′), V − {x},Φ) � ub (B.4)

and

(LB′ � LB) ∧ ((LB′ = LB) ∨ (LB′ = lb⊗ ⊗ lb⊕ lb⊕)) (B.5)

In order to show that PW holds at the beginning of the next iteration of the while loop, let us

prove that the conjunction of Equations B.1 to B.5 implies BE1∨BE2∨BE3∨BE4. We analyze

different cases (we analyze the different cases provided by Equation B.1, and then subcases are

analyzed by following Equation B.3):

1. Case val0 ⊗c lb′ = val0 ⊗c ub′:

Using Equation B.2, this implies that val0 ⊗c lb′ = val(c, A.(x, a), V − {x},Φ) = val0 ⊗c ub′.

We analyze the different cases given by Equation B.3:

(a) If lb = ub

Then, max(lb, val0 ⊗c lb′) = max(ub, val0 ⊗c ub′), and hence BE1 holds.

(b) If lb⊗ ⊗ lb⊕ lb⊕ = ub⊗ ⊗ ub⊕ ub⊕

We analyze two cases:

• If val0 ⊗c ub′ � ub

Then, one can write lb⊗⊗ lb⊕ lb⊕ = ub⊗⊗max(ub, val0⊗c ub′)⊕ ub⊕ This implies

that lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕ � ub⊗ ⊗max(ub, val0 ⊗c ub′)⊕ ub⊕.

In another direction, as lb � ub, lb⊗ � ub⊗, lb⊕ � ub⊕, and lb′ � ub′, one can write

lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕ � ub⊗ ⊗max(ub, val0 ⊗c ub′)⊕ ub⊕.

Hence, lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕ = ub⊗ ⊗max(ub, val0 ⊗c ub′) ⊕ ub⊕, which

shows that BE2 holds.

• Otherwise, val0 ⊗c ub′ ≻ ub

Then, max(ub, val0 ⊗c ub′) = val0 ⊗c ub′. Moreover, we also have max(lb, val0 ⊗c

lb′) = val0 ⊗c lb′, because val0 ⊗c lb′ = val0 ⊗c ub′ ≻ ub � lb. This implies

that max(lb, val0 ⊗c lb′) = val0 ⊗c ub′ too. In other words, max(lb, val0 ⊗c lb′) =

max(ub, val0 ⊗c ub′), i.e. BE1 holds.

252 APPENDIX B. PROOFS

(c) If UB � lb⊗ ⊗ lb⊕ lb⊕

Then, UB � lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕, hence BE4 holds.

(d) If LB � ub⊗ ⊗ ub⊕ ub⊕

• If val0 ⊗c ub′ � ub

Then, LB � ub⊗ ⊗max(ub, val0 ⊗
c ub′)⊕ ub⊕, and therefore BE3 holds.

• Otherwise, val0 ⊗c ub′ ≻ ub

Then, max(ub, val0 ⊗c ub′) = val0 ⊗c ub′. Moreover, as val0 ⊗c ub′ = val0 ⊗c lb′,

one can write val0 ⊗c lb′ ≻ ub � lb, hence max(lb, val0 ⊗c lb′) = val0 ⊗c lb′ and

max(lb, val0 ⊗c lb′) = max(ub, val0 ⊗c ub′). This implies that BE1 holds.

2. Case lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕ = ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕.

(a) If lb = ub

• If val0 ⊗c ub′ � ub

Then max(ub, val0 ⊗
c ub′) = ub. Moreover, as val0 ⊗

c lb′ � val0 ⊗
c ub′ � ub =

lb, one can infer that max(lb, val0 ⊗c ub′) = lb. As lb = ub, this implies that

max(lb, val0 ⊗
c ub′) = max(ub, val0 ⊗

c ub′), hence BE1 holds.

• Otherwise, val0 ⊗c ub′ ≻ ub

Then, max(ub, val0 ⊗c ub′) = val0 ⊗c ub′, and therefore lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕ =

ub⊗⊗max(ub, val0⊗cub′)⊕ub⊕. This implies that lb⊗⊗max(lb, val0⊗c lb′)⊕ lb⊕ �

ub⊗ ⊗max(ub, val0 ⊗c ub′)⊕ ub⊕.

As lb � ub, lb′ � ub′, lb⊗ � ub⊗, and lb⊕ � ub⊕, the inverse inequality also holds.

Thus, lb⊗⊗max(lb, val0⊗c lb′)⊕ lb⊕ = ub⊗⊗max(ub, val0⊗c ub′)⊕ ub⊕, i.e. BE2

holds.

(b) If lb⊗ ⊗ lb⊕ lb⊕ = ub⊗ ⊗ ub⊕ lb⊕

Then, BE2 holds because

lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕ = max(lb⊗ ⊗ lb⊕ lb⊕, lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕)

= max(ub⊗ ⊗ ub⊕ ub⊕, ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕)

= ub⊗ ⊗max(ub, val0 ⊗c ub′)⊕ ub⊕

(c) If UB � lb⊗ ⊗ lb⊕ lb⊕

Then, UB � lb⊗ ⊗max(lb, val0 ⊗
c lb′)⊕ lb⊕, hence BE4 holds.

(d) If LB � ub⊗ ⊗ ub⊕ ub⊕

• If val0 ⊗c ub′ � ub

Then, LB � ub⊗ ⊗max(ub, val0 ⊗c ub′)⊕ ub⊕, i.e. BE3 holds.

• Otherwise, val0 ⊗c ub′ ≻ ub

In this case, we have lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕ = ub⊗ ⊗max(ub, val0 ⊗c ub′)⊕ ub⊕.

This entails that lb⊗⊗max(lb, val0⊗c lb′)⊕ lb⊕ � ub⊗⊗max(ub, val0⊗c ub′)⊕ub⊕.

As argued is some of the previous cases, the inverse inequality holds. Therefore,

lb⊗⊗max(lb, val0⊗c lb′)⊕ lb⊕ = ub⊗⊗max(ub, val0⊗cub′)⊕ub⊕, hence BE2 holds.

3. Case UB � lb⊗ ⊗ (val0 ⊗c lb′)⊕ lb⊕

In this case, UB � lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕, i.e. BE4 holds.

B.6. PROOFS OF CHAPTER 8 253

4. Case LB′ � ub⊗ ⊗ (val0 ⊗c ub′)⊕ ub⊕

Note that in this case, if LB = LB′ and val0 ⊗c ub′ � ub, then we have LB � ub⊗ ⊗

max(ub, val0 ⊗c ub′)⊕ ub⊕, hence BE3 holds.

(a) If lb = ub

• If LB = LB′

If val0 ⊗c ub′ � ub, we have already proved that BE3 holds. Otherwise, val0 ⊗c

ub′ ≺ ub. In this case, one can write first max(ub, val0 ⊗c ub′) = ub, and second

max(lb, val0 ⊗c lb′) = lb, because lb = ub ≻ val0 ⊗c ub′ � val0 ⊗c lb′. As lb = ub,

this entails that max(ub, val0 ⊗c ub′) = max(lb, val0 ⊗c lb′), hence BE1 holds.

• Otherwise, LB′ = lb⊗ ⊗ lb⊕ lb⊕

Then, as LB′ � ub⊗ ⊗ (val0 ⊗c ub′) ⊕ ub⊕, we have ub⊗ ⊗ (val0 ⊗c ub′) ⊕ ub⊕ �

lb⊗ ⊗ lb⊕ lb⊕ � lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕.

If val0 ⊗c ub′ � ub, then we get ub⊗ ⊗ max(ub, val0 ⊗c ub′) ⊕ ub⊕ � lb⊗ ⊗

max(lb, val0 ⊗c lb′)⊕ lb⊕. As argued in some previous cases, the inverse inequality

is also satisfied. Therefore, ub⊗⊗max(ub, val0⊗cub′)⊕ub⊕ = lb⊗⊗max(lb, val0⊗c

lb′)⊕ lb⊕, which prove that BE2 holds.

Otherwise, val0 ⊗c ub′ ≺ ub. In this case, max(ub, val0 ⊗c ub′) = ub. Moreover,

lb = ub ≻ val0 ⊗c ub′ � val0 ⊗c lb′. Thus, max(lb, val0 ⊗c lb′) = lb. As lb = ub, we

get max(ub, val0 ⊗c ub′) = max(lb, val0 ⊗c lb′), which means that BE1 is satisfied.

(b) If lb⊗ ⊗ lb⊕ lb⊕ = ub⊗ ⊗ ub⊕ ub⊕

• If LB = LB′

If val0⊗cub′ � ub, we have already proved that BE3 holds. Otherwise, val0⊗cub′ ≺

ub. In this latter case, one can write max(ub, val0⊗c ub′) = ub, and therefore lb⊗⊗

lb⊕ lb⊕ = ub⊗⊗max(ub, val0⊗c ub′)⊕ub⊕. This implies that lb⊗⊗max(lb, val0⊗c

lb′) ⊕ lb⊕ � ub⊗ ⊗ max(ub, val0 ⊗c ub′) ⊕ ub⊕. As previously, this enables us to

conclude that BE2 holds.

• Otherwise, LB′ = lb⊗ ⊗ lb⊕ ub⊕

Then, as LB′ � ub⊗ ⊗ (val0 ⊗c ub′) ⊕ ub⊕, we have ub⊗ ⊗ (val0 ⊗c ub′) ⊕ ub⊕ �

lb⊗ ⊗ lb ⊕ lb⊕. Together with lb⊗ ⊗ lb ⊕ lb⊕ = ub⊗ ⊗ ub ⊕ ub⊕, this enables

us to write: max(ub⊗ ⊗ (val0 ⊗c ub′) ⊕ ub⊕, ub⊗ ⊗ ub ⊕ ub⊕) � lb⊗ ⊗ lb⊕ lb⊕, i.e.

ub⊗⊗max(ub, val0⊗
cub′)⊕ub⊕ � lb⊗⊗lb⊕lb⊕, and therefore ub⊗⊗max(ub, val0⊗

c

ub′)⊕ub⊕ � lb⊗⊗max(lb, val0⊗clb′)⊕lb⊕. As previously, this enables us to conclude

that BE2 holds.

(c) If UB � lb⊗ ⊗ lb⊕ lb⊕

Then, UB � lb⊗ ⊗max(lb, val0 ⊗c lb′)⊕ lb⊕, hence BE4 holds.

(d) If LB � ub⊗ ⊗ ub⊕ ub⊕

• If LB′ = LB, then we have both LB � ub⊗ ⊗ (val0 ⊗c ub′) ⊕ ub⊕ and LB �

ub⊗⊗ub⊕ub⊕, and therefore LB � ub⊗⊗max(ub, val0⊗c ub′)⊕ub⊕. This implies

that BE3 holds.

254 APPENDIX B. PROOFS

• Otherwise, LB′ = lb⊗ ⊗ lb ⊕ lb⊕. Then, we get lb⊗ ⊗ lb ⊕ lb⊕ � ub⊗ ⊗ (val0 ⊗c

ub′)⊕ ub⊕. Moreover, as LB′ � LB, we also have lb⊗⊗ lb⊕ lb⊕ � ub⊗⊗ ub⊕ ub⊕.

Therefore, lb⊗ ⊗ lb ⊕ lb⊕ � ub⊗ ⊗max(ub, val0 ⊗c ub′) ⊕ ub⊕. As previously, this

enables us to conclude that BE2 holds.

We have proved that PW holds at the end of the while loop iteration. As there is a finite

number of iterations of the while loop (because each variable has a finite domain), we obtain that

the stopping conditions are satisfied at one iteration (after |dom(x)| iterations, the test d 6= ∅ is

false).

To conclude, let us prove that if one of the stopping conditions of the while loop is satisfied,

then the algorithm returns an evaluation of val(c, A.(x, a), V − {x},Φ) bounded by B:

• If LB′ � UB, then LB′ 6= LB (because LB ≺ UB). Hence LB′ = lb⊗ ⊗ lb ⊕ lb⊕, which

implies that UB � lb⊗ ⊗ lb⊕ lb⊕. Given that

lb � maxa∈dom(x)−d val(c, A.(x, a), V − {x},Φ)

� maxa∈dom(x) val(c, A.(x, a), V − {x},Φ) = val(c, A, V,Φ)

it suffices to return lb as a lower bound (case 4 of the definition of a bounded evaluation).

Moreover, if d = ∅, then, as PW holds, maxa∈dom(x) val(c, A.(x, a), V − {x},Φ) � ub, i.e.

val(c, A, V,Φ) � ub. In this case, the pair (lb, ub) returned by the algorithm is an evaluation

of val(c, A, V,Φ) bounded by B. Otherwise, if d 6= ∅, the algorithm returns (lb,⊤), which is

also an evaluation of val(c, A, V,Φ) bounded by B.

• If lb = ⊤, then, as lb � ub, one can infer that lb = ub = ⊤. Moreover, as

lb � maxa∈dom(x)−d val(c, A, (x, a), V − {x},Φ)

� maxa∈dom(x)−d val(c, A, (x, a), V − {x},Φ)

this also implies that ⊤ � val(c, A, V,Φ). As a result, we have lb = ub = val(c, A, V,Φ) = ⊤,

hence the pair (lb, ub) returned by the algorithm is a bounded evaluation of val(c, A, V,Φ)

with B as a bound (case 1 in the definition of a bounded evaluation).

• If d = ∅, then the algorithm returns (lb, ub), which is an evaluation of maxa∈dom(x) val(c,

A.(x, a), V − {x}, Φ) bounded by B because PW holds.

As a result, evalClusterMax (c, A, V,Φ,B) returns an evaluation of val(c, A, V,Φ) bounded by B

if |V | = k+1. By recurrence, this proves that whatever the size of V is, evalClusterMax (c, A, V,Φ,B)

returns an evaluation of val(c, A, V,Φ) bounded by B.

Proof of Lemma 8.13 (page 154). The proof is the similar to the proof concerning evalClusterMax.

Proof of Lemma 8.14 (page 154). Let us assume that function bound is sound and complete, and

that function evalSons is sound and complete for all clusters c of depth h, Let us assume that

evalClusterPlus(c, A, V,Φ,B) is called, where c is a cluster of depth h. Does it return an evaluation

of val(c, A, V,Φ) bounded by B?

The answer is yes if |V | = 0, because if there are no more variables to assign in the current

cluster (test V = ∅), then evalClusterPlus returns evalSons(c, A, ∅,Φ,B), which is an evaluation of

val(c, A, ∅,Φ) bounded by B according to our initial hypothesis.

B.6. PROOFS OF CHAPTER 8 255

Assume that the answer is yes for all sets of variables of size k. Let us consider a set of variables

V of size k + 1. In this case, the set V of unassigned variables is not empty. Let x ∈ V and let

Φ0 = {ϕ ∈ Φ, sc(ϕ) ∩ (V − {x}) = ∅} be the set of scoped functions in Φ whose scope will be

assigned when x will be assigned. We can use the following formulas, which hold directly from

Definition 8.4:

val(c, A, V,Φ) = ⊕a∈dom(x)val(c, A.(x, a).V − {x},Φ)

and, for all a ∈ dom(x),

val(c, A.(x, a), V − {x},Φ) =

(

⊗
ϕ∈Φ0

ϕ(A, (x, a))

)

⊗ val(c, A.(x, a).V − {x},Φ− Φ0)

In order to compute an evaluation of ⊕a∈dom(x)val(c, A.(x, a).V − {x},Φ) bounded by B, values

in dom(x) are considered stepwise. At each iteration of the while loop, d is the set of values of x

which have not been considered yet.

Using function bound, the algorithm first computes, for each a ∈ dom(x), lower and upper

bounds tablb[a] and tabub[a] such that tablb[a] � val(c, A.(x, a).V − {x},Φ) � tabub[a]. Then, it

computes the subset d0 of values a in dom(x) such that tablb[a] = tabub[a]. For each a ∈ d0, we then

have tablb[a] = tabub[a] = val(c, A.(x, a).V − {x},Φ), hence val(c, A.(x, a).V − {x},Φ) is known.

The other values are gathered in d = dom(x)−d0. After these steps, the algorithm initializes res by

res = ⊕a∈dom(x)−dval(c, A.(x, a).V − {x},Φ), lb by lb = res ⊕ (⊕a∈dtablb[a]) = ⊕a∈dom(x)tablb[a]

and ub by ub = res⊕ (⊕a∈dtabub[a]) = ⊕a∈dom(x)tabub[a]. It is straightforward that lb and ub are

respectively lower and upper bounds on val(c, A, V,Φ).

If d = ∅ before the whole while block is processed, then it is straightforward that lb = ub =

val(c, A, V,Φ). In this case, the while loop is not processed and the pair (lb, ub) returned is a

bounded evaluation of val(c, A, V,Φ).

Otherwise, there is at least one value in d before processing the whole while loop. Let us show

that at each iteration of the while loop,

((lb, ub) is an evaluation of val(c, A, V,Φ) bounded by B)

∨(res = ⊕a′∈dom(x)−dval(c, A.(x, a
′), V,Φ)) (B.6)

This property is denoted PW.

PW holds before entering the while block, because res = ⊕a′∈dom(x)−dval(c, A.(x, a
′), V,Φ).

Assume that PW holds at the beginning of an iteration of the while loop. As an iteration

of the while loop is performed, none of its stopping conditions is satisfied. This exactly means

that (lb, ub) is not an evaluation of val(c, A, V,Φ) bounded by B. As PW holds, this means that

res = ⊕a′∈dom(x)−dval(c, A.(x, a
′), V − {x},Φ) at the beginning of this iteration.

At each iteration of the while loop, d is the set of values in dom(x) which have not been

considered yet. Let a be a value in d. As V −{x} contains k variables, (lba, uba) is an evaluation of

val(c, A.(x, a), V −{x},Φ) bounded by B′. This means that first, lba � val(c, A.(x, a), V −{x},Φ) �

uba, and second,

256 APPENDIX B. PROOFS

(lba = uba)

∨(lb⊗ ⊗ val0 ⊗ lba ⊕ lb⊕ ⊕ lb⊗ ⊗ lb¬a = ub⊗ ⊗ val0 ⊗ uba ⊕ ub⊕ ⊕ ub⊗ ⊗ ub¬a)

∨(UB � lb⊗ ⊗ val0 ⊗ lba ⊕ lb⊕ ⊕ lb⊗ ⊗ lb¬a)

∨(LB � ub⊗ ⊗ val0 ⊗ uba ⊕ ub⊕ ⊕ ub⊗ ⊗ ub¬a)
that is to say

(lba = uba)

∨(lb⊗ ⊗ (val0 ⊗ lba ⊕ lb¬a)⊕ lb⊕ = ub⊗ ⊗ (val0 ⊗ uba ⊕ ub¬a)⊕ ub⊕)

∨(UB � lb⊗ ⊗ (val0 ⊗ lba ⊕ lb¬a)⊕ lb⊕)

∨(LB � ub⊗ ⊗ (val0 ⊗ uba ⊕ ub¬a)⊕ ub⊕)

The algorithm uses instructions which enable us to write: val0 ⊗ lba ⊕ lb¬a � val(c, A, V,Φ) �

val0 ⊗ lba ⊕ lb¬a. Therefore, at the end of each iteration of the while loop, we have, after the

update of lb and ub, lb � val(c, A, V,Φ) � ub.

We then analyze four cases:

1. Case lba = uba

In this case, we have lba = uba = val(c, A.(x, a), V −{x},Φ−Φ0), and therefore val0⊗ lba =

val(c, A.(x, a), V − {x},Φ). Hence, we have

res⊕ val0 ⊗ lba = (⊕a′∈dom(x)−dval(c, A.(x, a
′), V,Φ))⊕ val(c, A.(x, a), V − {x},Φ)

= ⊕a′∈dom(x)−(d−{a})val(c, A.(x, a
′), V,Φ)

Thanks to the instruction “res ← res ⊕ val0 ⊗ lba”, this implies that PW holds at the end

of the iteration of the while loop.

2. Case lb⊗ ⊗ (val0 ⊗ lba ⊕ lb¬a)⊕ lb⊕ = ub⊗ ⊗ (val0 ⊗ uba ⊕ ub¬a)⊕ ub⊕

In this case, (lb, ub) = (val0 ⊗ lba ⊕ lb¬a, val0 ⊗ uba ⊕ ub¬a) is directly an evaluation of

val(c, A, V,Φ) bounded by B.

3. Case UB � lb⊗ ⊗ (val0 ⊗ lba ⊕ lb¬a)⊕ lb⊕

In this case, (lb, ub) = (val0 ⊗ lba ⊕ lb¬a, val0 ⊗ uba ⊕ ub¬a) is directly an evaluation of

val(c, A, V,Φ) bounded by B.

4. Case LB � ub⊗ ⊗ (val0 ⊗ uba ⊕ ub¬a)⊕ ub⊕

In this case, (lb, ub) = (val0 ⊗ lba ⊕ lb¬a, val0 ⊗ uba ⊕ ub¬a) is directly an evaluation of

val(c, A, V,Φ) bounded by B.

Therefore, PW holds at the end of the iteration of the while loop.

If one of the stopping conditions of the while loop is satisfied, then this exactly means that

(lb, ub) is an evaluation of val(c, A, V,Φ) bounded by B.

Otherwise, assume that none of the stopping conditions is satisfied before the last value a

in d is eliminated. As none of the stopping conditions is satisfied before this iteration, (lb, ub)

is not an evaluation of val(c, A, V,Φ) bounded by B. As PW holds, this means that res =

⊕a′∈dom(x)−{a}val(c, A.(x, a), V − {x},Φ) at the beginning of this iteration. Then, we get

(lb¬a, ub¬a)

= (res, res)

= (⊕a′∈dom(x)−{a}val(c, A.(x, a
′), V − {x},Φ),⊕a′∈dom(x)−{a}val(c, A.(x, a

′), V − {x},Φ))

B.6. PROOFS OF CHAPTER 8 257

• If lba = uba, then val0 ⊗ lba = val0 ⊗ uba = val(c, A.(x, a), V − {x},Φ). We there-

fore get (lb, ub) = (lb¬a ⊕ val0 ⊗ lba, ub¬a ⊕ val0 ⊗ uba) = (⊕a′∈dom(x)val(c, A.(x, a
′), V −

{x},Φ),⊕a′∈dom(x)val(c, A.(x, a
′), V − {x},Φ)). This implies that after the treatment of the

last value in d, we have lb = ub, hence the while loop is stopped at the next iteration.

• In the other cases, the previous part of the proof shows that the while loop is stopped at the

next iteration.

This proves that there is a finite number of iterations of the while loop (even if we do not have a

test like d 6= ∅), and therefore the algorithm is complete. It is also sound because as previously said,

once one of the conditions of the while loop is not satisfied, (lb, ub) is an evaluation of val(c, A, V,Φ)

bounded by B.

Proof of Lemma 8.15 (page 155). Let c be a cluster of maximal depth. Then, Sons(c) = ∅, and

the initializations of S and S0 give S0 = S = ∅. This implies that lb and ub are initialized with

(lb, ub) = (⊗cϕ∈Φ ϕ(A),⊗cϕ∈Φ ϕ(A)).

As lb = ub, the while loop is not traversed. Moreover, by definition of val(c, A, ∅,Φ), one can

write val(c, A, ∅,Φ) = ⊗cϕ∈Φ ϕ(A). Therefore lb = ub = val(c, A, ∅,Φ), which proves that (lb, ub)

is a bounded evaluation of val(c, A, ∅,Φ).

Proof of Lemma 8.16 (page 155). Let us assume that function bound is sound and complete and

that evalClusterMin, evalClusterMax, evalClusterPlus, and bound are sound and complete for all

clusters c of depth h. Let c be a cluster of depth h− 1.

We can use the following formula:

val(c, A, ∅,Φ) =

(

⊗c
ϕ∈Φ

ϕ(A)

)

⊗c
(

⊗c
s∈Sons(c)

val(s)(A)

)

(B.7)

Clusters in Sons(s) are considered stepwise. The algorithm first computes the set of son

clusters S0 such that for each s ∈ S0, val(s)(A) is known and equals LB(s,A↓s). The other

son clusters are gathered in S = Sons(c) − S0. This entails that res is actually initialized by

res = (⊗cϕ∈Φ ϕ(A))⊗c (⊗cs∈S0 val(s)(A)).

Moreover, thanks to Eq. B.7, lb = res⊗c(⊗cs′∈S LB(s,A↓s)) and ub = res⊗c(⊗cs′∈S UB(s,A↓s))

are respectively lower and upper bounds on val(c, A, ∅,Φ).

If S = ∅ before the whole while block is processed, then it is straightforward that lb = ub =

val(c, A, ∅,Φ). In this case, the while loop is not processed and the pair (lb, ub) returned is a

bounded evaluation of val(c, A, ∅,Φ).

Otherwise, there is at least one son cluster in S before processing the whole while loop. Let us

show that at each iteration of the while loop,

((lb, ub) is an evaluation of val(c, A, ∅,Φ) bounded by B)

∨(res =

(

⊗c
ϕ∈Φ

ϕ(A)

)

⊗c
(

⊗c
s′∈Sons(c)−S

val(s′)(A)

)

) (B.8)

This property is denoted PW.

PW holds before entering the while block, since res = (⊗cϕ∈Φ ϕ(A))⊗c
(
⊗cs′∈Sons(c)−S val(s)(A)

)
.

258 APPENDIX B. PROOFS

Assume that PW holds at the beginning of an iteration of the while loop. As an iteration

of the while loop is performed, none of its stopping conditions is satisfied. This exactly means

that (lb, ub) is not an evaluation of val(c, A, ∅,Φ) bounded by B. As PW holds, this means that

res = (⊗cϕ∈Φ ϕ(A)) ⊗c (⊗cs′∈Sons(s)−S val(s
′)(A)) at the beginning of this iteration. At each

iteration of the while loop, S is the set of son clusters of c which have not been considered yet.

Let s be a son cluster in S.

As evalClusterMin, evalClusterMax, evalClusterPlus, and bound are assumed to be sound

and complete for clusters of depth h, (lbs, ubs) is an evaluation of val(s,A, V (s) − V (c),Φ(s))

bounded by B′, i.e. (lbs, ubs) is an evaluation of val(s)(A) bounded by B′. This means that first,

lbs � val(s)(A) � ubs, and second,

• If ⊗c = ⊗,

(lbs = ubs)

∨(lb¬s ⊗ lb⊗ ⊗ lbs ⊕ lb⊕ = ub¬s ⊗ ub⊗ ⊗ ubs ⊕ ub⊕)

∨(UB � lb¬s ⊗ lb⊗ ⊗ lbs ⊕ lb⊕)

∨(LB � ub¬s ⊗ ub⊗ ⊗ ubs ⊕ ub⊕)

that is to say

(lbs = ubs)

∨(lb⊗ ⊗ (lb¬s ⊗c lbs)⊕ lb⊕ = ub⊗ ⊗ (ub¬s ⊗c ubs)⊕ ub⊕)

∨(UB � lb⊗ ⊗ (lb¬s ⊗c lbs)⊕ lb⊕)

∨(LB � ub⊗ ⊗ (ub¬s ⊗
c ubs)⊕ ub⊕)

• If ⊗c = ⊕,

(lbs = ubs)

∨(lb⊗ ⊗ lbs ⊕ lb⊕ ⊕ lb⊗ ⊗ lb¬s = ub⊗ ⊗ ubs ⊕ ub⊕ ⊕ ub⊗ ⊗ ub¬s)

∨(UB � lb⊗ ⊗ lbs ⊕ lb⊕ ⊕ lb⊗ ⊗ lb¬s)

∨(LB � ub⊗ ⊗ ubs ⊕ ub⊕ ⊕ ub⊗ ⊗ ub¬s)
that is to say

(lbs = ubs)

∨(lb⊗ ⊗ (lb¬s ⊗
c lbs)⊕ lb⊕ = ub⊗ ⊗ (ub¬s ⊗

c ubs)⊕ ub⊕)

∨(UB � lb⊗ ⊗ (lb¬s ⊗c lbs)⊕ lb⊕)

∨(LB � ub⊗ ⊗ (ub¬s ⊗c ubs)⊕ ub⊕)

Therefore, in both cases, we have

(lbs = ubs)

∨(lb⊗ ⊗ (lb¬s ⊗c lbs)⊕ lb⊕ = ub⊗ ⊗ (ub¬s ⊗c ubs)⊕ ub⊕)

∨(UB � lb⊗ ⊗ (lb¬s ⊗
c lbs)⊕ lb⊕)

∨(LB � ub⊗ ⊗ (ub¬s ⊗c ubs)⊕ ub⊕)

After the computation of (lbs, ubs), evalSons uses instructions which enable us to write:

max(lbs, LB(s,A↓s))⊗c lb¬s � val(c, A, ∅,Φ) � min(ubs, UB(s,A↓s))⊗c ub¬s

Therefore, at the end of each iteration of the while loop, we have, after the update of lb and ub,

lb � val(c, A, ∅,Φ) � ub. Moreover, the update of LB(s,A↓s) and UB(s,A↓s) is sound because it

preserves the property that LB(s,A↓s) and UB(s,A↓s) are lower and upper bounds for val(s)(A).

We then analyze four cases:

B.6. PROOFS OF CHAPTER 8 259

1. Case lbs = ubs

In this case, we have lbs = ubs = val(s)(A). Moreover, as LB(s,A↓s) � val(s)(A),

max(lbs, LB(s,A↓s)) = lbs = val(s)(A). Hence, one can write

res⊗c max(lbs, LB(s,A↓s)) = (⊗cϕ∈Φ ϕ(A))⊗c (⊗cs′∈Sons(s)−S val(s
′)(A)) ⊗c val(s)(A)

= (⊗cϕ∈Φ ϕ(A))⊗c
(
⊗cs′∈Sons(c)−(S−{s}) val(s

′)(A)
)

This implies that PW holds at the end of the iteration of the while loop.

2. Case lb⊗ ⊗ (lb¬s ⊗c lbs)⊕ lb⊕ = ub⊗ ⊗ (ub¬s ⊗c ubs)⊕ ub⊕

• If ubs � UB(s,A↓s), then this implies that lb⊗ ⊗ (lb¬s ⊗
c lbs) ⊕ lb⊕ = ub⊗ ⊗ (ub¬s ⊗

c

min(ubs, UB(s,A↓s)))⊕ ub⊕, and therefore lb⊗⊗ (lb¬s⊗c max(lbs, LB(s,A↓s))⊕ lb⊕ �

ub⊗ ⊗ (ub¬s ⊗
c min(ubs, UB(s,A↓s))) ⊕ ub⊕. This inverse inequality being straightfor-

wardly satisfied, we get lb⊗ ⊗ (lb¬s ⊗c max(lbs, LB(s,A↓s)) ⊕ lb⊕ = ub⊗ ⊗ (ub¬s ⊗c

min(ubs, UB(s,A↓s))) ⊕ ub⊕.

Hence, (lb, ub) = (lb¬s⊗cmax(lbs, LB(s,A↓s)), ub¬s⊗cmin(ubs, UB(s,A↓s)) is an eval-

uation of val(c, A, ∅,Φ) bounded by B.

• Otherwise, ubs ≻ UB(s,A↓s).

Then, one can infer that ub⊗⊗(ub¬s⊗cubs)⊕ub⊕ � ub⊗⊗(ub¬s⊗cUB(s,A↓s))⊕ub⊕ �

ub⊗ ⊗ (ub¬s ⊗
c val(s)(A)) ⊕ ub⊕ � lb⊗ ⊗ (lb¬s ⊗

c lbs)⊕ lb⊕.

As lb⊗⊗ (lb¬s⊗c lbs)⊕ lb⊕ = ub⊗⊗ (ub¬s⊗c ubs)⊕ub⊕, this implies that lb⊗⊗ (lb¬s⊗c

lbs)⊕ lb⊕ = ub⊗ ⊗ (ub¬s ⊗c min(ubs, UB(s,A↓s)))⊕ ub⊕

Also, this enables us to infer that lb⊗ ⊗ (lb¬s ⊗c max(lbs, LB(s,A↓s))) ⊕ lb⊕ � ub⊗ ⊗

(ub¬s ⊗c min(ubs, UB(s,A↓s)))⊕ ub⊕. The inverse inequality being easily satisfied, we

obtain lb⊗⊗(lb¬s⊗cmax(lbs, LB(s,A↓s)))⊕lb⊕ = ub⊗⊗(ub¬s⊗cmin(ubs, UB(s,A↓s)))⊕

ub⊕, and therefore (lb, ub) = (lb¬s⊗cmax(lbs, LB(s,A↓s)), ub¬s⊗cmin(ubs, UB(s,A↓s))

is an evaluation of val(c, A, ∅,Φ) bounded by B.

3. Case UB � lb⊗ ⊗ (lb¬s ⊗c lbs)⊕ lb⊕

In this case, (lb, ub) = (lb¬s⊗
cmax(lbs, LB(s,A↓s)), ub¬s⊗

cmin(ubs, UB(s,A↓s)) is directly

an evaluation of val(c, A, ∅,Φ) bounded by B.

4. Case LB � ub⊗ ⊗ (ub¬s ⊗c ubs)⊕ ub⊕

In this case, (lb, ub) = (lb¬s⊗cmax(lbs, LB(s,A↓s)), ub¬s⊗cmin(ubs, UB(s,A↓s)) is directly

an evaluation of val(c, A, V,Φ) bounded by B.

Therefore, PW holds at the end of the iteration of the while loop.

If one of the stopping conditions of the while loop is satisfied, then this exactly means that

(lb, ub) is an evaluation of val(c, A, ∅,Φ) bounded by B.

Otherwise, assume that none of the stopping conditions is satisfied before the last son s ∈ S is

considered. As none of the stopping conditions is satisfied before this iteration, (lb, ub) is not an

evaluation of val(c, A, ∅,Φ) bounded by B. As PW holds, this means that res = (⊗cϕ∈Φ ϕ(A))⊗c
(
⊗cs′∈Sons(c)−{s} val(s

′)(A)
)

at the beginning of this iteration.

After the instruction S ← S − {s}, we get (lb¬s, ub¬s) = (res, res) = ((⊗cϕ∈Φ ϕ(A)) ⊗c
(
⊗cs′∈Sons(c)−{s} val(s

′)(A)
)
, (⊗cϕ∈Φ ϕ(A))⊗c

(
⊗cs′∈Sons(c)−{s} val(s

′)(A)
)
).

260 APPENDIX B. PROOFS

• If lbs = ubs, then lbs = ubs = val(s)(A). We therefore get (lb, ub) = (lb¬s⊗clbs, ub¬s⊗cubs) =

((⊗cϕ∈Φ ϕ(A))⊗c
(
⊗cs′∈Sons(c) val(s

′)(A)
)
, (⊗cϕ∈Φ ϕ(A))⊗c

(
⊗cs′∈Sons(c) val(s

′)(A)
)
).

This implies that after the treatment of the last son in Sons(c), we have lb = ub

• In the other cases, the previous part of the proof shows that one of the stopping conditions

of the while is necessarily fulfilled.

This proves that there is a finite number of iterations of the while loop (even if we do not have a

test like d 6= ∅), and therefore the algorithm is complete. It is also sound because as previously said,

once one of the conditions of the while loop is not satisfied, (lb, ub) is an evaluation of val(c, A, V,Φ)

bounded by B.

Proof of Lemma 8.17 (page 155). Let us assume that function bound is sound and complete. Thanks

to Lemma 8.15, the result holds for clusters of maximal depth.

If evalSons is sound and complete for all clusters of depth h, then, using Lemmas 8.12, 8.13,

and 8.14, one can infer that evalClusterMin, evalClusterMax, and evalClusterPlus are sound and

complete for all clusters c of depth h. Thanks to Lemma 8.16, evalSons is sound and complete for

all clusters of depth h− 1. By recurrence, this proves that evalSons is sound and complete as soon

as function bound is sound and complete, .

Proof of Theorem 8.18 (page 155). Let us assume that function bound is sound and complete.

Let r be the root of the MCDAG. Thanks to Lemma 8.17, the algorithm returns an evaluation

of val(r, ∅, V (r),Φ(r)) = Ans(Q) bounded by (⊥−,⊤+, 1E , 1E, 0E , 0E)), i.e. it returns a pair

(lb, ub) ∈ E2 such that lb � Ans(Q) � ub and (lb = ub) ∨ (1E ⊗ lb⊕ 0E = 1E ⊗ ub⊕ 0E) ∨ (⊥−�

1E ⊗ ub⊕ 0E) ∨ (⊤+ � 1E ⊗ lb⊕ 0E), i.e. such that (lb = ub)∨ (lb = ub)∨ (⊥−� ub)∨ (⊤+ � lb),

i.e., as (lb, ub) ∈ E2, such that lb = ub. Therefore, the algorithm returns lb = Ans(Q).

Proof of Proposition 8.19 (page 155). Basically, compared to algorithm TS-mcdag, using bounds

does not change the worst case time complexity, because the values recorded are not the exact values

of a cluster, hence a cluster can be revisited several times. As for the space complexity, BTD-mcdag

uses twice as much space as RecTS-mcdag (because lower and upper bounds are recorded instead

of exact values). But the complexity is still O(N · s · ds), where N is the number of clusters and s

is the maximum size of the separators.

Proof of Theorem 8.21 (page 158). Similar to the proof of Theorem 8.18.

Proof of Proposition 8.22 (page 161). These results are quite straightforward.

First, for all A′′ ∈ dom(S′), maxA∈dom(S)ϕ(A.A′′) � maxA∈dom(S) minA′∈dom(S′) ϕ(A.A′),

hence minA′′∈dom(S′) maxA∈dom(S) ϕ(A.A′′) � maxA∈dom(S) minA′∈dom(S′) ϕ(A.A′). In other words,

one can write minS maxS′ ϕ � maxS maxS′ ϕ.

Second, for all A′′ ∈ dom(S), ⊕A′∈dom(S′)ϕ(A′′.A′) � ⊕A′∈dom(S′) maxA∈dom(S) ϕ(A.A′), hence

maxA′′∈dom(S)⊕A′∈dom(S′)ϕ(A′′.A′) � ⊕A′∈dom(S′) maxA∈dom(S) ϕ(A.A′). In other words, one can

write maxS ⊕S′ϕ � ⊕S′ maxS ϕ.

The proof for ⊕S minS′ ϕ � minS′ ⊕Sϕ is similar.

B.6. PROOFS OF CHAPTER 8 261

Proof of Proposition 8.23 (page 162). As ϕ � maxc ϕ and as ⊗ is monotonic, it is possible to write

⊕c((⊗Pi∈Fact(c) Pi) ⊗ ϕ) � ⊕c((⊗Pi∈Fact(c) Pi) ⊗ (maxc ϕ)). By distributivity of ⊗ over ⊕, this

implies that ⊕c((⊗Pi∈Fact(c) Pi)⊗ϕ) � (⊕c⊗Pi∈Fact(c) Pi)⊗ (maxc ϕ) = 1E ⊗ (maxc ϕ) = maxc ϕ.

Similarly, as minc ϕ � ϕ, one can infer that minc ϕ � ⊕c((⊗Pi∈Fact(c) Pi)⊗ ϕ).

Proof of Proposition 8.24 (page 163). First, as⊗ is monotonic and as ϕ2 � maxS ϕ2, one can write

ϕ1 ⊗ ϕ2 � ϕ1 ⊗maxS ϕ2. Maximizing over S leads to maxS(ϕ1 ⊗ ϕ2) � (maxS ϕ1)⊗ (maxS ϕ2).

The proofs for maxS(ϕ1 ⊕ ϕ2), minS(ϕ1 ⊗ ϕ2), and minS(ϕ1 ⊕ ϕ2) are similar.

Finally, as 0E = min(E), it is possible to write ϕ2 � ⊕Sϕ2. By monotonicity of ⊗, this implies

that ϕ1 ⊗ ϕ2 � ϕ1 ⊗ (⊕Sϕ2). Summing over S leads to the required result.

Appendix C

Concrete problem example:

deployment and maintenance of a

constellation of satellites

So forth, the PFU framework has been illustrated by toy examples only. We give here the PFU for-

mulation of a concrete real-life planning problem involving plausibilities, feasibilities, and utilities.

The description of this problem as well as Figures C.1 and C.2 are directly taken from [61].

Problem description Whatever its mission is (telecommunication, navigation, or observation),

a constellation of satellites is made up of a specified number of spatially distributed satellites. All

the satellites or at least a subset of them must be operational for the mission to be filled. If too

few satellites are operational, the mission objectives will be only partially met. In general, several

launches using various launcher types are necessary to deploy the constellation of satellites. These

launches must be organized over time. Failures may also occur at any stage of the deployment,

of the maintenance, and of the operational life of the constellation. So, the management of its

deployment and of its maintenance must be able to anticipate these possible failures, as well as to

react to them when they occur.

Globally speaking, managing the deployment and the maintenance of a constellation consists in

organizing the launches and the orbital transfers in order to deploy it as soon as possible and to

maintain it as best as possible in its operational state.

More precisely, the constellations we consider are organized along several orbital planes (see

Figure C.1). A specified number of operational satellites is necessary on each orbital plane. On each

orbital plane, satellites may be either on an operational orbit, or on a spare orbit. Satellites that are

on a spare orbit are drifting in a month from an orbital plane to the following one. Launchers are

able to put a specified number of satellites on one of the orbital planes (all the launched satellites on

the same orbital plane). These satellites can be either immediately transferred from the spare orbit

to the operational one on this orbital plane, or left on the spare orbit to drift from orbital plane

to orbital plane. In the later case, when their orbital plane coincides with an operational orbital

plane, that is once per month, they may be transferred from the spare orbit to the operational one

263

264 APPENDIX C. CONCRETE PROBLEM EXAMPLE

spare orbits
drifting of

satellite
spare

operational
orbit

satellite
operational

spare orbit

Figure C.1: View of the goal constellation.

launching

spare transfer

Figure C.2: On an orbital plane, launch of a satellite and transfer of a spare satellite from the
spare orbit to the operational one.

on this orbital plane (see Figure C.2).

Launches are not possible at any time. We consider that no more than one launch is possible

each month and that there exists a minimum time between two launches of the same type. Moreover,

the management of the launch sites imposes that launches must be decided a specified time in

advance.

Two types of costs must be considered: first, the cost of the production of launchers and satellites

and of the launches; second the cost which may result from a partial or complete unavailability of

the constellation.

Failures may occur at any stage and at any time: launcher failure, spare satellite running

failure, spare satellite orbital transfer failure, operational satellite running failure, failure of either

a spare or an operational satellite.

The global objective of the management is finally to minimize over a given temporal horizon the

sum of the production and of the unavailability costs.

At each step i (each month), three types of decisions are successively made:

265

1. sub-step k = 1: the orbital plane of the launch at i is chosen;

2. sub-step k = 2: the number of satellites that are transferred from spare to operational on each

orbital plane is chosen;

3. sub-step k = 3: the type of the launch at i + DH is planned (launches must be planned in

advance).

PFU formulation In the following, we use the following notations:

• Cardinalities:

– NOS = Number of Operational Satellites necessary on an orbital plane,

– MNSS = Maximum Number of Satellites on a Spare orbit,

– NOP = Number of Orbital Plane,

– NTL = Number of Types of Launchers,

– NLS[tl] = Number of Launchable Satellite for launchers of type tl,

– MTL[tl] = Minimum Time between two Launches of type tl,

– DH = Decision Horizon (number of time steps necessary to plan a launch in advance).

• Probabilities of failure:

– PFL[tl] = Probability of Failure of a Launch of type tl,

– PFRSS = Probability of Failure when launching a satellite and Running it as a Spare

Satellite,

– PFROS = Probability of Failure when transferring a satellite from a spare orbit to an

operational one and Running it as an Operational Satellite,

– PFSS = Probability of Failure of a Spare Satellite in a month,

– PFOS = Probability of Failure of an Operational Satellite in a month.

• Costs:

– CL[tl] = Cost of a Launcher of type tl,

– CS = Cost of a Satellite,

– CU = Cost of a partial Unavailability of the constellation (a complete availability is

assumed to be required at any moment).

Algebraic structure This problem uses probabilities, additive costs, and probabilistic expected

utility. Therefore, we use:

• Sp = (R+,+,×) as a plausibility structure,

• Su = (R+,+) as a utility structure (an utility u = α stands for a cost of α),

• Spu = (Ep, Eu,+,×) as an expected utility structure.

266 APPENDIX C. CONCRETE PROBLEM EXAMPLE

Variables We introduce environment variables which describe the state of the constellation and

decision variables which correspond to the decisions made at each step.

• Environment variables:

1. nos[i, k, op] = number of operational satellites on orbital plane op, at step i, before the

decision made at sub-step k;

dom(nos[i, k, op]) = {0, . . . , NOS}.

2. nss[i, k, op] = number of spare satellites on orbital plane op, at step i, before the decision

made at sub-step k;

dom(nss[i, k, op]) = {0, . . . ,MNSS}.

• Decision variables

1. lop[i] = orbital plane of the launch at step i;

dom(lop[i]) = {0, . . . , NOP} (lop[i] = 0 applies when no launch has been planned).

2. nts[i, op] = number of spare satellites transferred at step i for orbital plane op;

dom(nts[i, op]) = {0, . . . , NOS}.

3. ptl[i] = type of launch planned at step i

dom(ptl[i]) = {0, . . . , NTL} (ptl[i] = 0 means that no launch is planned at step i).

Feasibility functions The constraints on the decisions can be modeled using feasibility functions

1. ∀i: (ptl[i] = 0) → (lop[i] = 0) (this function associates no orbital plane with a null type of

launch),

2. ∀i, ∀op: nts[i, op] ≤ nss[i, 2, op] (on each orbital plane, it is not possible to transfer more

satellites than the number of satellites available on the spare orbit),

3. ∀i, ∀op: nts[i, op] + nos[i, 2, op] ≤ NOS (on each orbital plane, it is not possible to transfer

more satellites than necessary),

4. ∀i, j: (i < j < i+MTL[ptl[i]])→ (ptl[i] 6= ptl[j]) (constraints on the minimum time between

two launches of the same type).

Plausibility (probability) functions The initial state is described by unary plausibility func-

tions over each variable nos[1, 1, op] and over each variable nss[1, 1, op]. Typically, nos[1, 1, op] =

nss[1, 1, op] = 0 if we start from an empty constellation of satellites. The evolution of the constella-

tion from step to step and from sub-step to sub-step is described by the following set of plausibility

functions:

1. ∀i, ∀op: nos[i, 2, op] = nos[i, 1, op] (we could merge the two variables)

2. ∀i, ∀op: (lop[i] 6= op)→ (nss[i, 1, op] = nss[i, 2, op])

267

3. ∀i, ∀op: let op = op[i], p1 = PFL[ptl[i]], p2 = PFRSS, n = NLS[ptl[i]]. Then,

P (nss[i, 2, op] = nss[i, 1, op] + k) =







p1 + pn2 · (1− p1) if k = 0

(1 − p1) · Ckn · p
n−k
2 · (1− p2)

k if 0 < k ≤ n

0 otherwise

4. ∀i, ∀op: nss[i, 3, op] = nss[i, 2, op]− nts[i, op]

5. ∀i, ∀op: let p = PFROS and n = nts[i, op]. Then,

P (nos[i, 3, op] = nos[i, 2, op] + k) =

{

Ckn · p
n−k · (1− p)k if 0 ≤ k ≤ n

0 otherwise

6. ∀i, ∀op: let p = PFSS, n = nss[i, 3, op], and op′ = (op mod NOP) + 1. Then,

P (nss[i+ 1, 1, op′] = k) =

{

Ckn · p
n−k · (1 − p)k if 0 ≤ k ≤ n

0 otherwise

7. ∀i, ∀op: let p = PFOS and n = nos[i, 3, op]. Then,

P (nos[i+ 1, 1, op] = k) =

{

Ckn · p
n−k · (1 − p)k if 0 ≤ k ≤ n

0 otherwise

Utility (cost) functions In order to model the cost of the launches and of the satellites, and the

cost which may result from a partial or complete unavailability of the constellation, we introduce

several utility functions:

1. ∀i: cl[i] = CL[ptl[i+DH]] + CS ·NLS[ptl[i+DH]] (cost of the planned launch)

2. ∀i, ∀op: cu[i, op] = (NOS − nos[i, 1, op]) · CU (the cost of unavailability of the satellites is

proportional to the number of missing satellites)

As we consider a finite horizon T , we need an evaluation of the final state of the constellation at

T . Several formulations can be considered, one of them being simply to consider that utility of the

state of the constellation at T is proportional to the number of operational satellites unavailable

at T .

The PFU network graphical representation for a given step i is provided in Figures C.3 and C.4.

Query In order to deploy or maintain the constellation of satellites, the sequence of variable

eliminations to consider is:

. . .
∑

{nos[i, 1, op], 1 ≤ op ≤ NOP}

∪{nss[i, 1, op], 1 ≤ op ≤ NOP}

min
lop[i]

∑

{nos[i, 2, op], 1 ≤ op ≤ NOP}

∪{nss[i, 2, op], 1 ≤ op ≤ NOP}

min
{nts[i,op],1≤op≤NOP}

∑

{nos[i, 3, op], 1 ≤ op ≤ NOP}

∪{nss[i, 3, op], 1 ≤ op ≤ NOP}

min
ptl[i+DH]

∑

{nos[i + 1, 1, op], 1 ≤ op ≤ NOP}

∪{nss[i + 1, 1, op], 1 ≤ op ≤ NOP}

. . .

nss[i + 1, 1, 4]

ptl[i + DH − 1]

ptl[i + DH]
lop[i]ptl[i]

nts[i, 4]

nts[i, 1]

nts[i, 3]

nts[i, 2]

nss[i, 3, 4]

nos[i, 3, 4]

nss[i, 3, 3]

nos[i, 3, 3]

nss[i, 3, 2]

nos[i, 3, 2]

nss[i, 3, 1]

nos[i, 3, 1]

nss[i, 1, 4]

nos[i, 1, 4]

nss[i, 1, 3]

nos[i, 1, 3]

nss[i, 1, 2]

nos[i, 1, 2]

nss[i, 1, 1]

nos[i, 1, 1] nos[i, 2, 1] nos[i + 1, 1, 1]

nss[i, 2, 1] nss[i + 1, 1, 1]

nos[i, 2, 2] nos[i + 1, 1, 2]

nss[i, 2, 2] nss[i + 1, 1, 2]

nos[i, 2, 3] nos[i + 1, 1, 3]

nss[i, 2, 3] nss[i + 1, 1, 3]

nos[i, 2, 4] nos[i + 1, 1, 4]

ptl[i + DH − 2]

nss[i, 2, 4]

Figure C.3: Network of scoped functions.

nss[i, 1, 2]

nos[i, 1, 3] nos[i, 2, 3] nos[i + 1, 1, 3]

nss[i, 2, 3]nss[i, 1, 3] nss[i + 1, 1, 3]

nos[i, 2, 4] nos[i + 1, 1, 4]

nss[i, 2, 4] nss[i + 1, 1, 4]

nos[i, 2, 1] nos[i + 1, 1, 1]

nss[i, 2, 1] nss[i + 1, 1, 1]

nos[i, 2, 2]

nos[i, 1, 4]

ptl[i + DH]

nss[i, 1, 4]

ptl[i + DH − 1]

nos[i, 3, 4]

ptl[i + DH − 2]

nos[i + 1, 1, 2]

nss[i, 2, 2] nss[i + 1, 1, 2]

nss[i, 3, 4]

nts[i, 1]

ptl[i]

nts[i, 3]

lop[i]

nts[i, 4]

nts[i, 2]

nos[i, 3, 1]

nss[i, 3, 1]

nos[i, 3, 2]

nss[i, 3, 2]

nos[i, 3, 3]

nss[i, 3, 3]

nos[i, 1, 1]

nss[i, 1, 1]

nos[i, 1, 2]

Figure C.4: DAG representing normalization conditions.

Appendix D

DTD of the XML format

<!ELEMENT query (name?,author?,date?,description?,pfunet,sov)>
<!ATTLIST query PFUnet (#PCDATA) #REQUIRED

nbStages (#PCDATA) #REQUIRED
nbRecords (#PCDATA) #REQUIRED>

<!ELEMENT name (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT date (#PCDATA)>

<!ELEMENT pfunet EMPTY>
<!ATTLIST pfunet file (#PCDATA) #REQUIRED>

<!ELEMENT sov (op_vars_pair)>
<!ATTLIST sov nbstages (#PCDATA) #REQUIRED>

<!ELEMENT op_vars_pair EMPTY>
<!ATTLIST op_vars_pair op (MIN|MAX|PLUS) #REQUIRED

vars (#PCDATA) #REQUIRED
record (#PCDATA) #IMPLIED>

Figure D.1: DTD (Document Type Definition) for the XML representation of queries.

269

270 APPENDIX D. DTD OF THE XML FORMAT

<!ELEMENT pfunet (name?,author?,date?,domains,plausfunctions?,feasfunctions?,utilfunctions?,
variables,plausibilities?,feasibilities?,utilities?,components)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT domains (domain+)>
<!ATTLIST domains nbDom (#PCDATA) #REQUIRED >
<!ELEMENT domain EMPTY>
<!ATTLIST domain id ID #REQUIRED

type (string|int|float|double|bool) #REQUIRED
description (extension|intension) #REQUIRED
values (#PCDATA) #REQUIRED>

<!ELEMENT plausfunctions (plausfunction+)>
<!ATTLIST plausfunctions nbPlausFunctions (#PCDATA) #REQUIRED>
<!ELEMENT plausfunction (instance*)>
<!ATTLIST plausfunction id ID #REQUIRED

domains (#PCDATA) #REQUIRED
default_degree (#PCDATA) #REQUIRED
nbInst (#PCDATA) #REQUIRED>

<!ELEMENT feasfunctions (feasfunction+)>
<!ATTLIST feasfunctions nbFeasFunctions (#PCDATA) #REQUIRED>
<!ELEMENT feasfunction (instance*)>
<!ATTLIST feasfunction id ID #REQUIRED

domains (#PCDATA) #REQUIRED
default_degree (#PCDATA) #REQUIRED
nbInst (#PCDATA) #REQUIRED>

<!ELEMENT utilfunctions (utilfunction+)>
<!ATTLIST utilfunctions nbUtilFunctions (#PCDATA) #REQUIRED>
<!ELEMENT utilfunction (instance*)>
<!ATTLIST utilfunction id ID #REQUIRED

domains (#PCDATA) #REQUIRED
default_degree (#PCDATA) #REQUIRED
nbInst (#PCDATA) #REQUIRED>

<!ELEMENT instance>
<!ATTLIST instance assignment (#PCDATA) #REQUIRED

degree (#PCDATA) #REQUIRED>
<!ELEMENT variables (variable+)>
<!ATTLIST variables nbVar (#PCDATA) #REQUIRED>
<!ELEMENT variable EMPTY>
<!ATTLIST variable id ID #REQUIRED

nature (decision|environment) #REQUIRED
domain IDREF #REQUIRED
description (#PCDATA) #IMPLIED>

<!ELEMENT plausibilities (plausibility+)>
<!ATTLIST plausibilities nbPlaus (#PCDATA) #REQUIRED>
<!ELEMENT plausibility EMPTY>
<!ATTLIST plausibility id ID #REQUIRED

scope IDREFS #REQUIRED
function IDREFS #REQUIRED>

<!ELEMENT feasibilities (feasibility+)>
<!ATTLIST feasibilities nbFeas (#PCDATA) #REQUIRED>
<!ELEMENT feasibility EMPTY>
<!ATTLIST feasibility id ID #REQUIRED

scope IDREFS #REQUIRED
function IDREFS #REQUIRED>

<!ELEMENT utilities (utility+)>
<!ATTLIST utilities nbUtil (#PCDATA) #REQUIRED>
<!ELEMENT utility EMPTY>
<!ATTLIST utility id ID #REQUIRED

scope IDREFS #REQUIRED
function IDREFS #REQUIRED>

<!ELEMENT components (component+)>
<!ATTLIST components nbComp (#PCDATA) #REQUIRED>
<!ELEMENT component EMPTY>
<!ATTLIST component id (#PCDATA) #REQUIRED

nature (decision|environment) #REQUIRED
vars IDREFS #REQUIRED
scoped_f IDREFS #REQUIRED
parents IDREFS #REQUIRED>

Figure D.2: DTD (Document Type Definition) for the XML representation of PFU networks.

