THESE

présentée pour obtenir le titre de

DOCTEUR DE 'ECOLE NATIONALE SUPERIEURE DE
L’AERONAUTIQUE ET DE L’ESPACE

Spécialité : Informatique

par

Cédric Pralet

Un cadre algébrique général pour représenter et résoudre
des problemes de décision séquentielle avec incertitudes,

faisabilités et utilités

A generic algebraic framework for representing and solving
sequential decision making problems with uncertainties, feasibilities,

and utilities

These présentée devant le jury composé de:

Malik Ghallab LAAS-CNRS, Toulouse Examinateur
Patrice Perny LIP6, Paris Rapporteur
Francesca Rossi Université de Padoue (Italie) Rapporteur
Thomas Schiex INRA, Toulouse Directeur de these
Gérard Verfaillie ONERA, Toulouse Directeur de these
Nic Wilson 4C, Cork (Irlande) Examinateur

These préparée au LAAS-CNRS et a 'INRA Toulouse

Contents

I Representing decision making problems in the PFU framework

1 Background notations and definitions

1.1 Basic definitions e e e e e e e

1.2 An illustrative example

A guided tour of frameworks for decision making
2.1 SAT-based decision frameworks
2.1.1 The satisfiability problem o000
2.1.2 Quantified boolean formulas: towards pessimistic indeterminism and partial
observabilitieso
2.1.3 Stochastic SAT and extended stochastic SAT: towards a stochastic indeter-
minism e
2.2 CSP-based decision frameworks Lo o
2.2.1 Constraint satisfaction problems
2.2.2 Extension to non-binary uncertainties and utilities: soft constraints.
2.2.3 Modeling uncontrollabilities and partial observabilities: mixed CSP
2.2.4 Quantified CSP for modeling multi-step decision processes
2.2.5 Integrating probabilistic uncertainties: stochastic CSP
2.3 Bayesian network-based decision frameworks
2.3.1 Bayesian networks Lo
2.3.2 Possibilistic networkso oo
2.3.3 Mixed networkso
2.3.4 Influence diagrams L oL
2.4 Beyond conditional probabilities for modeling uncertainties
2.4.1 Markov random fields and chain graphso
2.4.2 Valuation networks
2.5 Classical planning-based frameworks,
2.5.1 Classical planning
2.5.2 Conformant planning and probabilistic planning
2.6 Sequential decision making under uncertainty with MDPs
2.6.1 Markov decision processes
2.6.2 Partially observable MDPs L.
2.6.3 Other uncertainty-utility models: towards algebraic MDPs

13

15
15
18

2.6.4 Back to a variable-based representation: factored MDPs

2.7 Valuation algebras Lo Lo
2.8 The three basic ingredients of a generic framework

2.9 Summary

3 A generic algebraic structure

3.1 Some algebraic definitionso
3.2 Plausibility structureo
3.3 Feasibility structure oL oo
3.4 Utility structureo
3.5 Expected utility structure oL o oL
3.6 Structures covered
3.7 Relations with other existing structures

3.8 Summary

4 Plausibility-Feasibility-Utility networks

4.1 Decision and environment variables

4.2 Towards local plausibility and feasibility functions

4.2.1 A first factorization step using conditional independence

4.2.2 Further factorization steps
4.3 Local utilities
4.4 Formal definition of PFU networks
4.5 From PFU networks to global functions
4.6 Back to existing frameworks

4.7 Summary

5 Queries on a PFU network

5.1 Query definition L
5.2 Answer to a query: semantic definition L.
5.3 Answer to a query: operational definition
5.4 Equivalence theorem oL
5.5 Bounded queries
5.6 Back to existing frameworks
5.7 Extensions to other classes of queries
5.8 Summary
5.9 Gains and costs of the PFU framework

II Generic algorithms for answering PFU queries

6 First generic algorithms

6.1 A basic tree search algorithm
6.2 A first naive variable elimination algorithm
6.3 Solving the undecomposability problem

6.4 Definition of an improved variable elimination algorithm

CONTENTS

CONTENTS 5

6.4.1 Improved VE algorithm in the semiring case 94
6.4.2 Improved VE algorithm in the semigroup case 96
6.4.3 General case e 98
6.4.4 Simplifying the problem specification in the semigroup case 99
6.5 Quantifying the theoretical complexity 0oL 101
6.5.1 Induced-width 101
6.5.2 Constrained induced-width 0oL 103
6.6 Decreasing the constrained induced-width, 104
6.6.1 Weakening constraints on the elimination order 105
6.6.2 Working on the hypergraph, 106
6.7 SUMMATY o e e 107
7 Structuring multi-operator queries 109
7.1 Back on the multi-operator queries considered 109
7.2 From queries to computation nodes 110
7.3 Structuring multi-operator queries in the semiring case 112
7.3.1 Building the macrostructure of a query using rewriting rules. 112
7.3.2 Preliminaries: cluster-tree decompositions 118
7.3.3 Towards multi-operator cluster trees using cluster-tree decompositions . . . 121
7.3.4 Comparison with an unstructured approach 122
7.3.5 Comparison with existing approaches 123
7.3.6 Adding feasibilities 124
7.4 Structuring multi-operator queries in the semigroup case 124
7.4.1 Building the macrostructure of a query using rewriting rules. 124
7.4.2 Cluster-tree decompositions to structure DAGs of computation nodes: to-
wards multi-operator cluster-DAGs (MCDAGs) 131
7.4.3 Comparison with an unstructured approach 135
7.4.4 Comparison with existing approaches 135
7.4.5 Adding feasibilities oL 137
7.5 Conclusion L 137
8 A generic structured tree search 141
8.1 Existing structured tree search algorithms 142
8.2 A first generic structured tree search 144
8.3 Adding caching to the structured tree search 146
8.4 A structured tree search using both bounds and caching 147
8.4.1 A small additional algebraic assumption 147
8.4.2 Using bounds in presence of several elimination operators 147
8.4.3 Using bounds without inverse for the combination operations 149
8.4.4 Algorithm definition oo 150
8.5 Using division and difference operators 156
8.6 Computing bounds by inference mechanisms 161
8.7 Integrating feasibilities o 164

8.8

Summary and perspectives

9 A generic solver for answering PFU queries

9.1 Description of problems

9.1.1 XML representation of PFU networks

9.1.2 XML representation of queries

9.1.3 Reading others formats

9.2 Solver description

9.3 Perspectives
Bibliography

A Notations

B Proofs

B.1
B.2
B.3
B.4
B.5
B.6

Proofs of Chapter 3
Proofs of Chapter 4
Proofs of Chapter 5
Proofs of Chapter 6
Proofs of Chapter 7
Proofs of Chapter 8

C Concrete problem example

D DTD of the XML format

CONTENTS

Remerciements

Merci tout d’abord & Elyssa de m’avoir toujours supporté (dans les deux sens du terme) pendant
ma these. Cette these est un peu la tienne. Merci aussi & ma famille pour son soutien. Je tiens
également a remercier les personnes suivantes, tant sur le plan scientifique que sur le plan humain :

— Thomas Schiex et Gérard Verfaillie, mes deux directeurs de these, pour leur disponibilité,
I’excellence de leur encadrement, leur ouverture d’esprit, et leur soutien. Merci notamment
pour le caractere scientifiquement stimulant de nos réunions, qui, de mon point de vue, ont
fait du travail de recherche un pur plaisir.

— Francesca Rossi, de I'université de Padoue, et Patrice Perny, de 'université Paris 6, qui
m’ont fait 'honneur de s’intéresser a mon travail en acceptant d’étre rapporteurs de cette
these.

— Malik Ghallab, directeur du LAAS-CNRS, et Nic Wilson, chercheur au Cork Constraint
Computation Center, pour avoir accepté de participer & mon jury de thése. Merci sincérement
a Nic de m’avoir invité a présenter mes travaux a un workshop ECAT’06. Je lui suis réellement
reconnaissant de cette belle opportunité.

— Aux membres de mon “comité de these” réunis a l'issue de mes premieres et deuxiemes
années de these: Rachid Alami du LAAS-CNRS, Jean-Loup Farges de 'TONERA Toulouse,
Jérome Lang de 'IRIT, et Régis Sabbadin de 'INRA Toulouse. Merci pour leur lecture
attentive de mes rapports d’avancement et pour les discussions que j’ai pu avoir avec eux
par la suite.

— Plus généralement, merci aux personnes du groupe RIA du LAAS-CNRS et aux personnes

de 'INRA pour la bonne ambiance de travail dont j’ai pu bénéficier.

Introduction

In the last decades, numerous formalisms have been developed to express and solve decision making

problems. In such problems, an agent must make decisions consisting in either choosing actions

and ways to fulfill them (as in action planning, task scheduling, or resource allocation), or choosing

explanations of observed phenomena (as in diagnosis or situation assessment). These choices may

depend on various parameters listed below:

1.

Plausibilities: uncertainty measures, which we call plausibilities, may describe beliefs about

the state of the environment. That is to say, the environment may be non deterministic.

. Feasibilities: preconditions may have to be satisfied for a decision to be feasible.

Utilities: possible states of the environment and possible decisions do not generally have
the same value for the decision maker’s point of view. Utilities can be expressed to model
costs, gains, risks, satisfaction degrees, hard requirements, and more generally, preferences

(the notion of utility is not restricted here to its additive version).

Sequential aspect and partial observabilities: when time is involved, decision processes may
be sequential. This means that there may be several decision steps, and that the values of
some variables may be observed between two steps, as in chess where each player plays in

turn and can observe the move of the opponent before playing again.

Multi-agent aspect and partial controllabilities: there may be adversarial or collaborative

decision makers, each of them controlling a set of decisions.

In this thesis, we are interested in generic sequential decision problems including plausibilities,

feasibilities, and utilities. Given (1) the plausibilities defined over the states of the environment,

(2) the feasibility constraints on the decisions, (3) the utilities defined over the decisions and the

states of the environment, and (4) the possible multiple decision steps, the objective is to provide

a decision maker with optimal decision rules for the decision variables he controls, depending on

the environment and of decisions of other agents.

Among the formalisms designed to solve problems included in this class, one can find:

e formalisms developed in the boolean satisfiability framework: the satisfiability problem

(SAT), quantified boolean formulas, stochastic SAT [82], and extended stochastic SAT [82];

e formalisms developed in the very close constraint satisfaction framework: constraint satis-

faction problems (CSPs [84]), valued/semiring CSPs [12] (covering classical, fuzzy, additive,
lexicographic, probabilistic CSPs), mixed CSPs and probabilistic mixed CSPs [47], quantified
CSPs [15], and stochastic CSPs [138];

10 INTRODUCTION

e formalisms developed to represent uncertainties and extended to represent decision problems
under uncertainties: Bayesian networks [96], Markov random fields [22] (also known as Gibbs
networks), chain graphs [55], hybrid or mixed networks [36, 37], influence diagrams [64],
unconstrained [68], asymmetric [131, 92], or sequential [67] influence diagrams, valuation

networks [128], and asymmetric [130] or sequential [41] valuation networks;

e formalisms developed in the classical planning framework, such as STRIPS planning [49, 58],

conformant planning [60], and probabilistic planning [77];

e formalisms such as Markov decision processes (MDPs), probabilistic, possibilistic, or using
Spohn’s epistemic beliefs [133, 142, 59], factored or not, possibly partially observable [111,
89, 119, 19, 18].

Many of these formalisms present interesting similarities:

e they include variables modeling the state of the environment (environment variables) or the

decisions (decision variables);
e they use local functions modeling plausibilities, feasibilities, or utilities;

e they use operators either to combine local information (such as x to aggregate probabilities
under independence hypothesis, + to aggregate gains and costs), or to synthesize a global
information (such as + to compute a marginal probability, min or max to compute an optimal

decision).

Even if the meaning of variables, functions, and combination or synthesis operators may be
specific to each formalism, they can all be seen as graphical models in the sense that they exploit
(implicitly or explicitly) a hypergraph of local functions between variables. This thesis shows that it
is possible to build a generic algebraic framework subsuming many of these formalisms by reducing
decision making problems to a sequence of so-called “variable eliminations” on an aggregation of

local functions.

Motivations Building a generic framework and generic algorithms to represent and solve various

decision making problems will be able to provide:

o A better understanding: a generic framework has an obvious theoretical and pedagogical
interest, since it can bring to light similarities and differences between the formalisms covered

and help people of different communities to communicate on a common basis.

e An increased expressive power: a generic framework may be able to capture problems that
cannot be modeled in any existing formalism. This increased expressiveness should be reach-

able by capturing the essential algebraic properties of existing frameworks.

e Generic algorithms: ultimately, besides a generic framework, it should be possible to define
generic algorithms capable of solving problems defined in this framework. This objective
fits into a growing effort to identify common algorithmic approaches that were developed
for solving different AI problems. It may also facilitate cross-fertilization by allowing each

subsumed framework to reuse algorithmic ideas defined in another one.

INTRODUCTION 11

Thesis outline This thesis is organized in two parts:

1. The first part, which focuses on knowledge representation, introduces a new generic frame-

work for sequential decision making with uncertainties, feasibilities, and utilities.

After the definition of some notations and notions (Chapter 1), we start by showing, with
a catalog of existing formalisms for decision making, that a generic algebraic framework

capturing many existing formalisms can be informally identified (Chapter 2).

This generic framework, called the Plausibility-Feasibility-Utility (PFU) framework, is then

formally introduced in three steps:

e Algebraic structures enabling us to express generic forms of plausibilities, feasibilities,
and utilities are introduced in Chapter 3. They specify how to combine and synthesize

information.

e These algebraic structures are exploited inside a network structure (graphical model),
defined in Chapter 4. The basic elements involved in such networks are variables and

local functions.

e Problems over such networks are captured by the notion of queries, defined in Chapter 5.

In the end, solving a decision making problem means answering a query.

2. The second part of the thesis focuses on generic algorithms able to answer queries.

e The first generic algorithms presented in Chapter 6 are based on tree search and variable
elimination. The second tries to exploit for the best the decomposition of a global
information into local functions, and has a theoretical complexity exponential in the

so-called constrained induced-width.

e More advanced techniques which analyze the actual structure of a query are given
in Chapter 7. This provides us with a generic computational architecture, called the
multi-operator cluster DAG architecture, which explicitly expresses a decomposition of

the computations to perform in order to answer queries.

e Based on this architecture, Chapter 8 introduces structured tree search algorithms,
which can be more or less sophisticated depending on whether they use some recording

and/or bounds.

e Last, Chapter 9 presents a generic implemented solver used to answer queries, which
shows that the framework and the algorithms defined is this thesis are not just abstrac-

tions.

A table recapitulating the main notations used is available in Appendix A and the proofs of all

lemmas, propositions, and theorems are given in Appendix B, in order to keep the reading fluid.

Part 1

Representing decision making

problems in the PFU framework

13

Chapter 1

Background notations and

definitions

This small chapter introduces the essential objects used in the thesis, hence the interest of as-
similating the few definitions given below. The main notions manipulated are variables, domains,
local functions (called scoped functions), graphical models, combination and elimination operators,
decision rules, and some vocabulary concerning graphs. Some of these notions are illustrated by
a toy example, which also informally introduces the notions of plausibilities, feasibilities, utilities,

partial observability, and controllability.

1.1 Basic definitions

Definition 1.1. The domain of values of a variable : is denoted dom(x) and for every a € dom(zx),
(z,a) denotes the assignment of x with value a. By extension, for a set of variables S, we denote by
dom(S) the Cartesian product of the domains of the variables in S, i.e. dom(S) = [],.qdom(z).

An element A of dom(S) is called an assignment of S.*

€S

If Ay, As are assignments of disjoint subsets S1, Sa, then the concatenation of Ay and Ao,
denoted Ay.As, is the assignment of S1 U Sy where variables in Sy are assigned as in Ay and
variables in So are assigned as in As.

If A is an assignment of a set of variables S, the projection of A over a set of variables S’,

denoted AYS', is the assignment of S NS’ where variables are assigned to their value in A.

Definition 1.2. (Scoped function) A scoped function is a pair (S,) where S is a set of variables
and ¢ is a function mapping elements in dom(S) to a given set E.

In the following, we will often consider that S is implicit and denote a scoped function (S,)
as @ alone. The set S of variables is called the scope of ¢ and is denoted sc(p). If A is an
assignment of a superset of sc(¢) and A’ is the projection of A onto sc(p), then p(A) will be used

as an abbreviation of p(A’).

For example, a scoped function ¢ mapping assignments of sc(y) to elements of the boolean

1. An assignment of S = {x1,...,z;} is actually a set of variable-value pairs {(z1,a1),..., (zg,ar)}, but we
assume that variables are implicit when using a tuple of values (a1,...,ax) € dom(S).

15

16 CHAPTER 1. BACKGROUND NOTATIONS AND DEFINITIONS

lattice B = {t, f} is analogous to a constraint describing the subset of dom(sc(y)) of authorized
tuples in constraint networks.

From this, the general notion of graphical model can be defined:

Definition 1.3. (Graphical model) A graphical model is a pair (V, ®) such that V = {x1,..., x5}
is a finite set of variables and ® = {p1,...,pm} is a finite set of scoped functions whose scopes

are included in V.

The terminology of graphical models is used here simply because a set of scoped functions
can be represented as a hypergraph whose hyperedges are the functions scopes. As we will see,
this hypergraph captures a form of independence and induces parameters for the time and space
complexity of our algorithms. This definition of graphical models generalizes the usual one used
in statistics, defining a graphical model as a (directed or not) graph where the nodes represent
random variables and where the structure captures probabilistic independence relations.

“Local” scoped functions in a graphical model give a space-tractable definition of a global
function over all variables defined by their aggregation. For example, in a Bayesian network [96]
a global probability distribution P, , . over z,y, z may be defined as the product (using operator
x) of a set of scoped functions {P, Py,, P, }. Local scoped functions can also facilitate the
projection of the information expressed by a graphical model onto a smaller scope. For example,
in order to compute a marginal probability distribution P, . from the previous network, we can
compute » Ppy. = (3, Pr X Py;) x P.}, and avoid taking P., into account. Here the operator
> is used to project information onto a smaller scope by eliminating variable xz. Operators used
to combine scoped functions will be called combination operators, while operators used to project

information onto smaller scopes will be called elimination operators.

Definition 1.4. (Combination) Let @1, 2 be scoped functions to Ey and Es respectively. Let
® : By X Ey — E be a binary operator. The combination of 1 and @2, denoted by ¢1 @ @2, is the
scoped function to E with scope sc(p1) U sc(pa) defined by (o1 ® 02)(A) = ¢1(A) @ pa(A) for all

assignments A of sc(p1) U sc(p2). ® is called the combination operator of ¢1 and ¢s.
In the rest of part I, all combination operators will be denoted ®.

Definition 1.5. (Elimination) Let ¢ be a scoped function to E. Let op be an associative and
commutative operator on E. The elimination of variable x from ¢ with op, denoted op, ¢, is a
scoped function whose scope is sc(p) — {x} and whose value for an assignment A of its scope is
(01, P)(A) = 0Pacdom(z) P(A-(,a)). In this context, op is called the elimination operator for z.

The elimination of a set of variables S = {x1,...,x} on ¢ is a function with scope sc(p) — S
defined by (ops ¢)(A) = 0parcdom(s) P(A-A").

Hence, when computing) (P, % Py, % P.|;), scoped functions are aggregated using the com-
bination operator ® = x and the information is synthesized by eliminating = using the elimination
operator +. In the rest of Part I, @ denotes elimination operators. Actually, the denomination of
combination operator or elimination operator depends on the usage of an operator: for example
+ can be used both as a combination operator to aggregate additive gains and costs, and as an
elimination operator used to compute a marginal probability distribution.

In some cases, the elimination of a set of variables S with an operator op from a scoped

function ¢ should only be performed on a subset of dom(S) containing assignments that satisfy

1.1. BASIC DEFINITIONS 17

some property denoted by a boolean scoped function F. Then, one must compute for every
A € dom(sc(p) — S) the value op sr¢cgom(s),r(ary=t P(A.A"). For simplicity and homogeneity, and
in order to always use elimination over dom(S), one can equivalently truncate ¢ so that elements of
dom(S) which do not satisfy the property expressed by F' are mapped to a special value (denoted
Q) which is itself defined as an identity for op.

Definition 1.6. (Truncation operator) The unfeasible value ¢ is a new special element and every
elimination operator op : E x E — E is extended to op : (EU{0}) x (EU{0}) = EU{0} by
op(0,e) = op(e,0) =e for alle € EU{0}.

Let {t, f} be the boolean lattice. For any boolean b and any e € EU{{Q}, we define bxe to be

equal to e if b=t and { otherwise. x is called the truncation operator.

Given a boolean scoped function F', the unfeasibility element ¢ and the truncation operator *
make it possible to write quantities like 0p Ascaom(s),F(a)=¢ ¢ as the elimination opg (F' x ¢).
In order to solve decision problems, one usually wants to compute functions mapping the

available information to a decision. The notion of decision rules will be used to formalize this:

Definition 1.7. (Decision rule, policy) A decision rule for a variable x given a set of variables
S’ is a function ¢ : dom(S") — dom(z) mapping each assignment of S’ to a value in dom(zx).
By extension, a decision rule for a set of variables S given a set of variables S’ is a function

0 : dom(S") — dom(S). A set of decision rules is called a policy.

If ¢ is a scoped function on a totally <-ordered set E and if one computes maxg ¢, then a
decision rule 6 : dom(sc(e) — S) — dom(S) such that p(A4.0(A)) = p(A.A") for all (A,A") €
dom(sc(p) — S) x dom(S) is called an optimal decision rule. Similarly, if one computes ming ¢,
then we call optimal decision rule for S a decision rule ¢ : dom(sc(p) — S) — dom(S) such that
V(A.6(A)) < p(A.A") for all (A, A") € dom(sc(p) —S) x dom(S). This means that optimal decision

rules are examples of decision rules given by argmin and argmax.

Graph concepts In this thesis, we also need some definitions concerning graphs.

Definition 1.8. Let G = (V, H) be a hypergraph (this means that 'V is a set of variables and H is
a set of hyperedges over V, i.e. a subset of 2V). The primal graph of G is the graph G = (V, E)
such that E contains an edge {x,y} € V2 iff there exists an hyperedge h in H such that {z,y} C h.

Definition 1.9. Let G = (V, E) be a graph. A subset S of V is called a clique iff for all x, y in
S, {z,y} C E.

Definition 1.10. A graph G = (V, E) is a tree iff it is an undirected connected graph without
cycle. It is a rooted tree iff it is a directed connected graph without cycle. The root of the tree is

then the unique vertexr without parents.

Definition 1.11. (Directed Acyclic Graph (DAG)) A directed graph G is a DAG iff it contains no
directed cycle. When variables are used as vertices, pac(x) denotes the set of parents of variable x
in G. The set of non-descendants of x, denoted ndg(x), corresponds to the set of variables y such
that there does not exist a directed path from x to y in G. The set of ancestors of x is the set of

variables y such that there is a directed path from y to x in G.

In the sequel, the cardinality of a set I is denoted |T'|.

18 CHAPTER 1. BACKGROUND NOTATIONS AND DEFINITIONS

1.2 An illustrative example

The following toy example was created in order to better describe the notions of “plausibilities”,
“feasibilities”, “utilities”, “obervability”, “decision variable”, “environment variable”, or “control-
lability”. It also illustrates how variables and local scoped functions can express a global informa-
tion in a compact way. Eventually, this example shows why sequences of variable eliminations on

combinations of scoped functions are of interest for sequential decision problems.

Example John faces three doors A, B, C. One of the doors hides a treasure, another a gangster.
John can decide to open one of the doors. The gangster will rob him 4,000€ but the treasure is
worth 10,000€.

Modeling To represent the environment and the decisions in a compact way, we introduce three
variables: (1) two environment variables: one for the door behind which is the gangster, the
“gangster door” (denoted ga), and one for the door behind which is the treasure, the “treasure
door” (tr); (2) one decision variable (do), representing the door John decides to open. Every
variable has {A, B, C} as domain. Decision variables are variables whose value is controlled by an
agent. The other variables are environment variables.

Then, we need two local utility functions Uy, Us to represent utilities: (1) Uy expresses that if
John opens the gangster door, he must pay 4,000€ (soft constraint do = ga, with utility degree
—4,000€ if satisfied, and 0 otherwise); (2) Us expresses that if John opens the treasure door, he
wins 10, 000€ (soft constraint do = ¢r, with utility degree 10,000€ if satisfied, and 0 otherwise).

A soft constraint is also called a cost function.

Associated query Which door should John open if he knows that the gangster is behind door
A and that the treasure is behind door C' (no uncertainties)? Obviously, he should open door C.

Adding uncertainties

In real problems, the environment may not be completely known: there may be uncertainties (here
called plausibilities) as well as possible observations on this uncertain environment. We make the

treasure quest problem more complex in order to illustrate such aspects.

Example The treasure and the gangster are not behind the same door, and all situations are
equiprobable. John is accompanied by Peter. Each of them can decide to listen in to door A, B,
or C to try to detect the gangster. The probability of hearing something is 0.8 if one eavesdrops at

the gangster door ga, 0.4 at a door next to it, and 0 otherwise.

Modeling We define four more variables to represent these new specifications:

e two decision variables li; and lip, with {A, B, C} as domain, model the doors to which John

and Peter listen in;

e two environment variables he; and hep, with {yes, no} as domain, model whether John and

Peter hear the gangster.

1.2. AN ILLUSTRATIVE EXAMPLE 19

We then define four local plausibility functions:

e P : ga # tr and P, = 1/6 model the probability distribution over the gangster’s and

treasure’s locations;

® P35 = Py, |liy,ga defines the probability that John hears something given the door at which

he eavesdrops and the gangster door;

e similarly, P corresponds to Pyep |1ip,ga-

Implicitly, the local plausibilities satisfy normalization conditions. First, as the treasure and the

gangster are somewhere, (Py x Py) = 1. Second, as John and Peter hear something or not,

ga,tr

ZheJ P3 =1 and Zhep P4 =1.

Associated queries Which decision rules maximize the expected utility, if first Peter and John

eavesdrop, and then John decides to open a door knowing what has been heard?

Such a query can be answered using a standard decision tree. In this tree, variables can be
considered in the order liy — lip — hej — hep — do — ga — tr. This order corresponds to the
following sequence of events: first, John and Peter choose a door to eavesdrop at, then they listen
and depending on what they have heard, John decides which door to open; finally the gangster and
the treasure are behind given doors with a certain probability. An internal node n in the decision
tree corresponds to a variable z. An edge in the decision tree is labeled with an assignment (x,a)
of the variable x associated with the node above. Such an edge is also weighted by the probability

P((z,a)| A), where A is the assignment corresponding to the path from the root to x.

The utility of a leaf node is the global utility (U; + Uz2)(A) of the complete assignment A
associated with it. The utility of an internal decision node is given by the value of an optimal
children (and it is possible to record an associated optimal decision). The utility of an internal
environment node is given by the probabilistic expected utility of the values of its children nodes.
The global expected utility is the utility of the root node. It is proved [103] that such a decision

tree procedure can be reduced to the computation of

max Z n}laOXZ((H B)X(Z Ui))
]

lig,lip
hey,hep ga,tr i€[1,4 1€[1,2]

In other words, the decision tree procedure is equivalent to a sequence of variable eliminations
on a combination of local functions. Optimal decision rules can be recorded using argmax during

the computation.

Different elimination sequences represent different problems or situations: if John thinks that
Peter is a traitor and if he lets him choose a door to listen in to first (pessimistic attitude
concerning the other agent), the sequence of eliminations ming;, max;;, Zhe‘],hep maxge » gastr
is adequate, because it eliminates lip with min. If Peter does not even tell John what he has

heard, meaning that John does not observe hep, then the sequence of eliminations becomes

ming; p Maxy; , Zh(ij maxdo EheP Zga,tr'

20 CHAPTER 1. BACKGROUND NOTATIONS AND DEFINITIONS

Adding feasibilities

In some cases, certain conditions must be satisfied for a decision to be feasible. For example, if
two players accept to respect chess rules, then a move is feasible if and only if it satisfies the rules.
Note that unfeasibility is different from infinite utility, because for example none of the players can
make an impossible move, whereas each of them may achieve a checkmate, which yields an infinite

negative utility for his adversary.
Example John and Peter cannot eavesdrop at the same door and door A is locked.

Modeling Two local feasibility functions are added to represent this new situation: Fy : liy # lip
and Fy : do # A. We assume that at least one decision is feasible in any situation (no dead-end).
This is represented by two normalization conditions on feasibilities: Vi, i, F1 =t and VgoFo =t.
The classical decision tree procedure which can be used to answer the query is then equivalent to

the computation of

minmaXerbaOXZ Z ((ie[/l\ . F)x(H P x (Z Uy))
hey ’

lip i,
" g hep ga,tr 1€[1,4] 1€[1,2]

which uses the truncation operator x to mask unfeasible decisions. Again, this corresponds to a
sequence of variable eliminations on a combination of scoped functions.

In the end, the knowledge modeled with variables and local functions forms a composite graph-
ical model defined by a DAG capturing normalization conditions on plausibilities and feasibilities
(Figure 1.1(a)),? and a network of local functions (Figure 1.1(b)). The network involves several
types of variables (decision and environment variables) and several types of local functions (local

utility, plausibility, and feasibility functions).

F2 e UL~
T . decision
m AR . environment
F1 P1,P2 N plausibilility
feasibility
- utility

Y

P3

igip | Cgatr
eP P4

(a)

Figure 1.1: Composite graphical model (a) DAG capturing normalization conditions; (b) Network
of local functions.

John’s treasure quest is an example which illustrates the notion of a sequential decision problem

involving plausibilities, feasibilities, and utilities. This notion will be used in the next chapters.

2. If P denotes the set of local plausibility functions associated with a node corresponding to a set of variables
S, then this means that > ¢ (HP,;EP P;) = 1. If F denotes the set of local feasibility functions associated with a
node corresponding to a set of variables S, then this means that Vg(Ap,er F;) = t.

Chapter 2

A guided tour of frameworks for

decision making

In order to build a generic framework for decision making, the very first step consists in under-
standing and analyzing existing formalisms. Their first characteristic is that they are numerous.
The reason is that in the last decades, many efforts were made in the Al community in order
to build new representation schemes or extensions of existing ones. This led to many proposals,
which have different modeling abilities. Some can model preferences, other can model only hard
requirements. Some can model uncertainties, others cannot. Some can model sequential decision
making, whereas others are designed for one-shot decision processes.

This chapter presents a non-exhaustive catalog of such formalisms. This catalog has two

main features:

e [t is incremental, in the sense that it shows how basic frameworks like Satisfiability problems,
Constraint Satisfaction Problems [84], Bayesian Networks [96], classical planning [49, 58], or
Markov Decision Processes [111, 89] were extended to integrate the notion of uncertainties

for some of them, or the notion of preferences and decisions for others.

e It analyzes the similarities and differences of existing frameworks in terms of knowledge
representation. This analysis tries to show that (1) many formalisms reason on the notion of
variables and local scoped functions between these variables, and (2) queries asked in these
formalisms can be reduced to the computation of a sequence of variable eliminations on a
combination of scoped functions, using various operators. Points (1) and (2) can be seen as

the guiding line of this catalog.

2.1 SAT-based decision frameworks

The first and probably the oldest framework for decision making is the Satisfiability (SAT) problem.
As we shall see, the basic SAT problem was extended to formalisms like quantified boolean formulas

or stochastic SAT [82], in order to model uncontrollable variables and partial observabilities.

21

22 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

2.1.1 The satisfiability problem

We start with a few definitions on propositional logic. The syntax of this logic is based on boolean
variables, usually called propositional variables or atoms. These variables with {¢, f} as domain

represent properties which are either true or false.

Definition 2.1. Let V be a finite set of boolean variables. Boolean formulas are defined inductively

by the following rules:
1. if x € V, then x is a boolean formula,
2. if ¢ is a boolean formula, then —p is a boolean formula,
3. if ¢ and ¢ are boolean formulas, then ¢ A1) is a boolean formula.

It is also possible to define ¢ V1 as —(—p A=) and ¢ — 1 as ~p V. The symbols =, A, V, and

— are called logical connectives.

In order to provide boolean formulas with a truth value, one must define a semantics for the
connectives. First, given a boolean variable x, formula x is true iff z is assigned with value true. '
Second, = is true iff ¢ is false. Third, ¢ A% is true iff both ¢ and 1 are true. This implies that

@ V1) is true iff ¢ or ¥ is true.

Definition 2.2. A literal is a boolean variable or its negation. A clause is a disjunction of literals.

A boolean formula is in conjunctive normal form if it is a conjunction of clauses.

Definition 2.3. The Satisfiability problem (SAT) consists in determining whether a boolean for-

mula in conjunctive normal form has an assignment of its variables which makes the formula true.

Note that every boolean formula can be put in a conjunctive normal form. SAT enables various
reasoning tasks to be modeled, for example in hardware design and more generally in formal

verification.

Example 2.4. (zVy)A(yV-z)A(=yVz) is a boolean formula in conjunctive normal form. It is
satisfiable since for example the assignment (x,t).(y,t).(z,t) makes the formula true. By assuming
f =< t, this SAT instance can be seen as a binary optimization problem on boolean wvariables,
consisting in computing

val =max ((zVy) A (yV -2)A(-y V z)) (2.1)

x,Y,2

Indeed, if val = f, then the formula is not satisfiable; otherwise the formula is satisfiable and a
corresponding optimal decision rule for {x,y,z} defines a solution. Hence, SAT can be considered

as the computation of maz-eliminations on a conjunction of clauses.

2.1.2 Quantified boolean formulas: towards pessimistic indeterminism

and partial observabilities

The basic SAT problem was extended to Quantified Boolean Formulas (QBFs [57]) in order to

model decision problems involving

1. In propositional logic, the assignment of a propositional variable is called a substitution.

2.1. SAT-BASED DECISION FRAMEWORKS 23

e uncontrollable variables that may take any of their values. These variables are quantified with

the universal quantifier V. The other variables are quantified with 3 or are not quantified;

e partial observabilities: the alternation of 3 and V quantifiers makes the decision problem

sequential and the value of some variables may be observed between two decision steps.

The syntax of QBFs is defined by adding the existential and universal quantifiers to the propo-

sitional logic.

Definition 2.5. Let V be a finite set of boolean variables. Quantified Boolean Formulas (QBFs)
are defined inductively by the following rules:

1. ifx €V, then x is a QBF,

2. if v is a QBF, then —¢ is a QBF,

3. if ¢ and 1 are QBFs, then ¢ N is a QBF,

4. if p is a QBF and x € V, then Jzp and Vxp are QBFs.

The meaning of a QBF is defined by the standard semantics of the connectives and of the

quantifiers, which is: “if ¢ is a boolean formula, then 3z is true iff p((z,t)) V ¢((z, f)) is and
Vo is true iff o((z,t)) A p((z, f)) is”.

Example 2.6. Let us consider the boolean formula (x V y) A (y V —z) A (—y V z) introduced in
Ezxample 2.4. Let us assume that variable y is not controllable. Then, does there exist a value
for x such that for every wvalue of y, there exists a value for z such that the three clauses x V vy,
yV -z, and —yV z are satisfied? This query can be formalized using a QBE in the so-called prenex
conjunctive normal form, which is JxVy3z((x V y) A (y V —2) A (-y V 2)). The Y-quantification
means that variable y may take any of its values. The alternation of ¥ and 3 quantifiers means
that the value of y is observed only after the assignment of x. By assuming f < t, this QBF can

also be written

max minmax((z Vy) A (y vV —z) A (-y V z)) (2.2)
T Yy z
Equation 2.2 corresponds to a sequence of eliminations (max over x, min over y, max over z) on
a conjunction of clauses. Its value can be shown to equal true, and an optimal policy enabling the
three clauses to always be satisfied can be described as “set x to true; then, if y takes value true,
set z to true; otherwise, if y takes value false, set z to false”.

An example of QBF whose value is false is IxVyIz(y A (2 V 2) A (mz V —z)).

2.1.3 Stochastic SAT and extended stochastic SAT: towards a stochastic

indeterminism

In QBFs, uncontrollable variables can take any of their values. Therefore, QBFs can model a
pessimistic indeterminism, in the sense that all possible situations are considered. In another
direction, the SAT problem was extended to integrate stochastic indeterminisms (i.e. probabilistic
uncertainties). The corresponding extension is the Stochastic SAT (SSAT [82]) framework, which

uses a special quantifier A to quantify random variables.

24 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Definition 2.7. Let V be a finite set of boolean variables. Stochastic SAT (SSAT) formulas are
defined inductively by the following rules:

1. every boolean formula is an SSAT formula;
2. if p is an SSAT formula and x € V', then Jxp and Axp are SSAT formulas.

Given a boolean formula ¢, the semantics of Az is given by the expected truth value of ¢,
ie. val(Azp) = 0.5 p((x,t)) + 0.5 - o((x, f)). Hence, the semantics of the A quantifier enables
mutually independent boolean random variables to be modeled: Az means that variable x takes
value t or f with a probability of 0.5. The value of Jx¢ becomes max(o((x,1)), o((z, f))) instead
of p((x,t)) V ¢((x, f)). If ¢ is a boolean formula, then its value is 1 if the formula is true and 0

otherwise. A becomes X, in order to be able to combine truth values with probabilities.

Example 2.8. Let us update the unsatisfiable example IxVy3z(y A (x V 2) A (ma V —z)) given for
@BFs in a less pessimistic form, where y takes each of its values with a probability of 0.5. The
corresponding SSAT formula is FxAy3z(yA(xVz)A(—~xV—z)). Its value is given by the semantics of
the connectives and of the quantifiers 3 and 5. It equals max;), 0.5-max.(y x (zV z) X (m2V~2)),

which is equivalent to:

mfxz max(0.5 x (y x (zV 2) x (72 V =2))) (2.3)

Y

The value of this sequence of alternating max- and sum-eliminations on a product of scoped func-

tions is 0.5. It corresponds to the probability for the formula y A (xV 2) A (—x V —z) to be satisfied.

An easier decision problem associated with SSAT is to determine whether the value of an SSAT
formula is greater than a threshold 6. Also, in a version called extended SSAT [82], the universal

quantifier V is added, the semantics of Vxy being min(p((z,t)), o((z, f)))-

2.2 C(CSP-based decision frameworks

Similarly to the SAT framework, the basic CSP formalism was extended in order to improve its
abilities to model sequential decision problems involving plausibilities, feasibilities, and utilities.

But sequences of eliminations, hidden or not, are still present.

2.2.1 Constraint satisfaction problems

Constraint Satisfaction Problems (CSPs [84]), also known as Constraint Networks (CNs), are
graphical models involving scoped functions which are constraints. These constraints can model

either hard preferences, or impossibilities.
Definition 2.9. A CSP is a pair (V,C) where:
e V is a finite set of variables;

e C is a finite set of constraints. A constraint ¢ is a scoped function (S, @) where S C V is the

set of variables on which the constraint holds and ¢ : dom(S) — {t, f} is a boolean function

2.2. CSP-BASED DECISION FRAMEWORKS 25

defining the set of assignments of S satisfying the constraint.?

The usual query on a CSP (V, C) can be formulated as “Is there an assignment of V satisfying
all the constraints in C?”. If the answer is yes (resp. no), the CSP is said to be consistent (resp.

inconsistent). By setting f < ¢, this decision problem can be reduced to the computation of:

w1 (2.4

\4 ceC

This quantity can be computed by performing max-eliminations on a conjunction of constraints.
If it equals ¢, then an optimal decision rule for V' defines a solution (an assignment of V' satisfying

all the constraints). If it equals f, then the CSP is inconsistent.

Example 2.10. One must color each vertex of the graph in Figure 2.1 so that two ajdacent
vertices have different colors. The available colors are (r)ed, (g)reen, and (b)lue. This problem can
be modeled as a CSP (V,C) where

o V ={xy,22,23} and dom(x) = {r,g,b} for each x € V;
o C ={c1,co,c3} is a set of constraints defined by ¢1 : w1 # o, ¢o : X2 # X3, €31 T1 £ T3.

Thus, one variable is associated with each vertex, the assignment of this variable specifies the vertex
color, and binary difference constraints are defined. (x1,7).(x2,g).(x3,b) is a solution for this CSP.

In a two color version where dom(x) = {r, g} for each x € V, the CSP is inconsistent.

#

Figure 2.1: Graph coloring problem.

2.2.2 Extension to non-binary uncertainties and utilities: soft constraints

The CSP formalism can model hard constraints which express hard requirements or impossibilities.
It was extended in order to represent soft constraints expressing soft preferences (such as costs or
risks) or uncertainties (such as probabilities or possibilities). This led to formalisms like addi-
tive [126], possibilistic [122], probabilistic [44], partial [52], fuzzy [42], or lexicographic CSPs [46].
These extensions as well as usual CSPs are covered by two generic algebraic frameworks: the valued
CSP [123] and semiring-based CSP [10, 11] frameworks.

2. Usually, a constraint is defined as a pair (S, R) where S is the scope of the constraint and R, called a relation,
is the set of tuples satisfying the constraint. The definition we take just considers the boolean characteristic function
of R instead of R itself.

26 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Valued CSP (VCSP [123])

In a VCSP, the violation of one soft constraint induces a violation degree. Violation degrees are
combined using a combination operator ® % corresponding to min, max, +, x... The algebraic

structure defining the set of violation degrees and the operator ® is called a valuation structure.
Definition 2.11. A valuation structure is a triple (E,®, =X) such that:

o (E,=) is a totally ordered set equipped with a mazximal element T (unacceptable violation)

and a minimal element L (no violation);

e ® is an associative, commutative, monotonic operator on E, with 1 as an identity (e® L= ¢)

and T as an annihilator (e®@ T =T).

1 is an identity for ® because the combination of a violation degree e with no violation yields
an unchanged violation degree. T is an identity for ® because the combination of an unacceptable
violation with any other violation leads to an unacceptable violation. The monotonicity of ®

ensures that if a local violation degree decreases, then the global violation degree cannot increase.
Definition 2.12. A Valued CSP (VCSP) on a valuation structure (E,®, =) is a pair (V,C) where
e V is a finite set of variables;

e C is a finite set of soft constraints. A soft constraint ¢ is a scoped function (S,¢) where
S C V is the set of variables on which the constraint holds and ¢ is a function dom(S) — E

associating a violation degree with each assignment of S.

A usual query on a VCSP is to search for a complete assignment which has a minimal violation

degree. This problem can be solved by computing:

min (® c) (2.5)
v ceC
An optimal decision rule for V defines a solution for the VCSP. Equation 2.5 is a sequence of

min-eliminations on a ®-combination of scoped functions.

Example 2.13. Let us soften the inconsistent two color version of the graph coloring problem
of Example 2.10. If two adjacent vertices have the same color, this induces a cost of 1. Colors
(r)ed and (g)reen are available for each vertex. Coloring a vertex in red costs 1 and coloring a
vertex in green costs 2. We assume that costs are additive, i.e. we use the valuation structure
(RT U {+o0}, <, +), with e + (+00) = +00. 0 corresponds to no violation and 400 to an infinite
cost.

A VCSP modeling this new problem is the couple (V,C) = ({x1,z2, 23}, {ci|i € [1,6]}), where

o ¢y = ({x1},9), coa = ({x2},0), 3 = ({x3},), where o(r) =1 and (g) = 2 (cost 1 for value
red and cost 2 for value green);

® Cy = ({$17x2}7gol)7 Cs = ({$27x3}7¢1)7 Ce = ({1'171'3},@/), where QOI(T',T') = QOI(g,g) =1
and @' (r,g) = ¢'(g,7) =0 (cost 1 if two adjacent vertices have the same color, no violation

otherwise).

3. In the usual definition of VCSP, this operator is denoted @&. We decide to adapt this notation because this
operator is actually a combination operator and not an elimination one.

2.2. CSP-BASED DECISION FRAMEWORKS 27

It is possible to show that A = (x1,9).(x2,r).(x3,7) is an optimal solution for this VCOSP, with
acost of 3 e g ci(A)=2+1+140+140=5.

Semiring-based CSP [10, 11]

In the semiring-based CSP formalism, soft constraints are also defined. They associate with each
assignment of their scope a satisfaction degree in a totally or partially ordered set E. This set is
equipped with two operators, ® and @, which satisfy some sensible algebraic properties making

the structure (E, ®,®) a “c-semiring”:
Definition 2.14. A triple (E,®,®) is a c-semiring iff:

o (£, ®,R) is a commutative semiring (cf. Definition 3.2 page 53); the identity of @ is denoted
Or and the identity of ® is denoted 1g;

e @ is idempotent and 1g is an annihilator for &.

Informally, ® is a combination operator used to combine satisfaction degrees and & is an
elimination operator enabling to synthesize a satisfaction degree obtained from two values of the
c-semiring. These operators are associative and commutative so that the result of a combination
or of a synthesis does not depend on the way they are performed. Og, which is an annihilator for
®, is associated with complete dissatisfaction (the combination of any satisfaction degree with a
complete dissatisfaction yields a complete dissatisfaction), whereas 1g, which is an identity for ®
and an annihilator for @, stands for a complete satisfaction degree.

The idempotency of @& enables a partial order < to be defined, as (z 2 y) < (x By = y).
It is shown that (F, <) is a lattice (a lattice is a partially ordered set in which any two elements
have a supremum denoted sup and an infimum denoted inf) whose supremum is given by @, i.e.
x @y = sup(x,y). This shows that @ enables one to synthesize a kind of maximum satisfaction
degree. More precisely, we have 0 < = = 1g for all z € E. This means that 0g (complete
dissatisfaction) is the minimal element in the lattice whereas 1x (complete satisfaction) is the
maximal one.

Once the c-semiring structure is defined, soft constraint satisfaction problems can be introduced.
The definition of a semiring-based CSP (V, () is exactly the same as Definition 2.12 of VCSPs,
except that the valuation structure (F, ®, <) is replaced by a c-semiring (E, ®, ®).

An optimal solution of a semiring-based CSP (V,) is an assignment A of V such that there
is no other assignment A’ of V satisfying ®cccc(A) < ®@cecc(A’). In other words, a solution is
a non-dominated assignment. The best value of a semiring-based CSP is defined by @y (®cccc).
One (or all) optimal solution(s) can be recorded during the computation of this @-elimination
on a ®-combination of scoped functions. Compared to VCSPs, semiring-based CSPs are more
expressive because they can deal with partial orders. When the order < induced by @ is total,

VCSPs and semiring-based CSPs are equivalent [12].

Example 2.15. Assume that the cost induced by the color used for each wvertex, and the cost
induced by the existence of adjacent vertices having the same color are not commensurable. In

order to model such a situation, we use the c-semiring (E,®,®), where:

28 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

o = (R U{-00})x (R™U{—00}); a pair (e,e') models a (cost-color,cost-adjacence) pair: it
means that the colors used for each vertex induce a cost of e, and that the satisfaction degree

mduced by adjacent vertices having the same color is €’;
o @ is defined by (e1,¢}) @ (2, ¢h) = (max(er, e2), max(e}, ¢h);
o ® is defined by (e1,€]) ® (e2,eh) = (€1 + ez, €] +€).

The problem can be modeled by the semiring-based CSP (V,C) = ({x1, 22,23}, {ci |t € [1,6]})

where:

o a=({m}), 2 = ({22}, 9), 3 = ({3},), where p(r) = (=1,0) and p(g) = (=2,0) (cost

of 1 for value red and cost of 2 for value green);

® Cy = ({xluxQ}u 30/); Cs = ({$27x3}7¢/)7 Ce = ({xlux?)}u 30/)7 where SD/(Ta T) = Spl(gug) = (07 _1)
and ¢'(r,g9) = ¢'(g,7) = (0,0) (cost of 1 if two adjacent vertices have the same color, no

violation otherwise).

For example, the satisfaction degree of assignment A = (x1,9).(x2,7).(x3,7) is Dicp 6 ci(A) =
(-2,0)® (—-1,0) ® (—1,0) ® (0,0) ® (0, —1) ® (0,0) = (=4, —1). It is possible to show that A is
an optimal solution, as well as A" = (x1,7).(x2,7).(x3,7), which has a value (—3,—3) which is not
comparable with (—4, —1). The best value for this semiring-based CSP is (—3,—1), but there is no

assignment that achieves this supremum.

2.2.3 Modeling uncontrollabilities and partial observabilities: mixed CSP

Similarly to the extensions performed from SAT to QBF, the basic CSP framework was also
extended to model situations involving uncontrollable variables and partial observabilities. A first
step towards indeterminism was made with the Mixed CSP formalism [45], which distinguished
controllable variables representing the decisions from uncontrollable variables representing the state

of the environment (hence the name of mized CSP).

Definition 2.16. A mized CSP is a tuple (V,C, K) where
o V is a set of variables, partitioned between decision variables and environment variables;*
o (C is a set of hard constraints, each of which involves at least one decision variable;
o K is a set of hard constraints involving only environment variables.

The constraints in C' define constraints on the decisions, whereas the constraints in K restrict
the possible environments. As constraints in K do not involve decision variables, it is assumed that
decisions do not influence the state of the environment. This assumption is called the contingency

assumption.

Definition 2.17. A complete assignment of the environment variables is called a world. A com-
plete assignment of the decision variables is called a decision.
A world is possible if it satisfies every constraint in K. A possible world is covered by a decision

if this world together with this decision satisfy every constraint in C'.

4. Mixed CSP call the environment variables “contingent variables”. We adapt this terminology in order to make
the comparison with other formalisms easier.

2.2. CSP-BASED DECISION FRAMEWORKS 29

Two tasks, defining distinct observational situations, are associated with a mixed CSP:

1. If the state of the environment is completely observed before making the decision, the goal is
to seek a conditional decision rule, which associates with each possible world a decision such

that the number of covered worlds is maximized.

2. If the decision maker does not observe the environment before making his decision, the goal

is to compute an unconditional decision rule covering as many worlds as possible.

Example 2.18. Let us use the graph coloring problem of Example 2.10 again. In this new ex-
ample, the colors of vertices xo and x3 are not controlled. They are determined by some exter-
nal phenomena independent of the color chosen for x1. The contingency assumption therefore
holds. The only available knowledge is that vertices xo and x3 are of different colors (constraint
k1 : 2o # x3), T2 is not blue (constraint ky : x9 # b), and x3 is red whenever xs is green (constraint
ks : (x2 = g) — (3 = r)). The constraints on the decisions specifying that two adjacent vertices
must have different colors still hold (constraints ¢y : x1 # x2 and ¢z : 1 # x3).

This problem can be modeled by the mized CSP (V,C, K) where V- = {x1, 22,23}, C = {c1,ca},
and K = {ki, ko, ks}. x1 is the unique decision variable and x2, x3 are environment variables.

Three assignments of {xa,x3} exist which satisfy the constraints in K, i.e. there are three
possible worlds. If the colors of o and x3 are known when a color is chosen for x1, then an

optimal conditional decision rule, covering the three possible worlds defined by K, is given below.

Possible worlds for {x2,x3} || Conditional decision for x;
(z2,7).(z3, 9) b
(x2,7).(x3,b) g
(z2,9).(x3,7) b

If the colors of xo and x3 are not known before a color is chosen for x1, then an optimal uncondi-
tional decision is (x1,b). It covers two worlds among the three possible ones.

What is the link between these solutions and sequences of eliminations? First, given an as-
signment A of {x2, w3}, there exists an assignment of x1 covering A iff maxg, ((I[;ef1 9 ci(A)) x
(ILicp 3 ki(A))) = 1. An associated optimal decision is given by argmaz. More generally, when
the decision maker is aware of the colors of xo and x3 before choosing the color of x1, the number

of covered worlds is
>~ max((T] e (T] k) (2.6)

An optimal decision rule 6y, : dom({xa,23}) — dom(x1) for x1 corresponds to what is called an
optimal conditional decision rule in the mized CSP terminology.
Similarly, when xo and x3 are not observed before assigning x1, the number of worlds covered

by an unconditional decision is

max 37 (CT] e < T ko) 27)

z2,03 i€[l,2] i€[1,3]

An unconditional decision rule for x1 is simply obtained using argmaz.

30 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

In both cases, the problems associated with a mixed CSP can be reduced to the computation
of a sequence of eliminations (max . or Y max) eliminating decision variables using max and

environment variables using > .. The scoped functions are the constraints in C' and K.

2.2.4 Quantified CSP for modeling multi-step decision processes

The sequential aspect in mixed CSPs is reduced to a unique decision step, either before or after
an observation step. In order to model multi-step decision processes where some variables are
uncontrollable and may take any of their values, Quantified CSPs (QCSPs [15]) were introduced.

QCSP is to CSP what QBF is to SAT. This means that the only difference from the knowledge

modeling point of view between QCSP and QBF is that clauses are replaced by constraints.
Definition 2.19. A QCSP on a set of variables V is a formula of the form Q(ci A...Acy,) where:

e () is a sequence of quantifiers (Q1x1)(Qax2) ... (Qnxy) such that each Q; equals 3 or V and

each variable of V' appears exactly once in Q;

® C1,...,Cp are constraints whose scope is included in V.
Definition 2.20. The value of a QCSP q is defined inductively as follows (with f < t):

g =t (t corresponds to a constraint always taking value true), then val =t, and i
q 14 Y g s q s

q = [, then val(q) = f;

o if ¢ = (311)(Q2m2) ... (Qnan)(c1 A ... Acp), then val(q) = MaXgedom(z,) val(q'(a)), where
q'(a) = (Q222) ... (Qnan)((c1 Ao Aem)(21,a));

o if ¢ = (Va1)(Q222) ... (Qnrn)(c1 A ... Acm), then val(q) = mingeciom(z,) val(q'(a)), where
¢ (a) = (Q2x2) ... (Qnan)((c1 Ao Acw)(x1,0a)).

As in QBFs, problems associated with QCSPs can be answered using sequences of min- and

max-eliminations on a conjunction of constraints.

2.2.5 Integrating probabilistic uncertainties: stochastic CSP

Stochastic CSPs [138] enhance the CSP framework to model probabilistic uncertainties on uncon-
trollable variables, just as SSAT enhances SAT to be able to express stochastic indeterminisms.

Similarly to SSAT, SCSPs tackle multi-step decision making problems the goal of which is to
maximize the probability that all constraints are satisfied or to make that probability greater than
a given threshold 6. Globally, SCSPs are defined by an alternation of decision-observation steps.
In a one-step SCSP, one must assign decision variables in a set D; without observing random
variables in a set S;. In a two-step SCSP, one first assigns decision variables in a set Dj, then
observes random variables in a set Sp, then assigns decision variables in a set Dy depending on
the observations made, but without observing the values of random variables in a set Ss. A k-step
SCSP is defined similarly.

Definition 2.21. A Stochastic CSP (SCSP) is a tuple (V, P,C) where:

2.2. CSP-BASED DECISION FRAMEWORKS 31

o V is a sequence of variables. The order in which the variables appear in the sequence is
their order through the SCSP stages. Variables in 'V are either random variables or decision

variables;

e P is a set of scoped functions whose product gives a probability distribution on the random

variables, and whose scopes do not involve any decision variable (contingency assumption);
e (' is a set of hard constraints to be satisfied.

Thus, SCSPs extend CSPs first by adding uncontrollable random variables and then by adding
a sequential aspect in the decision process. They can also be updated to integrate aspects such
as additive costs, as in Stochastic Constraint Optimization Problems (SCOPs [138]). However, a
restriction is that decision variables cannot have any influence on random ones. This contingency
assumption is violated in fields like medicine, where the treatment chosen by a doctor influences
the patient health state. Definition 2.21 is actually an enhanced definition of SCSPs, since in
the basic version of SCSPs, the random variables are assumed to be mutually independent and

P = {Ps|s €S} is a set of unary probability distributions.

Definition 2.22. (SCSP-policy) A SCSP-policy is a tree involving nodes labeled with variables.
The root is labeled with the first variable in V' and the nodes just upon the leaves are labeled with
the last variable in V. Fdges in the tree are labeled with variable values. Nodes labeled with a
decision variable only have one son which corresponds to the value chosen for this variable, while
nodes labeled with a random variable © have one son per value in dom(z).

Each leaf can be associated with a complete assignment A of V. It is labeled with 1 if A satisfies
all the constraints in C', with 0 otherwise. Moreover, it can be be associated with a probability of
occurrence p = HgaeP ©(A). The value of a SCSP-policy is the sum of the leaf values weighted by
their probabilities.

A SCSP is satisfiable iff there exists a SCSP-policy whose value is greater than a given threshold
0. A SCSP-policy is optimal iff it has a maximal SCSP-policy value.

Example 2.23. The graph coloring problem of Example 2.10 is made more complex by assuming
that variable xo is uncontrollable and takes value red, green, blue with a probability of 0.2, 0.5, and
0.3 respectively. We further assume that first the color of x1 must be chosen, then the color of xa

is observed, and last a color for x3 must be chosen. The associated SCSP is (V, P,C) where
o V =[xy, 29,23]; 1, x3 are decision variables, x5 is a random variable;
o P ={P,,} contains the probability distribution over xs;

o C = {c1,ca,c3} is a set of three difference constraints ¢ : x1 # xa, ¢a @ To # x3, and
C3:x3 F x7.
Figure 2.2 shows an optimal SCSP-policy. Its value of 0.8 means that it enables constraints to
be satisfied with a probability of 0.8.
It is possible to show that Equation 2.8 below can be used to seek an optimal SCSP-policy. We

assume that f and t are mapped onto 0 and 1 respectively, to be combinable with probabilities.

max 3~ mass (P, x (Iiep) (28)
T2

32 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

x1
r
To Policy value :
r Pyy((23,7)) -0
g + P, ((22,9)) - 1
T3 T3 T3 +P6x28(($2, b)) -1
b‘ b g‘ -
0 1 1

Figure 2.2: An optimal SCSP-policy for the updated graph coloring problem.

Equation 2.8 corresponds to a sequence of max and + eliminations (over decision and random

variables respectively) on a combination of scoped functions.

2.3 Bayesian network-based decision frameworks

The overall approach previously described consisted in extending the expressiveness of the basic
SAT and CSP frameworks by introducing plausibilities, either in the form of probabilistic uncer-
tainties as in stochastic CSPs, or in the form of boolean pessimistic indeterminism as in QBFs.
At the same time and in an opposite direction, formalisms like Bayesian Networks (BNs [96]) were
developed to model uncertainties and then extended to integrate aspects such as decisions, utilities,

and even constraints. We describe such extensions starting from the standard BN framework.

2.3.1 Bayesian networks

Bayesian networks (BNs [96]) enable a global joint probability distribution Py over a set of random
variables V' to be represented using “local” scoped functions, the same way as CSPs enable a
global constraint on all the variables to be represented using “local” constraints. Such a factored
representation is useful for two reasons. First, recording a joint probability distribution when V
is large can be difficult or even impossible. Second, using a factored representation of a joint

distribution over V is algorithmically decisive.
Definition 2.24. A Bayesian network is a triple (V, G, P) such that:
e V is a finite set of variables;

e G is a directed acyclic graph (DAG) over V;

o P={P;|pac(x) | ® €V} is a set of conditional probability distributions of each variable v € V/

gien its parents in G, which are multiplicative factors of the joint probability distribution

Py =Tl.ev Pl pac()-

This means that the joint probability distribution Py is represented by local conditional prob-
ability distributions P, | yq(z)- The main property of Bayesian networks is an equivalence theorem

between factorization and conditional independence.

2.3. BAYESIAN NETWORK-BASED DECISION FRAMEWORKS 33

Definition 2.25. Let Py be a joint probability distribution over V and let G be a DAG over V.
G is said to be compatible with Py iff every variable x € V is conditionally independent of its

non-descendants given its parents, i.e. Pp|ndg(a) = Pr|pac(z)-

Theorem 2.26. [96] Let Py be a joint probability distribution over V and let G be a DAG over
V. Then, Py = [l cv Pr|pac() iff G is compatible with Py .

In fact, there are two major definitions for Bayesian networks. The first one, used in Def-
inition 2.24, introduces BNs starting from the factorization into conditional distributions. The
second one, which starts instead from conditional independence, is “Let Py be a joint probability
distribution over V' and let G be a DAG over V. The pair (G, Py) is a Bayesian network iff G is
compatible with Py”. The two definitions are equivalent thanks to Theorem 2.26. The choice of
one of the two definitions is a matter of perspective and both points of view are used.

One possible query on a BN is to compute the marginal probability distribution of a variable

yelV:

P, = Z Py = Z (HPOC\:DGG(E)) (2.9)

V—{y} V—{y} zeV

Equation 2.9 corresponds to sum-eliminations on a product of scoped functions. In other queries
on BNs such as MAP (Maximum A Posteriori hypothesis), used to seek an optimal explana-

tion to some observations, max-eliminations are also performed, in elimination sequences such as

maxp ZV*D(HzGV Py pac(w))'

Example 2.27. [95] Mr Holmes has equipped his house with an alarm which can ring if a burglary
or if an earthquake occurs. If it sounds, then his two neighbors John and Mary are likely to call
him.

This problem can be modeled using 5 boolean random wvariables: bu, representing the occurrence
of a burglary, eq, representing the occurrence of an earthquake, al, modeling whether the alarm
sounds, mc, specifying whether Mary calls, and jc, modeling whether John calls.

The DAG represented on Figure 2.8 can then be used to model conditional independences qual-
itatively. It says that each variable is conditionally independent of its non descendants given its
parents. For example, mc is conditionally independent of eq, bu, jc given al. This means that as
soon as one knows whether the alarm sounds, mc does not depend on the other variables. Similarly,
jc is conditionally independent of eq, bu, mc given al. Moreover, eq is conditionally independent
of bu given no other information. However, as soon as the value of the descendant al is known, eq

and bu become correlated.

(me)
e
()

Figure 2.3: DAG of the Bayesian network of Mr Holmes’ alarm problem.

34 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Besides the qualitative information expressed by the DAG, BNs also specify conditional proba-
bility distributions of each variable given its parents, such as Puy|eqpu, the conditional probability
that the alarm sounds or mot given the occurrence of an earthquake and a burglary.

The joint probability distribution then factors as Pegpu,alje,me = Peq * Pou - P lea.bu " Pjelal -
Prciar- In order to make a diagnosis and get the probability that the alarm sounds or not, one

must compute Py = Zeq,bu,jc,mc (Peq “ Poy - Pay | eq,bu * ch |al * Pmc|al) :

Similarly, queries on so-called Dynamic Bayesian Networks (DBNs [31]), which extend BNs by
integrating a temporal aspect, can be reduced to the computation of eliminations on a product of

conditional probability distributions.

2.3.2 Possibilistic networks

BNs use probabilities to model uncertainties. Possibilistic networks [51, 69] extend BNs to a
possibilistic representation of uncertainty, and enable a global joint possibility distribution to be

represented by local conditional possibility distributions.

Definition 2.28. A possibilistic network is a triple (V, G, P) such that:
e V is a finite set of variables;
e (G is a directed acyclic graph (DAG) over V;

o P = {7y pac(x) | € V} is a set of conditional possibility distributions of each variable
x €V given its parents in G, which are factors of the joint possibility distribution my, =

3 5
MNgeV Ty | pag(x)-

In order to get the marginal possibility distribution of a variable y € V', one must compute

Ty = VIEE};{} Ty = Vnia{%(} (leél‘lfl Te | pac(z)) (2.10)

The latter equation is a max-elimination on a min-combination of scoped functions.

2.3.3 Mixed networks

BNs were extended to use CSP techniques such as constraint propagation. This extension is called
mized networks [36, 37]. In this formalism, constraints are introduced over the random variables

of a BN, in order to model:

e cither the deterministic part extracted from conditional probability distributions (0-1 proba-
bilities): for example, if x, y, and z are boolean variables such that P, |, ,(A) = 0 whenever
A contains (x,t).(z,t), one can extract the constraint ¢ : =(z A z) as a redundant but algo-

rithmically important information;

e or evidences (i.e. observations). They correspond either to the assignment of a single variable,

or to more complex evidences expressed e.g. as boolean formulas. For instance, if one hears

5. Actually, the joint possibility distribution can take other forms depending on the operator used to define
possibilistic conditioning. Typically, the joint possibility distribution represented by a possibilistic network can also

be v =Tl,ev To | pag (2)-

2.3. BAYESIAN NETWORK-BASED DECISION FRAMEWORKS 35

a sound in a room containing two sources s; and so, then the complex evidence s; V so can

be inferred (s = ¢ if a source s has produced a noise).
Definition 2.29. A mixed network is a tuple (V, G, P,C) where:

e V is a finite set of variables;

G is a DAG over V;

P ={Py; | pac ()| ® €V} is a set of conditional probability distributions. When Py | pe (a) 15 @
conditional probability distribution taking values 0 or 1 only, it is called a deterministic con-
ditional distribution. It can then be represented as a deterministic function dom(pag(z)) —

dom(z) or as a constraint;
o C={cy1,...,c1} is a finite set of constraints whose scopes are included in V.

A query on a mixed network can be for instance to determine the probability p. that constraints
in C are satisfied. Such a query can be answered by computing the sum of the probabilities of the

complete assignments satisfying all the constraints, i.e.

Z (H Pw|pag(m)(A)) = Z((H Pm\pac(m)) X(H Cl)) (211)

A€dom(V),c1(A)A...Ack(A)=t z€V Vo zev i€[1,k]

Equation 2.11 combines local probabilities using x, combines constraints using x, combines prob-
abilities with constraints using X, and eliminates variables using .

When the CSP (V,C) is consistent, a mixed network actually represents the joint “mixed”
probability distribution MPy such that for all complete assignments A of V., MPy (A) is the
probability of occurrence of assignment A given that the constraints in C' are satisfied. More

formally,

= Py(A) if cr(A) AL Acp(A) =t

(2.12)
0 otherwise

MPy(A) = {

2.3.4 Influence diagrams

In another direction, BNs only define probabilistic relations between random variables. They allow
to model diagnosis problems. Influence diagrams (IDs [64]) extend BNs by adding the notions of

decision and additive utility.

Definition 2.30. An influence diagram is a composite graphical model defined on three sets of

variables organized in o DAG G:

e q set S of chance variables, represented by circles. For each x € S, a conditional probability

distribution Py | pag(z) 0N T given its parents in G is specified (as in a BN);

e a set D of decision variables, represented by squares. For each x € D, pag(x) is the set of
variables observed before decision x is made. Hence, arcs pointing to decision variables are

information arcs, since they define available information when the decision is made.

There must exist a directed path dy — dy — ... — dg containing all decision variables, so

that the order in which decisions are made is completely determined (regularity assumption).

36 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Moreover, even if this is not represented in the DAG, the parents of a decision variable must

be parents of all subsequent decision variables (no-forgetting assumption). %

e a set I' of utility variables, represented by diamonds. For each u € T, an additive utility

function Uy, (u) of scope pac(u) is specified. Utility variables must be leaves in the DAG.

Similarly to a stochastic CSP, the problem associated with an influence diagram is to search

for an optimal ID-policy, as defined below.

Definition 2.31. (ID-policy) An ID-policy is a set of decision rules 0, : dom(pag(z) N S) —
dom(z), one per decision variable z € D."

For every complete assignment A of the chance variables, an ID-policy A defines a unique
complete assignment A(A) = A.dq, (A). -+ .04,(A), such that

e the probability that A occurs is Pa(A) = [[,cs Pr|pac(x)(A(4)),
o the utility associated with A is Ua(A) = >, cp Upag () (A(A)).

The value of an ID-policy A is vala = 3 acqom(s) (Pa(A) -Ua(A)). It corresponds to the
probabilistic expected utility of A.
An optimal ID-policy A* is an ID-policy of mazximal value.

The above definition can be related to sequences of eliminations. If one denotes by Iy the set
of chance variables observed before the first decision dy, by I the set of chance variables observed
between decisions dj and dj41, and by I, the set of chance variables unobserved before the last
decision dg, then computing an optimal ID-policy is equivalent [66] to computing optimal decision

rules for the quantity

ZH}{?X .- Z HbaXZ((H Pac|pac(ac)) X (Z Upac(u))) (213)
Io ¢

Iy—q I, z€S8 uel

Again, Equation 2.13 is a sequence of eliminations (alternating eliminations using max and +) on
a combination of scoped functions (probabilities combined using x, utilities combined using +,

probabilities and utilities combined using x).

Example 2.32. Mr Holmes does not just want to perform diagnosis tasks to know the probability

that he is burglarized. He also wants to plan actions in order to maximize an expected utility:

e Mr Holmes can decide to call a neighbor in order to know whether the alarm is ringing: we
remove variables mc and jc, and we add a boolean decision variable ca modeling whether Mr
Holmes calls a neighbor. However, a phone call makes him lose a 1000€ contract which he

is negotiating. This is represented by a utility variable uy with ca as parent.

o If Mr Holmes calls, he gets, with a certain probability, a result re equal to na (no answer,
if his neighbor does not answer), t (if the neighbor tells him that the alarm is ringing), or f
(if the neighbor tells him that the alarm is not ringing). If Mr Holmes does not call, he gets

re =na (no answer).

6. Extensions of IDs exist which relax the no-forgetting or the regularity assumptions, such as decision net-
works [144]. In some extensions, arcs pointing into a decision variable x can also model that some values in dom(x)
are forbidden for some assignments of pag(z). This allows so-called asymmetric decision problems to be modeled.

7. We do not make any assumption on the way this set of decision rules is recorded. We only assume that for
each z € D, it implicitly or explicitly specifies a decision to make depending on the assignment of pag(xz) N S.

2.4. BEYOND CONDITIONAL PROBABILITIES FOR MODELING UNCERTAINTIES 37

e Depending on the call and the answer, Mr Holmes can decide to call the police. This is
modeled by a boolean decision variable po. If he calls the police and his house is not being
burglarized, he will pay a 500€ penalty. If he does not call and his house is being burglarized,
he loses 2000€. This is modeled using a utility function us with {bu,po} as scope.

The associated influence diagram is shown in Figure 2.4. The unique optimal ID-policy consists
in calling neither a neighbor, nor the police. Its value is —20€. It can be obtained by directly
applying Definition 2.31 or by computing a sequence of variable eliminations on the combination

of the scoped functions defined by the ID, as in Equation 2.14.

Hiix § H;)%X § ((Pbu : Peq “Pa | bu,eq * P.. | al,ca) X (Uca + Ubu,po)) (214)
re bu,eq,al
P(eq) P(re | al,ca)
eq P(eq) re al ca P(re | al,cd
true 0.0009 true true true 0.85
false 0.9995 false 0
false true 0.05
false
P(bu) false true t;ule 0.08
bu P(bu) Se
ca ——| po true 0.01 false tgl(sae 0.85
false 0.99 na tue true 0.1
false 1
\ false true 0.1
Ul(ca) false 1
ca Ul(ca)
P(al | eq,bu)

/ true —1000
false 0 al ey bu P(al|eqbu

true true true 0.9O 3

alse .

U2(bu,po) false true 0.8
bu po U2(bu,po) false 0.05

true true 0 false true true 0.1
false =200 false tfﬁllge 0027
false tf’a‘ige - 508 false 0.95

(CY (b)

Figure 2.4: An influence diagram: (a) Qualitative part; (b) Quantitative part.

Compared to the most advanced SAT and CSP-based formalisms, influence diagrams can cap-
ture uncertainties without assuming any contingency. Decisions can therefore influence the state
of the environment (e.g. decision ca influences random variable re). This is mainly due to the
fact that modeling uncertainties is one of the bases of influence diagrams and not just an added
component. Nevertheless, as far as we know, influence diagrams are algorithmically less developed

on some points, since e.g. they do not use any soft constraint propagation mechanisms.

2.4 Beyond conditional probabilities for modeling uncer-

tainties

All the previous BN-based formalisms represent uncertainties using local conditional distributions.
In another direction, some formalisms emphasize factorization and do not require to handle only
conditional distributions. We briefly present some of them, which can be seen as alternatives to

Bayesian networks and influence diagrams.

38 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

2.4.1 Markov random fields and chain graphs

In order to explain why BN is not always the best formalism to model uncertainties, and why

factorization-based models can be more efficient, we use a statistical physics example.

Example 2.33. A spin glass is a disordered magnetic material, for instance a material made
of copper (Cu) and containing some atoms of manganese (Mn) distributed on some sites, as in
Figure 2.5. The magnetic state of the manganese atoms can be described by a random wvariable
taking value +1 or —1. Some atoms of manganese want to have the same magnetic state (“friend”
atoms), while others want to have opposite magnetic states (“antagonist” atoms). Last, some
atoms do mot directly interact, because they are too far from each other.

The interactions between the manganese atoms are such that no state exists where all atoms
magnetic preferences are satisfied. For example, let us consider three atoms placed on sites s1, Sa,
s3. If s1 wants to have the same magnetic state as both ss and s3, whereas so and s3 want to have

distinct magnetic states, there is no perfect situation.

= interacting atom

Figure 2.5: A copper (Cu) / manganese (Mn) spin glass.

Let us assume that there are n sites and that the magnetic state (£1) of site i is given by
variable s;. Let J;; be a parameter equal to 1 if the atoms in s; and s; are friend atoms, —1 if
they are antagonist atoms, and 0 if they do not interact. Then, in order to describe the global

state of the copper-manganese alloy, statistical physicians write the joint probability distribution

over {s1,...,Sn} as Ps, . s = %exp(—ﬁ - Es,....s,), where Z is a normalizing constant, (is a
constant, and Es, s 1is the energy function equal to Es, . s, = — Z(i-j) Jijsis;j. This enables us
to write
1
Py s, = 7 % H exp(—05Jijsis;) (2.15)

(4,4)
Equation 2.15 expresses a joint probability distribution as a combination of factors which are not
conditional probability distributions. Fxpressing this joint distribution with Bayesian networks is
not only unnatural, but also less efficient, because BNs could involve scoped functions whose largest

scope can be linear in n! This is due to the difference between conditional independences expressible

in a directed graph and in an undirected one.

Markov Random Fields (MRFs [22]) is a formalism which enables probability distributions such
as the one in Equation 2.15 to be modeled. We only present discrete state MRF's.

Definition 2.34. Let S = {s1,...,8,} be a finite set of finite domain random variables organized

2.4. BEYOND CONDITIONAL PROBABILITIES FOR MODELING UNCERTAINTIES 39

in an undirected graph G. Each variable x € S has a set of neighbors Ng(x) given by G. Let Ps
denote a probability distribution over S.
(G, Ps) is a Markov Random Field iff for every variable x € S, Py s— {2} = Py Ng(a), i-€. each

variable is probabilistically independent of its non-neighbors given its neighbors in G.

The Hammersley-Clifford theorem [63] establishes that (G, Ps) is a MRF iff Pg can be factored
as a Gibbs distribution:

1
Psl Spn E X H exp(_ﬂ : <Pcl) (216)
cleCl

where Z is a normalization constant, Cl is the set of cliques of GG, and ¢.; is a scoped function of
scope cl called the potential of clique cl. This shows that MRFs can be used to model problems
like spin glasses. This formalism is also used in vision and neuronal biology. Roughly speaking,
its “philosophy” is that BNs are more often used to model temporal (causal) relations between
random variables, whereas MRF's are more appropriate to model spatial correlations.

Given a MRF, one can compute a most probable configuration by performing max-eliminations

on a multiplication of scoped functions, as follows:

max (l X H exp(—fF - pea)) (2.17)

81,50 4
Lt clecl

BNs and MRFs are unified by Chain graphs [55]. A chain graph uses a graph containing both
directed and undirected arcs, and such that cycles in this graph involve undirected links only. The
set C of connected components obtained when removing directed arcs are called the components of
the chain graph. A chain graph can then be seen as a DAG G whose vertices are the components
in C.

It represents a joint probability distribution Py in a factored form Py =[] .o P pac(e), €ach
conditional distribution P.|p..(c) being itself specified as in Markov random fields by a set of

scoped functions @, and by a normalization constant Z

pac(c) Whose scope is included in pag(c),
Hcpe@c ¥

so that Pc|pag(c) = Z;

pag(e)

2.4.2 Valuation networks

The statement made for Bayesian networks also holds for influence diagrams. Basically, IDs use
conditional probability distributions to model uncertainties. They were extended so as to integrate
models like MRFs. The corresponding extension is called Valuation Networks (VNs [128]) and is
also known as valuation-based systems for Bayesian decision. VNs emphasize the multiplicative

decomposition of a joint probability distribution, and not conditional independence.
Definition 2.35. A Valuation Network is a tuple (V, P,U, <) where:
o V is a finite set of variables, partitioned between decision and environment variables;

o P={P,...,P,} is a set of scoped functions® whose multiplication gives a family of joint
probability distributions on the environment variables (one joint distribution per possible as-

signment of the decision variables);

8. In the valuation network terminology, scoped functions are called valuations.

40 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

o U={U,...,Us} is a set of scoped functions which are additive factors of a global utility;

e < defines precedence constraints, indicating which observations are available when a decision
is made. Some consistency conditions are imposed on these precedence constraints (we omit

them for simplicity [128]).

The usual query on a VN is the same as for influence diagrams. It can be answered to by

computing a sequence of eliminations like

max. max P) U; 2.18
%:dl Z X;P];[P U;})) (2.18)
in which the P; functions are not necessarily conditional probability distributions.

The VN formalism was also extended in order to handle asymmetric decision problems in a
better way, as in sequential valuation networks [41]. Informally, a decision problem is asymmetric
if some variable assignments are impossible given the assignment of other variables, leading to
an asymmetric tree in a decision tree representation. In such extensions, e.g. with asymmetric
valuation networks [130], sequential decision problems with probabilistic uncertainties, feasibilities,
and additive utilities can be modeled. The difference with usual VNs is that a set F = {Fy,..., F,.}
of boolean scoped functions, called indicator valuations, is added. These indicator valuations are
local feasibility constraints. They specify that the assignments of some variables are unfeasible
given the assignment of other variables.

If the precedence constraints look like di < ds < s1 < d3 < dy < s2, it can be shown that

optimal decision rules for dy, do, d3, d4 are defined via Equation 2.19:

mra((a) (L2)-(20) e

Local feasibility constraints are combined using A, and combined with other scoped functions using

the truncation operator x (cf Definition 1.6). And, again, a sequence of eliminations is performed.

2.5 Classical planning-based frameworks

The previous sections have offered a quick overview of some existing variable-based representation
frameworks for sequential decision making with uncertainties, feasibilities, and utilities. In another
direction, classical planning problems can use different representations [58]. We describe only the
most popular one, the classical planning representation, which is namely linked with the planning
system STRIPS [49] and the famous PDDL planning language [86]. This representation is of
interest because it uses a knowledge representation which differs from the variable-based modeling
seen so far with SAT, CSPs, and BNs.

2.5.1 Classical planning
The presentation of classical planning requires some definitions concerning first order languages.

Definition 2.36. A first order language L is based on four types of symbols: constant, variable,

predicate, and function symbols. The following definitions hold when there are no function symbols.

2.5. CLASSICAL PLANNING-BASED FRAMEWORKS 41

A term is either a constant symbol or a variable symbol.

If pr is an n-place predicate and t1,...,t, are terms, then pr(ty,...,t,) is called an atom.

A literal is an atom or ils negation. A positive literal is an atom and a negative literal is the
negation of an atom. Given a set of literals L, we denote by L™ and L~ the set of positive and
negative literals in L respectively.

An atom (resp. a literal) is said to be a ground atom (resp. a ground literal) if it involves only

constant symbols.

For example, in a first-order language £ without functions where the constant symbols are b1,
b2, b3, where variable symbols are x and y, and where there is a two-place predicate pr, the terms
are bl, b2, b3, x, and y, pr(bl, z), pr(b2,b3), and pr(z,y) are examples of atoms, among which only
pr(b2,b3) is a ground atom, and pr(b1,) and —pr(b2, b3) are literals, among which only —pr(b2, b3)

is a ground literal.

Definition 2.37. Let L be a first-order language with a finite number of symbols and without
Junction symbols. A planning operator in L is a triple o = (name(o), precond(o), effects(0)) such
that:

e name(0) is the operator name, looking like n(x1,...,x) (n is called the operator symbol and

Z1,...,x are the variables appearing in the definition of 0);

e precond(o) and effects(o) are sets of literals in L defining the preconditions and effects of o

respectively.
If O is a set of planning operators in L, then (L, O) defines a classical planning domain.

The definition of a planning domain is purely syntactic. Semantically speaking, a planning

domain defines a so-called “restricted state-transition system” [58] 3 = (S, .A,7) where:

e SC o{all ground atoms of L} i¢ 5 finite set of states. We make the closed-world assumption, i.e.

an atom which is not explicitly specified in a state does not hold in that state;

e A = {all ground instances of operators in O} is a finite set of actions. A ground instance of
a planning operator o is simply a planning operator obtained from o by replacing variable

symbols by constant symbols;

e 7:8 x A— 8 is a state-transition function. Given (s,a) € S x A, if precond™(a) C s and
precond” (a) N's = (), then a is applicable to s. In this case, y(s,a) = (s — effects™ (a)) U
effects™ (a) is a state in S obtained if action a is performed in state s: a deletes the negative
effects and add the positive ones. Otherwise, if action a is not applicable in state s, v(s, a)
is undefined. In other words, planning operators explicitly say that preconditions must be

satisfied for a decision to be feasible, and they define deterministic effects of actions.

Definition 2.38. The statement of a planning problem is a triple (P, s, g) where P = (£, 0) is
a planning domain, sg 1s a set of ground atoms in L defining the initial state, and g is a set of
ground literals in L representing the goal.

The set of goal states Sy is the set of all states s € S such that every positive literal in g is in

s and no negative literal in g is in s.

42 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

Definition 2.39. Let (P, sg,g) be the statement of a planning problem. A plan is a sequence
of actions [aq,...,a;]. A plan is applicable iff y(v(...v(y(v(s0,a1),a2),a3)...,ax—1),ax) is not
undefined, where v is the transition function of the restricted state-transition system associated

with P. A plan is a solution iff v(y(...v(v(7v(s0,a1),a2),a3)...,ax-1),ar) € Sy
The planning problem consists in finding a plan which is a solution.

Example 2.40. The “Blocks World” problem described below illustrates planning operators. Ini-
tially, a stack of numbered blocks lies on a table, as in Figure 2.6(a). A robot arm can unstack the
highest block of a pile or pick up a block from the table. A block held by the arm can be put down

on the table or stacked on the top of a pile of blocks. The arm cannot hold more than one block.

-

bl

b2

b3 b3 bl

(a) (b)

Figure 2.6: A blocks world problem: (a) initial state; (b) state reached after applying the plan
[unstack(bl, b2), put-down(b1), unstack(b2, b3)].

In order to model this problem, we first define the planning domain:
e Language L:

— Predicate symbols: clear(z), ontable(z), on(x,y), emptyarm, holding(x);

— Constant symbols: bl, b2, b3;

e Planning operators:

01 : stack(zx,y)

precond(oy) : {holding(x), clear(y)}

effects(o1) : {=holding(x), ~clear(y), clear(z), emptyarm, on(x,y)}
09 : unstack(x,y)

precond(oz) : {emptyarm,on(x,y), clear(x)}

effects(o2) : {=emptyarm, —on(x,y), ~clear(x), clear(y), holding(x)}
03 : pick-up(x)

precond(o3) : {clear(x), ontable(x), emptyarm}

effects(os) : {=clear(x), —montable(x), ~emptyarm, holding(x)}

04 : put-down(x)

precond(oy) : {holding(x)}

effects(oy) : {=holding(z), clear(z), emptyarm, ontable(x)}

An action is an instantiation of a planning operator. For example, stack(bl,b2) is an action
which puts block bl on block b2 if the preconditions holding(bl) and clear(b2) both hold.

A planning problem statement can then be defined on the previous planning domain, e.g. by

o the initial state so = {ontable(b3),on(b2,b3),on(bl, b2), clear(bl), emptyarm} represented in
Figure 2.6(a);

2.5. CLASSICAL PLANNING-BASED FRAMEWORKS 43

e the goal g = {clear(b3), memptyarm}, which says a state is a goal state iff there is no block
on top of b3 and the robot arm holds a block.

[unstack(b2,b3)] and [pick-up(b2), put-down(b3)] are examples of plans which are not applicable,
because they violate some preconditions. [unstack(bl,b2), put-down(bl), pick-up(bl), stack(bl, b2)] is
an applicable plan. It says that the robot must take bl on top of the initial stack, put it on the table,
pick it up from the table, and put it again on the blocks stack. An example of a plan which is a solu-
tion to the planning problem is the sequence of actions [unstack(bl,b2), put-down(bl), unstack(b2, b3)].

The state obtained when performing this plan, which is a goal state, is shown in Figure 2.6(b).

The classical planning framework offers extensions in which preconditions and action effects
can be more general than just sets of literals or atoms, and in which goals can be more general

than just states to reach (e.g., the number of actions of a plan can be a plan ranking parameter).

As previously stated, the classical planning framework uses a knowledge representation which
is different from the variable-based one used in SAT, CSP, or BN. Nevertheless, the classical
planning representation is equivalent to another variable-based representation [58]. A classical
planning problem can indeed be formulated as a CSP in order to search for a solution plan with
a length < k. This shows that a classical planning problem can be formulated as a sequence of
max-eliminations on a conjunction of scoped functions.

In all the following, we will use a variable-based representation. This choice is motivated both

in terms of models and algorithms:

e From a modeling point of view, many formalisms reason about variables and local functions.
In order to build a generic encompassing framework, it is more natural (and easier) to reuse

this common basis.

e From an algorithmic point of view, frameworks like CSPs or BNs already offer various tech-
niques which are strongly related with the variable-based representation. In order to gener-

alize them, working on a similar representation can be helpful.

2.5.2 Conformant planning and probabilistic planning

The classical planning framework was extended in order to model either pessimistic indeterminisms,
as in conformant planning [60], or stochastic indeterminisms, as in probabilistic planning [77]. The
two main ideas are first that there can be uncertainties on the initial state of the environment, and
second that action effects may be non-deterministic.

In conformant planning, the initial state sg is replaced by a set of possible initial states Sp.
Sy can be defined either explicitly, or implicitly via boolean formulas or constraints. Planning
operators become non-deterministic, meaning that they describe all the possible states which can
be reached when they are applied. The objective is to find an unconditional plan (the environment
is assumed to be unobservable) which guarantees that the goal is reached, whatever the evolution
of the environment is.

In conformant probabilistic planning, a probability distribution over the initial state is specified,
and actions have probabilistic effects. The objective is then to search for an unconditional plan

maximizing the probability that a goal state is reached.

44 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

In probabilistic planning, the state of the environment becomes observable. Hence one can seek
conditional plans. Probabilistic planning problems can be expressed using the PPDDL planning

language [143].

2.6 Sequential decision making under uncertainty with MDPs

Frameworks like MDPs also use a state-based modeling and describe the evolution of the whole
state of the environment. This section introduces MDPs and their extensions to non-probabilistic
uncertainties and partial observabilities. It also shows that despite the basic state-based represen-

tation, variable eliminations can still be used.

2.6.1 Markov decision processes

Markov Decision Processes (MDPs [111, 89]) model sequential decision problems such that, at each
step ¢ of the decision process, an agent must make a decision d depending on the state s of the
environment at ¢. This decision d induces an immediate reward U (s, d) and a stochastic evolution
of the whole state of the environment, which becomes s’ with a certain probability P(s’|s,d).
This reward U(s,d) and this evolution P(s’|s,d) are assumed to depend only on s and d (Markov
hypothesis). Figure 2.7 describes the unrolled form of a 4-step MDP.

Figure 2.7: A 4-step MDP. A vertex s; represents the state at step 7 and a vertex d; represents
the decision made at step i. An undirected dotted edge between s; and d; represents the reward
induced when decision d; is made in state s;, and arcs into vertex s;;1, coming from s; and d;,
point out that the state at step ¢+ 1 depends on the state and decision at step ¢ (via the transition
function P(s"|s,d)).

Definition 2.41. A MDP is a tuple (S,D, P(.]|.,.),U(.,.)) where
e S is a finite set of states of the environment;

e D is a finite set of decisions;

e P(.|.,.): SxS8xD—[0,1] is a function such that P(s'|s,d) is the conditional probability

of reaching state s’ if decision d is made in state s (transition model);

e U(.,.): SxD — R is a function such that U(s,d) is the immediate reward obtained if decision

d is made in state s (reward model).®

9. The literature offers various definitions of MDPs. In Definition 2.41, we consider only stationary MDPs, that
is the actions available, the transition model, and the immediate rewards do not depend on the step ¢ considered.

2.6. SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY WITH MDPS 45

MDPs do not basically involve variables: they reason about a state space S and a decision space
D. However, the state at one step can be described by one state variable s with S as domain, and
the decision made at one step can be seen as one decision variable d with D as domain.

A MDP can be either a finite, or an infinite horizon MDP. In the former, there exists a step T'
such that what occurs after T is not considered. !* In the latter, a discount factor v (0 <y < 1) is
introduced to model that the sooner the rewards the better. This discount factor can be used with
finite horizon MDPs as well, in which case it does not need to be strictly lesser than 1. Given the
transition model and the reward model, the goal is to search for a sequence of decisions of maximal

expected utility.

Definition 2.42. (MDP-policy) A MDP-decision rule is a function ¢ : S — D specifying a decision
d(s) € D to make depending on the current state s € S. A MDP-policy A is a set of MDP-decision
rules A = {61,02,0s,...} (8, is the MDP-decision rule associated with the t-to-last step). If
01 = 0 = 03 = ... = 0, then the MDP-policy is said to be stationary and is specified simply as
A ={6}.

The value of a MDP-policy A is its associated expected utility, defined inductively as follows.
Let vala (s) be the expected utility if A is applied during ¢ steps starting from state s. For
t = 1, the expected utility is simply the immediate reward obtained when making decision d;(s),
ie. wvala1(s) = U(s,01(s)). For t > 1, the expected utility obtained when applying A during ¢
steps is the sum of the immediate reward obtained when making decision d;(s) in state s and of
the expected utility obtained when applying policy A during the ¢ — 1 remaining steps. In other

words,

vala 1(s) = U(s,6¢(s)) + - Z P(s"]s,0:(s)) - vala1—1(s")
s'eS
For a MDP with a finite horizon T', the value vala of a MDP-policy A = {d1,...,dr} is given by
vala = vala . With an infinite horizon, the value of A is lim;_, o vala 4.
An optimal MDP-policy A* is a MDP-policy of highest value. Standard results on MDPs show

that when the horizon is infinite, there always exists an optimal MDP-policy which is stationary
(A* = {6}). This does not hold when the horizon is finite.

Example 2.43. [118] A robot is in position (1,1) on the 4 x 3 grid of Figure 2.8. Reaching
position (4,3) offers a reward of +1 and reaching the undesired position (4,2) gives a reward of
—1. All other positions on the grid are rewarded with —0.04. At each time step, the robot decides
to move up, down, left, or right. The intended effect occurs with probability 0.8, and the rest of the
time, the robot mowves at right angles to the intended direction. If an obstacle prevents the robot
from moving, then it stays in the same position. If the robot reaches position (4,2) or (4,3), then

it gets out of the grid. Last, the robot is always aware of its position.
This problem can be modeled by the MDP (S,D, P(.|.,.),U(.,.)), where

o §=({1,2,3,4} x {1,2,3}) U {out} is the set of positions on the grid plus the out position;

o D = {up, down, left, right} is the set of available decisions at each time step;

10. Or one defines a function G : S — R specifying, for each state s at step T, a global expected gain concerning
what occurs after T'.

46 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

e P(.|.,.) is the transition model defining e.g. P((1,2)|(1,1),up) = 0.8, P((2,1)|(1,1),up) =
0.1, and P((1,1)|(1,1),up) =0.1;

e U(.,.) defines the rewards: U((4,2),.) = —1,U((4,3),.) =1, U(out,.) =0, and U((i,7),.) =
—0.04 otherwise.

The goal is to find an optimal MDP-policy. If each action produced the expected effect, then the
sequence [up, up, right, right, right] would be optimal. But with uncertainties, an optimal stationary
MDP-policy when the horizon is infinite and v = 0.99 consists of moving up if the position is (1, 1),
(1,2), or (3,2), right if the position is (1,3), (2,3), or (3,3), and left if the position is (2,1), (3,1),
or (4,1). Its expected utility is approzimately 0.7.

bstacl ?'8
& +1 \
-1
init 0.1= P >0.]

Figure 2.8: A sequential decision problem modelable with MDPs.

MDP-policies can be computed systematically. First, the maximal expected utility which can be
obtained in one step starting from state s is vali(s) = maxgep U(s,d). A corresponding optimal
decision rule is 67 (s) € argmax,pU(s,d). Second, the maximal expected utility which can be

obtained if there are ¢ > 1 remaining steps is given by the Bellman equation:

valj(s) = max (U(s,d) + - S,;S P(s"|s,d) - val;_{(s"))

An associated decision rule, denoted J;, is obtained using argmax,cp. For a T-step finite horizon
MDP, this so-called value iteration mechanism gives an optimal policy A* = {d7,...,0%}. For
an infinite horizon MDP, this mechanism converges to an optimal stationary MDP-policy §* =
lim; o0 J5.

The Bellman equation can be seen as a sequence of max and sum variable eliminations. Indeed,
let s and s’ (boldface letters) be variables with the state space as domain (dom(s) = dom(s') = S)
and let d be a variable with the decision space as domain (dom(d) = D). Let Py |44 be the scoped
function ({s',s,d}, P(.|.,.)), let Us,a be the scoped function ({s,d},U(.,.)), let valZ be the scoped
function ({s},val(.)), and let val be the scoped function ({s’},val;_;(.)). Then, the Bellman

equation can be rewritten as:

valy = mgX%:Psqs,d-(Us,d+7-uals,) (2.20)

Similarly, given a finite horizon MDP with v = 1, one can even unroll it to get the complete
elimination sequence it performs. If s; and d¢ are variables denoting the state and decision at step
t respectively (dom(sy) = S and dom(dy) = D), and if P,

sei1 | se,de and Us, a, denote the scoped

functions ({s¢+1,s¢,de}, P(.|.,.)) and ({s¢,ds¢}, U(.,.)) respectively, then the sequence of variable

2.6. SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY WITH MDPS 47

eliminations equivalent to the whole value iteration algorithm is:

max) Max. Zmax H Py, jse.d;) Z Us,.d.)) (2.21)

d
s, te[1,T] telT]

2.6.2 Partially observable MDPs

MDPs assume that the state s of the environment is completely observable. But in many problems,
the state of the environment is not exactly known when a decision is made. Only noisy observations
of the actual state are available to the decision maker. The formalism extending MDPs to integrate
such aspects is the Partially Observable MDP (POMDP [132, 89, 83, 71]) formalism. !*

Definition 2.44. A POMDP is a tuple (S,D,P(.|.,.),U(.,.),Q,0(.].)) where:
e (§,D,P(.].,),U(.,.) is a MDP;
e () is a finite set of possible observations;

e O(.|.): QxS —[0,1] is a function such that O(o|s) is the probability of making observation

o in state s (observational model).

The goal is still to seek a policy which maximizes the expected utility. A first naive and
suboptimal approach is to specify at each step t a decision to be made depending on the observation
made at t. The optimal method is to specify at each step ¢ a decision to be made depending on
all previous observations.

For a finite horizon POMDP, POMDP-policies are defined by a tree, as in a stochastic CSP.
The root of this tree corresponds to the first decision to be made. It has as many sons as possible
observations. A son of the root corresponds to the second decision to be made, depending on the
first observation. And so on to the last stage.

The value of a POMDP-policy is defined by its expected utility, as in a stochastic CSP. Without
further details, it can be shown that if there are T" steps, the search for an optimal POMDP policy

can be reduced to the computation of a sequence of eliminations of the form:

Zmax max. Zmax Z H Py, 1lse.dy X H oulse) X (Z Us,,dy)) (2.22)

;-enST te[1,T] te[1,T) te(1,T)

2.6.3 Other uncertainty-utility models: towards algebraic MDPs

In another direction, the initial probabilistic MDP framework was adapted to other representations
of uncertainties and utilities.
In possibilistic MDPs [119], conditional probabilities P(s’|s,d) are replaced by conditional
possibilities 7(s" | s,d) and additive rewards U(s,d) by preferences p(s,d) combined using min.
In pessimistic possibilistic finite horizon MDPs, which use the pessimistic possibilistic expected
utility [43], the search for an optimal policy can be reduced to the computation of optimal decision

rules for the quantity:

max min max. .. minmax (max(l — min 7 d,s Min fis, d 2.23
d; sz da st dr ((te[,T Strriseder oy e) (2.23)

11. When there is no decision, the corresponding model is Hidden Markov Model [112].

48 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

In other words, plausibilities are combined using min, utilities are combined using min, plausibil-
ities and utilities are combined using (p,u) — max(1 — p,), min-eliminations are performed for
environment variables, and max-eliminations are performed for decision variables.

In optimistic possibilistic MDPs [119], which use the optimistic possibilistic expected utility [43],
the sequence of eliminations is

mi

. 2.24
Din i e.de) (2.24)

max max max . .. max max (min(min

s s¢,d
dy sz da st dr tet,r Sriisede

In MDPs using x-rankings [133, 142] as a model of uncertainties and using only positive utili-

ties [59], the sequence of eliminations looks like:

minminmin.inmin ((3 Fejsa) +(Y Usiar)) (2.25)
te[1,T] te[1,T]

Algebraic MDPs

The fact that only the elimination and combination operators used change between MDPs using
different kinds of uncertainty-utility models was recognized, in the finite horizon case, by the
Algebraic MDP (AMDP [97]) framework. AMDPs are based on generic existing structures for
modeling plausibilities [54, 62] and expected utilities [23]. The transition model is expressed by a
so-called conditional plausibility measure of reaching a state s’ starting from state s and applying
decision d, denoted P(s’|s,d). Rewards are combined using an abstract operator ®. AMDPs
define an algebraic form of the Bellman equation, which uses two abstract operators B and X
enabling to compute an expected utility. This algebraic Bellman equation is of the form:

valf(s) = max (U(s,d) ® (S’HGHSP(S/ |'s,d) Kovalf_(s"))) (2.26)
AMDPs impose axioms on the operators used, which, once again, reduce the computations they

perform to a sequence of variable eliminations on a combination of scoped functions.

2.6.4 Back to a variable-based representation: factored MDPs

We have argued at the beginning of Subsection 2.6.1 that MDPs basically use a state-based rep-
resentation. The drawbacks of this rather raw representation were however surmounted with an
adaptation of MDPs, the factored MDP [19, 18] framework, which uses variables representing the
basic features of the state of the system. The following small example illustrates factored MDPs

and the interest of such a variable-based representation.

Example 2.45. The robot in the 4 x 3 grid of Figure 2.8 has a limited amount of energy varying
from 0 to 9. This amount is decremented by 1 at each step, and the robot can move on the grid
only if it has a strictly positive energy level.

With these new specifications, the state of the robot can be described by its position pos and
by its level of energy en. At each step, the global state s corresponds to the aggregation of pos
and en. In this case, there are |S| = 130 possible states for the robot (13 positions with the out
position, and 10 energy levels). In order to define the transition model P(s'|s,d), one must define

130 x 130 x 4 = 67600 individual probabilities.

2.7. VALUATION ALGEBRAS 49

This unfactored representation can be improved. Indeed, the conditional probability distribution
P(s"|s,d) can be factored as P(pos’ | pos,en,d)x P(en'|en), since the energy level at step t+1 does
not depend on the position and on the decision made at step t. With this factored representation,
we need to specify only 13 x 13 x 10 x 4+ 10 x 10 = 6860 individual probabilities! The factored and
unfactored representations are given in Figure 2.9. The state representation is inadequate because

the number of states grows exponentially with the number of variables describing the state.

d d

N .

o

a) b)

Figure 2.9: (a) Unfactored MDP representation; (b) Factored MDP representation.

Factored MDPs actually correspond to MDPs where the transition model P(.].,.) is given by
one so-called Dynamic Bayesian Network (DBN [31]) per decision. This DBN gives the probabilistic
dependences between the variables representing the full state. When decisions are themselves
represented by decision variables, the obtained formalism is called Dynamic Decision Network
(DDN [118]).

2.7 Valuation algebras

The previous study shows that the formalisms developed in the CSP, BN, or MDP frameworks
present many interesting similarities in that various queries in these formalisms can be reduced
to the computation of a sequence of variable eliminations on a combination of scoped functions.
The idea of a generic algebraic framework for modeling and solving decision problems based on
variables and local functions between these variables was actually already proposed for the mono-
operator case (one elimination operator and one combination operator) under the name of valuation
algebras[127, 128, 75].

In order to introduce valuation algebras, it is first necessary to define the notions of valuation,
combination of two valuations, and marginalization of a valuation.

First, a valuation is strictly identical to a scoped function. For instance, given a BN, a condi-
tional probability distribution P, |, (») is a valuation of scope sc(Py | pag(x)) = {2} Upac(z). In
the valuation algebras terminology, the scope of a valuation is called its domain. Second, let ¥
denote a set of valuations. Two abstract operators are defined directly on valuations (and not on

the image E of a valuation ¢ : dom(sc(¢)) — E):

1. A combination operator X : U x W — W associating with two valuations o1, 9 their combi-

nation ¢ X 9. In order to handle CSPs, the combination operator X equals A. In order to

12. The factorization can even be improved by using for example a decision diagram representation [1, 21] where
the fact that the robot does not move if its level of energy equals 0 is explicitly taken into account.

50 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

handle BNs, X = x.

2. A marginalization operator denoted |: U x 2V — W associating with a valuation ¢ and a
set of variables S C V a projected valuation o', In order to seek a solution to a CSP, this
marginalization corresponds to an elimination of the variables in sc(¢)—S using max. In order
to compute a marginal probability distribution on a BN, this marginalization corresponds to

an elimination of the variables in sc(p) — S using +.

As a unique combination operator is used, the information is combined in the same way in-
dependently of what it represents. As a unique marginalization operator is used, the information
is synthesized in the same way independently of the variable considered. The addition of some

axioms defines valuation algebras.

Definition 2.46. A valuation algebra is a tuple (V, ¥, X, |) such that V is a set of variables, ¥ is

the set of all valuations whose scopes are included in V', and X and | satisfy the following axioms:

1. (U,K) is a semigroup, i.e. X is associative, commutative, and, for each S C V, X has an

identity on each ¥g = {p € U|sc(p) =S}, ie. Jeg € VgV e Vg, pNeg = .
2. Combining two valuations p1, 2 gives a valuation with scope sc(p1) U sc(pa).

3. Every marginalization ©*° gives a valuation with scope sc(p) N S. Moreover, @'*¢(¥) =
and ptS = plSnsele),

4. Transitivity of marginalization: for every valuation ¢ and for every Si, S subsets of V
(plS1)182 = plsinse,

5. Distributivity of marginalization over combination: for all valuations @1, @2, (1 &g@g)isc(‘/’l) =
o1 B (902150(%))-

6. Identity elements: ¥S1,S2 CV | es, Kes, = es,us,-

Given a set of valuations ® = {1, a,...,,} and a set of variables S C V', a possible query
on valuation algebras is to compute (¢; X ... X ¢,)+¥. This corresponds to eliminating variables
in se(p1) U...Usc(pn) — S on the combination of the scoped functions in ®. One of the most
significant contribution of the valuation algebra framework is that it contains sufficient axioms for
generic variable elimination algorithms to be used. The main idea is to choose an order in which
variables in V' — S are eliminated, and then to use the distributivity of X over |, in order to write

decompositions like

... Kp,)5 = X X X LS—= 2.27
(1 ©n) (@eq>,x¢sc<¢>‘”) @GMGSC(@)@) (2.27)

The computations performed are local in the sense that when a variable x is eliminated, only

valuations having « in their scopes need to be considered.

Example 2.47. Let us consider Mr Holmes’ alarm again. One possible query was to compute

Pal - Zeq,bu,jc,mc (Peq X Pbu X Pal|eq,bu X ch|al X Pmc|al)'

2.8. THE THREE BASIC INGREDIENTS OF A GENERIC FRAMEWORK 51

In order to solve this problem, one can use the valuation algebra (V,W,K, |) where V =
{eq,bu,al, je,mc}, U is the set of valuations dom(S) — Rt with S C V, ¥ = x, and o'¥ =
Zsc(«p)fs ¥-

The goal is then to compute (Peq® Pyy B Py | cqpu M Pje | al&Pmc|al)1“l. Variables in V —{al} =
{eq,bu, je,mc} must be eliminated. If one chooses to eliminate variables in the order eq, bu, jc,
me, then the decomposition of the global computation to be performed into local computations is
given below. It uses the basic axioms of valuation algebras so that when eliminating a variable x,
only scoped functions with x in their scopes are considered. Note that normalization conditions

could be used to simplify the computations.

step 0 Py ™M Py, X Py [eq,bu X P, lal XP,. | al
step 1: elim(eq) Py ¥ Pje i X Prcjar X (Peqg ® P, ‘ eq)bu)ieq
step 2: elim(bu) Pjej ot ® Prcjar B (Pow B (Peg 8 Py eqpu) 1)
step 3: elim(jc) (P \az)ljc X Prciar X (Pyy B (Peg X Py eqybu)ieq)lb“
step 4: elim(mc) (P at)Y B (P ar) ™ 8 (Pou B (Peg B Py [eq,pu) 1)

2.8 The three basic ingredients of a generic framework for
sequential decision making with uncertainties, feasibili-

ties, and utilities

The previous subsections show that usual queries considered in various existing formalisms can
be reduced to a sequence of variable eliminations on a combination of scoped functions. These
formalisms can all be seen as graphical models and differ mainly in the way eliminations and
combinations are performed and in what variables and scoped functions represent.

This kind of observation has led to the definition of algebraic MDPs [97] or to the definition of
valuation algebras [127, 75], the latter being a generic algebraic framework in which eliminations
can be performed on a combination of scoped functions. However, valuation algebras are defined
using only one combination operator, whereas several combination operators may be needed to ma-
nipulate the different types of scoped functions in composite graphical models. Moreover, valuation
algebras can deal with only one type of elimination, whereas several elimination operators may be
required for handling the different types of variables. In valuation networks [130], plausibilities are
necessarily represented as probabilities, and min-eliminations cannot be performed. Essentially, a
more powerful framework is needed.

In order to be simple and yet general enough to cover various queries asked in various for-

malisms, the generic form we need to consider is:

Sov <(A Fl) * (®p Pi> Opu (Ru Ui)> (2.28)
er pPeP U, €U

where (1) A is used to combine local feasibilities, ®,, is used to combine local plausibilities, ®,, is
used to combine local utilities, ®,,, is used to combine plausibilities and utilities, and the truncation

operator * is used to ignore unfeasible decisions without having to deal with elimination operations

52 CHAPTER 2. A GUIDED TOUR OF FRAMEWORKS FOR DECISION MAKING

on restricted domains;? (2) F, P, U are (possibly empty) sets of local feasibility, plausibility,
and utility functions respectively; (3) Sov is an operator-variable(s) sequence, indicating how
to eliminate variables. Sov involves min or max on decision variables and an operator &, on
environment variables.

Equation 2.28 is still very informal. To define it formally, and to provide it with a clear

semantics, we need to define three key elements.

1. First, we must define ®,,, ®,,, ®py, the operators used to respectively combine plausibilities,
utilities, and plausibilities with utilities, as well as @, the operator used to eliminate envi-
ronment variables. An elimination operator @, on plausibilities, enabling us to synthesize

information coming from plausibilities, is also introduced.

These operators define the flexible algebraic structure of the PFU framework. Semantically
speaking, they define the plausibility /utility model and must satisfy some basic algebraic

properties.

2. Second, we must organize the information as a graphical model involving a set of variables,
and sets of scoped functions expressing plausibilities, feasibilities, and utilities (sets P, F,
U). Together, they define a PFU network, exploiting graphical models concepts (locality,
conditional independence). The possibility to express information in such a structured form

must also be justified, e.g. using the notion of conditional independence.

3. Last, in order to formulate decision making problems, we need to define queries on PFU
networks, by introducing a sequence of operator-variable(s) pairs Sov applied on the com-
bination of the scoped functions as in Equation 2.28. Queries must allow to model various
situations in terms of partial observability and controllability. We must also show why com-
puting such quantities is of interest from the decision theory point of view by comparing

Equation 2.28 with a standard decision tree approach.

2.9 Summary

We have informally shown that usual queries formulated in various formalisms reasoning about
plausibilities and/or feasibilities and/or utilities can be reduced to sequences of variable elimina-
tions on combinations of scoped functions, using various operators. They can intuitively be covered
by Equation 2.28. The three key elements (an algebraic structure, a PFU network, and a sequence
of variable eliminations) needed to formally define and give sense to this equation are introduced
in Chapters 3, 4, and 5.

13. In Equation 2.28, all local plausibilities are combined using the same operator ®;, and all local utilities are
combined using the same operator ®,,: the proposed graphical model is composite only in the sense that there are dif-
ferent types of scoped functions (plausibilities, feasibilities, and utilities). However, the generic form of Equation 2.28
does not prevent from having different kinds of information contained among each type of scoped functions: e.g.,
if one wants to manipulate both probabilities and possibilities, one can take ®; defined on (probability,possibility)
pairs by (p1,71) ®p (p2,72) = (p1 X p2, min(mw,72)).

Chapter 3

A generic algebraic structure for
sequential decision under

uncertainty

The first element of the PFU framework is an algebraic structure specifying how the information
provided by plausibilities, feasibilities, and utilities is combined and synthesized. This algebraic
structure is obtained by adapting previous structures from Friedman, Chu, and Halpern [54, 62,
23] for representing uncertainties and expected utilities. It involves combination and elimination
operators which satisfy some algebraic properties. Moreover, it covers various existing algebraic

structures used in different plausibility /utility models.

3.1 Some algebraic definitions

Definition 3.1. (E,®) is a commutative monoid iff E is a set and ® is a binary operator on E
which is associative (x ® (y ® z) = (x ® y) ® z), commutative (x ® y =y ® x), and which has an
identity lp € E (x®1lp=1g®x=ux).

Definition 3.2. (E,®,®) is a commutative semiring iff
o (E,®) is a commutative monoid, with an identity denoted Og,
e (E,®) is a commutative monoid, with an identily denoted 1g,
e 0p is annihilator for @ (x ® 0 =0g),
o ® distributes over ® (x @ (yPz)=(zRy)® (z® 2)).

Definition 3.3. Let (E,, @, ®4) be a commutative semiring. Then, (Ep, Dp, Qap) 15 a semimodule
on (Eaa Da, ®a) lﬁ

o (Ey, @) is a commutative monoid, with an identity denoted Op,,

o R4 : By X By — Ey satisfies

53

54 CHAPTER 3. A GENERIC ALGEBRAIC STRUCTURE

— Qqp distributes over @y (a Rap (b1 ®p b2) = (a Rap b1) Dp (@ Rap b2)),
— Qup distributes over ®q (a1 Bq a2) Rap b = (a1 Rap b) Bp (a2 Rap b)),

— linearity property: a1 Qap (a2 Qap b) = (a1 R4 a2) Qap b,

for allbe By, Op, ®apb=0g, and 1, ®qu b=0.

Definition 3.4. Let E be a set with a partial order <. An operator ® on E is monotonic iff
(x=y) > (@r®2=y®2) for adl z,y,z € E.

3.2 Plausibility structure

Various forms of plausibilities exist. The most usual one is probabilities. As shown previously, for
example with Equation 2.9 page 33 which involves the quantity), _ (v} (Hmev Px|paG(z)), one
uses ®, = X to combine probabilities and @, = + as an elimination operator.

But plausibilities can also be expressed as possibility degrees in [0, 1]. Possibilities are eliminated
using @, = max and usually combined using ®, = min. An interesting case appears when
possibility degrees are booleans describing which states of the environment are completely possible
or impossible. Plausibilities are then combined using ®, = A and eliminated using @, = V.

Another example is Spohn’s epistemic beliefs, also known as k-rankings (kappa rankings) [133,
142, 59]. In this case, plausibilities are elements of NU{+oco} called surprise degrees, 0 is associated
with non-surprising situations, +oo is associated with completely surprising (impossible) situations,
and more generally a surprise degree k can be viewed as a probability of €¥ for an infinitesimal e.
Surprise degrees are combined using ®, = + and eliminated using ¢, = min.

To capture these various plausibility modeling frameworks, we start from Friedman-Halpern’s

work on plausibility measures [54, 62] (similar approaches are developed in [140, 27]).

Friedman-Halpern’s structure Assume we want to express plausibilities over the assignments
of a set of variables S. Each subset of dom(S) is called an event. In [54, 62], plausibilities are
elements of a set £, called the plausibility domain. FE, is equipped with a partial order =<,
and with two special elements 0, and 1, satisfying 0, <, p <, 1, for all p € E,. A function
Pl : 29om(5) 5 E, is a plausibility measure over S iff it satisfies PI((}) = 0,, Pl(dom(S)) = 1,,
and (W; C Wa) — (PI(W;) =<, PI(W>)). This means that 0, is associated with impossibility, 1,
is associated with the highest plausibility degree, and the plausibility degree of a set is as least as
high as the plausibility degree of each of its subsets.

Among all plausibility measures, we focus on so-called algebraic conditional plausibility mea-
sures, which use abstract functions ®, and ®, which are analogous to + and x for probabili-
ties. These measures satisfy properties such as decomposability: for all disjoint events Wi, Wa,
PI(W1 U W) = Pl(Wh) @, PI(W3). As U is associative and commutative, it follows for example
that @, is associative and commutative on representations of disjoint events, i.e. (a @, b) ®,c =
a®, (b®,c) and a®pb = bPya if there exist pairwise disjoint sets Wi, Wa, W3 such that PI(W7) = q,
Pl(W3) = b, Pl(W3) = c.

Restriction of Friedman-Halpern’s structure An important point in Friedman-Halpern’s

work is that the algebraic properties of ®,, and ®, hold only on the domains of definition of &, and

3.2. PLAUSIBILITY STRUCTURE 55

®p. Although this is sufficient to express and manipulate plausibilities, it can be algorithmically
restrictive. Indeed, consider a Bayesian network involving two boolean variables {z1, 22} and
define Py, ,, as P, X P,
evaluate Py, ((72,1)), the quantity > Lo X Pp,|s, ((¥2,t)) must be computed. To do so, it is
simpler to factor it and compute Lo X Y, Pr,|s, ((22,1)). If Py,)z, ((22,1).(21,1)) = 0.6 and
Py, 2, ((x2,1).(21, f)) = 0.8, the answer is 0.5 x (0.6 4-0.8) = 0.7. Performing 0.6 + 0.8 requires
applying addition outside of the range of usual probabilities, for which a @, b is defined only if

o|z,- Assume that P, is a constant factor Lo = 0.5. In order to

a4+ b < 1, since two probabilities whose sum exceeds 1 cannot be associated with disjoint events.
To take such issues into account, we adapt Friedman-Halpern’s F),, ®,, ®, so that @, and ®,
become closed in E, and so that Friedman-Halpern’s axioms hold in the closed structure. Once

this closure is performed, we obtain a plausibility structure.
Definition 3.5. A plausibility structure is a tuple (E,, ®p, ®p) such that

o (B, &p,®p) is a commutative semiring (identities for @, and ®, are denoted 0, and 1,

respectively),

o E, is equipped with a partial order <, such that 0, = min(E,) and such that &, and ®, are

monotonic with respect to =,.
FElements of E, are called plausibility degrees.

Note that 1, is not necessarily the maximal element of F,. For probabilities, Friedman and
Halpern’s structure would be ([0,1],+, X), where a +' b = a+ b if a + b < 1 and is undefined
otherwise. In order to get closed operators, we take (E,,®,,®,) = (RT,+, x) and therefore
1, =1 is not the maximal element in F,. In some cases, Friedman-Halpern’s structure does need
to be closed. This is the case with x-rankings (already closed: (E,, ®p, ®p) = (NU{+0c0}, min, +))
and with possibilities (already closed: (E,,®,,®),) is typically ([0, 1], max, min), although other
choices such as ([0, 1], max, X) are possible).

Given two plausibility structures (E,,®,,®,) and (E,,), ®)), if we define £ = E, x E,
(p1,71) © (p2,15) = (p1 ©p p2, Pt @), ph) and (p1,p}) @ (p2,p5) = (p1 @p P2, P} @), 1), then (E, D, ®)
is a plausibility structure too. This allows us to deal with different kinds of plausibilities (such as

probabilities and possibilities) or with families of probability distributions.

From plausibility measures to plausibility distributions

Let us consider a plausibility measure [54, 62] Pl : 2%™(%) — FE_ over a set of variables S.
Assume that PI(W; U Wa) = PI(W;) @, PI(Ws) for all disjoint sets Wy, Wo € 29°™(5) as is
the case with Friedman-Halpern’s algebraic plausibility measures. This assumption entails that
PIW) = @p 4o PI{A}) forall W € 2dom(%) " This holds even for W = () since 0,, is the identity of
@p. Hence, defining PI({A}) for all complete assignments A of S suffices to describe Pl. Moreover,
in this case, the three conditions defining plausibility measures (Pl(dom(S)) = 1,, PI(0) = 0y,
and (W7 C Wy) — (PI(W7) <, Pl(W3))) are equivalent to just Do Acdom(s) PI({A}) = 1,, using
the monotonicity of @, for the third condition. This means that we can deal with plausibility

distributions instead of plausibility measures:

Definition 3.6. A plausibility distribution over S is a function Ps : dom(S) — E, such that
Dp acdom(s) Ps(A) = 1p.

56 CHAPTER 3. A GENERIC ALGEBRAIC STRUCTURE

The normalization condition imposed on plausibility distributions is simply a generalization of
the convention that probabilities sum up to 1. It captures the fact that the disjunction of all the

assignments of S has 1, as a plausibility degree.

Proposition 3.7. A plausibility distribution Ps can be extended to give a plausibility distribution
Ps: over every S C S, defined by Psr = ©pg_g Ps.

3.3 Feasibility structure

Feasibilities define whether a decision is possible or not, and are therefore expressed as booleans
in {¢, f}. This set is equipped with the total order <0 satisfying f <poor -

Boolean scoped functions, expressing feasibilities, are combined using the operator A since an
assignment of decision variables is feasible iff all feasibility functions agree that this assignment is
feasible.

Given a scoped function F; expressing feasibilities, it is possible to know whether an assignment
A of a set of variables ' is feasible according to F; by computing V.(r,)—g Fi(A), since A is feasible
according to F; iff one of its extensions over sc(F;) is feasible. This means that feasibilities are
synthesized using the elimination operator V.

As a result, feasibilities are expressed using the feasibility structure Sy = ({t, f},V,N). Sy
is not only a commutative semiring, but also a plausibility structure. Therefore, all plausibility
notions and properties apply to feasibility. We may therefore speak of feasibility distributions, and
the normalization condition VgFg = ¢t imposed on a feasibility distribution Fg over S means that

at least one decision must be feasible.

3.4 Utility structure

Utilities express preferences and can take various forms. If additive utilities, combined using +,
are the most usual, utilities can also model priorities combined using ®, = min. When utilities
represent absolute requirements, they can be modeled as booleans combined using ®,, = A.

More generally, utility degrees are defined as elements of a set E, equipped with a partial order
<. Smaller utility degrees are associated with less preferred events. Utility degrees are combined
using an operator ®, which is assumed to be associative and commutative. This guarantees that
combined utilities do not depend on the way combination is performed. We also assume that ®,,
admits an identity 1,, € E,, representing indifference. This ensures the existence of a default utility
degree when there are no utility scoped functions. We also assume that ®,, is monotonic, so that
if a local utility decreases, the global utility cannot increase. These properties are captured in the

following notion of utility structure.

Definition 3.8. (E,,®,) is a utility structure iff it is a commutative monoid and E,, is equipped

with a partial order =, such that ®,, is monotonic. Elements of E, are called utility degrees.

F,, may have a minimum element 1, representing unacceptable events and which will be an
annihilator for ®,, (the combination of any event with an unacceptable one must be unacceptable

t00). But these properties are not necessary to establish the forthcoming results.

3.5. EXPECTED UTILITY STRUCTURE 57

The distinction between plausibilities, feasibilities, and utilities is important and can be justified
using algebraic arguments. Since ®, and ®, may be different operators (for example, ®, = X
and ®, = + in usual probabilities with additive utilities), we must distinguish plausibilities and
utilities. It is also necessary to distinguish feasibilities from utilities or plausibilities. Indeed,
imagine a simple card game involving two players P, and P, each having three cards: a jack J,
a queen @, and a king K. P; must first play one card « € {J,Q, K}, then P, must play a card
y € {J,Q, K}, and last P, must play a card z € {J,Q, K}. A rule forbids to play the same card
consecutively (feasibility functions Fpy : # y and F, : y # z). The goal for P; is that his two
cards x and z have a value strictly better than P,’s card y. By setting J < @ < K, this requirement
corresponds to two utility functions Uy, : > y and Uy, : z > y. In order to compute optimal
decisions in presence of unfeasibilities, we must restrict optimizations (eliminations of decision
variables with max or min) to feasible values: instead of max, min, max,(Uyy A Uy.), we must

compute:

i Uy (a,b) AU, (b,
aeg})arg((m) (bedom(yr)r,lfl’ij(a,b)_t (cEdom(igl,%z(z(b,c)_t(y(a) Y (C))))

which, by setting f < ¢, is logically equivalent to

mfxrn;n (me — max (Fyz A (Ugy A Uyz)))
In the latter quantity, feasibility functions concerning Py’s play (y) are taken into account using
logical connective —, so that P»’s unfeasible decisions are ignored in the set of all scenarios consid-
ered. Feasibility functions concerning P;’s last move (z) are taken into account using A, so that P
does not consider scenarios in which he achieves a forbidden move. Therefore, feasibility functions
cannot be handled simply by using the same combination operator as for utility functions: we
need to dissociate what is unfeasible for all decision makers (unfeasibility is absolute) from what
is unacceptable or required for one decision maker only (utility is relative).

At a more general level, for example when U,, and U,. are soft requirements or when we do
not know exactly in advance who controls which variable, the logical connectives A and — cannot
be used anymore. In order to ignore unfeasible values in decision variables elimination, we use the
truncating operator x introduced in Definition 1.6. In order to eliminate a variable x from a local
function ¢ while ignoring unfeasibilities indicated by a feasibility function F;, we simply perform
the elimination of x on (F; * ¢) instead of ¢. This maps unfeasibilities to the value ¢, which is
defined as an identity for elimination operators (see Definition 1.6). On the example above, if Uy,

and U,, were additive gains and costs, we would compute

max min (me *max (Fy, x (Uygy + Uyz)))
x y z

3.5 Expected utility structure

To define expected utilities, plausibilities and utilities must be combined. Consider a situation
where a utility u; is obtained with a plausibility p; for all ¢ € [1, N], with p1 @, ... &p pv = 1,.
L= ((p1,u1),...,(pn,un)) is classically called a lottery [137]. When we speak of expected utility,

58 CHAPTER 3. A GENERIC ALGEBRAIC STRUCTURE

we implicitly speak of the expected utility EU (L) of a lottery L.

A standard way to combine plausibilities and utilities is to use the probabilistic expected utility
theory [137] defining EU (L) as Zie[l_’N] (pi X u;): it aggregates plausibilities and utilities using the
combination operator ®,, = x and synthesizes the aggregated information using the elimination

operator @&, = +. However, alternative definitions exist:

e If plausibilities are possibilities, then FU(L) = min;ep, v max(l — p;, u;) with the possibilis-
tic pessimistic expected utility [43] (i.e. @, = min and ®p, : (p,u) — max(l — p,u)) and
EU(L) = max;e[1, n)min(p;, u;) with the possibilistic optimistic expected utility [43] (i.e.

@, = max and ®p, = min).

e If plausibilities are xk-rankings and utilities are positive integers [59], then the expected utility

of Lis EU(L) = min;epi ny (pi + us) (i.e. @y = min and @,y = +).

To generalize these definitions of EU(L), we start from Chu-Halpern’s work on generalized
expected utility [23, 24].

Chu-Halpern’s structure Generalized expected utility is defined in an expectation domain,
which is a tuple (E,, Ey, E.,, ®y, ®p) such that: (1) E, is a set of plausibility degrees and E,, is
a set of utility degrees; (2) ®@py : Ep X E, — E/, combines plausibilities with utilities and satisfies
1) @puu = u; (3) @y @ E) x E/, — EJ is a commutative and associative operator which can
aggregate the information combined using ®p,,.

When a decision problem is additive, i.e. when, for all plausibility degrees p1, p2 associated with
disjoint events, (p1 ®p p2) Qpu t = (D1 py u) By (P2 py u), the generic definition of the expected
utility of a lottery is:

EU(L) = @u (pi Qputii)
i€[1,N]

Classical expectation domains also satisfy additional properties such as “@®,, is monotonic” and
“0p @py u = 0y, where 0, is the identity of &,,”.

Adapting Chu-Halpern’s structure for sequential decision making If we use ®,, : E, x
E, — E!, and @, : E!, x E!, — E! to compute expected utilities at the first decision step, then we
need to introduce operators @, : E, x E, — E; and @, : B x E;] — E}/ to compute expected
utilities at the second decision step. In the end, if there are T decision steps, we must define T’
operators ®,,, and 1" operators @,,. In order to avoid the definition of an algebraic structure that
would depend on the number of decision steps, we take F,, = E/, and work with only one operator
Qpu : By x By, — E,, and one operator @, : By, x E, — F,.

As for plausibilities, and for the sake of the future algorithms, we restrict Chu-Halpern’s expec-
tation domains (E,, Ey, Ey, $u, ®py) s0 that &, and ®p,, become closed and generalize properties
of the initial @, and ®,,. However, this closure is not sufficient to deal with sequential decision
making, because Chu-Halpern’s expected utility is designed for one-step decision processes only.

This is why we introduce three additional axioms for @, and ®p,:

e The first axiom is similar to a standard axiom for lotteries [137] defining compound lotteries.

It states that if a lottery Lo involves a utility u with plausibility p,, and if one of the utilities of

3.6. STRUCTURES COVERED 59

a lottery £ is the expected utility of Lo with plausibility pq, then it is as if utility « had been
obtained with plausibility p1 ®, p2. This gives the axiom p1 ®py (P2 Qpy u) = (P1 @p P2) Qpy U-

e We further require that ®,,, distributes over &,. To justify this point, assume that a lottery
L = ((p1,u1), (p2,u2)) is obtained with plausibility p. Two different versions of the contribu-
tion of £ to the global utility degree can be derived: the first is p@py, ((p1 @put1) By (P2@puus2)),
and the second, which uses compound lotteries, is ((p ®p p1) @pu u1) Bu (P @p P2) Dpu u2).

We want these two quantities to be equal for all p, p1, p2, u1, us.

This can be shown to be equivalent to the simpler property p ®py, (w1 ®y u2) = (p Qpy u1) Sy
(p @pu u2), i.e. to the distributivity of ®p, over @,.

e Finally, we assume that ®p,, is right monotonic, i.e. (u1 =y u2) = (P Opy U1 =4 P Qpu U2).
This means that if an agent prefers (strictly or not) an event evy to another event evy, and
if both events have the same plausibility degree p, then the contribution of evy to the global

expected utility degree must not be lesser than the contribution of ev;.

These axioms define the notion of expected utility structure.

Definition 3.9. Let (E,, ®p, ®p) be a plausibility structure and let (E,, ®,) be a utility structure.
(Ep, Evu, @u, @pu) is an expected utility structure iff

o (Ey, Dy, Qpu) is a semimodule on (E,, ®p, ®,) (cf. Definition 3.3 page 53),

o @, is monotonic for =, and @, is right monotonic for <, ((u1 =y u2) — (P Qpu U1 =y

P ®pu u?))

3.6 Structures covered

Many structures considered in the literature are instances of expected utility structures, as shown in
Proposition 3.10. The results presented in the remaining of the thesis hold not only for these usual
expected utility structures, but more generally for all structures satisfying the axioms specified in
Definitions 3.5, 3.8, and 3.9.

Proposition 3.10. The structures in Table 3.1 are expected utility structures.

It is possible to define more complex expected utility structures from existing ones. For example,
from two expected utility structures (Ep, Ey, ®u, ®pu) and (£, E},, ©),, ®y,,), it is possible to build
a compound expected utility structure (E, x E}, E, x E;,®;,®;,). This can be used to deal
simultaneously with probabilistic and possibilistic expected utilities or more generally to deal with

tuples of expected utilities.

The business dinner example To flesh out these definitions, we consider the following toy
example, which will be referred to in the sequel. It does not correspond to a concrete real-life
problem, but is used for its simplicity. Peter invites John and Mary (a divorced couple) to a
business dinner in order to convince them to invest in his company. Peter knows that if John is
present at the end of the dinner, he will invest 10K€. The same holds for Mary with 50K€. Peter
knows that John and Mary will not come together (one of them has to baby-sit their child), that

60 CHAPTER 3. A GENERIC ALGEBRAIC STRUCTURE

Ep =p Bp ®Qp 0p1p E, S Qu Du Dpu Lu,Ou, 1y
1 RT < + X 0,1 RU{-c0} < + + X —00,0,0
2 RT < + X 0,1 RT < X + X 0,0,1
3 [0,1] < max min 0,1 [0,1] < min max min 0,0,1
4 [0, 1] < max min 0,1 [0,1] < min min max(l-p,u) 0,1,1
5 | NU{cc} > min 4+ 00,0 NU {oo} > + min + 00, 00, 0
6 {t,f} Swoo Vv A /it {t, [} <bool A Y A I [t
7 {t,f} ZRboa V A St {t, f} Sboot A A — fitt
8 {t7f} jbool V A f7t {t7f} jbool \% V A f7 f7f
9 {tyf} =bool \ A fyt {tyf} =bool V A - fytyf

Table 3.1: Expected utility structures for: 1. probabilistic expected utility with additive utilities
(allows the probabilistic expected utility of a cost or a gain to be computed), 2. probabilistic
expected utility with multiplicative utilities, also called probabilistic expected satisfaction (allows
the probability of satisfaction of some constraints to be computed), 3. possibilistic optimistic
expected utility, 4. possibilistic pessimistic expected utility, 5. qualitative utility with x-rankings
and with only positive utilities, 6. boolean optimistic expected utility with conjunctive utilities
(allows one to know whether there exists a possible world in which all goals of a set of goals G are
satisfied), 7. boolean pessimistic expected utility with conjunctive utilities (allows one to know
whether in all possible worlds, all goals of a set of goals G are satisfied), 8. boolean optimistic
expected utility with disjunctive utilities (allows one to know whether there exists a possible world
in which at least one goal of a set of goals G is satisfied), 9. boolean pessimistic expected utility
with disjunctive utilities (allows one to know whether in all possible worlds, at least one goal of a
set of goals G is satisfied).

at least one of them will come, and that the case “John comes and Mary does not” occurs with a
probability of 0.6. As for the menu, Peter can order fish or meat for the main course, and white or
red for the wine. However, the restaurant does not serve fish and red wine together. John does not
like white wine and Mary does not like meat. If the menu does not suit them, they will leave the

dinner. If John comes, Peter does not want him to leave the dinner because he is his best friend.

Example 3.11. The dinner problem uses the expected utility structure representing probabilistic
expected additive utility (row 1 in Table 3.1): the plausibility structure is (R, +,X), @, = +,
®pu = X, and utilities are additive gains: (E,,®,) = (R U {—oc},+), with the convention that

u+ (—o0) = —o0.

3.7 Relations with other existing structures

If we compare the structures defined with those defined in [54, 62, 23], we can observe that:

e The structures defined here are less general than Friedman-Chu-Halpern’s, since additional
axioms have been introduced. For example, plausibility structures are not able to model
belief functions [125], which are not decomposable, whereas this is possible using Friedman-
Halpern’s plausibility measures (however, we are not aware of existing schemes for decision
theory using belief functions directly; some proposals using the so-called “pignistic probability
distribution” induced by a belief function together with the probabilistic expected utility
exist [141], but they do not work directly on belief functions).

Moreover, for one-step decision processes, Chu-Halpern’s generalized expected utility is more

eneral, since it assumes that ®,,, : £, x F,, — E! whereas we consider ®,,, : £, x E,, — E,.
) P P u P P

3.8. SUMMARY 61

e Conversely, the structures defined here can deal with multi-step decision processes whereas
Chu-Halpern’s generalized expected utility does not. Beyond this, other axioms such as the
use of closed operators are essentially motivated by operational reasons. In fact, we use a

slightly less expressive structure for the sake of future algorithms.

As a set E, of plausibility degrees and a set E), of utility degrees are defined, plausibilities and
utilities must be cardinal. Purely ordinal approaches such as CP-nets [17], which, like Bayesian
networks, exploit the notion of conditional independence to express a network of purely ordinal
preference relations, are not covered.

As ®p, takes values in FE,,, it is implicitly assumed that plausibilities and utilities are com-
mensurable: works such as [48], describing a purely ordinal approach where qualitative preferences
and plausibilities are not necessarily commensurable, are not captured either. Furthermore, some
axioms entail that only distributional plausibilities are covered (the plausibility of a set of variable
assignments is determined by the plausibilities of each covered complete assignment): Dempster-
Shafer belief functions [125] are not encompassed. Finally, as only one partial order <, on F, is

defined, it is assumed that the decision makers share the same preferences over utilities.

3.8 Summary

In this chapter, we have introduced expected utility structures, which are the first element of the
PFU framework. They specify how plausibilities are combined and projected (using ®, and @),
how utilities are combined (using ®,,), and how plausibilities and utilities are aggregated to define
generalized expected utility (using 4, and ®,,). More precisely, the basic algebraic structures

used are:
e a commutative semiring (E,, ®,, ®,) to handle plausibilities,
e a commutative monoid (£, ®,,) to handle utilities,
e a semimodule (E,, E,, ®p, ®py,) to compute expected utilities.

The addition of monotonicity axioms on these classical structures leads to the notions of plausibility
structure, utility structure, and expected utility structure respectively. These cover various existing
plausibility /utility models and are inspired by Friedman-Chu-Halpern’s plausibility measures and
generalized expected utility. The main differences lie in the addition of axioms to deal with multi-

step decision processes and in the use of closed operators motivated by operational reasons.

Chapter 4

Plausibility-Feasibility-Utility

networks

The second element of the PFU framework is a network of scoped functions P;, F;, and U; (cf.
Equation 2.28 page 51) over a set of variables V. This network defines a compact and structured
representation of the state of the environment, of the decisions, and of the global plausibilities,
feasibilities, and utilities which hold over them. This chapter defines such networks and analyzes the
relations between local functions and the global quantity they model, mainly based on conditional
independence.

In the rest of the thesis, a plausibility function denotes a scoped function onto E, (the set of
plausibility degrees), a feasibility function is a scoped function onto {t, f} (the set of feasibility

degrees), and a wutility function is a scoped function onto E,, (the set of utility degrees).

4.1 Decision and environment variables

In structured representations, decisions are represented using decision variables, which are con-
trolled by one of the agents, and the state of the environment is represented by environment
variables, which are not directly controlled by an agent. We use Vp to denote the set of decision

variables and Vg to denote the set of environment variables. Vp and Vg form a partition of V.

Example 4.1. The dinner problem can be modeled using siz variables: bpy and bpy (value t
or f), representing John’s and Mary’s presence at the beginning, ep; and epp (value t or f),
representing their presence at the end, mc (value fish or meat), representing the main course

choice, and w (value white or red), representing the wine choice. Thus, we have Vp = {mc,w}

and Vg = {bps,bparr, epy,epr}.

4.2 Towards local plausibility and feasibility functions

Using combined local functions to represent a global one raises some considerations: how and when
such local functions can be obtained from a global one, and conversely, when such local functions

are directly used, which implicit assumptions are made on the global function.

63

64 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

We now show that all these questions boil down to the notion of conditional independence. In

the following definitions and propositions, (E,, ®,, ®,) corresponds to a plausibility structure.

4.2.1 A first factorization step using conditional independence
Preliminaries: generalization of Bayesian networks results

Assume that one wants to express a global plausibility distribution Pg (cf. Definition 3.6 page 55) as
a combination of local plausibility functions P;. As work on Bayesian networks [96] has shown, the
factorization of a joint distribution is essentially related to the notion of conditional independence.

To introduce conditional independence, we first define conditional plausibility distributions.

Definition 4.2. A plausibility distribution Pg over S is said to be conditionable iff there exists
a set of functions denoted Pg, | s, (one function for each pair Si,S2 of disjoint subsets of S) such
that if S1,S2, S are disjoint subsets of S, then

(a) for all assignments A of So such that Ps,(A) # 0, Pg,|s,(A) is a plausibility distribution

over Sp, !
(b) Ps,jo = Ps,,
(¢) ®pg, Psy.55]55 = Ps,| 555
(d) Ps,.55155 = Psy| 52,55 @p Psy | S5
(¢) (Psy,55,85 = Psy |55 @p Pss |55 @p Psy) = (Psy,85 185 = Psy |55 ®p Psy | 55)-
Ps, | s, 18 called the conditional plausibility distribution of Sy given Ss.

Condition (a) means that conditional plausibility distributions must be normalized. Condition
(b) means that the information given by an empty set of variables does not change the plausibilities
over the states of the environment. Condition (¢) means that conditional plausibility distributions
are consistent from the marginalization point of view. Condition (d) is the analog of the so-called
chain rule with probabilities. Condition (e) is a kind of weak division axiom. ?
Theorem 4.3 gives simple conditions on a plausibility structure, satisfied in all usual frameworks,

that suffice for plausibility distributions to be conditionable.

Theorem 4.3. If (E,, ®,, ®,) satisfies the axioms:
o if p1 <, p2 and pa # 0,, then max{p € E, | p1 = p Qp p2} exists and is <, 1,
o if p1 <p P2, then there exists a unique p € E), such that py = p ®y pa2,
o if p1 <p P2, then there exists a unique p € E), such that po = p @y p1,

it is called a conditionable plausibility structure, since all plausibility distributions are then condi-
tionable: it suffices to define Pg, s, by Ps,|s,(A) = max{p € E,|Ps, s,(A) = p @, Ps,(A)} for
all A € dom(S1 U S2) satisfying Ps,(A) # 0.

1. To avoid specifying that properties of Pg, | s, hold only for assignments A of S1 U Sz satisfying Pg, (A) # 0p,
we use expressions such as “Pg, | g, = L” to denote “VA € dom(S1US2), (Ps,(A) # 0p) — (Ps, |5, (A) = L(A))”.

2. Compared to Friedman and Halpern’s conditional plausibility measures [54, 62], (c) is the analog of axiom
(Algl), (d) is the analog of axiom (Alg2), (e) is the analog of axiom (Alg4), and axiom (Alg3) corresponds to the
distributivity of ®p over @p.

4.2. TOWARDS LOCAL PLAUSIBILITY AND FEASIBILITY FUNCTIONS 65

The systematic definition of conditional plausibility distributions given in Theorem 4.3 fits
with the usual definitions of conditional distributions, which are, with probabilities, “Pg, | g,(A) =
Ps,,5,(A)/Ps,(A)”, with s-rankings, “Pg, |s,(A) = Ps,,s,(A) — Ps,(A)”, and with possibility
degrees combined using min, “Pg, | s,(A) = Ps, s,(A) if Ps, 5,(A) < Ps,(A), 1 otherwise”. In the
following, every conditioning statement Pg, | g, for conditionable plausibility structures will refer
to the canonical notion of conditioning given in Proposition 4.3. Conditional independence can

now be defined.

Definition 4.4. Let (E,, &p, ®,) be a conditionable plausibility structure. Let Ps be a plausibility
distribution over S and S1,S2, S3 be disjoint subsets of S. Sy is said to be conditionally independent
Of 52 given 53, denoted I(Sl, SQ | 53), lff 'P51152 | S5 = Psl | S ®p P52 | S3-

This means that S; is conditionally independent of Sy given Sj iff the problem can be split
into one part depending on S; and Ss, and another part depending on Ss and S3.2 This definition
satisfies the usual properties of conditional independence, as proved by Proposition 4.5. These
usual properties, known as the semigraphoid azioms [96], were shown to be the basis of the notion

of information relevance in a wide variety of models.
Proposition 4.5. I(.,.|.) satisfies the semigraphoid axioms:
1. symmetry: 1(S1,S2|Ss) — I(S2,51]953),
2. decomposition: 1(S1,S2U S5|S4) — I(S1,52]54),
3. weak union: I1(Sy,S2US3]|S4) — I(S1,52]53USy),
4. contraction: (I(Sy,Sa|S4) A I(S1,S5]S2USy)) — I(S1,S2US5|S54).

Informally, the symmetry axiom states that if a set of variables S; does not provide any infor-
mation about a set of variables So given a third set of variables S3, then Sy gives no information
about S7 given S3. The decomposition axiom asserts that if S7 does not depend on both Sy and
S3 given Sy, then S; does not depend on Sy and S3 considered independently. The weak union
axiom states that if Sy U S3 is irrelevant to S; given Sy, then knowing S3 does not change the
irrelevance of Sy with regard to S;. Last, the contraction axiom tells that if S5 is irrelevant to Sy
after knowing an irrelevant information about So, then S3 must be irrelevant to S; before learning
So.

Proposition 4.5 makes it possible to use Bayesian network techniques to express information
in a compact way. With Bayesian networks, a DAG of variables is used to represent conditional
independences between variables [96]. In some cases, such as image processing or statistical physics,
it is more natural to express conditional independences between sets of variables. If probabilities
are used, such situations can be modeled using chain graphs [55] presented in Chapter 2 page 38.
In a chain graph, the DAG defined is not a DAG of variables, but a DAG of sets of variables,

called components. Conditional probability distributions P, |, (.) of variables are replaced by

3. Definition 4.4 differs from Halpern’s, which is “S; is conditionally independent (CI) of Sz given Ss iff
Psy | Ss,55 = Psy |55 and Pg,|s,,55 = Ps,| 55"+ In [62], the definition we adopt is called non-interactivity (NT)
and is shown to be weaker than CI. This implies that NI is satisfied more often and may lead to more factorizations.
[62] gives a simple axiom (axiom (Alg4’)) under which CI and NI are equivalent. Though this axiom holds in many
usual frameworks, it does not hold with possibility degrees combined using min, a case covered by the PFU algebraic

structure.

66 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

conditional probability distributions P, |,q.(c) of components, each P.| . (c) being expressed in a
factored form @f x 5 x ... x ¢f .
We now formally introduce DAGs over sets of variables, called DAGs of components, and then

use them to factor plausibility distributions.

Definition 4.6. A DAG G is said to be a DAG of components over a set of variables S iff the
vertices of G form a partition of S. C(G) denotes the set of components of G. For each ¢ € C(G),
pag(c) denotes the set of variables included in the parents of ¢ in G, and ndg(c) denotes the set

of variables included in the non-descendant components of ¢ in G.

Definition 4.7. Let (E,, &p, ®,) be a conditionable plausibility structure. Let Ps be a plausibility
distribution over S and let G be a DAG of components over S. G is said to be compatible with
Ps iff I(c,ndg(c) — pac(c) |pac(c)) for all ¢ € C(G) (c is conditionally independent of its non-

descendants given its parents).

Theorem 4.8. (Conditional independence and factorization) Let (Ep, ®,, ®p) be a conditionable
plausibility structure and let G be a DAG of components over S.

(a) If G is compatible with a plausibility distribution Pg over S, then Pg = Opeec(a) Pepac(c)-

(b) 1If, for all c € C(G), there is a function L pae(c) such that Le paq(c)(A) is a plausibility distri-
bution over ¢ for all assignments A of pac(c), then vs = Dpeec(a) L pac(c) 8 a plausibility

distribution over S with which G is compatible.

Theorem 4.8 links conditional independence and factorization. Theorem 4.8(a) is a general-
ization of the usual result of Bayesian networks [96] which says that if a DAG of variables is
compatible with a probability distribution Pg, then Pg can be factored as Ps = Hme s Py pac(z)-
Theorem 4.8(b) is a generalization of the standard result of Bayesian networks [96] which says that,
given a DAG G of variables in S, if conditional probabilities P, | ,q(«) are defined for each variable
x €8, then [, . Pr|pac(x) defines a probability distribution over S with which G is compatible.
Both results are generalizations since they hold for arbitrary plausibility distributions (and not for
probability distributions only).

Theorem 4.8(a) entails that in order to factor a global plausibility distribution Pg, it suffices
to define a DAG of components compatible with it, i.e. to express conditional independences. To
define such a DAG, the following systematic procedure can be used. The initial DAG of components
is an empty DAG G. While C(G) = {¢1,...,ck—1} is not a partition of S, do:

1. Let S = c1U...Uck_1; choose a subset ¢ of the set S — Sy, of variables not already considered

by following two rules:

(R1) Consider causes before effects: in the dinner problem, this suggests not putting ep; in

cx, if its causes bpy and w are not in Sk.

(R2) Gather in a component variables that are correlated even when all variables in Sy are
assigned: bpy and bpys are correlated and (R1) does not apply. Indeed, we cannot say
that bp; has a causal influence on bpys, or that bpy, has a causal influence on bpy,
since it is not specified whether Mary or John chooses first if (s)he baby-sits. bp; and

bpps could also be correlated via an unmodeled common cause such as a coin toss that

4.2. TOWARDS LOCAL PLAUSIBILITY AND FEASIBILITY FUNCTIONS 67

determines the baby-sitter. Hence, bp; and bpp; can be put in the same component

c={bps,bpr}.*

2. Add ¢;; as a component to G and find a minimal subset pay, of Sy such that I(cg, Sk—pax | pai).

Add edges directed from components containing at least one variable in pay to ck.

The resulting DAG of components is guaranteed to be compatible with Pg, which implies, using
Theorem 4.8(a), that the local functions P; representing Pg can simply be defined as the functions
in the set {Pc|pag(c)s¢ € C(G)}. We say that (R1) and (R2) build a DAG respecting causality.
They must be seen just as possible mechanisms that help in identifying conditional independences.

All the previous results extending Bayesian networks results to plausibility distributions also ap-
ply to feasibilities. Indeed, the feasibility structure Sy = ({¢, f}, v, A) is a particular case of a condi-
tionable plausibility structure, since it satisfies the axioms of Theorem 4.3. We may therefore speak
of conditional feasibility distribution. If S is a set of decision variables, the construction of a DAG

compatible with a feasibility distribution Fgs leads to the factorization Fs = Accc(a) Fe|pac(c)-

Taking the different types of variables into account

In general, the situation is a bit more complex because variables may be either decision or environ-
ment variables. In this case, we cannot simply deal with a plausibility or a feasibility distribution
over all variables. We must express a plausibility distribution over the set of environment variables
VE, but decision variables can influence the environment (for example, the health state of a patient
depends on the treatment chosen for him by a doctor). This means that we want to express a
family of plausibility distributions over Vg (one for each assignment of Vp) rather than only one

plausibility distribution over V. To make this clear, we define controlled plausibility distributions.

Definition 4.9. A plausibility distribution over Vg controlled by Vp, denoted Py, ||v,, is a func-
tion dom(Vg U Vp) — E,, such that for all assignments Ap of Vb, Py, v, (Ap) is a plausibility

distribution over Vg. Pyy (v, 18 called a controlled plausibility distribution.

As for feasibilities, we want to express a feasibility distribution over the set of decision variables
Vp, but environment variables can constrain the possible decisions (for example, if a blackout
occurs, an agent cannot switch on the light). Thus, we want to express a family of feasibility
distributions over Vp (one for each assignment of V) rather than only one feasibility distribution
over Vp. In other words, we want to express a controlled feasibility distribution Fy,, ||v,-

In order to directly reuse the previous theorems for controlled distributions, we introduce the
notion of the completion of a controlled distribution. This allows us to extend a distribution to
the full set of variables V' by assigning the same plausibility (resp. feasibility) degree to every

assignment of Vp (resp. Vg).

Proposition 4.10. Let (E,, ®p, ®,) be a conditionable plausibility structure. Then, for alln € N*,

there exists a unique pgy such that Dpic(in Po = 1.

4. Components such as {bps,bpps} could be broken by assuming for example that bpys causally influences bp s,
i.e. that Mary chooses if she baby-sits first. We can (and prefer to) keep the component as {bps, bpas} because in
general, “breaking” components can increase the scopes of the functions involved. For example, assume that one
wants to model plausibilities over variables representing colors of pixels of an N x N image such that the color
of a pixel probabilistically depends on the colors of its 4 neighbors only. With a component approach, results
of Markov random fields [22] show that the local functions obtained have scopes of size 5 only, whereas with a
component-breaking mechanism, the size of the largest scope is linear in N.

68 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

Definition 4.11. Let (E),, ©p,®p) be a conditionable plausibility structure and let Py, | v, be
a controlled plausibility distribution. Then, the completion of Py, | v, is a function denoted

Pvy.vp and defined by Py, v, = Pyy||vp @p Po, where po is the unique element of E, such that
®Pi€[1,\dom(VD)|] po = 1p.
In other words, Pvy v, is defined from Py, | v, by assigning the same plausibility degree po

to all assignments of Vp. In the case of probability theory, it corresponds to saying that all

assignments of Vp are equiprobable.

Proposition 4.12. Let Py, v, be the completion of a controlled plausibility distribution Py, | v, -

Then, Pvy vy, is a plausibility distribution over Vg U Vp and Py, vy, = Pyvg || vp -

As a result, we use Py, |y, to denote Py, ||, (and this is equivalent). Similarly, it is possible
to complete a controlled feasibility distribution Fy,, ||v,. Proposition 4.14 below, entailed by

Theorem 4.8(a), shows how to obtain a first factorization of Py, v, and Fy, |v,-

Definition 4.13. A DAG G is a typed DAG of components over Vi U Vp iff the vertices of G
form a partition of Vg U Vp such that each element of this partition is a subset of either Vp or
Vg. Each vertex of G is called a component. The set of components contained Vg (environment

components) is denoted Cp(G) and the set of components included in Vp (decision components) is

denoted Cp(G).

Proposition 4.14. Let G be a typed DAG of components over Vg U Vp. Let Gy, be the partial
graph of G induced by the arcs of G incident to environment components. Let Gy be the partial
graph of G induced by the arcs of G incident to decision components.

If G}, is compatible with the completion of Py, | v, (cf. Definition 4.7) and Gy is compatible
with the completion of Fy,, || vy, then

Pvoive = ®p Pelpag(e) and Fvy vy =

A Felpac(c)-
ccCnl(@) c€Ch(G) | pac(c)

This allows us to specify local P; and F; functions: it suffices to express each P.|pq¢(c) and each
Felpac(e) to express Py, v, and Fy, v, in a compact way. In fact, we could have defined two
DAGs, one for the factorization of Py, |v,, and the other for the factorization of Fy,, |y, but these
two DAGs can actually always be merged as soon as one makes the (undemanding) assumption
that it is impossible, given © € Vp and y € Vg, that both z influences y, and y constrains the
possible decision values for z. This assumption ensures that the union of the two DAGs does not

create cycles. We use just one DAG for simplicity.

Example 4.15. Consider the dinner problem to illustrate the first factorization step. One way
to obtain G is to use the causality-based reasoning described after Theorem 4.8. We start with an
emplty DAG. As epy and epyr are both effects of other variables, they are mot considered in the
first component c1. bpy can be chosen as a variable to add to ¢y, because bpy is not necessarily an
effect of another variable. As previously explained, bpy can be a cause of bpys or an effect of bpyy,
or bpy may be correlated with bpys via an unmodeled cause. As a result, we get ¢y = {bpy,bpar}
as a first component. ¢1 gets no parent because it is the first created component.

Then, as epy and epps are effects of w or mc, we do not consider epy or epyr in the second

component cy. Since w is not necessarily an effect of me, one can add w to ca. The dinner problem

4.2. TOWARDS LOCAL PLAUSIBILITY AND FEASIBILITY FUNCTIONS 69

specifies that ordering fish and red wine simultaneously is not feasible, but we do not know whether
the wine is chosen before or after the main course, i.e. w can be a cause or an effect of mc. As
a result, we take co = {mec,w}. As the menu choice is independent from who is present at the
beginning, co has no parent in the temporary DAG.

As epy is a direct effect of bpy and w only (John leaves the dinner if white wine is chosen),
we can add epy to a third component cs. Moreover, epy is not correlated with epyr when cq1 Uco =
{bps,bpar, me,w} is assigned. Hence, we take cs = {eps}. Given that ep; depends both on
bp; and w, c3 gets {bpy,bpp} and {mc,w} as parents. Finally, c4 = {epnm}, and as epy is
independent of other variables given bpyr and me (because Mary leaves iff meat is chosen), we have
that I({epa}, {eps, bpg,w} | {bprr, me}). This entails that c4 = {eppr} is added to the DAG with
{bps,bprm} and {mc,w} as parents. Therefore, we get Cp(G) = {{mec,w}} as the set of decision
components and Cg(G) = {{bps,bpa},{eps}, {epa}} as the set of environment components. The
DAG of components is shown in Figure 4.1(a) page 71.

Proposition 4.14 ensures that the joint probability and feasibility distributions factor as Py, v, =

Prp.sbpar X PGPJ | bps,bpar,me,w X PGPM [bpy,bpn ,me,w and Fvp, |[VE — Fmew respectively.

4.2.2 Further factorization steps

Proposition 4.14 provides us with a decomposition of Py, |v,, and Fy,, |y, based on the conditional
independence relation I(.,.|.) of Definition 4.4. It may be possible to perform further factorization
steps by factoring each Pe|pa.(c) as a set of local plausibility functions P; and factoring each

Felpac(c) as a set of local feasibility functions F;.

e In some cases, expressing factors of Pe|paq(e) OF Fe|pag(e) 18 quite natural. For example, if
®p = A, if variables in an environment component ¢ = {x; ; |4,j € [1,n]} without parents
represent pixel colors, and if one wants to model in P. that adjacent pixels have different
colors, it is natural to define a set of binary difference constraints d., ; ., , and to factor
Pe as Pe = (Awgetn-1)xiin 0z s2ii1s) AN (A ieinlxtn1] 0z 541)- Such a decom-
position cannot be obtained based only on the conditional independence relation I(.,.|.) of
Definition 4.4.

e In some settings, as in Markov random fields [22], systematic techniques exist to obtain
such factorizations. For Bayesian networks, systematic techniques also exist: with hybrid
networks [36], we can extract the deterministic information contained in a conditional proba-
bility distribution P, |pe.(2) by expressing it as Py | pag(z) = Pr|pac(x) X I, where I is the 0-1
function defined by I'(A) = 0 iff P, |44 (2)(A) = 0. Thus, a conditional probability distribu-
tion can be specified by several functions. Adding such redundant deterministic information,

with a possible smallest arity, generally improves algorithmic efficiency.

e One may use another weaker definition of conditional independence: in valuation-based sys-
tems [129], S1 and Sp are said to be conditionally independent given S3 with regard to a
function vg,,s,,s, if this function factors into two scoped functions with scopes S; U S3 and
So U S3. This definition is not used for the first factorization step because it destroys the

normalization conditions which may be useful from a computational point of view.

70 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

These additional factorization steps are of interest because decreasing the size of the scopes of
the functions involved or adding redundant information in the problem can be computationally
useful.

For every environment component ¢, if “P; € Fact(c)” stands for “P; is a factor of Pe|pag(c)”,

the second factorization gives us

Pelpage) = ®p B
P;eFact(c)
Given that @,_P¢|pac(e) = lp, the P; functions in Fact(c) satisfy the normalization condition
DSp, (®ppieFact(c) Pi) = 1,. Their scopes sc(P;) are naturally contained in sc(Pe|pag () = ¢ U
pac(c).
For every decision component c, if “F; € Fact(c)” stands for “F; is a factor of F¢|paq(c)” the

second factorization gives us

Felpac(e) = FieF/l\J,ct(c)
Given that V.Fe|pag(e) = t, the F; functions in Fact(c) satisfy the normalization condition
Ve (/\Fiepact(c) E) = t. Moreover, sc(F;) C ¢U pag(c).

Other factorizations, which do not decrease the scopes of the functions involved, could also be
exploited. Indeed, each scoped function P; or F; can itself have an internal local structure, as for
instance when P; is a noisy-OR gate [96] in a Bayesian network, or in presence of context-specific
independence [20]. Such internal local structures can be made explicit by representing functions

with tools such as Algebraic Decision Diagrams [113].

Example 4.16. Py, 1p,, can be expressed in terms of a first plausibility function Py specifying the
probability of John and Mary being present at the beginning. Py is defined by Py ((bpy,t).(bpar, f)) =
0.6, Pi((bps, f).(bpar,t)) = 0.4, and Py ((bpy,t).(bpar,t)) = Pi((bpg, f).(bpar, f)) = 0. One can
also add redundant deterministic information with a second plausibility function Ps defined as the
constraint bpy # bpyr (P2(A) = 1 if the constraint is satisfied, 0 otherwise). We get Pop, bprs =
Py @, Py and Fact({bps,bpam}) = {P1, P2}.

Peps |bpsbpas,mew can be specified as a combination of two plausibility functions Ps and Py. P3
expresses that if John is absent at the beginning, he is absent at the end: Ps is the hard constraint
(bpy = f) — (epg = f) (P3(A) = 1 if the constraint is satisfied, 0 otherwise). Then, Py : (bpy =
t) — ((eps =t) < (w # white)) is a hard constraint specifying that John leaves iff white wine is
chosen. Hence, we have Pep, |bp, bparmew = P53 @p Py and Fact({eps}) = {P3, Py}. Similarly,
Pepnr | bpsbparmeqw = Ps @p Po, with Ps, P defined as constraints, and Fact({epa}) = {Ps, Ps}-

As for feasibilities, Frcq can be specified by a feasibility function Fy expressing that ordering
fish with red wine is not allowed: Fy : =((mc = fish) A (w = red)) and Fact({mec,w}) = {F1}. The

association of local functions with components appears in Figure 4.1(a).

4.3 Local utilities

Local utilities can be defined over the states of the environment only (as in the utility of the health

state of a patient), over decisions only (as in the utility of the decision of buying a car or not), or

4.4. FORMAL DEFINITION OF PFU NETWORKS 71

over the states of the environment and decisions (as in the utility of the result of a horse race and
a bet on the race).

In order to specify local utilities, one standard approach, used in CSPs and influence diagrams,
is to directly define a set U of local utility functions, modeling preferences or hard requirements,
over decision and environment variables. This set implicitly defines a global utility Uy = ®uy,cv Us
over all variables. If this factored form is obtained from a global joint utility, one may rely, when
®4 = +, on the work of [50, 3], which introduces a notion of conditional independence for utilities.

No normalization condition is imposed on local utilities, which can always be combined without

generating any impossibility (their combination can only generate unacceptability).

Example 4.17. In the dinner problem, three local utility functions can be defined. A binary utility
function Uy expresses that Peter does not want John to leave the dinner: Uy is the hard constraint
(bpy =1t) — (epy =1t) (U1 (A) =0 if the constraint is satisfied, —oco otherwise). Two unary utility
functions Us and Us over epy and eppr respectively express the gains expected from the presences
at the end: Usz((epy,t)) = 10 and Us((epy, f)) = 0 (John invests 10K€ if he is present at the end),
while Us((epar,t)) = 50 and Us((epar, f)) = 0 (Mary invests 50K€ if she is present at the end).
Us and Us can be viewed as soft constraints. All the local functions are represented in a composite

graphical model in Figure 4.1(b).

me, w bps, bpym
F Py, Py

l:l decision
Q environment

° lausibilit
gunction ¥

—e— fameibilivy

Ps, Py Ps, Ps

@

__ @ - utilit
L functign

Figure 4.1: (a) DAG of components (b) Network of scoped functions.

4.4 Formal definition of PFU networks

We can now formally define Plausibility-Feasibility-Utility networks. The definition is justified by

the previous construction process, but it holds even if the plausibility structure is not conditionable.

Definition 4.18. A Plausibility-Feasibility-Utility network on an expected utility structure is a
tuple N' = (V,G, P, F,U) such that:

o V ={xy,29,...} is a finite set of finite domain variables. V is partitioned into Vp (decision

variables) and Vg (environment variables).
o G is a typed DAG of components over Vg UVp (cf. Definition 4.6).

o P ={P,Ps...} is a finite set of plausibility functions. Fach P; € P is associated with a
unique component ¢ € Cp(G) such that sc(P;) C cUpag(c). The set of P; € P associated
with a component ¢ € Cr(G) is denoted Fact(c) and must satisfy &, (®pP¢€Fact(c)Pi) =1,.

72 CHAPTER 4. PLAUSIBILITY-FEASIBILITY-UTILITY NETWORKS

o ['={F,Fy,...} is a finite set of feasibility functions. Fach function F; is associated with
a unique component ¢ € Cp(G) such that sc(F;) C ¢Upag(c). The set of F; € F associated
with a component ¢ € Cp(G) is denoted Fact(c) and must satisfy V (/\Fiepact(c)ﬂ) =t.

C

o U={Uy,Us,...} is a finite set of utility functions.

4.5 From PFU networks to global functions

We have seen how to obtain a PFU network expressing a global controlled plausibility distribution
Py v, a global controlled feasibility distribution Fy,, || v,, and a global utility Uy .
Conversely, let N = (V,G, P, F,U) be a PFU network, i.e. a set of variables, a typed DAG of

components, and sets of scoped functions. Then

e the global function ¥ = ®, pep P; is a controlled plausibility distribution of Vg given Vp.
Moreover, by Theorem 4.8(b), if the plausibility structure is conditionable and if Gy, is the
partial DAG of G induced by the arcs incident to environment components, then G is

compatible with the completion of ¥;

e the global function ® = Ap,cp F; is a controlled feasibility distribution of Vp given Vg.
Moreover, by Theorem 4.8(b), if G is the partial DAG of G induced by the arcs of G

incident to decision components, then G is compatible with the completion of @;
® i = ®yuu,cp U is necessarily a global utility.

We can therefore denote W by Py, | /v, ® by Fy, vy, and p by Uy .

4.6 Back to existing frameworks

Let us consider some formalisms described in Chapter 2. A CSP (hard or soft) can easily be
represented as a PFU network N = (V,G,0,0,U): all variables in V are decision variables, G is
reduced to a single decision component containing all variables, and constraints are represented
by utility functions. Using feasibility functions to represent constraints, it would be impossible
to represent inconsistent networks because of the normalization conditions on feasibilities. SAT is
modeled similarly; the only difference is that constraints are replaced by clauses.

The same PFU network is used to represent the local functions of a quantified boolean formula
or of a quantified CSP. The differences with CSP or SAT appear when we consider queries on the
network (see next chapter).

A Bayesian network can be modeled as N = (V, G, P,0,(): all variables in V are environment
variables, G is the DAG of the BN, and P = {P,|pas(2), = € V}. There is no feasibility or utility
function. A chain graph is also modeled as N' = (V, G, P,0,0), with G the DAG of components of
the chain graph and P the set of factors of each P |paq(c)-

A stochastic CSP is represented by a PFU network A" = (V, G, P,(),U), where V is partitioned
into Vp, the set of decision variables, and Vg, the set of stochastic variables, G is a DAG which
depends on the relations between the stochastic variables, P is the set of probability distributions

over the stochastic variables, and U is the set of constraints.

4.7. SUMMARY 73

An influence diagram can be modeled by N' = (V, G, P,(, U) such that V contains the decision
variables, Vg contains the chance variables, G is the DAG of the influence diagram without the
utility nodes and with arcs into random variables only (i.e. we keep only the so-called influence
arcs), and P = {P,|pas(2);Z € Ve}. There are no feasibilities, and one utility function U; is
defined per utility variable u, the scope of U; being pag(u). To represent valuation networks, a
set I of feasibility functions is added. Note that the business dinner example could not have been
modeled using a standard influence diagram, since influence diagrams cannot deal with feasibilities
(suitable extensions exist however [130]).

A finite horizon probabilistic MDP can be modeled as N' = (V, G, P,0,U). If there are T time-
steps, then Vp = {d;,t € [1, T|}U{s1} and Vg = {s1,t € [2,T]};5 G is a DAG of components such
that (a) each component contains one variable, (b) decision components have no parents, and (c)
iilsedr © € [LT—1]}
and U = {Us, 4,,t € [1,T]}. Modeling a finite horizon possibilistic MDP is similar.

the parents of an environment component {s;11} are {s;} and {d;}; P = {P,

4.7 Summary

In this chapter, we have introduced the second element of the PFU framework: a network of
variables linked by local plausibility, feasibility, and utility functions, with a DAG capturing nor-
malization conditions. The factorization of global plausibilities, feasibilities, and utilities into
scoped functions has been linked to conditional independence. This provides us with a construc-
tive method to specify local functions representing a given global function. From a pure technical

point of view, the definition of PFU networks (Definition 4.18) is quite simple.

5. As there is no plausibility distribution over the initial state s1, s1 is not considered as an environment variable.
This corresponds to the special case where decision variables model problem parameters.

Chapter 5

Queries on a PFU network

A query corresponds to a reasoning task on the information expressed by a PFU network. Examples

of informal queries about the dinner problem are
1. “What is the best menu choice if Peter does not know who is present at the beginning?”
2. “What is the best menu choice if Peter knows who is present at the beginning?”

3. “How should we maximize the expected investment if the restaurant chooses the main course
first and Peter is pessimistic about this choice, then the presences at the beginning are

observed, and last Peter chooses the wine?”

Dissociating PFU networks from queries is consistent with the trend in the influence diagram
community to relax the so-called information links, as in Unconstrained Influence Diagrams [68]
or Limited Memory Influence Diagrams [81]: it explicitly figures that queries do not change the
local relations between variables.

In this chapter, we define a simple class of queries on PFU networks. We assume that a sequence
of decisions must be performed, and that the order in which decisions and observations are made
is known. We also make a no-forgetting assumption, that is, when making a decision, an agent
is aware of all previous decisions and observations. From now on, the set of utility degrees E,, is
assumed to be totally ordered. Actually, in the context of a systematic computation and execution
of a sequence of decisions, this total order assumption, which holds in various usual frameworks,
allows one to always identify optimal decision rules. See Section 5.7 for a discussion of how to
extend the results to a partial order.

Two definitions of the answer to a query are given, the first being based on decision trees,
and the second being more operational. An equivalence between these two definitions is then
established.

5.1 Query definition

In order to formulate reasoning tasks on a PFU network, we use a sequence Sov of operator-

variable(s) pairs. This sequence captures different aspects of the query:

75

76 CHAPTER 5. QUERIES ON A PFU NETWORK

e Partial observabilities: Sov specifies the order in which decisions are made and environ-
ment variables are observed. If x € Vg appears to the left of y € Vp (for example
Sov = ... (By, {x})... (max, {y})...), this means that the value of z is known (observed)
when a value for y is chosen. Conversely, if Sov = ...(max,{y})...(®u, {z})..., is not

observed when choosing y.

e Optimistic/pessimistic attitude concerning the decision makers: (max, {y}) is inserted in the
elimination sequence if one is optimistic about the behavior of the agent controlling a decision
variable y, and (min, {y}) if one is pessimistic. The operator used for environment variables

will always be @, to model that expected utilities are sought.

e Parameters of the decision making problem: if one wants to compute optimal expected utili-
ties or optimal policies without assigning a subset S of the decision variables, then variables

in S do not appear in Sov.

Example 5.1. The sequence corresponding to the informal query: “How should we mazimize the
expected investment if the restaurant chooses the main course first and Peter is pessimistic about
this choice, then the presences at the beginning of the dinner are observed, and last Peter chooses

the wine before knowing who is present at the end?” is

Sov = (min, {me}).(Bu, {bp.s, bpar}).(max, {w}).(Bu, {eps, epar})

This sequence models that: (1) Peter is pessimistic about the main course (min over mc), which is
chosen without observing any variable (no variable to the left of mc in Sov); (2) Peter chooses the
wine for the best (max over w) after the main course has been chosen and after knowing who is
present at the beginning (w appears to the right of me, bpy, and bpas in Sov), but before knowing
who is present at the end (w appears to the left of epy,epar). Specifically, bpy and bpys are partially

observable, whereas epy and epps are unobservable.

Definition 5.2. A query on a PFU network is a pair Q = (Sov, N') where N is a PFU network
and Sov = (op1,S1) - (0p2,S2) - - (opk, Sk) is a sequence of operator-variable(s) pairs such that

(1) all the S; are disjoint;
(2) either “S; C Vp and op; = min or max”, or “S; C Vg and op; = &,”;
(3) wariables not involved in any of the S;, called free variables, are decision variables;

(4) for all variables x,y of different types (one is a decision variable, the other is an environment
variable), if there is a directed path from the component which contains x to the component
which contains y in the DAG of the PFU network N, then x does not appear to the right of

y in Sov, i.e. either x appears to the left of y, or x is a free variable.

Condition (1) ensures that each variable is eliminated at most once. Condition (2) means
that optimal decisions are sought for decision variables, whereas expected utilities are sought
for environment variables. Condition (3) means that variables which are not eliminated in Sov

act as problem parameters and are viewed as decision variables. Condition (4) means that if z

5.2. ANSWER TO A QUERY: SEMANTIC DEFINITION 7

and y are of different types and x is an ancestor of y, then x is assigned before y. This en-
sures that causality is respected for variables of different types: for the dinner problem exam-
ple, ((®u,{bps,bprm,eps, epa}).(max, {mec,w}), N), which violates condition (4), violates causal-
ity since the menu cannot be chosen after knowing who is present at the end.

Variables appearing in Sov are called quantified variables, by analogy with quantified boolean
formulas. The set of free variables is denoted by V.. Note that the definition of queries does not
prevent an environment variable from being “quantified” by min or max, because we may have
@®, = min or P, = max.

For all i € [1, k], we define the set of variables appearing in Vy, or to the left of S; in Sov by
1(Si) = Vir U (Ujen,i—1)S;). Similarly, we define the set of variables appearing to the right of .S;
in Sov by 7(S;) = Uje[it1,155-

Proposition 5.3. For every PFU network N, there exists at least one query (Sov,N') without

free variables.

5.2 Answer to a query: a semantic definition based on de-

cision trees

In this subsection, we assume that the plausibility structure is conditionable (cf. Theorem 4.3
page 64). The controlled plausibility distribution Py, v, = ®, p,ep Pi can then be completed
(cf. Definition 4.11 page 68) to give a plausibility distribution Py, v, over Vg U Vp. Similarly,
the controlled feasibility distribution Fy,, v, = Arer Fi can be completed to give a feasibility
distribution Fy, v, over Vg U Vp. We also use the global utility Uy = ®4y,cp U defined by the
PFU network.

Imagine that we want to answer the query @ = (Sov, N'), where N is the network of the dinner
problem and Sov = (min, {mc}).(®y, {bps, bpr}).(max, {w}).(Bu, {eps, eprr}).

To answer such a query, one can use a decision tree. First, the restaurant chooses the worst pos-
sible main course, taking into account the feasibility distribution over me. Here, Fpo((me, meat)) =
Fnew((me, meat).(w, white))V Fpe.w((me, meat).(w, red)) = tVt = t. Similarly, F,.((mc, fish)) =
t. Both choices are feasible. Then, if A; denotes the assignment of mc, the uncertainty over those
present at the beginning given the main course choice is described by the probability distribu-
tion Py, bpa | me(A1). For each possible assignment Az of {bps,bpar}, i.e. for each Az such that
Pup, bpas | me(A1.A2) # 0p, Peter chooses the best wine while taking into account the feasibility
Fw | me,bpsbpar (A1.A5): if the restaurant chooses meat, Peter chooses an optimal value between red
and white, and if the restaurant chooses fish, Peter can choose white wine only. Then, for each
feasible assignment As of w, the uncertainty regarding the presence of John and Mary at the end
of the dinner is given by Pey, cpus | bp. bparme,w(A1-A2.Az).

Note that the conditional probabilities used in the decision tree above are not directly defined
by the network. They must be computed from the global distribution; this computation can be a
challenge on large problems.

Utility Uy (A1.A2.A3.A,) can be associated with each possible complete assignment A;.45.43.44
of the variables. For each possible assignment A;.As.As of {bps,bpas, me,w}, the last stage,

i.e. the one in which ep; and epys are assigned, can be seen as a lottery [137] whose expected

78 CHAPTER 5. QUERIES ON A PFU NETWORK

utility is EA4edom({epJ,epM})p(A4) x u(Ayg), where p(As) = Pep, epns | bpy bpar,me,w(A1-A2.Az. Ay)
and u(Ay) = Uy (A1.42.A5.A4). This expected utility becomes the reward of the scenario over
{bprr, bpy, me,w} described by Aj.As.As. Tt provides us with a criterion for choosing an optimal
value for w. The step in which bp; and bpys are assigned can then be seen as a lottery, which
provides us with a criterion for choosing a worst value for mec. The computation associated with

the previously described process is:

min
Ajedom(me),Fme(Ar)=t

E ,Pbp‘],bpM \mc(Al-AQ)x
Az€dom({bp.s,bpri}),Pop ;.bppy | me(A1-A2)7#0

(max

Az Gdom(w),fw | me,bp b g (Al.AQ.A3):t

(Z Pepsepa \bphbpM,mc,w(Al-AQ-A3'A4)X
Ay € dom({eps,epm}) UV(A1A2A3A4)))>

Pep y.epnr | bp g bpagmesw (A1 A2 Az . Ag) # 0

Decision rules for the decision variables (argmin and argmax) can be recorded during the
computation. This formulation represents the decision process as a decision tree in which each
internal level corresponds to variables assignments. Arcs associated with the assignment of a set
of decision variables are weighted by the feasibility of the decision given the previous assignments.
Arcs associated with the assignment of environment variables are weighted by the plausibility
degree of the assignment given the previous assignments. Leaf nodes correspond to the utilities of

complete assignments, and a node collects the values of its children to compute its own value.

Formalization of the decision tree procedure

In order to formalize the decision tree procedure, some technical results are first introduced in

Proposition 5.5. These results can be skipped for a first reading.

Definition 5.4. Let Pg,|s, be the conditional plausibility distribution of S1 given Sz and let
A € dom(Sz2). The function Pg, |s,(A) is said to be well-defined iff Ps,(A) # 0,. In this case,
Ps, | s,(A) is a plausibility distribution over Sy, which ensures the existence of at least one A e
dom(Sy) satisfying P, |s,(A.A") # 0,. Similarly, for all A € dom(S2), Fg,|s,(A) is said to be
well-defined iff Fs,(A) =1.

Proposition 5.5. Assume that the plausibility structure used is conditionable. Let Q = (Sov, N)
be a query where Sov = (op1,S1) - (op2, S2) - - - (opg, Sk). Let Vy, denote the set of free variables of
Q. Then,

(1) If Vg # 0, let S; be the leftmost set of environment variables appearing in Sov.
Then, for all A € dom(1(S;)), Ps,|i(s:)(A) is well-defined.

(2) Leti,j € [1,k] such thati < j, S; C Vg, S; C Vg, and r(S;) N1(S;) C Vp (S; is the first
set of environment variables appearing to the right of S; in Sov). Let (A, A") € dom(1(S;)) x
dom(S;). If Ps, |i(s,)(A) is well-defined and Pg, |i(s,)(A.A") # 0p, then, for all A" extending
AA" over 1(S;), Ps, s, (A") is well-defined.

(8) Leti,j € [1,k] such thati < j, S; CVp, S; C Vp, and r(S;)NI(S;) C Vg (S; is the first set
of decision variables appearing to the right of S; in Sov). Let (A, A”) € dom(1(S;)) x dom(S;).

5.2. ANSWER TO A QUERY: SEMANTIC DEFINITION 79

If Fs,11(s:)(A) is well-defined and Fg, |(s,)(A-A") =1, then, for all A" extending A.A" over
1(S;), Fs, |1(s;)(A") is well-defined.

(4) The conditioning can be defined directly for controlled plausibility distributions as follows: for
all A € dom(Vp), Py, vy (A) is a plausibility distribution over Vg. Thus, one can define
from it conditional plausibility distributions, denoted Pg|g:| v, (A), for all S, S" disjoint
subsets of Vg, as in Theorem 4.3 page 64. Then, for all i € [1,k] such that S; C Vg,
Ps, 11(s)nVe || Vo 8 a function with scope S; U 1(S;) U Vp, which does not depend on the
assignment of Vp —1(S;). It can therefore be denoted by Pg, |1(s:)nVi || 1(S:)NVp -

Moreover, if Pyg vy, is the completion of Py, | vy, then Ps; s,y = Ps,|1(5:)nVi ||1(S)NVD -
This means that the conditioning on the completion of Py, | v, coincides with the condition-

ing done directly on Py, | v, - As a result, completing Py, | v, is useless to compute Ps|i(s)-

The situation is similar for feasibilities.

The technical results of Property 5.5 ensure that all the quantities involved in the following

semantic answer to a query are defined and have a clear meaning.

Definition 5.6. The semantic answer Sem-Ans(Q) to a query Q = (Sov,N') is a function of the
set Vi, of free variables of Q defined by

O if Fv, (A) = f

Sem-Ans(Q)(A) = { Qs (N, Sov, A) otherwise

with Qs, inductively defined by:

(1) Qs,(N,0,4) =Uy(A)
(2) QST(N; (OP, S) . SOU, A) =

min Qsy (N, Sov, A.A") if (S C Vp) A (op = min)
A’ € dom(S)
Fsns)(AA") =t
max Qs (N, Sov, A.A") if (S C Vp) A (op = max)
A’ € dom(S)
fs‘l(s)(A.Al) =1
@By (PSH(S) (A.A") @pu Qsy (N, Sov, A.AI)) if (SCVg)
A’ € dom(S)
Psjis)(A-A") # 0,

In other words, each step involving decision variables (first two cases) is considered as an
optimization step among the feasible choices, and each step involving environment variables (third
case) is considered as a lottery [137] such that the rewards are the Qs,. (N, Sov, A.A"), and such that
the plausibility attributed to a reward is Pg|;(s)(A.A’) (the formula looking like ®y; (p; ®@pu us) is
the expected utility of this lottery). When a set of decision variables S is eliminated, a decision

rule for S can be recorded, using an argmax (resp. an argmin) if max (resp. min) is performed.

Example 5.7. What is the maximum investment Peter can expect, and which associated deci-
sion(s) should he make if he chooses the menu without knowing who will attend? To answer this

question, we can use a query in which bpy, bpyr, epy, and epyr are eliminated to the right of mc

1. ¢ is the unfeasible value, cf. Definition 1.6 page 17.

80 CHAPTER 5. QUERIES ON A PFU NETWORK

and w to represent the fact that their values are not known when the menu is chosen. This query
18!
((Inax, {mc, w})(®u7 {pr7 bpM7 €pPJ, epM})aN)

The answer is 6 K€, with (mc, meat).(w, red) as a decision. If Peter knows who comes, the query

becomes
((®u, {bps, bpar}).(maz, {me, w}).(Su, {eps, eprr}), N)

and optimal values for mc and w can depend on bpy and bpyr. The answer is 26 K€ with a 20K€
gain from the observability of who is present at the beginning. The decision rule for {mc,w} is
(me, meat).(w, red) if John is present and Mary is not, (mc, fish).(w, white) otherwise. Consider

the query introduced at the beginning of Section 5.1:
((min, {mc}).(Su, {bps, bpar}).(max, {w}).(@u, {eps, epar}), N)

The answer is —oo: in the worst main course case, even if Peter chooses the wine, the situation
can be unacceptable. In order to compute the expected utility for each menu choice, one can use a

query in which mc and w are free variables:
((@uu {pru bp]\{[u €pPJ, epM})7N)

The answer is a function over {mc,w}. These examples show how queries can capture various
situations in terms of partial observabilities or optimistic/pessimistic attitude, and how they can

allow to evaluate various scenarios simultaneously by using free variables.

5.3 Answer to a query: a second more operational definition

The quantities Pgs)(A.A") and Fg|;5)(A.A") involved in the definition of the semantic an-
swer to a query are not directly available from the local functions and can be very expensive to
compute. For instance, with probabilities, Pg|s)(A.A") equals Pg;(s)(A.A")/Pys)(A). Com-
puting Ps i(s)(A-A") = 3 4 caomv—(sui(s))) Pve.vo (A-A".A") can require a time exponential in
[V — (SULl(S))]. Moreover, such quantities must be computed at each node of the decision tree.
Fortunately, there exists an alternative definition of the query meaning, which can be directly ex-
pressed using a PFU instance, that is, using the local plausibility, feasibility, and utility functions
defined by a PFU network.

Definition 5.8. The operational answer Op-Ans(Q) to a query Q = (Sov,N) is a function of the
free variables of Q: if A is an assignment of the free variables, then (Op-Ans(Q))(A) is defined

inductively as follows:

(Op-Ans(Q))(A) = Qo, (N Sov, A)
Qor(N, (0p, S) . Sov, A) = 0p 4 gom(s) Qor (N, Sov, AA (5.1)

Qo, (N, 0, 4) — ((FAEFF> « <P<ippa> O <U<§>GMU U>> 4) (5.2)

By Equation 5.2, if all the problem variables are assigned, the answer to the query is the combi-

nation of the plausibility degree, the feasibility degree, and the utility degree of the corresponding

5.4. EQUIVALENCE THEOREM 81

complete assignment. By Equation 5.1, if the variables are not all assigned and (op, S) is the
leftmost operator-variable(s) pair in Sov, the answer to the query is obtained by eliminating S
using op as an elimination operator. Again, optimal decision rules for the decision variables can

be recorded if needed, using argmin and argmax. Equivalently, Op-Ans(Q) can be written:

Op-Ans(Q) = Sov ((A Fl) * (®p H) Qpu (®u Ui))
F,eF P,cP U, eU

This shows that Op-Ans(Q) actually corresponds to the generic form of Equation 2.28 page 51.

5.4 Equivalence theorem

Theorem 5.9 proves that the semantic definition Sem-Ans(Q) gives semantic foundations to what

is computed with the operational definition Op-Ans(Q).

Theorem 5.9. If the plausibility structure is conditionable, then, for all queries Q on a PFU
network, Sem-Ans(Q) = Op-Ans(Q) and the optimal policies for the decisions are the same with
Sem-Ans(Q) and Op-Ans(Q).

In other words, Theorem 5.9 shows that it is possible to perform computations in a completely
generic algebraic framework, while providing the result of the computations with decision-theoretic
foundations, based on decision trees. Hence, computing Op-Ans(Q) is meaningful.

Due to this equivalence theorem, Op-Ans(Q) is denoted simply by Ans(Q) in the following.
Note that the operational definition applies even in a non-conditionable plausibility structure.
Giving a decision-theoretic based semantics to Op-Ans when the plausibility structure is not con-

ditionable is an open issue.

5.5 Bounded queries

It may be interesting to relax the problem of computing the exact answer to a query. Assume
that the leftmost operator-variable(s) pair in the sequence Sov is (max, {x}), with a a decision
variable. From the decision maker point of view, computing decision rules providing an expected
utility greater than a given threshold § may be sufficient. This is the case for the E-MAJSAT
problem, defined as “Given a boolean formula over a set of variables V.= VpUVg, does there exist
an assignment of Vp such that the formula is satisfied for at least half of the assignments of Vg "
Extending the generic PFU framework to answer such queries is done in Definitions 5.10 and 5.11,

which introduce bounded queries.

Definition 5.10. A bounded query B-Q is a triple (Sov, N, 0), such that (Sov,N') is a query and
0 € B, (0 is the threshold).

Definition 5.11. The answer Ans(B-Q) to a bounded query B-Q = (Sov,N,0) is a boolean
function of the free variables of the “unbounded” query Q = (Sov,N'). For every assignment A of
these free variables,

tif Ans(Q)(A) =, 6

[otherwise.

(Ans(B-Q))(A) = {

82 CHAPTER 5. QUERIES ON A PFU NETWORK

As the threshold # may be used to prune the search space during the resolution, computing the

answer to a bounded query is easier than computing the answer to an unbounded one.

5.6 Back to existing frameworks

Let us consider again some frameworks mentioned in Chapter 2. Solving a CSP (Equation 2.4
page 25) or a totally ordered soft CSP (Equation 2.5 page 26) corresponds to the query @ =
((max, V), N), with N the PFU network corresponding to the CSP and V' the set of variables of the
CSP. Computing the probability distribution of a variable y for a Bayesian network (Equation 2.9
page 33) can be modeled using Sov = (+,V — {y}). These examples are mono-operator queries,
involving only one type of elimination operator.

Let us consider multi-operator queries. The search for an optimal policy for the stochastic CSP
associated with Equation 2.8 page 31 is captured by Sov = (max, {z1}).(+, {z2}).(max, {z3}).
The modeling is similar for the query on influence diagrams of Equation 2.14 page 37, which can
be modeled using Sov = (max, {ca}).(+, {re}).(max, {po}).(+, {bu, eq, al}).

For a finite horizon MDP with T time-steps (Equation 2.21 page 47), the query looks like
Q = ((max, {d1}).(®u, {s2}).(max, {d2}) ... (Bu, {s7}).(max, {dr}),N), where &, = + with prob-
abilistic MDP and &, = min with pessimistic possibilistic MDP. The initial state s; is a free
variable. With a quantified CSP or a quantified boolean formula, elimination operators min and
max are used to represent V and 3.

More formally, we can show:

Theorem 5.12. Queries and bounded queries can be used to express and solve the following list

of problems:

1. SAT framework: SAT, MAJSAT, E-MAJSAT, quantified boolean formula, stochastic SAT
(SSAT) and extended-SSAT [82].

2. CSP (or CN) framework:
o Check consistency for a CSP [84]; find a solution to a CSP; count the number of solutions
of a CSP.
o Seek a solution of a valued CSP [123].
e Solve a quantified CSP [15].

e Find a conditional decision or an unconditional decision for a mived CSP or a proba-

bilistic mized CSP [47].

e Find an optimal policy for a stochastic CSP or a policy with a value greater than a

threshold; solve a stochastic COP (Constraint Optimization Problem) [158].
3. Integer Linear Programming [124] with finite domain variables.

4. Search for a solution plan with a length < k in a classical planning problem (STRIPS-like
planning [49, 58]).

5. Answer classical queries on Bayesian networks [96], Markov random fields [22], and chain

graphs [55], with plausibilities expressed as probabilities, possibilities, or k-rankings:

5.7. EXTENSIONS TO OTHER CLASSES OF QUERIES 83

Compute plausibility distributions.

MAP (Mazximum A Posteriori hypothesis).

MPE (Most Probable Explanation,).

Compute the plausibility of an evidence.

CPE task for hybrid networks [36] (CPE means CNF Probability Fvaluation, « CNF

being a formula in Conjunctive Normal Form).
6. Solve an influence diagram [64].

7. With a finite horizon, solve a probabilistic MDP, a possibilistic MDP, a MDP based on k-
rankings, completely or partially observable (POMDP), factored or not [111, 89, 119, 19, 18].

5.7 Extensions to other classes of queries
Queries can be made more complex by relaxing some assumptions:

e In the definition of queries, the order <, on E, is assumed to be total. Extending the
results to a partial order is possible if (F,, <,) defines a lattice (partially ordered set closed
under least upper and greatest lower bounds) and if ®,, distributes over the least upper
bound lub and greatest lower bound glb (i.e. p ®py, lub(u1, u2) = lub(p @py v1, p py u2) and
PRpu glb(u1,u2) = glb(p@py 1, pQpy uz2)). This allows semiring CSPs [10, 11] to be captured
in the framework. We believe that other extensions to partial orders on utilities should allow
algebraic MDPs [97] to be captured.

e One can try to relax the no-forgetting assumption, as in limited memory influence diagrams
(LIMIDs [81]), which show that this can be relevant for decision processes involving multiple
decision makers or memory constraints on the policy recording. In a LIMID, the goal is to
search for decision rules 04 : dom(Sg) — dom(d), one per decision variable d, where Sy is
the set of variables on which decision d is allowed to depend. These sets Sy are explicitly
specified and may violate the no-forgetting assumption. In such cases, optimal decisions can
become nondeterministic (decisions such as “choose x = 0 with probability p and x = 1 with

probability 1 — p”).

e The order in which decisions are made and environment variables are observed is total and
completely determined by the query. One may wish to compute not only an optimal policy
for the decisions, but also an optimal order in which to perform decisions, without exactly
knowing the steps at which other agents make decisions or the steps at which observations
are made. Work on influence diagrams with unordered decisions, such as [68], is a good

starting point to try and extend our work in this direction.

e Finally, relaxing the finite domain variables assumption is not direct, since transforming
@, = + into integrals is not straightforward, and performing min- or max-eliminations over
continuous domains requires the guarantee of existence of a supremum. In this direction,

Simple Temporal Problems (STPs [39]) and their extensions could be considered. In such

84 CHAPTER 5. QUERIES ON A PFU NETWORK

problems, variables are timepoints taking values in continuous intervals, and constraints con-
cern durations between two timepoints, which represent for example durations of activities.
Among the extensions of STPs, Simple Temporal Problems with Preferences(STPPs [72]),
Simple Temporal Problems with Uncertainties (STPUs [134, 136]), and Simple Temporal
Problems with Preferences and Uncertainties (STPPUs [117]) are good starting points. Note
that in these formalisms, uncertainties correspond to boolean indetermisms, which means
that the only uncertainties involved are that some timepoints, called contingent timepoints,
are not controllable and can take any value in an interval. In order to extend the PFU
framework to encompass these formalisms, we actually need to handle continuous plausibil-

ity distributions and to use elimination operators &, @, defined on intervals of values.

5.8 Summary

In Chapter 5, the last element of the PFU framework, a class of queries on PFU networks, has
been introduced. A decision-tree based definition of the answer to a query has been provided. The
first main result of this chapter is Theorem 5.9, which gives theoretical foundations to another
equivalent operational definition, reducing the answer to a query to a sequence of eliminations
on a combination of scoped functions. The latter is best adapted to future algorithms, because
it directly handles the local functions defined by a PFU network. The second important result
is Theorem 5.12, which shows that many standard queries are PFU queries. Overall, the PFU
framework definition lies in Definitions 3.5, 3.8, 3.9 for the algebraic structure, Definition 4.18 for
the network, and Definitions 5.2, 5.8 for queries.

The PFU formulation of a concrete problem which involves plausibilities, feasibilities, utilities,
and sequential decision making (a problem of deployment and maintenance of a constellation of

satellites [61]), is given in Appendix C.

5.9 Conclusion of Part I: gains and costs of the PFU frame-

work

A better understanding Theorem 5.12 shows that many existing frameworks are instances
of the PFU framework. Through this unification, similarities and differences between existing
formalisms can be analyzed. For instance, comparing VCSPs and the optimistic version of finite
horizon possibilistic MDPs through the operational definition of the answer to a query, one will no-
tice that algebraically speaking, a finite horizon optimistic possibilistic MDP (partially observable
or not) is a fuzzy CSP. Libraries available for VCSPs can then be used to solve such MDPs.
From the complexity theory point of view, studying the time and space complexity for comput-
ing Equation 2.28 (page 51) can lead to upper bounds on the complexity for several frameworks
simultaneously. One may also try to characterize which properties lead to a given theoretical

complexity.

Increased expressive power The expressive power of PFU networks is the result of a number of

features: (1) flexibility of the plausibility /utility model; (2) flexibility of the possible networks; (3)

5.9. GAINS AND COSTS OF THE PFU FRAMEWORK 85

flexibility of the queries in terms of situation modeling. This enables queries on PFU networks to
cover generic finite horizon sequential decision making problems with plausibilities, feasibilities, and
utilities, cooperative or adversarial decision makers, partial observabilities, and possible parameters
in the decision process modeled through free variables.

As none of the frameworks indicated in Theorem 5.12 presents such a flexibility, for every
subsumed formalism X indicated in Theorem 5.12, it is possible to find a problem which can
be represented with PFUs but not directly with X. More specifically, compared to influence
diagrams [64, 68, 131, 92, 67] or valuation networks (VNs [128, 130, 41]), PFUs can deal with more
than the probabilistic expected utility structure and allow us to perform eliminations with min to
model the presence of adversarial agents. Thus, quantified boolean formulas cannot be represented
with influence diagrams or VNs, but are covered by PFU queries (see Theorem 5.12). Moreover,
PFU networks use a DAG which captures normalization conditions of plausibilities or feasibilities,
whereas with VNs; this information is lost. Compared to sequential influence diagrams [67] or
sequential VNs [41], PFUs can express some so-called asymmetric decision problems (problems in
which some variables may not even need to be considered in a decision process) by adding dummy
values to variables.

Actually, some simple problems which can be expressed with PFUs cannot be apparently di-
rectly expressed in other frameworks. The simple instance “feasibilities with normalization con-
ditions + hard requirements” is not captured by any of the subsumed frameworks (using a CSP
to model it would result in a loss of the information provided by the normalization conditions on
feasibilities). The same occurs for “influence diagrams - like sequential decision processes based on
possibilistic expected utility”, which could be called possibilistic influence diagrams.? Same again
for the instance “stochastic CSPs without contingency assumption”, for the instance “max-QBF”
(analogous to max-SAT), or for the instance “quantified VCSPs”, which could correspond to VC-
SPs involving alternating min and max eliminations modeling the presence of antagonist decision
makers. Thus, the PFU framework also covers yet-unpublished frameworks.

The cost of greater flexibility and increased expressive power is that the PFU framework cannot

be described as simply and straightforwardly as, for example, constraint networks.

Generic algorithms Part II will show that generic algorithms can be built to answer queries on
PFU networks. As previously said, building generic algorithms should facilitate cross-fertilization
in the sense that any of the subsumed formalisms will directly benefit from the techniques developed
in another subsumed formalism. This fits into a growing effort to generalize resolution methods
used for different Al problems. For example, soft constraint propagation drastically improves the
resolution of VCSPs; integrating such a tool in a generic algorithm on PFUs could improve the
resolution of influence diagrams. Using abstract operators may enable us to identify algorithmically
interesting properties, or to infer necessary or sufficient conditions for a particular algorithm to be
usable.

However, one could argue that some techniques are highly specific to one formalism or to
one type of problem, and that, in this case, dedicated approaches certainly outperform a generic

algorithm. A solution for this can be to characterize the actual properties used by a dedicated

2. Possibilistic influence diagrams were proposed very recently, in a work parallel to this thesis [56]. This
formalism is a simple instantiation of the PFU framework.

86 CHAPTER 5. QUERIES ON A PFU NETWORK

approach, in order to generalize it as much as possible. Moreover, even if specialized schemes
usually improve over generic ones, there exist cases in which general tools can be more efficient
than specialized algorithms. See, for example, [121] or the use of SAT solvers for solving optimal

STRIPS planning problems.

Part 11

Generic algorithms for answering

PFU queries

87

Chapter 6

First generic algorithms

The PFU framework is flexible and unifies several existing Al formalisms. One may think that the
cost to pay for such a genericity is that answering a PFU query is necessarily intractable. One of
the aims of the following chapters is to contradict this idea, by showing that tractability is more a
consequence of the query considered than a side effect of genericity.

In fact, the PFU framework has been built not only for its knowledge representation abilities,
but also to be able to define generic algorithms capable of answering queries. Some of our choices
have even been justified by algorithmic reasons. In other words, we want to be able to answer
queries as efficiently as possible, and not only to express them.

In the sequel, we introduce generic resolution schemes which are either generalizations of already
existing algorithms, or new techniques applicable to all PFU subsumed formalisms. This chapter
presents two first generic algorithms which answer arbitrary PFU queries without any further
assumption on the algebraic structure. These algorithms both work on the operational definition
of the answer to a query, defined as Ans(Q) = Sov((Arer Fi) *x (@pp. ¢ p Pi) @pu (Quv,ev Ui))-

More precisely, we introduce:
e a basic tree search algorithm;

e a generic variable elimination algorithm [7], which intends to exploit the factorization into

local scoped functions for the best.

Complexity results are also provided, notably using a parameter called constrained induced-width.

6.1 A basic tree search algorithm

The operational definition of the answer to a query @ (cf Definition 5.8 page 80) defines a naive
exponential time algorithm to compute Ans(Q) using a tree exploration procedure. This algorithm
is given in Figure 6.1.

For each assignment A of the free variables of @, a tree is explored. Each node in this tree
corresponds to a partial assignment of the variables, and variables are assigned in an order “com-
patible” with Sov. The value of a leaf is provided by the combination of the scoped functions of
the PFU network, applied to the complete assignment defined by the path from the root to this

leaf. Depending on the operator used, the value of an internal node is obtained by performing a

89

90 CHAPTER 6. FIRST GENERIC ALGORITHMS

min, max, or @&, operation on the values of its children. The root node returns (Ans(Q))(A). For
a query (Sov, N), the first call is TreeSearchAnswerQ(Sov,). Tt returns Ans(Q).

TreeSearchAnswerQ(Sov, (V,G, P, F,U))

begin
foreach A € dom(Vy,) do ¢(A) < AnswerQ(Sov, (V,G, P, F,U), A)
return ¢

end

AnswerQ(Sov, (V,G,P,F,U), A)
begin
if Sov = then return ((/\FieF Fy) x (®pp,cp Pi) @pu (Quu,ev Uz)) (A4)
else
(op, S).Sov’ + Sov
choose =z € S
if S= {2z} then Sov« Sov’ else Sov + (op, S — {z}).Sov’
dom «— dom(z)
res «— O
while dom # () do
choose a € dom
dom — dom — {a}
res < op (res, AnswerQ(Sov, (V,G, P, F,U), A.(z,a)))

return res

end

Figure 6.1: A generic tree search algorithm to answer a query @ = (Sov, (V, G, P, F,U)).

If one assumes that every operator returns a result in a constant time and that each memory
read also takes a constant time, then the time complexity of this algorithm is O(m - d™), where m
stands for the number of scoped functions, d stands for the maximum domain size, and n stands

for the number of variables. !

The space complexity is linear, hence computing the answer to a bounded query is PSPACE.
Moreover, the satisfiability of a QBF is a PSPACE-complete problem which can be expressed as
a bounded query (cf. Theorem 5.12 page 82), hence computing the answer to a bounded query is
PSPACE-hard. Being PSPACE and PSPACE-hard, the decision problem consisting in answering a
bounded query is PSPACE-complete. This result is not surprising, but it gives an idea of the level
of expressiveness which can be reached by the PFU framework. More work is needed to identify

subclasses of queries with a lower complexity, although many are already known.

Nevertheless, if one wants to record a policy for decision variables eliminated with max, then
the space complexity of the policy recording can become exponential in the number of variables
not eliminated with max. In order to recover a polynomial recording space, one can simply record

a “horizon-restricted” policy for the k first decisions only.

1. In fact, an upper bound on the time needed to get ¢(A) for a scoped function ¢ represented as a table
is O(n - log(d)), and an operator returns a result in a time depending on the size of its arguments. We decide
to adopt the same convention as [93], where these two operations are assumed to be in constant time. Such an
assumption does not change the complexity class, and can be relaxed simply by adding factors such as n-log(d) in all
time complexity results. For example, we should say that the time complexity of algorithm TreeSearchAnswerQ is
O(m-n-log(d)-d™) instead of O(m-d™). Similarly, logarithmic factors should be integrated to all space complexities,
since numbers are recorded using bits.

6.2. A FIRST NAIVE VARIABLE ELIMINATION ALGORITHM 91

6.2 A first naive variable elimination algorithm

Quite naturally, a generic Variable Elimination (VE) algorithm can also be defined to answer
PFU queries. This algorithm, inspired by the seminal Bertelé and Brioschi’s proposal [7] and
by [127, 32, 75|, is given in Figure 6.2. It eliminates variables from the right to the left of the
sequence Sov of the query, whereas with the tree search procedure, variables are assigned from the
left to the right. This right-to-left processing entails that the algorithm naturally returns a function
of the free variables of the query. The first call is Basic-VE-answerQ(Sov, (V, G, P, F,U)). The

time and space complexities of this algorithm are O(m - d").

Basic-VE-answerQ(Sov, (V,G, P, F,U))
begin
¢0 = ((Arier F) % (@ pyep P) @pu (Suteu U))
while Sov # () do
Sov'.(op, S) < Sov
choose =z € S
if S = {2z} then Sov < Sov’ else Sov «— Sov'.(op, S — {z})
$0 < 0Py PO
return g

end

Figure 6.2: A first generic variable elimination algorithm for answering a query @ =
(Sov, (V,G, P, F,U)).

Improving the basic scheme

The Basic-VE-answerQ algorithm is actually a very naive variable elimination scheme, because
it begins by combining all the scoped functions (first line) before eliminating variables, whereas the
advantage of a standard variable elimination algorithm is primarily to use the factorization into
local functions [7]. Ideally, we would like to perform computations as local as possible by considering
only scoped functions having x in their scope when computing a quantity like op, (F' * P ®p,, U).

Let us first introduce some additional notations and conventions:

e Given a set ® of scoped functions, we denote by ®+ (resp. ® =) the set of scoped functions
in ® having (resp. not having) x in their scope: ®** = {p € ®|x € sc(p)} (resp. P~% =
{pe @z dsco)})

e A quantity like op,((Ar.er F5) x (®pp, e p Pi) @pu (®uv,cv Ui)), where P, F, U are sets of
plausibility, feasibility, and utility functions respectively, is simply denoted as op, (F * P ®py

U): we consider the combination of scoped functions of the same “type” as implicit.

e Every combination operator ® defined on a set E not containing ¢ is extended on E U {{}
by 0 ® e = e ® ¢ = { (combining anything with something unfeasible is unfeasible too).?
This implies that [* (p Qpy u) = P Qpy, (f * u).

Proposition 6.1 is a first step towards the use of factorizations.

2. An operator op can be used both as a combination operator between scoped functions and as an elimination
operator on some variables. In this case, the extension of op used as a combination operator creates an operator op’
such that op’(e, ¢) = ¢, whereas the extension of op considered as an elimination operator creates an operator op’
such that op” (e, 0) = e. op’ and op” coincide on E but differ on E U {O}.

92 CHAPTER 6. FIRST GENERIC ALGORITHMS

Proposition 6.1. Let (E,, Ey, @y, @pu) be a totally ordered expected utility structure (EU struc-

ture). Then, for all sets P, F, U of plausibility, feasibility, and utility functions respectively, and

for all op € {min, max, ®y }, op,(Fx P Qp, U) = F~% % P~ @y, (op, (FT* x PT* @, U)).
Moreover, if PY* =) and op € {min, max}, op,(Ft*xU) = U"* ®, (op, (FT* xUT)).

Proposition 6.1 asserts that when a variable x is eliminated, it is not necessary to consider
plausibility functions or feasibility functions without z in their scope. Furthermore, if there are
no plausibility functions depending on = quantified with min or max, then it is not necessary to
consider utility functions without = in their scope either. This means that (1) it is always possible
to take advantage of the factorization of the global plausibility and feasibility into local plausibility
and feasibility functions, and (2) the factorization into local utility functions is directly usable if
P*® = () and the elimination operator is min or max. In order to see how general the condition

“PT¢ = ()7 is, we use the following proposition.

Proposition 6.2. Let (Sov, (V,G, P, F,U)) be a query. Let x be a variable involved in the rightmost
operator-variable(s) pair in Sov. Then, (x € Vp) — (PT =0) and (z € Vi) — (F™* =0).

Therefore, if x denotes a rightmost variable in Sov, then Proposition 6.2 enables us to infer

that at the first elimination step:

e If z is a decision variable, then P** = (). Proposition 6.1 entails that

op(F*xP®Rp, U)=F "% P7" ®py (U" @y (0p (FT xUT™)) (6.1)

x x

As a result, only scoped functions having z in their scope need to be considered: it suffices

to compute max, (F** x UT®) if x is quantified with max and min, (F+* x UT*) otherwise.

e If x € Vg, then F™® = (). In this case, Proposition 6.1 entails that

Bu(F*P@py U)=F " % P™% Qpy (By (P @, U)) (6.2)

In general, the computation @, (P™* ®,, U) in Equation 6.2 cannot be decomposed any
further, in order to avoid considering scoped functions in U ~*. The basic reason for this is
that the PFU algebraic structure makes no assumption on the relation between @, and ®,,.

This problem is referred to as the undecomposability problem.

6.3 Solving the undecomposability problem via two distinct

sufficient conditions

We give two axioms, each of which makes it possible to avoid considering scoped functions in U ™"
when computing @y, (P™* ®,, U). This means that they allow us to use factorizations for the

best. These two axioms, denoted Az°C and Az, are enounced as follows:

A4 SE ®,, distributes over @,
x°t

and p Qpu (ul Qu u2) = (p Opu Ul) @ ug for all (p, u17u2) € Ep x By, x
A9 “®, = @, on E,” (and not on E, U {O})

6.3. SOLVING THE UNDECOMPOSABILITY PROBLEM 93

The first sufficient decomposability axiom is denoted Az°% as “axiom for the semiring case”,
because it makes (E,, @y, ®,) a semiring (see Proposition 6.3 below). The second sufficient de-
composability axiom is denoted Az°% as “axiom for the semigroup case”, because it makes the
structure (Ey, @y, ®,,) similar to the structure (E,,, ®,), which is a semigroup. These two disjoint

axioms cover various standard EU structures, as shown in Table 6.1.

E, E, Qu | Bu Rpu Az | AzSC
1 R RU{-oo} | + + X Vv
2 R R X + X v
3 [0,1] [0,1] min | max min Vv
4 [0,1] [0,1] min | min | max(1—p, u) Vv
5 | NU{co} | NU{co} | + | min + Vv
6 | {tf} {t, f} AN Y A v
T AL} {t.f} A LA - v
8 | {t./f} {t. f} vV |V A v
9] {tf} {t, f} VI A — v

Table 6.1: Expected utility structures satisfying Az°% or Az°%: 1. probabilistic expected utility
with additive utilities (allows the probabilistic expected utility of a cost or a gain to be computed),
2. probabilistic expected utility with multiplicative utilities (allows the probability of satisfaction
of some constraints to be computed), 3. possibilistic optimistic expected utility, 4. possibilistic
pessimistic expected utility, 5. qualitative utility with x-rankings and with only positive utilities,
6. boolean optimistic expected utility with conjunctive utilities (allows one to know whether there
exists a possible world in which all goals of a set of goals G are satisfied), 7. boolean pessimistic
expected utility with conjunctive utilities (allows one to know whether in all possible worlds, all
goals of a set of goals G are satisfied), 8. boolean optimistic expected utility with disjunctive
utilities (allows one to know whether there exists a possible world in which at least one goal of a
set of goals G is satisfied), 9. boolean pessimistic expected utility with disjunctive utilities (allows
one to know whether in all possible worlds, at least one goal of a set of goals G is satisfied).

Proposition 6.3. Let (E,, Ey, ®y, ®@pu) be an EU structure satisfying AzS® (the underlying utility

structure being (Ey, ®4)). Then, (Ey, Gy, @) 15 a commutative semiring.

Proposition 6.4 asserts that as soon as one of these two axioms holds, the undecomposability

problem is solved.

Proposition 6.4. Let (E,, Ey, ®y, Qpu) be an EU structure. Let P and U be sets of plausibility
and utility functions respectively.
If AzSE holds, then

Ou (P @y U) = U™ @ (@u (P @ UH)) (6.3)
If Az%% holds, then

Dy (P-HE Qpu U) = ((@p P+m) Qpu U™") ®u (EBU(P—HC Qpu U—m)) (6'4)

x T x
This shows that when eliminating an environment variable z with &, only plausibility and
utility functions having z in their scope need to be considered. Note that in Equation 6.4, there
is no reason for the quantity @, P to equal 1,. Proposition 6.4 can be illustrated by the

probabilistic expected satisfaction and the probabilistic expected additive utility. In the first

94 CHAPTER 6. FIRST GENERIC ALGORITHMS

case, we have > (P™ x U) = U™ x (}_, (P** x U*™*)), whereas in the second one, we have
2 (P (U + UT)) = (32, PT) x U™) 4+ (L. (P77 x UTT)).

6.4 Definition of an improved variable elimination algorithm

As we shall see, Az5F and Az5% enable us to compute the answer to a query using a variable elim-
ination algorithm which considers only scoped functions having x in their scopes when eliminating

a variable z.

6.4.1 Improved VE algorithm in the semiring case

When Az5% holds, it is actually possible to simplify Equation 6.3 with no loss of generality, by
transforming the problem specification via an expected utility structure morphism. Indeed, let us

consider the simpler axiom

(Ep: =p) = (Bus %) = (B,)
Az Rp = Qpy = Ry = @
Dp =Dy =D

Theorem 6.5. Let S = (E,, Ey, Dy, Qpu) be a totally ordered EU structure whose underlying
plausibility and utility structures are (E,, ®p, ®,) and (Ey, ®,,) respectively. Let ¢ : E, — E,, be
the function defined by ¢(p) = p Qpu lu.

(a) If S satisfies AxSR/, then S satisfies AxS™.
(b) If S satisfies AxSf: let (B, <) = (Ey, =), ® = @y, and @ = ®,,. Then,

e The structure S’ = (E, E,®,®) is a totally <-ordered EU structure, with (E,®,®) as
a plausibility structure and (E,®) as a utility structure. Moreover, it satisfies AzSE

e For every PFU network N = (V,G,P,F,U) on S, N' = (V,G,{¢(P,)| P, € P},F,U)
is a PFU network on S’. N is denoted ¢p(N).

e For every query Q = (Sov,N') on a PFU network N defined on S, Q' = (Sov, p(N))
is a query on the PFU network ¢(N'). Moreover, Ans(Q) = Ans(Q’) and the optimal

policies for the decision variables are the same with Q and Q'.

Theorem 6.5(a) shows that axiom Az5F is weaker than axiom Az°F . Theorem 6.5(b) shows
that if an expected utility structure satisfies AzS%, then it is possible to recover Az? R" thanks to
the morphism ¢ : p — p ®p,, 1, which enables us to transform a query @ on a PFU network N/
into an equivalent query on the PFU network ¢(N).

As a result, Az5% is equivalent to Az5® and we can deal with AzSE’ instead of Az5®. The
interest of AzS® is that it involves only two customizable operators @& and ® and one ordered
set (F, =), which will simplify the future algorithms. The axioms making a structure an expected

utility structure also become simpler, as shown in Proposition 6.7.

Definition 6.6. (E,®,®) is a totally ordered Monotonic Commutative Semiring (totally ordered
MCS) iff it is a commutative semiring equipped with a total order < such that @ and & are

monotonic with respect to <.

6.4. DEFINITION OF AN IMPROVED VARIABLE ELIMINATION ALGORITHM 95

Proposition 6.7. (E,, Ey, By, Qpu) is a totally ordered EU structure satisfying AzSE (the un-
derlying plausibility and utility structures being (Ep, ®p, ®p) and (Ey, ®,,) respectively) if and only
if (Eu,®u,®u) is a totally ordered MCS.

Therefore, when A2z5% holds, the algebraic structure of the PFU framework becomes just a
totally ordered MCS (E,®,®) = (Ey, ®u, ®u). The normalization condition imposed on environ-
ment components becomes

®(® P)=1g
¢ Pj€Fact(c)

and the operational answer to a query becomes

Ans(Q) = Sov((_ A Fi)*x(@ o)) (6.5)
FieF pEPUU

Moreover, instead of expressing feasibilities on {t, f}, we can express them on {lg,{} by
mapping t onto 1 g and f onto ¢. This preserves the value of the answer to a query since txu = 1 gQu
and fxu = 0 ®@u. The answer Ans(Q) to a query @ becomes Ans(Q) = Sov(Qpcpuruu ¢). As a
result, answering a query in the semiring case can require several elimination operators (min, max,

and @), but it actually requires only one combination operator (®).

Proposition 6.8. Let (E,®,®) be a totally ordered MCS. We extend @ and @ to E'U {Q} by
uPO=00u=uandu®) =0 u= 7. Then, for every op € {min, max, ®}, (E U {0}, op, ®)

s a commutative semiring.

Corollary 6.9. Let (E,®,®) be a totally ordered MCS and let ® be a set of scoped functions
taking values in EU{Q}. Then, for all variables x and for all op € {min, max, @}, op, (Qpco P) =
(®pep—= ©) ® (0p; Bpeats @)

Using Corollary 6.9, the algorithm in Figure 6.3 defines a generic VE algorithm when Az5%
holds. The first call is VE-answerQ(Sov, ®, PUFUU). This time, the factorization available in a
PFU network is fully exploited, since when eliminating a variable x, only local functions involving

2 in their scope are considered. Complexity results on this algorithm are given in Section 6.5.

VE-answerQ(Sov, ®, @)
begin
if Sov = () then return ¢
else
Sov'.(op, S) «— Sov
choose =z € S
if S = {z} then Sov « Sov’ else Sov < Sov'.(op,S — {z})
0 — op, (Bpcp+op)
P — (2 - 2") U {po}
return VE-answerQ(Sov, ®, P)

end

Figure 6.3: A generic variable elimination algorithm using factorization (Sov: sequence of
eliminations, ®: combination operator, ®: set of scoped functions).

Proposition 6.10. VE-answerQ(Sov,®, PUF UU) returns a set of scoped functions ¥ such
that @ypcw) = Ans(Q).

96 CHAPTER 6. FIRST GENERIC ALGORITHMS

6.4.2 Improved VE algorithm in the semigroup case

The definition of an improved variable elimination algorithm in the semigroup case requires a bit
more work. In fact, Equation 6.4 page 93 does not create one new utility function resulting from
the elimination of z. It creates one new plausibility function @, P7* which must be combined
with all functions in U~*, and one new utility function @®,, (P** ®,, U**). In other words, the
global quantity obtained after the elimination of x is not formed as Sov'(F’ x P! ®p, U’), where
Sov’ is the resulting sequence of eliminations and F’, P/, and U’ are new sets of scoped functions.

A solution to recover a global form which does not vary during the elimination steps consists in
working on pairs of plausibility-utility functions called potentials [91]. The definition introduced

below however differ from the standard one. 3

Definition 6.11. A potential is a pair (Py,Uy) composed of one plausibility function Py and one

utility function Uy. Two operators are defined on plausibility-utility pairs:
e a combination operator X defined by (p1,u1)X(p2, us) = (p1®pp2, (P1 @puti2) Dy (P2 Dpuu1)),
o an elimination operator B defined by (p1,u1) B (p2, u2) = (p1 Sp p2, u1 Sy u2).
Last, a partial order on plausibility-utility pairs can be defined as “(p,u1) =< (p,u2) iff u1 < us”.

In the sequel, we also consider each feasibility function as a potential. Since there is only a
partial order on plausibility-utility pairs (for example max((0.2,4), (0.6, 3)) does not exist), some
technical steps are required to ensure that when a min- or a max-elimination on a decision variable
x is being performed, there does not exist any potential whose plausibility part depends on .
These technical steps are addressed by Propositions 6.12 to 6.15, and lead us to the main result

given in Proposition 6.16.

Proposition 6.12. Let N = (V,G, P, F,U) be a PFU network. Then, there exists a PFU network
N' = (V,G', P, F',U), which is called a refinement of N, such that

e cvery component ¢ in G’ is included in one component of G, and the hypergraph having the
variables in ¢ as vertices and {sc(¢) | ¢ € Fact(c)} as a set of hyperedges is connected (to

mean that variables in a component are somehow correlated);
o ®pPiEP R = ®pP¢EP, R and /\FiEF FZ - /\FiEF’ FZ

Proposition 6.12 enables us to assume that all PFU networks considered are already refined,
notably because the proof of Proposition 6.12 is constructive.
Given a set ® of scoped functions, we slightly update the definitions of ®*%/®~% by
Pt ={pe |z € sc(p)}Udg ® N Fact(c(x)) if se(®) Ne(z) C {x}
, where ¢y =
O =9 — Pt () otherwise
Informally, the set ®¢ added to {¢ € @ |z € sc(¢)} means that when z is the last variable of
its component ¢(z) to be eliminated (test sc(®)Nec(x) C {x}), we add in ®T* the scoped functions

3. The notion of potentials introduced here differs from the one used in [91] for influence diagrams: in [91],
potentials are combined using (p1,u1) X' (p2,u2) = (p1 X p2,u1 + u2), and variable eliminations are performed

by B (P,U) = 3>, P, %) Our proposal does not use any division operation, which is great since the
structures manipulated are not assumed to be equipped with a division.

4. The utility part of the obtained pair may be a bit surprising. In fact, p; informally corresponds to a plausibility
which is already “integrated” in w1 but not in all other utilities, hence the combination p1 ®py u2. Similarly, po is

already “integrated” in wo and must weigh all other utilities, hence the combination p2 ®pu u1.

6.4. DEFINITION OF AN IMPROVED VARIABLE ELIMINATION ALGORITHM 97

in Fact(c(x)) which are still in ®. These added scoped functions are exactly the scoped functions
in Fact(c(z)) whose scope is included in pag(c(z)). This technical step is required in order to
use normalization conditions ensuring that some minimization and maximization operations on
potentials are defined. Also, if P; € Fact(c) for a component ¢, then the potential (P;,1,) is
considered to be in Fact(c) too.

The next propositions show that Ans(Q) can be computed using potentials (Proposition 6.13),
and that the global form obtained when working with potentials uses the factorizations and is

unchanged during the elimination steps (Proposition 6.15).

Proposition 6.13. Let Q = (Sov,N) be a query on a PFU network N, defined on a totally
ordered EU structure satisfying Axz°¢. Let T(Sov) be the sequence of operator-variable(s) pairs
obtained from Sov by replacing @, by B. Let 11 be the set of potentials I = {(P;,1,),P; €
PYUFU{(1,,U;),U; € U}. Then, for all assignments A of the free variables of Q,

T(Sov)(B, ¢(4)) =

{ (1p, Ans(Q)(A)) if Ans(Q)(A) # O

O otherwise

Lemma 6.14. Let us consider a totally ordered EU structure satisfying Az %. Then, for every

set of potentials 11,
o H,(I) =11"* K (B, (I17)).

o Assume that for all (Po,Up) € II, x ¢ sc(Py). Then, max,(II) exists and max,(II) =
2 W max, (I17%).5 Similarly, min, (I) ezists and min,(IT) = II~% X min, (IT72).

Proposition 6.15. Let Q = (Sov,N') be a query on a PFU network N' = (V,G, P, F,U) defined
on a totally ordered EU structure satisfying Az, where Sov = (op1,S1) - (op2,S2) - - - (opk, Sk)-

Let |Sov| denote the number of variables in Sov. Let [T|gou),--.,T1] be a sequence of variables
such that (z; € Sj) — (w;—1 € S; U Sj11).% Let op(x) denote the operator min if x € Vp and x is
quantified with min in Sov, max if x € Vp and x is quantified with max, and B otherwise.

Let IIy be the initial set of potentials I, = {(P;,1,,), P € P} UF U{(1,,U;),U; € U}. For all
1€ {1,...,|Sov|}, let ;41 be the set of potentials defined from I1; by:

1, = { undefined if I1; is undefined or if op(xi)miﬂj“ does not exist
(I — I ") U {op(i),, 1%} otherwise
Then, 50041 is defined and Myer g, ,, ¢ = T(Sov)(Myem).

Proposition 6.15 shows that when eliminating a variable z on a set of potentials II, with
an elimination operator op € {min, max, B}, only potentials having x in their scope need to be
considered. After the elimination of z, one gets a new set of potentials IT' = (IT—-1I1*)U{op, (ITT*)}.
The condition “for all (Py,Up) € II, = ¢ sc(Fp)” involved in Lemma 6.14, required when a decision
variable is eliminated, is always satisfied during the elimination steps and entails that the partial
order defined on potentials suffices to compute a min or a max when needed.

Eventually, the algorithm for the semigroup case is identical to the one used for the semiring ca-
se, except that the first call is VE-answerQ(7'(Sov), K, {(P;, 1,), P, € PYUFU{(1,,U,),U; € U}).

5. Given a set of potentials IT, max, (IT) does not necessarily exist since only a partial order is given on plausibility-
utility pairs. For example, max((0.2,4), (0.6, 3)) does not exist.

6. Informally, this means that the sequence [:c‘sou‘, ..., x1] corresponds to a variable elimination order which can
be used when considering the variables in an order “compatible” with Sov.

98 CHAPTER 6. FIRST GENERIC ALGORITHMS

Proposition 6.16. VE-answerQ(T(Sov),X,{(P;,1,), P, € PYUF U{(1,,0,;),U; € U}) returns
{ Ly, Ans(Q)(A) if Ans(Q)(4) # 0

a set of potentials II such that R,cmp(A
Otherwzse

6.4.3 General case

The semiring and semigroup cases define two sufficient conditions allowing us to use the factor-
ization into local plausibility, feasibility, and utility functions. Showing how necessary they are is

still an open issue. It may occur that neither Az°%, nor Az°¢ holds.

Example 6.17. (E,, E,, ®y, Qpy) = (RT,R,+, x) is an EU structure defined on the plausibility
structure (Ep, ®p, ®p) = (RT, +, x) and on the utility structure (E,, ®,) = (R, min). It can be used
to compute the expected utility of risks combined using min. It satisfies: (1) neither the semigroup
aziom Ax°C | since ®y # Qu; (2) nor the semiring aziom Ax®E | because ®,, does not distribute

over @y indeed, “min(a,b+ ¢) = min(a,b) + min(a, c)” does not always hold.

As a result, cases exist for which the undecomposability problem, consisting of decomposing a
quantity such as “@,, (P @, U)”, is not solved. In those cases, it is as if there was a unique
global utility function Uy = ®4y,cy U; whose factorization cannot be used. We can assume that
(Ep,=p) = (By, 20) = (E,X), &p = &y, = &, and ®, = Qp, = ® by using a transformation

similar to the one performed for the semiring case. The quantity to compute then becomes

Ans =Sov((N F)*(® P)®Uy) = Sov ® 6.6
(@ = Sou((, A F)* (@ PIBU) =Son @) (6.6
This means that the general case can be seen as a sub-case of the semiring case, at the price

of aggregating all utility functions. Hence, algorithm VE-answerQ can still be used, with VE-
answerQ(Sov, ®, PU F U{Uy}) as a first call.

Table 6.2 summarizes how the generic algorithm VE-answerQ can be used to answer PFU
queries. Note that for each case, no additional assumption is necessary on the PFU framework.
Only transformations of the initial problem into an equivalent one are required, such as the one
induced by morphism ¢ : p — p ®py 1, When AzS® holds, or the one yielding a refined PFU
network (cf. Proposition 6.12) when Az is satisfied.

CASE FIRST CALL

semiring (Az°F) VE-answerQ(Sov,®, PUF UU)

semigroup (Az°%) | VE-answerQ(T(Sov), X, {(P;,1,), Pi € P} UF U{(1,,U;),U; € U})

general case VE-answerQ(Sov, ®, PUF U{Uy}), with Uy = ®@uy,cv Ui

Table 6.2: Use of the generic variable elimination algorithm VE-answerQ.

6.4. DEFINITION OF AN IMPROVED VARIABLE ELIMINATION ALGORITHM 99

6.4.4 Simplifying the problem specification in the semigroup case

As in the semiring case and for future discussion, let us reformulate the answer to a query in order
to use only one set E and only two abstract operators & and ®, instead of having several sets (E,
and E,) and several abstract operators (®p, Qu, Qpu, Sp, Bv). Behind this, the basic idea is to
obtain a simplified structure, so that future generic algorithms become easier to define and easier

. . ’
to read. Let us consider axiom Az°¢ below:

, (Epv jp) = (Euv ju) = (E7 j)
Az Rp = Qpu = ®
@p - @u - ®u - @

The only difference between axioms Az5¢" and AzSE is that axiom AzSC" postulates that
®y = @, whereas axiom AzSE postulates that ®, = ®. The assumption “(E,, <p) = (Eu, =u) =
(E,2), @p = @y = @, and ®, = @py, = ®”, which is common to the general case, the semiring
case, and the semigroup case, can also be axiomatically justified using the Algebraic Expected
Utility (AEU) theory recently introduced in [139]. This theory is a sub-case of Chu-Halpern’s
expected utility. In order to show the relation between Az°¢ and the simpler axiom Az5Y | we
first introduce two propositions which enable us to deal with either only positive utility degrees,

or only negative utility degrees, thanks to translation operations.

Proposition 6.18. Let S = (E,, By, ®y, @py) be a totally ordered EU structure. Let E}f = {u €
E,|lu >y 04}, Let ®;r, @j, and ®;§u denote the restrictions of @y, Gu, Qpu ON EJ respectively.
Similarly, let E; = {u € Ey|u =, 04} and let @, , ©,;, and ®,, denote the restrictions of @,
DBu, Qpu on B .

Then, (E;,@k) is a utility structure and St = (E,, Ef,®f®},) is a totally ordered EU
structure, as well as (B, ,®,) and S~ = (Ey, E, ,®, ®,,)-
Proposition 6.19. Let S = (E,, Ey, ®u, ®pu) be a totally ordered EU structure satisfying Az°Y .
Let N = (V,G, P,F,U) be a PFU network defined on S, and let Q = (Sov, N') be a query on N.

o Assume that hypothesis (H™) holds:

(H') :V(u1,u2) € B2, (u1 =y u2) — (Jug =y Oy, uz = u1 @y u3)).

Given a utility function o, let o~ = min{p(A)|A € dom(sc(p))} and let translate™ (o)
denote a function satisfying ¢ = ¢~ @, translate™ (@) (such a function exists because of
(HY)). Let Nt = (V,G,P,F,U"), where UT = {translate’ (p) | ¢ € U}.
Then, NT is a PFU network on ST, and QT = (Sov,N) is a query which satisfies
Ans(Q) = Ans(Q™) @u (Bugpevr ¢). Also, every policy optimal in QT is also optimal in Q.
o Similarly, assume that hypothesis (H ™) holds:
(H7) :V(uy,u2) € EZ, ((ur = ug) — (Jus =y Oy, u1 = uz @y u3)).

Given a utility function ¢, let 7 = max{p(A)|A € dom(sc(p))} and let translate™ (p)

denote a function satisfying ¢ = o7 ®, translate” (@) (such a function ewists because of
(H™)). Let N= = (V,G,P,F,U™), where U~ = {translate” (¢) | € U}.
Then, N~ is a PFU network on S=, and Q= = (Sov,N7) is a query which satisfies

Ans(Q) = Ans(Q™) @u (Qugpev ¢1). Also, every policy optimal in Q is also optimal in Q.

100 CHAPTER 6. FIRST GENERIC ALGORITHMS

Proposition 6.19 says that as soon as hypothesis (H') or (H~) holds, it is possible to deal
with only positive utility degrees, or only negative utility degrees, i.e. to work on a non bipolar
expected utility structure.

In the standard cases given in Table 6.1 page 93, either the structure is already non bipolar,
or hypothesis (H") or (H ™) holds. To be more concrete, if F,, = RT U{—occ} and ¢ is a utility
function whose greatest value is 10, if suffices to transform ¢ into “(¢ — 10)” and add 10 to the
final result. Note however that there exists cases where neither (H~) nor (H*) holds, like in
bipolar preference structures having an infinite positive utility together with an infinite negative
utility [98]. In such cases, the utility scale cannot be translated.

We can now introduce the main proposition establishing a relation between Az°¢ and Ax° ¢

This proposition uses a non bipolarity assumption.
Proposition 6.20. Let S = (E,, Ey, Dy, @py) be a non bipolar and totally ordered EU structure.
(a) If S satisfies AzSC" | then S satisfies AxSC .

(b) If S satisfies Ax®%: let E = E, and ® = @©,,. If there exists an operator ® on E and a
function ¢ : B, — E such that

e ® is associative, commutative, monotonic, and distributive over @,
* d(p1 ®pp2) = G(p1) ® G(p2), G(p1 By p2) = ¢(p1) © G(p2), and p Dpu v = é(p) O u,
then, for every query Q = (Sov,N') on a PFU network N' = (V,G, P, F,U) defined on S

e S = (E,E,®,®) is a totally ordered EU structure with (E,®,®) as a plausibility
structure and (E,®) as a utility structure (the identity for ® is 1g = ¢(1,), and its
annihilator is 0g = 0, = $(0,)). Moreover, S’ satisfies Ax3%;

o N =(V,G,{¢(P;)| P, € P},F,U) is a PFU network on S';
o Q' = (Sov,N') is a query on N' such that Ans(Q) = Ans(Q') and such that the sets

of optimal policies are the same with Q and Q’.

Proposition 6.21. (E, E,®,®) is a totally ordered EU structure satisfying AzSC" with (E,®,®)
as a plausibility structure and (E,®) as a utility structure iff (E,®,®) is a totally ordered MCS.

The two conditions on ¢ and ® in Proposition 6.20(b) hold in all standard cases associated with
the semigroup axiom: (1) for the probabilistic expected additive utility case (row 1 in Table 3.1
page 60), translated to E, = R~ U {—o0c}, ¢ = —id and ® : (a,b) — —a - b fit; if we had
E, = R* U {400}, then ¢ =id and ® = x would fit; (2) for the possibilistic pessimistic expected
utility (row 4 in Table 3.1), ¢ : p — 1 —p and ® = max fit; (3) for the boolean pessimistic expected
conjunctive utility (row 7 in Table 3.1), ¢ defined by ¢(p) = —p and @ =V fit; (4) for the boolean
optimistic expected disjunctive utility (row 8 in Table 3.1), ¢ defined by ¢ = id and ® = A fit. In
all these cases, Proposition 6.20 says that axioms Az°¢ and AzSC" are in some sense equivalent.

This is why in the following, we assume that Az5¢" (and not Az°Y) is satisfied. This assumption
is not necessary to use algorithm VE-answerQ; it will be used later in Chapter 7. When AzSC

holds, the computation to be performed, using only @ and ® as customizable operators, is:

Ans(Q) = SOU((Fi/éFFi) * (P;Xép P)® (UEEU U,)) (6.7)

6.5. QUANTIFYING THE THEORETICAL COMPLEXITY 101

6.5 Quantifying the theoretical complexity via the constrained

induced-width

After this small algebraic digression concerning axiom A25F" | let us come back to algorithms.
The previous section shows that it is possible to design a generic variable elimination algorithm in
order to answer PFU queries. Most dedicated variable elimination approaches are actually specific
versions of this generic algorithm, that is to say, they correspond to its instantiation to a specific
expected utility structure. Section 6.5 gives upper bounds on the time and space complexities of
this VE-answerQ algorithm, using a parameter called the constrained induced-width [66, 94].

These bounds hold for every formalism subsumed by the PFU framework.

6.5.1 Induced-width

The induced-width [35, 34] is a parameter defining an upper bound on the theoretical complexity
of standard VE algorithms. It is also known as tree-width [115], k-tree number [2], or max-clique
size -1. Given a mono-operator query on a graphical model (V, ®), the induced-width is defined

from the hypergraph G = (V. {sc(p) | ¢ € ®}) associated with this graphical model.

Definition 6.22. An elimination order o on a set of variables V.= {x1,...,2,} is a bijection
from {1,...,n} to V. For all k € {1,...,n}, o(k) is called the kth variable eliminated in o.

An elimination order o induces a total order = on V', defined by o(n) < ... < 0(2) < o(1),
where x < y means that y must be eliminated before x. This allows us to assimilate o to a total

order on V.

Definition 6.23. (Induced-width of an elimination order) Let G = (Vg, Hg) be a hypergraph. Let
o be an elimination order on Vg. o can be used to induce a sequence of hypergraphs Gi,...,Gn41
(where n = |Vg|), defined by

e G1=G

o if G = (Vi, Hi) and x is the kth variable eliminated in o, then Gii1 = (Vi — {a}, (Hx —
H*)Y U {hgy1}), where H,™ is the set of hyperedges in Hy involving variable x and hy1 =
(UheH,j’” h) —{xz} is the hyperedge created from step k to k + 1 (variable elimination step).

The induced-width of G under the elimination order o, denoted wg(0), is the mazimum size of

the created hyperedges, i.e. wg(0) = maxye(1, . ny [hes1].”

Informally, the hyperedge hi11 created from step k to k + 1 is obtained by considering the set
H ,j T of all hyperedges in G which “depend” on x and by “linking” all variables involved in H ,:r *
except for z. This points out that the elimination of x creates a new scoped function of scope hy.y1.
14+ wg (o) corresponds to the maximum number of variables to simultaneously consider during the

variable elimination steps.

Example 6.24. Let us consider a CSP (V,C) where the set of variables is V = {x1,x2, x5, 24,5}
and the set of constraints is C = {Cuy 295 Cun.ss Coo.mas Con,msy Coaxs t- The hypergraph G associated

with it is G = (V, Hg) where Hg = {sc(c) |c € C} = {{z1,x2}, {z2, w3}, {x2, x4}, {x2, 25}, {m4, x5} }.

7. To be more formal, we should speak of the induced-width of the primal graph of G, since the usual definition
of the induced-width holds on graphs (and not on hypergraphs).

102 CHAPTER 6. FIRST GENERIC ALGORITHMS

The induced-width of G under the elimination order o1 : ¥1 < X3 < T3 < T4 < Ts equals 2.
It is obtained by generating the sequence of hypergraphs introduced in Definition 6.23, as done in
Figure 6.4. An induced-width of 2 means that at most 2 + 1 = 3 wariables must be considered
simultaneously when using the elimination order o1 to compule MaXy, o 24,254,505 (Corze N Cos.zs N
Cogas N Cagws N Coyws). The decompositions obtained graphically with the sequence of hypergraphs

can also be algebraically described by a sequence of computations:

mMaXy,, MaXy, MaXy, MaXy, MaXy, (Czy an A Crozs A Cogza A Cogozs N Cogzs)

= mMaXy, MaXy, MaXy, MaXy, (Czy 20 A Cpyozg N Coyozy N maxy, (Coy 25 N Cogzs))

= ¢, 0, (computation involving 3 variables)

— /
= maXy, MaXy, MaXy, (Coy gp A Coy zg A maxy, (Coq.zq A 612714))

= ¢}, (computation involving 2 variables)
_ ’
= MaXg, MaXg, (CII-,I2 A Cxq A maXg, (612,13))
—_——————
=c" 4, (computation involving 2 variables)

= maxy, (MaxXy, (Coy zo N 0;2 A))

=cl, (computation involving 2 variables)
/
= maxy, C,

= ¢}y (computation involving 1 variable)

01 :x1 <x2 <x3 <24 <Th g(01)=2

Gi=¢ Go G3 G4 Gs

M Set of variables to e Created hyperedge

/(- . ‘
}‘ Eliminated variable ’ﬁ consider when eliminating
the eliminated variable

Figure 6.4: Illustration of the induced-width under an elimination order.

6.5. QUANTIFYING THE THEORETICAL COMPLEXITY 103

With this algebraic perspective, the induced-width under the elimination order oy is the maxi-
mum number of variables to simultaneously consider, minus 1, i.e. the induced-width is 3 —1 = 2.
In other words, the induced-width under the elimination order o1 is the maximum scope size of the
constraints ¢y created during the eliminations. The scopes of these constraints actually correspond
to the hyperedges created when generating the sequence of hypergraphs.

The induced-width of G under the elimination order oy : 1 < X3 < x4 < 5 < X2 is wg(02) = 4.

The successive hypergraphs obtained with oo are also shown in Figure 6.4.

The time and space complexities of a VE algorithm using an elimination order o on a graphical
model (V, ®) are known to be O(|®| - d+%9(°)) where G is the hypergraph associated with the

graphical model. 8

Definition 6.25. (Induced-width of G) Let G = (Vg, Hg) be a hypergraph. The induced-width of
G, denoted wg, is the minimal induced-width under an elimination order on Vg. In other words,

if O denotes the set of all possible elimination orders on Vg, then wg = minyeo wg(0).

The induced-width of a hypergraph is the minimal number of variables to simultaneously con-
sider in a VE algorithm when using an optimal elimination order. The decision problem associated
with the problem of finding an optimal elimination order is known to be NP-complete [2].

If only a subset S of Vg must be eliminated, as is the case when there are free variables, the
definition of the induced-width of G for the elimination of the variables in S is similar. The only
difference is that the sequence if hypergraphs stops when all variables in S have been eliminated.

In the following, we consider that the set of variables to eliminate is implicit.

Example 6.26. The induced-width of the hypergraph G associated with the CSP of the previous

example can be shown to be wg = 2 (01 is an optimal elimination order).

6.5.2 Constrained induced-width

In the multi-operator case however, there are constraints on the elimination order because the
alternating elimination operators do not generally commute. The complexity can then be quantified

using the constrained induced-width [66, 94].

Definition 6.27. Let = be a partial order on V. The set of linearizations of <, denoted lin(=<),
is the set of total orders =" on V satisfying (x <y) — (z =" y).

Definition 6.28. (Constrained induced-width) Let G = (Vg, Hg) be a hypergraph and let < be a
partial order on Vg. The constrained induced-width wg(=X) of G with constraints on the elimination

order given by = (“x < y” stands for “y must be eliminated before x”) is defined by wg(=X) =

minoelin(j) wg (0)

The constraints on the elimination order induced by the sequence of variable eliminations Sov

can be formally defined.

8. More precisely, when eliminating one variable x, nbv < 1 4+ wg(0) variables are considered. For each of the
d"? assignments of these variables, one must combine the values given by r scoped functions. In the end, the time
complexity of a variable elimination step is O(r - d™??) < O(r - d1+“’9(")). Summing on all the elimination steps can
be shown to give a time complexity O(|®|-d'T%¢(0)) [78]. Similarly, the space complexity is O(|®| - d' T3 () too.

104 CHAPTER 6. FIRST GENERIC ALGORITHMS

Definition 6.29. Let Q = (Sov, N') be a query on a PFU network such that Sov = (op1,S1) -
(op2,S2) - -+ (opg, Sy). The partial order =g, induced by Sov is given by S1 <sov S2 <Sov - - - <Sov

Sq. 1t forces variables in S; to be eliminated before variables in S; whenever ¢ < j.

For example, the partial order induced by the sequence of operator-variables pairs Sov =
Milg, 25 Y, ,, MaXy, is defined by {z1, 22} <500 {23, T4} <500 T5.
The theoretical complexity of algorithm VE-answerQ can now be provided, using the con-

strained induced-width. Note that this complexity result holds for any formalism covered by the
PFU framework.

Proposition 6.30. Let G = (V,®) be a graphical model. Let Sov be a sequence of operator-
variable(s) pairs on V. If an induced-width optimal elimination order is used, algorithm VE-
answerQ(Sov, ®, ®) is time and space O(|®| - d* T Zsev)) where d is the mazimum domain size

of the variables in V.

Therefore, given a query Q = (Sov, N') on a PFU network N' = (V,G, P, F,U),

e answering a query in the semiring case is time and space O(|PUF UU| - dl‘“"g(fsf’”)), where
G = (V. {sc(p)|p € PUFUUY}) is the hypergraph associated with the PFU network;

e provided that condition (C): “sc({¢ € Fact(c)|sc(p) C pac(c)}) C sc({e € Fact(c) | sc(p) €
pag(c)})” holds for every component ¢, answering a query in semigroup case is also time and
space O(|PUF UU|-d'+we(Zsev)) where G = (V, {sc(p) | ¢ € PUFUU}) is the hypergraph
associated with the PFU network.

Condition (C) is a technical point ensuring that the updating of the definition of ®** in
the semigroup case (for which ®* = {p € ®|z € sc(p)} U @y, where @ equals () or
® N Fact(c(z))) does not change the constrained induced-width.? It can be shown that as
soon as the plausibility structure satisfies “(p ®, p1 = p ®, p2 = 1,) — (p1 = p2)”, condition
(C) can be enforced on every PFU network. This sufficient condition “(p ®, p1 =p ®p p2 =
1p) — (p1 = p2)

7 is satisfied in all standard plausibility structures;
e in the general case, answering a query is time and space O((|P|+|F|+1)-d'*%s(Zsov)) where
G = (V. {sc(p)|p € PUFU{Up}}) is the hypergraph associated with the PFU network after

merging all utility functions into a unique utility function Uy.

6.6 Decreasing the constrained induced-width

Since a linear variation of the constrained induced-width yields an exponential variation of the
theoretical complexity, it is worth working on the two parameters wg(=gs.,) depends on: the

partial order <g,, and the hypergraph G.

9. (C) enables us to assume without loss of generality that for every environment component ¢, the scope of
®p, (®pP_6Fact(c) se(P;)Netd P;) contains the scope of each plausibility function P; € Fact(c) such that sc(P;) C
pac(c). Informally, (C) says that a parent must be “linked” with variables of its son components.

6.6. DECREASING THE CONSTRAINED INDUCED-WIDTH 105

6.6.1 Weakening constraints on the elimination order

Weakening the partial order <g,, induced by a sequence of eliminations Sov is known to be useless
in contexts like Maximum A Posteriori hypothesis [94] on Bayesian networks, where there is only
one alternation of max and sum marginalizations. But it can decrease the constrained induced-

width as soon as there are more than two levels of alternation.

Indeed, let us consider a stochastic CSP (V, P,C) (cf Definition 2.21 page 30) where V is the
sequence of variables [z1,...,%q,y, Zg+1], P = {P,} contains a probability distribution over y, the
unique stochastic variable, and C' = {cy,z, } U {¢z; 0,1 |7 € {1,...,¢}}) contains constraints cg
over sets of variables S. The PFU-representation of this problem is given in Figure 6.5. Solving

this stochastic CSP is equivalent to computing

maXg,,...,z, Zy maXg, (Py X Cy,zy X Hie{l,...,q}cwi;$q+l)'

T2 3
- . . Sequence of eliminations:
o [Sov = maxy, ., Zy max,,, ,
@ Xy - @[Tyt
i J
Tg |

Figure 6.5: Stochastic CSP example.

If one uses G = (Vg, Hg), with Vg = {z1,...,24+1,y} and Hg = {sc(c) | c € C} together with
=1==500 ({1,...,%¢} <1 Y <1 T4+1), the constrained induced-width is wg(=1) = ¢, because <1
forces x411 to be eliminated first, which creates the hyperedge {z1,..., x4} of size ¢.

However, the scopes of the functions involved, and namely the fact that y is “linked” only with
x1, enable us to write the quantity to compute as

maxy, ((Zy P, x Cy,wl) X (rlnau)(ggz,m@q+1 (Hie{l,...,q} cmi’wqﬂ))).
This rewriting shows that the only actual constraint on the elimination order is that y must be
eliminated before x;. This constraint, modeled by <5 defined by 21 <3 y, gives wg(=2) = 1,
for example with the elimination order z411 < 24 < ... < 22 < ;1 < y. Hence, the complexity
decreases from O((q + 2) - d**9) to O((q + 2) - d?) (there is a (¢ +2) factor because there are g + 2

scoped functions).

This example shows that defining constraints on the elimination order from the sequence of
operator-variables Sov only is uselessly strong and may be exponentially suboptimal compared
to a method considering the function scopes. In other words, it may be possible to reveal extra
freedoms in the elimination order. It is also obvious that weakening constraints on the elimination

order can only decrease the constrained induced-width:

Proposition 6.31. If G = (Vg, Hg) is a hypergraph and if =<1, <o are two partial orders on Vg
such that (x <2 y) — (x <1 y) (K2 is weaker than <1), then wg(=2) < wg(=1).

106 CHAPTER 6. FIRST GENERIC ALGORITHMS

6.6.2 Working on the hypergraph

Let us show how the constrained induced-width can be decreased by working on the hypergraph
g.

First, normalization conditions can be used in order to avoid some useless computations. For
example, computing » o Py | pa(x) 15 useless if P |4 () denotes a conditional probability distribution
of x given pa(x). This means that 2 and the hyperedges associated with P, | 4(s) can be removed
from the hypergraph G.

Second, decompositions may exist which enable us to use more than just the distributivity of a
combination operator ® over an elimination operator ¢. To illustrate this point, let us consider an

g 2oy Py - (Uyzr + -+ Uya,). Its

influence diagram equivalent to the computation of maxy,

.....

PFU-representation is given in Figure 6.6 (left part).

T2 T3

T T3

duplication \\o\ /Q//

‘. . of y \ ‘

Sequence of eliminations: .
Sov = maxy, . ., Z

P :

Figure 6.6: Influence diagram example (before and after duplication).

The basic hypergraph G; = ({z1,..., 2.y}, {{v}, {y, =1}, ..., {y.24}}), together with <; de-
fined by {z1,...,7,} <1 y, gives a theoretical complexity O((g+1)-d®¥o1(Z)+1) = O((g+1)-di+h).

However, one can write:
maxwlxnwmq Zy Py : (nywl + T + vamq) = (maxml Zy P’U : U ;11) + T + (manq Zy P’U : U ;1q)

Such an implicit repeated duplication of y makes the complexity decrease to O(q - d?) = O(q -
d'+we2(22)) " where G is the hypergraph defined by the variables {x1,..., 24y, ..., y@} and
by the set of hyperedges {{z1,y"},... {z,,y@P}}, and where <, is given by z; <o y™*), ...,
24 <2 y'?. This method, which uses the property 3" (U1 + Us) = (35 U1) + (3¢ Us), duplicates
variables “quantified” by >, so that computations become more local.

Another example where duplication is applicable is QCSP. For example, a QCSP equiva-
lent to computing 3z, ... 3z,Vy (%cl,y AR (pzqyy) can also be written, after duplicating y, as
Jz1, .o, g (VW19wyy0) Ao A (YYgPay,y,)). This makes the constrained induced-width decrease
from ¢ to 1.

Proposition 6.32 shows that such a duplication mechanism can be used only in one specific case,
when the elimination operator is equal to the combination operator. This applies to eliminations

with V on QBFs and QCSPs, with min on possibilistic MDPs, or with + on influence diagrams.

6.7. SUMMARY 107

Proposition 6.32. Let ® and ® be two operators such that (E,®) and (E,®) are monoids. Then,
(®y (01 © p2) = (®y 1) © (®y p2) for all scoped functions 1, p2) — (® = ©).

When feasibilities are involved, the above result must be slightly updated.

Proposition 6.33. Let ® and ® be two operators such that (E,®) and (E,®) are monoids. ®
and ® are extended to EU{0} byz®O=0@®ax=2 andz® O =00z = 9.

If ® = © on E, then, for all scoped functions ¢, @2 such that (p1(A) = Q) <« (p2(A4) =),
@z (1 © P2) = (B2 1) O (®g p2).

This entails for example that if Fj is a feasibility function, if Uy, Us are two real utility functions,

then 3, (Fo x (Ur + Uz)) = (32, (Fo x U)) + (32, (Fo Ua)).
Proposition 6.34 proves that duplicating is always better than not.

Proposition 6.34. Let ¢, s, be a scoped function of scope {x} US; onto a set E for any i €
[1,m]. For all commutative and associative operator ® on E, the direct computation of ¥ =
@y (w5, ® - ® Py g,) always requires more operations than the direct computation of (®y Pg.s,)®
e ® (B bu,S,)-

Moreover, the direct computation of 1 results in a time complexity O(m - d1+|slu...usm|);

whereas the direct computation of the m quantities in the set {®y ¢a.s,|j € {1,...,m}} is O(m -
dlrmaxje . my 1551,

6.7 Summary

This chapter has introduced a generic variable elimination algorithm, called VE-answerQ, capable
of answering PFU queries. This algorithm is able to benefit from the factorization into local
functions as soon as one of the two disjoint decomposability axioms Az % and AzS¢ is satisfied.
Its use is summarized in Table 6.2 page 98, which shows that in the semiring case, its application
is very natural, in the semigroup case, it requires the use of potentials, and in the general case, it
requires to combine all utility functions into a unique global utility.

The principle of this algorithm is to eliminate variables in an order somehow compatible with the
sequence Sov of multi-operator eliminations, and its time and space complexities are exponential
in the constrained induced-width. Such an approach suffices to obtain the correct result, but, as
shown in the last part of the chapter, does not take advantage of all the actual structural features

of multi-operator queries:

1. First, defining constraints on the elimination order only from the sequence of operator-
variable(s) pairs Sov can be restrictive, since reordering freedoms can appear if the scopes of

the local functions involved are considered.

2. Second, algorithm VE-answerQ uses just the distributivity of a combination operator over
elimination operators. But additional decompositions may exist based on the duplication

mechanism mentioned earlier.

3. Third, PFU networks include some normalization conditions. These have not been used so

far. Not using them can completely mask the real complexity of a problem.

108 CHAPTER 6. FIRST GENERIC ALGORITHMS

Using the three previous mechanisms can lead to an improved constrained induced-width, and
doing so to possible exponential gains in theoretical complexity. These statements lead us to

introduce more advanced techniques able to reveal the actual structure of multi-operator queries.

Chapter 7

Structuring multi-operator queries

The constrained induced-width can be decreased and exponential gains in complexity obtained
thanks to an accurate structural analysis of multi-operator queries. As previously mentioned, this
analysis can bring to light freedoms in the elimination order, reveal some possible decompositions,
and remove useless computations. The goal of this chapter is to systematize the structuration of
multi-operator queries in a preprocessing step, and then to exploit it for the best in a new variable
elimination algorithm.

It is important to note that the techniques we introduce are not just generalizations of existing
methods defined in formalisms subsumed by the PFU framework. Thus, they contribute to all sub-
sumed formalisms, including QBF's, stochastic SAT, extended-stochastic SAT, QCSPs, stochastic
CSPs, probabilistic and possibilistic influence diagrams, or factored MDPs. This again shows the
interest of defining generic algorithms in a generic algebraic framework.

As we shall see, structuration steps lead us to define a new generic computational architecture
called the multi-operator cluster DAG architecture. The latter answers queries more efficiently than

algorithm VE-answerQ introduced in the previous chapter, in terms of induced-width.

7.1 Back on the multi-operator queries considered

In the following, we consider that either Az® R or AzSE" holds (cf. Chapter 6 pages 94 and 99;
note that the general case is a sub-case of the semiring one, at the price of aggregating all utility

functions). This is equivalent to assume that:

e Instead of having a plausibility structure, a utility structure, and an expected utility struc-

ture, we simply have one totally ordered MCS (E, ®, ®) (cf Definition 6.6 page 94).

e The normalization conditions over environment components ¢ of a PFU network (V, G, P, F,U)

become @c((g)PiEFact(c) R) =1g.
e The operational answer to a query Q = (Sov, (V, G, P, F,U)) becomes:

— Ans(Q) = Sov((Ap,er Fy) * (®p,ep P;) @ (@u,cv Ui)) in the semiring case (Az5E'),
— Ans(Q) = Sov((Ap,cr Fy) x (®p,cp P;) @ (®u,cu Ui)) in the semigroup case (Az5F").

These three points exactly state the axioms which are assumed to hold in the following.

109

110 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

7.2 From queries to computation nodes

Before introducing the structuration process, we define new elements, called computations nodes.
The introduction of such elements is motivated by the fact that the representation tools used so
far prevent us from exploiting some mechanisms. To be more concrete, the duplication mechanism
cannot be used on potentials, since in general B, (7 K my) #£ (B, m) K (B, m2) even if @, (U1 ®,
Us) = (Buy U1) @u (Bug Usz). We need to come back to a more basic representation enabling us to

benefit from all algebraic properties.
Definition 7.1. A computation node on a set E is:
e cither a scoped function o taking values in E (atomic computation node);

e or a triple (sov,®, N) such that (E,®) is a commutative monoid, N is a set of computation
nodes, and sov is a sequence of operator-variables pairs involving operators op such that

(E,o0p) is a commutative monoid.

For example, if P, P, are two plausibility functions and if Uy, Us are two utility functions,
then Pi, P, Uy, Uy are atomic computation nodes. The triples n; = (3, x,{P1}) and ny =
(3,200 X {12, Us}) are also computation nodes, as well as n3 = (ming max;, +, {n1, na, U1 }).
Informally, a computation node represents a computation to perform. This is made explicit by the

definition of the value of a computation node.

Definition 7.2. Let n be a computation node. The value of n, denoted val(n), is defined by
{ n if n is atomic
val(n) =
$00(®pren val(n')) if n = (sov,®, N)
The set of variables eliminated by n, denoted V.(n), is empty if n is atomic, and equals the set of
variables appearing in sov if n = (sov,®, N).
sc(p) if n = ¢ is atomic
(Unren se(n’)) = Ve(n) if n = (sov, ®, N)
The set of sons of n, denoted Sons(n), is a set of computation nodes which is empty if n is

The scope of n, denoted sc(n), is defined by sc(n) = {

atomic, and which equals N if n = (sov, ®, N).

(P2 X UQ),

and the value of ng is val(ng) = min, max,(val(n1) + val(ng) + Uy). Hence, a node (sov, ®, N)

For example, the value of n; is val(n,) = >~ P1, the value of ng is val(nz) = Zu -

defines a sequence of eliminations sov on a ®-combination of computation nodes. It can be repre-

sented as in Figure 7.1 as the root of a tree of computation nodes.

SO0V | B | p1 P2 - Y

<
-

Figure 7.1: A computation node (sov,®, N), where {¢1,...,px} (resp. {ni,...,n;}) is the set
of atomic (resp. non-atomic) computation nodes in N.

We extend the previous definitions to sets of computation nodes N by sc(N) = Uprensc(n’),
Ve(N) =UpenVe(n'), and Sons(N) = UprenSons(n’).

7.2. FROM QUERIES TO COMPUTATION NODES 111

Moreover, for all op € {min, max, ®}, we define the set of nodes in N performing eliminations
only with op by Nop] = {n € N|n = (opg,®, N')}. The set N — N|op] is denoted N[-op]. For
example, for N = {ny, na,n3}, we have N[+| = {n1,ns} and N[-+] = {ns}.

Finally, given a set of computation nodes N, we define N™% (resp. N~%) as the set of nodes
in N whose scope contains z (resp. does not contain z): N™* = {n € N|z € sc(n)} (resp.
N=*={ne€ N|x ¢ sc(n)}).

It is easy to express the answer to a query Q = (Sov, (V, G, P, F,U)) as the value of a computation

node:

e In the semiring case, Ans(Q) = val(ng) where ng = (Sov,®, PUF UU).

e In the semigroup case, Ans(Q) = val(ng) where ng = (Sov,®,{(0,®, PU FU{U,}),U; €
U}). Indeed, val(ng) = Sov(Pu,ev(®@pepuru{u,} ©)) = Sov((Arer Fi) * (@p,ep P;) ®
(®v,ev Ui))-

We also explicitly define the notion of elimination order compatible with a sequence of elimi-

nations.

Definition 7.3. An elimination order o over V is compatible with a sequence Sov over V iff
0 € lin(Zgov). If op(x) corresponds to the elimination operator of x in Sov, then Sov(o) denotes

the sequence of operator-variable (o(k) is the kth variable eliminated in o):

Sov(0) = 0p(0(n)) oy - -+ 0P(0(2)) 5(2) - 0P(0(1)) (1)

Example 7.4. Let Sov = ming, 4, >

x3 < x5 is compatible with Sov and Sov(0) = ming, ming, >-, > ming,. The elimination order

gy MAXgg . The elimination order o : x1 < o < T4 <

0 x4 < x9 <1 < T3 < T5 15 not compatible with Sov because x4 < xo whereas To <50y T4.

Towards a two-step structuration process

Exhibiting the query structure is equivalent to rewriting the initial computation node ng in order

to reveal hidden structures. This is done thanks to a two-step structuration process:

1. We first seek the macrostructure of a multi-operator query. This corresponds to determine
the actual freedoms in the elimination order and the possible decompositions (but not to

determine an optimal elimination order).

This macrostructure is obtained by using rewriting rules which simulate the decompositions
induced by the variable eliminations from the right to the left of Sov(o) for an elimination
order o compatible with Sov. Rewriting rules R : ny ~» ny transform a computation node
ny into another computation node ny denoted ny = R(ny). Their use may be restricted by

preconditions. Three types of rewriting rules are used to get the macrostructure:
e decomposition rules, which decompose the structure using the duplication technique;

e recomposition rules, which reveal freedoms in the elimination order;

o simplification rules, which remove useless computations from the architecture, thanks

to normalization conditions.

112 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

2. Once the macrostructure is built, the second structuration step consists in exploiting the
freedoms in the elimination order revealed by the first step. This will be done using cluster-

tree decomposition techniques, enabling us to take advantage of finer structural features.

The structuration process differs between the semiring and semigroup cases, which do not have

the same structural characteristics. We present the whole structuration for the semiring case first.

7.3 Structuring multi-operator queries in the semiring case

We here assume that there is no feasibility function since it simplifies the presentation greatly.
The case with feasibilities is considered in Section 7.3.6. Also, in order for the rewriting rules
to be more readable, computation nodes (sov, ®, N) are written simply as (sov, N), because the

combination operator of computation nodes is always ® in the semiring case.

7.3.1 Building the macrostructure of a query using rewriting rules

Let o be an elimination order compatible with the sequence Sov of the query. The initial un-
structured computation node is ng = (Sov(o), ®, P UU), denoted (Sov(o), P UU). This node can
be seen as a tree of Computation Nodes (CNT) and is therefore denoted as CNTy(Q,0). In the
example of Figure 7.2, CNTy(Q, 0) is the first node. The application of rewriting rules generates
a sequence of trees of computation nodes. For all k£ € {0,...,|Sov| — 1}, the macrostructure at
step k + 1, denoted CNT}11(Q,0), is obtained from CNT(Q,0) by considering the rightmost

remaining elimination and by applying a decomposition rule DR and a recomposition rule RR:

1. Decomposition rule DR uses the distributivity of ® over the elimination operators (so that
when eliminating a variable x, only scoped functions having x in their scopes are considered),

together with possible duplications. Rule DR implements both types of decompositions.

N*CE U NJF:E .f _
(sov.op,N) ~ { (s0v, {(opy, {n}) In € H ifop=®

(sov, N* U {(op,, N*t*)}) otherwise

In Figure 7.2, DR transforms the initial structure CNTy(Q, 0) = (min,, max,, max,, min,,
maXgs, {@13,14, Pai,xqr Pay,ess Pro,xs) wxayxs}) into ONTl (Qa 0) - (min11 maxg, MaXg, minl‘u

{245 Por was (MAXa, {01 255 Puo.wss Pas,zs))}) (CaSE 0p # ®, using just the distributivity

of A over max).

Eliminating x4 using min then transforms CNT;(Q, o) into CNT2(Q, 0) = (min,, max,, max,,,
{(minwu {9013,14})7 (minww {(pwhwz;})v (mastv {(pwhwsv Pza,zs) (pI37$5})}) (Case op = ® = min,
using a duplication of z4). Note that in the semiring case, the duplication is actually usable

iff op is idempotent. !

2. Recomposition rule RR aims at revealing freedoms in the elimination order for the nodes

1. Indeed, assume that op = ®, with op € {min, max,®}. If op = @, then, for alle € E, Op ®e = 0g ® ¢, i.c.
e =0pg, hence F = {0g} and op = max = ® = min. If op = min or max, then it is also obviously idempotent.

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 113

CNTO(Q7 O) (min.z‘l maXg, MaXgg mina:4 maX.’L‘s“ng,m4 Pxqi,xq4Paqy,x5Pro, x5 ‘10:1:3,:1:5>

DR,I5< ''
<minz1 maxXg, MaXyzy minx4‘ Pag,ey Py, >
CNTI(Q7O)
Cmaxms‘w.tl,zs Pao,xs ng,ng
DR,m4< ,,

ONT: (Q) (ming, maxg, maxXgsg ‘
2 o T~
7 (maXz5 ‘%911,15 Pag,xs <Pz3,z5> <minz4 ‘ ‘PZ'&)mminu ‘ Py @4)

DR,m3< ,,
< ming, maxz2‘ >
@)
T~
Cmaxzs ‘W.’tl,zs‘ng,zs‘pz&zs) Cmin.m;‘ ¢z3,z4>
RR,z3 < ——
< ming, maxzz‘ >
CNT3(Q,0)

<m3X13,I5‘@11,15@12,15@13,I5>
i
DR,

FRR T (o
+DR, x4
+RR,z;

CNT5(Q,0)

<maxx2 ;x3,5 ‘ Pay,x5Prg,x5 Py @5)

Figure 7.2: Application of the rewriting rules on a QCSP example:
Min,, MaXy, p, Milg, MaXe, (Pusas N Pzyaa N Parzs N Pusws N Pugas), with the elimination
order 0 : 11 < o < T3 < x4 < T5.

created by DR.

{z}UVe(Nlop])

(ozp,N>~»< op ,N[ﬂoprons(N[opD)

RR means that if a computation node performs an elimination op, and has sons perform-
ing eliminations opg with op too, then there is no reason to eliminate variables in S before
z. RR makes it explicit by merging the corresponding computation nodes. In Figure 7.2,
RR transforms the node (maxy,, {(ming,, {©rs.e, }), (MaXey, {Pn) 255 Pas s Pas.zs) })s CTE
ated by DR(CNT3(Q,0)), into (maxq,,a;, {(Mine,, {Qes.4}), Pa1,25, Pra,as, Pas,as t), Which
appears in CNT3(Q,0). In other words, RR reveals that although z3 <go, 5, there is

actually no need to eliminate x5 before x3.

More formally, for all & € {0,...,[Sov| — 1}, the structure CNT}y1(Q,0) at step k + 1 is
obtained from the structure CNTy(Q, 0) at step k by

CNTii1(Q,0) = rewrite(CNT(Q,0)) (7.1)
where

rewrite((sov - op, N)) =

{ (sov, N~* U{RR((op,,{n})),ne NT*})if op = ®
(sov, N~* U{RR((op,, NT*)})) otherwise

114 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

This means that when variable z is eliminated, we decompose the computations, using duplication
if op = ®, and then recompose the created node(s) in order to reveal freedoms in the elimination
order. In fact, function rewrite specifies explicitly an order in which rules must be applied because
a chaotic iteration of the rules does not converge (for example, rules DR and RR may be infinitely
alternately applied).

Given a query @ = (Sov,N) and an elimination order o compatible with Sov, the final com-
putation nodes tree obtained, denoted CNT(Q, 0), is

CNT(Q,0) = CNT50y|(Q,0) = rewrite! 3 (CNTy(Q, 0))

also denoted as
CNT(Q,0) = rewrite*(CNTy(Q, 0))

At each step, a non-duplicated variable appears exactly once in the tree and a duplicated one

appears at most once in each branch of the tree.

Using normalization conditions We have not used so far normalization conditions such as
©e(®p,eFact(c) Pi) = 1g for every environment component c. These normalization conditions can
allow useless computations to be removed from the architecture. That is why we introduce a

simplification rule SR:

[Precond. : (c € Cg(G)) A (eN (SUse(N))
(S%C, N U Fact(c)) ~ (?, N)

0)]

For example, SR transforms a node n = (Zz,y,z’ {P:y.z Py, Pz,cy}), obtained e.g. when
structuring a stochastic CSP, into a simplified node n' = (3_, _,{Py, P:, ¢y }) by using >, Py, . =
1. Applying SR again gives an even simpler computation node n” = (3_, ,{Py,cy}). SR cannot
be applied again on n”. Intrinsically, although simplifications are available, they can remain
undetected during the specification of a query because it can be difficult for a specifier to identify

and use all available conditional independences.

Proposition 7.5. Let Q = (Sov,N') be a query and let o € lin(Zs0y). Let n be a computation
node obtained during the construction of CNT(Q, o).
Then, SR cannot be applied an infinite number of times on n. Moreover, if n1 and no are two

computation nodes obtained by applying SR as many times as possible on n, then n1 = na.

Proposition 7.5 shows that a recursive application of rewriting rule SR leads to a unique fixed
point. In the following, this fixed point is denoted by SR*(n).
It is important to note that SR itself can reveal new decompositions and new reordering free-

doms, as shown below.

Example 7.6. Assume that AzSE holds with & = + and ® = x. Let us consider the query
Q= (3, maxy, Yy, maxy, > . N), where N = (V,G, P,F,U) is the PFU network given in
Figure 7.3(a). We use the elimination order o : x3 < T5 < x4 < g < 1 < x2. After applying
DR and RR for EIQ, EII, maxg,, and 214 successively, we obtain the macrostructure given in

Figure 7.3(b).

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 115

Using normalization condition), (Py-Ps) =1 on node n = (211,12,14, {Py, P2, P3, Py, P5, Un,
Us}) leads to the simplified node SR*(n) = (3_, ... {1, P2, P3,U1,Us}). It is then possible
to rewrite SR*(n) itself, since it makes appear a new possible decomposition, as shown in Fig-
ure 7.3(c). This decomposition was hidden because x4 created links between x1 and x2, which are
actually completely unrelated. The computation node rewrite*(SR*(n)), equal to (0, N'), can be

reintegrated to the global macrostructure by replacing {n} by N, as done in Figure 7.3(d).

Applying rewriting rules DR and RR for the remaining eliminations max,, and Zz% leads
to the macrostructure given in Figure 7.3(e), which can be simplified by replacing node n' =
(X ay s 1P, B3 Un) byn” = (32, . {P1,Ut}), thanks to the normalization condition), Ps =1.
The final macrostructure obtained is given in Figure 7.3(f). We can say that this macrostructure

was not obvious in the initial Sov sequence.

- Sov+ 35, mae, X, maces S,y
.U3 o:x3 <5 <2y <x6 < T1 <X T2

X
] AED @D,

DAG

A @

[z PLP: Py]

Py PsU Uz
SR*S

P PP

rewrite* %

—
[2211214 PPy Ps3] maxzg|Us

PyPsU1 Uz

(b)

o

(Eey [Prev] (Sap [P2vs)

/;Il\ SR* + rewrite* ;Il

[Yoy ‘ P1P3U1 maxrsze ‘ U3 ‘P1U1 maxzwﬁ ‘ Us]
ey | P2U2) (Zey [P2v2]
(e) (f) CNT(Q, 0)

Figure 7.3: Macrostructuration of a query using simplification rule SR.

The use of rule SR is formalized as follows. We introduce a function simplify such that:

simplify((sov,N)) = (sov,{n € N|SR"(n)=n}U(. sg*(- Sons(rewrite* (SR*(n)))))

116 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

In other words, function simplify enables us to simplify some nodes using SR* and to restructure
them using rewrite®, in order to make new decompositions appear in the simplified nodes. In the
previous example, simplify transforms

(Xay maxas, {20, 2y oyo {F1, P2y Py Pa, P, Un, Us}), (maxe,, {Us}) })
into

(X maxas, {22, {1, Ps, Un}), (2., { P2, Uz}), (maxag, {Us})}),
i.e. it transforms the structure given in Figure 7.3(b) into the structure given in Figure 7.3(d).

Function simplify is applied after the treatment of each block of variables eliminated with &,

so that as many normalization conditions as possible can be used simultaneously.

More formally, we update the previous formulation given in Equation 7.1 by: for all k£ €
{0,...,]Sov| — 1},

CNTo1(Q0) = { simplify(rewrite(CNTy(Q,0)) if op(o(k + 1)) = @ # op(o(k + 2))

rewrite(CNT(Q,0)) otherwise

The tree of computation nodes obtained after these steps is still denoted CNT(Q, o).

Some good properties of the final macrostructure obtained

Unicity Theorem 7.9 shows that the tree of computation nodes CNT(Q,0) obtained given a
query @ = (Sov, N') and an elimination order o is actually independent from the arbitrary elimi-

nation order o compatible with Sov chosen at the beginning.

Lemma 7.7. For all op € {min, max,®}, if CNT = (sov - op, -op,,N) and CNT' = (sov -
op, - op,, N), then rewrite*(CNT) = rewrite*(CNT").

Lemma 7.8. Given an elimination order o € lin(=<ge), any elimination order o' € lin(=<soy) can

be obtained from o by successive permutations of adjacent eliminations.

Theorem 7.9. Let Q = (Sov,N) be a query. Then, for all 0,0 € lin(Zse), CNT(Q,0) =
CNT(Q,0).

This allows us to denote CNT(Q, o) simply as CNT(Q).
Soundness The soundness of the created macrostructure, which has not been proved so far, is

provided by Theorem 7.16. This theorem is preceded by preliminary lemmas which show that the

rewriting process preserves nodes values.
Lemma 7.10. Rewriting rule DR is sound, i.e. val(DR(n)) = val(n) holds.

Lemma 7.11. Let RR' : (opg, N1 U{(0opg/, N2)}) ~ (opgigs N1 UN2). If SN (S Use(Ny)) =0
and N1 N No =0, then RR’ is a sound rewriting rule.

Lemma 7.12. Let n = (op,, N) be a computation node such that for all (n1,n2) € N2, (n; #
na) — (Ve(n1) N Ve(ng) = 0) A (Ve(n1) Nse(nz) = 0)), and such that x ¢ V.(n) for alln € N.
Then val(RR(n)) = val(n).

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 117

Lemma 7.13. Let Q = (Sov,N) be a query and let o € lin(Zsov). Let k € {0,...,|Sov|} and let
n = (sov, N) be a computation node in CNTy(Q,0).

Then, for all (n1,n2) € N[=®]?, (n1 # na) — ((Ve(n1) NVe(na) = 0) A (Ve(n1) Nsc(ng) = 0)).
Moreover, for alln € N, Vo(n) N Ve(CNT(Q,0)) = 0.

Lemma 7.14. Rewriting rule SR is sound i.e. val(SR(n)) = val(n) whenever its preconditions

are satisfied.

Lemma 7.15. Let Q = (Sov, N) be a query and let o € lin(=gop). Then, for allk € {0,...,|Sov|—
1}, val(CNTy41(Q, 0)) = val(CNTR(Q, 0)).

Theorem 7.16. Let Q = (Sov,N) be a query. Then, val(CNT(Q)) = Ans(Q).

Complexity of the macrostructuration process The macrostructure is usable only if its
computation is tractable. Based on the algorithm of Figure 7.4, which implements the macrostruc-
turation of a query, Proposition 7.17 gives an upper bound on the complexity when simplification
rule SR is not used. It shows that rewriting a query as a tree of mono-operator computation nodes

is easy.

begin
root «+ newNode((,0, P U U, ()
while (sov = sov’ - ;) do
sov «— sov’
if ® # ® then
n « newNode(®, {z},0, ?)
foreach n’ € Sons(root) s.t. x € sc(n’) do
sc(n) < sc(n) U sc(n')
Sons(root) <« Sons(root) — {n'}
if op(n’) = @ then
Va(n) — V(n) U V(')
L Sons(n) <« Sons(n) U Sons(n')
else Sons(n) « Sons(n) U {n'}

sc(n) < sc(n) — {z}
| Sons(root) < Sons(root) U {n}
else
foreach n’ € Sons(root) s.t. x € sc(n') do
if op(n') = @ then
L Ve(n') « Ve(n') U{z}
sc(n') « sc(n’) — {z}
else
L n < newNode(®, {z}, {n'}, sc(n’) — {z})
Sons(root) < (Sons(root) — {n'}) U {n}

return (root)
end

Figure 7.4: MacroStruct(sov, (V, P,U)) (instruction newNode(op, V., Sons, sc) creates a
computation node n = (opy,, Sons) and sets sc(n) to sc.

In the algorithm of Figure 7.4, the root node of the tree of computation nodes is rewritten.
With each node n = (opg, N) are associated an operator op(n) = op, a set of sons Sons(n) = N
modeled as a list, and a set of variables eliminated V,(n) = S modeled as a list too. The scope of

n is modeled using a table of |[V| booleans. As long as the sequence of operator-variables is not

118 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

empty, the rightmost remaining elimination is considered. The pseudo-code just implements the

function rewrite, which dissociates the cases ® # ® and & = ®.

Proposition 7.17. If the simplification rule is not used, the time and space complezities of the
rewriting process in the semiring case are O(|V|? - |[PUU|) and O(|V|-|P UU|) respectively (if
PUU#D andV #0).

When SR is used, the complexity is still polynomial. 2

Towards a second structuration step The macrostructure obtained is a tree of mono-operator
computation nodes. We can now try to structure more finely the computations to be performed in

each of these mono-operator nodes. To do so, cluster-tree decomposition techniques can be helpful.

7.3.2 Preliminaries: cluster-tree decompositions

Cluster-tree decomposition techniques are generic tools, used for example for CSPs or BNs, which
exploit the topological properties of graphical models in order to split a problem into several smaller
and easier to solve independent parts [116, 2, 115, 73, 13, 76]. They are designed for problems
involving one combination operator and one elimination operator, which is the case of all individual
mono-operator computation nodes obtained after the macrostructuration phase.

We adapt the usual definition of a cluster-tree decomposition [115] in order to deal directly

with graphical models.

Definition 7.18. A cluster-tree decomposition of a graphical model M = (V,®) given a set of
variables S C V is a triple (T, V(.), ®(.)) where:

o T'=(C,E) is a tree.® FEach c € C is called a cluster;
e V(.) is a labeling function associating with each cluster ¢ a set of variables V (c) such that

— Uceco V(C) = V;

— for all c1,co,c3 € C, if c5 is on the path from ¢y to ca, then V(c1) NV (co) C V(es); this

is called the running intersection property;

— there exists ¢ € C' such that S C V(c);

o ®(.) is a labeling function associating with each cluster ¢ a set of scoped functions ®(c) such

that {®(c) | c € C} is a partition of ® and sc(p) C V(c) for every ¢ € ®(c).

The width of a cluster-tree decomposition is w = max.cc |V (c)| — 1. The tree-width of a graphical

model M given S is the minimal width over all the cluster-tree decompositions of M given S.

2. Indeed, in order to recursively apply SR on a computation node (bg,N), we can first detect the set C' of
components ¢ such that Fact(c) C N. This step is O(|N|). Then, for each ¢ € C, we can test whether ¢ can
be removed by traversing N and S. This step is O(|V| - |[N| + |S|) = O(]V] - |N]). As there are lesser than |[V]
components in the PFU network, an upper bound on the time needed for one recursive application of SR on (®g, N)
is O(|[V|2-|N|) = O(|V|? - |PUU]). As the root always has at most |P U U]| sons, each step of recursive application
of SR on all sons of the root is O(|V|2-|PUU|?), and therefore, as at most |V| variables are eliminated in Sov, the
application of SR during the rewriting process is O(|V|2-|PUU|?). This bound is very naive and may be improved.

3. C is the set of vertices of T" and E is the set of edges of T.

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 119

A standard result concerning cluster-tree decompositions is that the tree-width of a graphical
model M given S equals the induced-width of the hypergraph associated with M for the elimination
of the variables in V' — S. Therefore, seeking a cluster-tree decomposition with small width is
equivalent to seeking an elimination order yielding a small induced-width.

Several methods to build cluster-tree decompositions exist. One of the most popular is based
on graph triangulation techniques and proceeds as follows. Let G be the primal graph of the
hypergraph G = (V, {sc(¢),p € @} U {S}) associated with a graphical model M = (V,®) given
S. If G is triangulated, i.e. if every cycle of length > 4 has a chord, then it is easy to compute a
cluster-tree decomposition (T, V(.), ®(.)) of M given S which has a minimal width. It suffices to

perform the following steps: 4

1. For each maximal clique of G, add a cluster ¢ to the set of vertices of T" and take V'(¢) as the

set of variables of the clique. This gives the set of clusters C' and the labeling function V(.).

2. Build the weighted undirected graph G’ = (C, E’) for which there is an edge {c, ¢’} of weight

—|V(e) NV ()] in E’ iff clusters ¢ and ¢’ share common variables.

3. In order to get the edges of T = (C, E), build a minimum spanning tree of G’, for example
by using Prim’s algorithm [110]:

e create a set Cty,, containing one cluster ¢ € C

e while Cyy,p, # C, choose an edge {c,¢'} in E’ with a minimum weight, and such that
¢ € Cymp and ¢ ¢ Ciynp. Add this edge to E and add ¢ to Cip.

4. Put each scoped function ¢ € ® in a unique cluster ¢ € C satisfying sc(p) C V(c).

When G is not triangulated, one can first triangulate G and then build a cluster-tree decomposition
of M given S based on the triangulated graph. Depending on the triangulation, the decomposition
obtained may have a suboptimal width, and seeking a triangulation which gives an optimal width
is NP-hard [2].

Example 7.19. Consider the CSP (V,®) where V. = {x1,...,215} and ® = {Px, 20, Par s> Paoras
Prszar Prazer Prsrszer Prerrr Prezior Prrrs: Prrziny Prioriis Priorisziar Priamiss 90114:515}- Let us com-
pute a cluster-tree decomposition of this CSP given the set of variables {x1,x2}.

The primal graph G of the hypergraph associated with this CSP is given in Figure 7.5(a). G
is not triangulated because for example the cycle x1 — x9 — x4 — x3 of length 4 is chordless. In
order to triangulate G, we add the two dashed edges of Figure 7.5(b).

We then consider the set {c1, c2, c3, 4, C5, C, C7, C8, Co, C10 } Of mazimal cliques of the triangulated
graph. In order to get an associated cluster-tree decomposition, we first build the weighted undirected
graph representing connected cliques, as in Figure 7.5(c). The weights are given by the number of
common variables between two cliques. Second, we build a minimum spanning tree of this graph
using Prim’s algorithm. This provides us with the edges of the cluster-tree decomposition. Last,
we associate each ¢ € ® with a cluster ¢ satisfying sc(p) C V(c) and obtain the cluster-tree

decomposition given in Figure 7.5(d).

4. We assume that G is connected; if not, one cluster-tree decomposition can be built per connected component
of G.

120 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

V(c1) = {z1, 22,24}
V(cz) = {z1, 23,24}
V(cg) = {z4, 26}

®(c1) = {Paqao> Prgzg }
D(cz) = {¢z1m3v¢z3z4}
®(c3) = {‘P.’L‘4m6}

KE%; = {zg,z7, 710} gg%; = {pagar, Pogzig)
c5) = {z7, 28 e5) = {para
V(cg) = {5, @8, z0} ®(c) = {Pagogeo)
V(er) ={z7, 210,711} ®(c7) = {Pagayyr Poigoil }
KECs; = %11071137}114} iECs; = {cpzwxwxm?
cg) = {12,213 co) = {pxiqx13
(c) V(cio) = {z14, 215} (d) ®(c10) = {paiqm15)

Figure 7.5: Construction of a cluster-tree decomposition: (a) A primal graph; (b) Triangulation
of the primal graph (dashed edges); (c) Undirected graph corresponding to the set of maximal
cliques, where two cliques having k& common variables are connected by an edge of weight —k;
(d) Cluster-tree decomposition, obtained by building a minimum spanning tree of the undirected
graph given in (¢) and by assigning each scoped function to exactly one clique.

Cluster tree-decompositions are of interest from a computational point of view because they

implicitly express computational decompositions:

Proposition 7.20. Let (T,V(.),®(.)) be a cluster-tree decomposition of a graphical model M =
(V,®@) given a set of variables S C V, where the scoped functions in ® take values in a commutative
semiring (E,®,®). Let r be a cluster of T such that S C V(r). Let Sons(c) denote the set of
sons of a cluster ¢ when T is rooted in r. FEven if r has no parents, we take the convention
V(pa(r)) = S. The value val(c) of a cluster c is defined as val(c) = Sv(c)—v (pa(c)) (Dped(e)) @
(®seSons(c) val(s))). Then, val(r) = Sy _s(Qgpeca ©)-

Proposition 7.20 is the key point showing the interest of cluster-tree decompositions. It says

that &y _s(®,ca) can be computed by local computations on a root cluster r and its descendants.

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 121

This result holds thanks to the running intersection property. Moreover, cluster-tree decomposi-
tions induce a natural variable elimination algorithm ® whose associated induced-width equals the

width of the cluster-tree decomposition.

Example 7.21. For the previous CSP example, Proposition 7.20 implies that maXy, . 2. (Apco @)
can be computed via the following local computations. We take c1 as the root of the cluster-tree.
Once a cluster ¢ has received one value val(s) per son s € Sons(c) in the rooted tree, it computes
its own wvalue val(c) = Oy (e)—v(pa(e) (Rpeca(e)) @ (@seSons(c) val(s))). For example, at the
beginning, cluster co can compute val(cyg) = MaXy,, Criozys and cluster c1g can compute val(cig) =
MAXy, s Puiazrs- Lhen cluster cs can compute val(cg) = MaXy, 4 21, (Prro.m15.214 AVaL(co) Aval(cip)).
At the last step, ¢1 computes val(c1) = maxXy, (Pryme N Prgws A val(ca) Aval(cs)).

Proposition 7.20 ensures that val(c1) = maXy,, . 25 (Apead). As the width of the cluster-tree
decomposition is 3 — 1 = 2, computing val(c1) is time and space O(|®| - d®). With a standard tree

search, which does not exploit possible decompositions, the theoretical time complexity is O(|®|-d'®).

7.3.3 Towards multi-operator cluster trees using cluster-tree decompo-
sitions

Let us come back to the macrostructure obtained after the macrostructuration process. The
application of rewriting rules in the semiring case gives a tree of mono-operator computation
nodes such as (ming, ®, N), (maxg,®, N), or (Bg,®,N). Cluster-tree decomposition techniques
can enable us to take advantage of the freedoms in the elimination order inside each of these
mono-operator computation nodes.

More precisely, given a computation node n = (opg,®, N), we can build a rooted cluster-
tree decomposition of the graphical model (sc(n),{val(n’),n’ € N}) associated with it, given the
variables in sc(n)—S (which are not eliminated by n). This directly provides us with a structuration
of val(n) into local computations.

The structure obtained then contains both a macrostructure given by the computation nodes
and an internal rooted cluster-tree structure given by each of their decompositions. It is called

multi-operator cluster tree.

Definition 7.22. A Multi-operator Cluster Tree (MCTree) is a rooted tree (C,E) with root r,

where every vertex ¢ € C, called a cluster, is labeled with three elements:

e a set of variables V(c),

e a set of scoped functions ®(c) taking values in a set F,

e and a couple (B°,®°) of operators on E such that (E,®°, ®°) is a commutative semiring.
The width of a MCTree is defined as w = max.cc |V(c)| — 1.

We explicitly specify a combination operator and an elimination operator to be used inside each
cluster. This allows us to properly handle the multi-operator nature of multi-operator queries.
Figure 7.6 shows an example of MCTree which can be obtained from an Extended-SSAT [82]

problem.

5. We also speak of variable elimination algorithms when sets of variables must be eliminated. Such algorithms
are also called non-serial dynamic programming or cluster-tree elimination algorithms.

122 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

Definition 7.23. The value of a cluster ¢ of a MCTree is given by

val(c) = @° << ®° 90) ®C< ®° val(s)))
V(c)—V(pa(c)) ped(c) seSons(c)

The value of a MCTree is the value of its root node.

Theorem 7.24. Let Q be a query. Let M be a MCTree obtained from CNT(Q). Then, val(M) =
Ans(Q). Moreover, every optimal decision rule in val(M) for a non-duplicated decision variable
is also an optimal decision rule in Ans(Q), and for every duplicated decision variable, there exists

at least one optimal decision rule in val(M) which is also optimal in Ans(Q).

In fact, optimal decision rules can be recorded on the separators of the MCTree (the separator

between two clusters ¢ and s € Sons(c) is V(c) NV (s)).

CNT(Q) C————————————> MCTree:

cluster-tree decomposition of
each computation node

maxg

Ve N
maxgg maxXggs Py ,xg
\
. Pro,x

10,12 2:%12

Pz10,T12
/

mina:g, Pag,ry Ezlllf’mlo,zll

2y Pr10,013

maxgg Pay,ag

Pay,x7

> Prg,rg
T8 oy ag

ZIGLP(L‘G , Ty

Figure 7.6: Example of a MCTree obtained from CNT(Q). Note that a cluster ¢ is represented
by (1) the set V(¢) — V(pa(c)) of variables it eliminates, its elimination operator &¢, and the set
of functions ®(c) associated with it, all these elements being put in a dotted box; in the semiring
case, we always have ®° = ®; (2) the set of its sons.

As a conclusion, the multi-operator query macrostructuration and the use of cluster-tree de-
compositions yield a generic computational architecture called MCTree. Note that if duplicated
variables are relabeled, the MCTrees obtained satisfy the running intersection property (cf. Defi-
nition 7.18 page 118).

7.3.4 Comparison with an unstructured approach

Analyzing the query structure can induce exponential gains in theoretical complexity, as shown
on some examples introduced in Section 6.6. A stronger result can be stated, proving that in
terms of induced-width, the structured approach is always as least as good as the approach used

in algorithm VE-answerQ.

Definition 7.25. The width of a tree of computation nodes CNT, denoted wonT, is the minimal

width over all MCTrees which can be obtained by cluster-tree decomposing CNT .

7.3. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIRING CASE 123

Proposition 7.26. Let Q = (Sov, (V,G, P,0,U)) be a query. Computing Ans(Q) with a variable

elimination algorithm on an optimal MCTree associated with Q is time and space O(|P U U] -
dHWCNT(Q)),

One can say that 1 + wonr is the maximum number of variables to consider simultaneously
when using optimal cluster-tree decompositions for each computation node in CNT. Note that
optimizing the cluster-tree decomposition of each computation node is stronger than optimizing
the width of the MCTree alone. Also, one can use parameters which differ from the width to
evaluate the quality of cluster-tree decompositions (more details in the next chapter).

Theorem 7.27 shows that the structuration mechanisms previously introduced can only decrease
the induced-width (or tree-width). This implies that the theoretical complexity of a variable

elimination algorithm on MCTrees is better than the complexity of algorithm VE-answerQ.

Theorem 7.27. Let Q = (Sov,N) be a query on a PFU network N = (V,G,P,0,U). Let
G = (V,{sc(p),p € PUUY}) be the hypergraph associated with N'. Then, went (@) < wg(=s0v)-

For the QCSP example in Figure 7.2, won7(g) = 1, whereas the initial constrained induced-
width is wg(=s0y) = 3: the complexity decreases from O(|®| - d*) to O(|®| - d?).

More important gaps between wey7(g) and wg(=Zso.y) can be observed on larger problems.
We performed experiments on instances of the QBF library.® The results are shown in Table 7.1.
In order to compute widths and constrained induced-widths, we built cluster-tree decompositions
using the so-called min-fill heuristic. The results show that for low numbers of elimination operator
alternations, analyzing the macrostructure of queries brings no gain. It is the case with instances
of the “robot” problem, which involve only three alternations of elimination operators. But as
soon as the number of alternations increases, revealing freedoms in the elimination order can be

greatly beneficial.

Problem instance w w’ nbv,nbc,nba || Problem instance | w w’ nbv,nbc,nba
adder-2-sat 12 24 332,113,5 k-branch-n-1 22 43 133,314,7
adder-4-sat 28 101 726,534, 5 k-branch-n-2 39 103 294,793,9
adder-8-sat 60 411 | 1970, 2300, 5 k-branch-n-3 54 | 185 515, 1506, 11
adder-10-sat 76 644 | 2820, 3645, 5 k-branch-n-4 70 | 296 803, 2565, 13
adder-12-sat 92 929 | 3822,5298,5 k-branch-n-5 89 | 427 | 1149,3874,15

robots-1-5-2-1.6 | 2213 | 2213 | 6916, 23176, 3 k-branch-n-6 107 | 582 | 1557,5505,17
robots-1-5-2-1.7 | 1461 | 1461 | 7904, 26810, 3 k-branch-n-7 131 | 761 | 2027,7482,19
robots-1-5-2-1.8 | 3933 | 3933 | 8892, 30444, 3 k-branch-n-8 146 | 973 | 2568,10117, 21
robots-1-5-2-1.9 | 1788 | 1788 | 9880, 34078, 3 k-branch-n-9 166 | 1201 | 3163, 12930, 23

Table 7.1: Comparison between w = won7(g) and w' = wg(=s0v) on some instances of the QBF
library (nbv, nbe, nba denote respectively the number of variables, the number of clauses, and the
number of elimination operator alternations of an instance).

7.3.5 Comparison with existing approaches

The rewriting rules used in the semiring case can be compared with the quantifier tree approach [6]

recently introduced for QBFs. This approach analyzes hidden structures of “flat” prenex normal

6. See “http://www.gbflib.org/”.

124 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

form QBFs, by using structuration mechanisms. This leads to important gains in terms of solv-
ing time. The structuration techniques used for quantifier trees are exactly the instantiation of
rewriting rule DR to the algebraic structure associated with QBF's, using & = V and ® = A.
MCTrees provide a theoretical explanation to the experimental gains observed when using
quantifier trees on QBF's, in terms of tree-width. Also, since our approach is defined in a generic
algebraic framework, it extends and generalizes the whole quantifier tree proposal. It is indeed
applicable to multiple formalisms, including QCSP, SSAT, or stochastic CSP. Moreover, quantifier
trees use: (1) neither recomposition rule RR together with cluster-tree decompositions, so as to

minimize the width; (2) nor a simplification rule, since there are no normalization conditions on

the clauses of a QBF.

7.3.6 Adding feasibilities

The difficulty in adding feasibilities lies in the use of the duplication mechanism, which is more
complex if feasibilities are involved (see Proposition 6.33 page 107).

A solution to handle feasibilities consists in
e not using the duplication mechanism at all,

e and adding a simplification rule SR’ allowing normalization conditions on feasibilities to be

used:

SR [Precond. : (op € {min, max}) A (¢ € Cp(G)) A (cN (S Usc(N)) = 0)]
(ﬂ;, N U Fact(c)) ~ (obp7 N)

All the results previously given then still hold. Another solution not formalized enough yet can be

to specify rewriting rules able to handle both feasibilities and duplications.

7.4 Structuring multi-operator queries in the semigroup case

The structuration of multi-operator queries in the semiring case leads to the MCTree architecture,
which involves several elimination operators and one combination operator. The structuration in
the semigroup case is different (and a bit more difficult) because it also involves several combination
operators (® and @). Again, we have a two-step structuration, involving a macrostructuration
phase and a cluster-tree decomposition phase. In the following, we deal with the case where there
are no feasibility functions, because it simplifies the presentation greatly. The case with feasibility

is considered in Section 7.4.5.

7.4.1 Building the macrostructure of a query using rewriting rules

The initial computation node in the semigroup case is ng = (Sov(o), ®, {(0, ®, PU{U;}),U; € U}).
This time, the application of rewriting rules will generate a sequence of DAGs of computation nodes
(CNDAGS), instead of trees of computation nodes. The first CNDAG of the sequence, denoted
CNDAG(Q,0), is CNDAG,(Q,0) = (Sov(o),®,{(0,®, PU{U;}),U; € U}).

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 125

In the following, we will manipulate sets of sets of computation nodes for notation issues. We
use character 91 to denote a set of sets of computation nodes, whereas a set of computation nodes
is denoted by N. If we use sets of sets of computation nodes to express CNDAGy(Q, o), this gives:

CNDAGy(Q,0) = (Sov(o),®,{(0,®,N),N e N}), with M={PU{U,;},U;, € U}.
We can also define M as NT* = {N € N|x € sc¢(N)} and N~% as N~% =N — Nt~

Example 7.28. For the influence diagram associated with the computation of maxg Zrz)n P -
Py, (Ua,ry + Ua,ry, + Uq) and for the elimination order o : d < ro < r1, we have
0, %, { P, Pryjry s Udri 1),
CNDAGo(Q,0) = | maxad>_. > .+, (0,5, {Pr, Pryjrys Uary }),

(@, X, {PTlaPrz\n) Ud})
It corresponds to the first computation node in Figure 7.7.

We can also denote it as CNDAGy(Q,0) = (maxg)_,. > . ,+ {(0,®, N),N € N}), where
N = {{Pr, Pryjry>» Udjr }s {Prys Projrys Udira b5 { Prys Projry, Uat . We then have N = N, With
N={{P,.Uir, }-{P, Ir1s Pros Ui, },{Pr,,Ua}}, we would have N="2 = {{P,,,Uyq}} and NT"2 =
P, Udiry }o A Pry |71 Prys Udyry } 1

For all k € {0,...,|Sov| — 1}, the macrostructure at step k + 1, denoted CNDAGy+1(Q, 0),
is obtained from CNDAG(Q,0) by considering the rightmost remaining elimination and, as in
the semiring case, by applying three types of rewriting rules (decomposition, recomposition, and
simplification). Rewriting rules are presented first for the case of @-eliminations, and then for the
case of max-eliminations. The case of min-eliminations when min # & is analogous to the case of

max-eliminations.

Rewriting rules for &, When a G-elimination must be performed, a decomposition rule D Rg,
and the rewriting rules of the semiring case are used. The mechanism is illustrated in Figure 7.7,
which corresponds to the influence diagram associated with the computation of

maxg ZTz,Tl Pr, - Pryjry - (Uary +Udyry + Ua).

1. Decomposition rule DRg, simply implements the duplication mechanism, i.e. it uses a mech-
anism looking like @, (P ® (U1 ® Uz)) = (@, (P @ U1)) @ (@.(P @ Us)):

DR@ (SOU.@I,@,{(Q),@,N),NEM})
~ (SOU, 695 {(6917 ®7 N) ’ N € m})

In the example of Figure 7.7, the first applied rule is DRg,. It treats the operator-variable
pair) and transforms CNDAG(Q, o) into another structure in which 1 is duplicated.

2. The computation nodes created by DRg look like n = (®,,®,N). This is exactly the
form of a computation node in the semiring case. Hence, each node n created by DRg
can be structured thanks to the rewriting rules DR, RR, and SR defined in the semiring
case. In other words, as in the semiring case, n can be transformed into rewrite(n), or into

simplify(rewrite(n)) if one wants the simplification rule to be used.

In Figure 7.7, function rewrite (which uses decomposition rule DR and recomposition rule
RR) enables us to transform the structure obtained after the application of DRg into struc-
ture CNDAG1(Q,0) given just below. CNDAG:(Q,0) is an actual DAG of computation

126 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

: maxa >, 3, |+ | | !
| — i . CNDAG
E(Z) y Py Ud,ry 0| x Ifm Ud,ry 0 x Py Udi O(Q)O)
L ki R () 0 O LA) 0 O el el
JL DRs
] Ea
1 - 1
2 g LN N LN
JL rewrite
o [wexy, [F]] |
[| [0 Uan] [0]x] U | | CNDAGi(Q,0)
: e . ~ 3
Ll E el O 2 s T
JL DRg
[maxa | +]] i
l - S i
AR N7 A N
I ‘ |
A CEA N AC LN
JL rewrite
[ma [+]
0[x] | 0]x] | 0]x] Us |
: P, Usy P Uy, P, |
in-l,rgx 13:.2‘:Y ! ZT'I,T'QX P’:Q‘Z’ 3 Zrl,rg P,‘;‘Tli
L simplify
[maxa [+]]
S cim N i NI |
i PrlUd,r'g i

Figure 7.7: Application of rewriting rules for & when & = +.

nodes since common computation nodes such as (»_,. , X, {F, P, |, }) are shared. It is not
hard to detect such shared nodes when applying the rewriting rules. After some further

rewriting steps, we get structure CNDAG2(Q, 0) given in Figure 7.7.

In the end, in the example of Figure 7.7, no computation involves more than two variables in
CNDAG>(Q,0) if we eliminate 1 first in the node (32, .., %, {Pry; Pryjry, Ud,r, }). With a poten-
tial-based approach, it would be necessary to process three variables simultaneously: indeed, 7
would be involved in potentials (P, ,0), (Pr,r,,0),(1,Uq,y,) if eliminated first, and ro would be

involved in potentials (P,,|,,,0), (1,Uq,,) if eliminated first.

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 127

In order to systematize the rules application order, we write that for all k € {0,...,|Sov| — 1}
such that CNDAGK(Q,0) = (sov.®,, @, {(0,®,N),N € MN}), the structure CNDAG+1(Q, 0) at
step k + 1 is defined by’

CNDAGk:1(Q,0)

| (sov, @, {simplify(rewrite (©,,®,N)), N € N}) if sov = sov’.op, and op # &
B (sov, ®, {rewrite (B, @, N), N € M}) otherwise

In other words, when eliminating variable x, we decompose the computations using duplication,

and then use the rewriting rules defined in the semiring case.

Rewriting rules for max, When a max-marginalization must be performed, a decomposition
rule DRp,ax and a recomposition rule RRy, .« are used. No simplification rule is required since no

normalization condition is available on decision variables when there are no feasibilities.

The rewriting rules are a bit more complex than the previous ones and are illustrated in
Figure 7.8, which corresponds to the influence diagram maxg,), maxg, ., maxa, P, - P,
(Udl + Udz,ds + UT27d17d3 + UT17d2)'

alry

1. Decomposition rule DRy, .y enables us to consider only scoped functions having x in their

scope when x is eliminated using max.

DRyax | (sov.max,,®,{(0,®,N), N € M})
(sov, ®,{(0,®,N),N € N}) if NT* =0
(sov, ®,{(0,®, N),N € n~*} U {(0, ®, N1 U {(max,, D, N2)})}) otherwise
where N1 = Nyeq+« N7 and Na = {(0,®, N — Ny), N € +*}

D Rpax says that when z is eliminated, it is not necessary to consider nodes (f}, ®, N) such
that x ¢ sc(N), and we factor the parts independent from z that the other (), ®, N) nodes

have in common.

In Figure 7.8, D Ry,ax transforms CNDAG)(Q, o) into CNDAG1(Q, 0), by treating the elim-
ination maxg,. It uses the fact that among root sons, only (0, x,{Pr,, Pr,|r,,Udya;}) and
(0, %, {Pry, Pry|ry>Ury,dy,d5}) depend on x3. They share common factors, P, and P, |,,,

both independent from 3, which is explicitly taken into account in CNDAG1(Q, o).

Then, DRg can be used to process), and give CNDAG2(Q,0), and DRpax can be used

to process maxg,,.

2. Recomposition rule RRy, . enables us to reveal freedoms in the elimination order. Among

7. Given N € M, computation nodes in N can look like (Bg, ®, N’), as standard nodes of the semiring case.
But they can also look like (maxg,®, N’). This does not matter to apply the rewriting rules of the semiring case
because these latter nodes will never be recomposed with a node performing eliminations with &.

128 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

ya]
TP Py, P, P, | CNDAGo(Q,0)
1®XPT'2\T'1 (Z)XPTQ\H Q)XPTQ\H (Z)XPTQ\H
| Uq, Ud,.ds ro.dy,d Uy, .do

2
1
0 ro|ry 0|x ra|ry
Ud] maxq, |+ r1,do
e N

=
X
=
S
IS8
)
=
X
S
N
1=
&
)

fff

‘ maxg,)., MaXq, ‘ + ‘ ‘

0x[Ta] (o<] [0]x]]
| [] — []

)
i)
i Py P,)
1 T1Yry,d2
i Z'fl x P'rg\'rl nla‘Xd Zrl X P'fz\'fl i
i)
i)

‘w‘X‘UCb d%‘ ‘@‘X‘Um dj d%‘

[0]x]Vay Jmasapg, [+] - CNDAG5(Q,0)

‘@‘X‘Udzde‘ ‘@‘X‘deld%‘ ‘@‘T‘ “

,,

Figure 7.8: Application of rewriting rules for max (the application of the rules may create nodes
such as (0, ®,{n}), which perform no computations; these nodes can be removed at a final step).

all rewriting rules, RRy,.x has the most complicated form. Intuitively, RRy.x gathers max-

eliminations. The best explanation of RR,.x is actually provided by the proof of Lemma 7.35.

RRmax (maXIa®a{(®a®aN)aN € Ny)
~ (MAX {4} U(U e Ve (N[max]))> s
{(0’ ®, N)) (N € ‘ﬁ) A (N[max] = (Z))}

(N € M) A (N[max] # 0) })
1)

U< (0, ®, N[— UN'),
{(®, N-max) A(D,®,N") € Sons(N|[max

In Figure 7.8, recomposition rule RR.x yields CNDAG5(Q,0) by revealing the freedom

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 129

in the elimination order between ds and ds. This freedom was hidden in the initial multi-

operator sequence of eliminations.

A systematic rewriting using D Rpax and RRpyax is: if max # @, then for all k € {0, ..., |Sov|—
1} such that CNDAG(Q, 0) = (sov.max,, ®, {(0,®, N), N € N}), the DAG of computation nodes

at the next step is

CONDAG+1(Q, 0)
(sov, ®,{(0,®,N),N € N}) if NT* =0
- { (sov,®,{(0,®,N),N € N} U{(D,®, N1 U{RRmnax (max,, P, Na)})}) otherwise
where N1 = Nyeq+«N~" and No = {(0,®, N — Ny), N € **}

This means that we decompose the computations as specified by DRy,,x and then recompose
the created node performing the elimination of z by using RRnax. For eliminations using min,
CNDAG11(Q,0) has exactly the same form. The only difference is that max must be replaced
by min.

The final macrostructure obtained given a query Q = (Sov, N') and an elimination order o €
lin(=sov) is CNDAG 50y/(Q,0). It is also denoted CNDAG(Q, 0).®

Some good properties of the macrostructure obtained

Unicity The independence of the macrostructure obtained with regard to the chosen elimination

order compatible with <g,, is provided by Theorem 7.30.

Lemma 7.29. Let Q = (Sov,N) be a query and let 0,0" € lin(=Zs0y). Let op € {min, max, &} and
CNDAG = . . N),NeMm

l@tkE{O,...,|SO’U|—2}.]f k(Qvo) (SOU 0Py 0py,®,{(@,®,)a € }) ;
CNDAG(Q,0") = (sov - op, -op,,®,{(,®,N),N € N})

then CNDAG}2(Q,0) = CNDAG2(Q,0).

Theorem 7.30. Let Q = (Sov,N') be a query. Then, for all 0,0 € lin(<s0v), CNDAG(Q,0) =
ONDAG(Q, o)

This allows us to denote the final macrostructure as CNDAG(Q) instead of CNDAG(Q, o).
Soundness The soundness of the macrostructure obtained is provided by the soundness of the
rewriting rules, which leads us to Theorem 7.38.

Lemma 7.31. Rewriting rule DRg, is sound.

Lemma 7.32. Let Q = (Sov, N) be a query and let o € lin(=<so,). Letk € {0,...,|Sov|—1} and let
N be a set of sets of computation nodes such that CNDAG(Q,0) = (sov,®, {(0,®, N), N € 0N}).
Then,

8. Note that the rewriting rules imply that at each step, the root computation node always looks like
{(sov,®,{(0,®,N), N € M})}, hence the rewriting rules for @ are applicable if sov = sov’.®z, the rewriting
rules for max are applicable if sov = sov’. max,, and the rewriting rules for min are applicable if sov = sov’. min,.
This shows that CNDAGk4+1(Q,0) is defined for every k € {0,...,|Sov| — 1}.

130 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

e for all N € M, for all (ny,nz) € N2,
(n1 # n2) = ((Ve(n1) NVe(nz) = 0) A (Ve(n1) N sc(ng) = 0))
Moreover, for all (n1,n2) € (N[®])?, (n1 # n2) — (Sons(ni) N Sons(nz) = 0),
for allm € N[&], Sons(n) N N[-&] = 0.

e if max # @, then, for all (N1, N3) € M2,
(N1 # Na) = ((Ve(Ni[max]) N0 Ve (Na[max]) = 0) A (Ve (N1 [max]) N se(N2) = 0))
Moreover, for all N € M, |N[max]| <1
for all (,®, Ny) € Sons(N[max]), Ny N N[-~max] = 0.

Idem for min when min # @.

Lemma 7.33. Let Q = (Sov,N) be a query and let o € lin(=Zs0y). Let k € {0,...,|Sov| — 1}
such that CNDAGL(Q,0) = (sov.®,, ®,{(0,®,N),N € M}). Then, val(CNDAGy+1(Q,0)) =
val(CNDAGL(Q, 0)).

Lemma 7.34. Rewriting rule DRy, is sound.

Lemma 7.35. Let RR., .. be the rewriting rule defined as:
RRllrnax : (maX5'7EB7N1 U{(@7®,N2U{(maXS/,@,{(@,®,N3),N3 Em})})})
~ (maXSUS’v D, Nl U {(@, ®, N2 U N3) 5N3 € m})

If ' N (S Usc(Ny) Usc(N2)) =0 and VN3 € M, Ny N N3 = 0, then RR. .. is a sound rewriting

rule.

Lemma 7.36. Let Q = (Sov,N') be a query and let o € lin(=<ge). Let k € {0,...,|Sov| — 1}
such that CNDAG(Q, 0) = (sov. maxy, ®, {(0,®, N), N € M}). Then, val(CNDAGk+1(Q,0)) =
val(CNDAGL(Q,0)). Similarly, if CNDAGL(Q,0) = (sov.min,, P, {(0,®, N),N € N}), then
val(CNDAG1+1(Q,0)) = val(CNDAGL(Q,0)).

Lemma 7.37. Let Q = (Sov,N') be a query and let o € lin(=2s0y). Then, for allk € {0, ...,|Sov|—
1}, val(CNDAG4+1(Q,0)) = val(CNDAGL(Q, 0)).

Theorem 7.38. Let Q = (Sov,N) be a query. Then, val(CNDAG(Q)) = Ans(Q).

Complexity results

An architecture is usable only if it is reasonable to build it. Proposition 7.39 gives upper bounds on
the complexity of the rewriting process when the simplification rule is not used. As in the semiring
case, the complexity is still polynomial when simplification rule is used. An explicit algorithm
implementing the rewriting rule in the semigroup case is given in the proof of Proposition 7.39. It
notably manipulates pointers to computation nodes, so that computation nodes can be shared, i.e.

so that the DAG structure is explicit.

Proposition 7.39. If the simplification rule is not used, the time and space complezities of the
rewriting process in the semigroup case are O(|U|-|V|-(|P|+|V])-(1+]|P])) and O(JU|-|V|-(|V|+
|P|?)) respectively.

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 131

7.4.2 Cluster-tree decompositions to structure DAGs of computation
nodes: towards multi-operator cluster-DAGs (MCDAGs)

In the semigroup case, the rewriting rules yield a DAG of mono-operator computation nodes such
as (ming, ®, N), (maxg,®,N), > g, ®,N), and (),®,N). As in the semiring case, the second
finer structuration step consists of taking advantage of freedoms in the elimination order inside
each of these mono-operator computation nodes by using cluster-tree decompositions.

Given a computation node n = (opg, ®, N), it suffices to build a rooted cluster-tree decompo-
sition of the graphical model (sc(n), {val(n'),n’ € N}) associated with it, given the variables in
sc(n) — S which are not eliminated by n. This directly provides us with a structuration of the
computation of val(n). The structure obtained then contains both a macrostructure given by the
computation nodes and an internal cluster-tree structure given by each of their decompositions.

After this second structuration step, we obtain a so-called multi-operator cluster DAG (MCDAG).

Definition 7.40. A Multi-operator Cluster DAG is a DAG where every vertex ¢, called a cluster,

is labeled with three elements:
e a set of variables V(c),
e a set of scoped functions ®(c) taking values in a set E,

e and a couple (&, ®°) of operators on E such that (E,®°, ®°) is a commutative semiring.

The width of @ MCDAG is defined by w = maxc.cc |V (c)| — 1. The height of a MCDAG is the

mazimum number of variables which appear in a path from the root to a leaf in the MCDAG.

Definition 7.41. The value of a cluster ¢ of a MCDAG 1is given by

UCLZ(C) = 69CV(c)—V(pu,(c)) ((®C¢6<I>(c) </7) ®° (®Cs€Sons(c) UCLZ(S)))
The value of a MCDAG is the value of its root node.

We explicitly specify a combination operator and an elimination operator to be used inside
each cluster because these operators may vary depending on the cluster considered. If duplicated
variables are relabeled, then MCDAGs obtained from a query @ satisfy a kind of running intersec-
tion property, which is “for all clusters ci, c2, c3, if ¢3 is on a path from ¢; to ¢ which uses only

non convergent connections, then V(c1) NV (cz) C V(cs)”.

Decreasing the MCDAG width

The next three pages correspond to a technical part which shows that given a computation node
n = (opg, ®, N), building a cluster-tree decomposition of (sc(n), {val(n'),n’ € N}) given sc(n)— S
yields MCDAGs which have a suboptimal width. The reason for this is that in the semigroup case,
the computation nodes performing eliminations with min or max have a particular structure. We

begin with an illustrative example.

0,@,{U.+})

0, ®,{Uy.i})
(@7 ®, {ntv UI,y})
0, ®, {n:,Uz})

where ng is a shared computation node of scope {t}, which can typically correspond to a factor

)7

Example 7.42. Let us consider a computation node n = (max, , -, %,

performing operations on plausibility functions.

132 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

Assume that we want to exploit the freedoms in the elimination order between x, y, and z, thanks
to a cluster-tree decomposition. If we use the mechanism previously proposed, then we consider the
graphical model M = ({x,y,z,t}, {21, Py.ts Cayt> Pui}) where o = val((0,,{U.1})), @y1 =
val((0,@,{Uy})) » Yoyt = val((D,@,{ni, Uz y})), and oz = val((0,®,{n:,Us})). Then, we
build a cluster-tree decomposition of M given {t}. An optimal cluster-tree decomposition of M
given {t} has a width of 2. This means that at least 2 + 1 = 3 wvariables need to be considered
simultaneously in order to compute val(n).

However, a decomposition of the computations exists which allows us to consider at most two
variables simultaneously. Indeed, if we use the elimination order z <y < x, we can write:

val(n) = max, max, max, (U, @ Uy, ® (val(ny) @ Uy,y) ® (val(ng) @ Uy))
= max, maxy (U, ® Uy ® max,((val(ny) @ Uy) ® (val(ng) @ Uy)))
= max, maxy (U, ® Uy & (val(n,) @ max, (U, & Uy)))

= max, (U, ® max, (U, & (val(n,) @ max, (U, & Uy))))
The decomposition above considers

o two variables (x and y) to compute max, (U, , @ U,) = U;,
e two variables (y and t) to compute max, (U, ® (val(n,) ® Uy) = U},
e two variables (z and t) to compute max, (U, @ U)).

In order to consider only two variables simultaneously, the key mechanism is to use the fact that

ng is a factor of both U, , and U,.

The goal of this technical part is to generalize the decomposition method used in the previous
example, in order to obtain cluster-tree decomposition having a smaller width. We take the
example of computation nodes (maxg, ®, N) when max # @, but everything that follows applies
to computation nodes (ming, ®, N) as well (when min # @).

We first need some additional notations, defining the type of a computation node.
Definition 7.43. Let n be a computation node.
o Ifn is atomic, then the type of n ist(n) =u if n € U, and t(n) = p if n € P.

o Otherwise, if n = (sov,®, N) then t(n) = u if there exists n’ € N such that t(n’) = u, and
t(n) = p otherwise.

This means that a computation node is of type w iff at least one utility function is involved in
its descendants.

Actually, the rewriting rules in the semigroup case imply that the computation nodes in
CNDAG(Q) which use max as an elimination operator are always of the form (maxg, 6, {(0, ®, N),
N € 91}). Proposition 7.44 below gives key properties satisfied by these nodes. As we shall see,
these properties allow us to decrease the MCDAG width.

For the remaining of the chapter, we assume that during the application of rewriting rules
in the semigroup case and given a set of computation nodes N, the definitions of Nt /N~% are
updated by N™® = {n € N |z € sc(n)} U Ny, where Ny = N N Fact(c(z)) if = is the last variable
in ¢(z) to be eliminated, and N~ = N — N+ 9

9. This modification is identical to the modification performed in Chapter 6 when using potentials in the semi-
group case.

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 133

Proposition 7.44. Let Q be a query. Let us consider a computation node (ops,®,{(0,®,N), N €
MN}) in CNDAG(Q), when op # &.
Then, for every N € M, there exists a unique n € N such that t(n) = u. This node is denoted
u(N). The set of nodes in N — {u(N)} is denoted P(N). It satisfies SN sc(P(N)) = 0.
Moreover, for all Ny, No € M, ((n € N1) A (t(n) =p)) — ((n € Na2) V (sc(n) C sc(u(Nz)))).

Informally, Proposition 7.44 shows that given a computation node (maxg,®, {(§,®, N),N €
N}), computation nodes of type p are either shared between several N € M, or their scope is
included in another computation node of type u. Furthermore, their scopes do not involve variables
in S.

Then, let = be a variable in S. If z is the first variable to be eliminated, how many variables

need to be considered? The elimination of x can be decomposed as follows:

mgX(NEEBm(n?N val(n)))

= max((@ (@ wval(n))®max(& (© wval(n)))))

S—{z} Nem—-= neN T NeMtr neN
= max @ ® wval(n))) ® ® wval(n)) ®max(@ ® wal(n
max((@ (9)o@ i) emax(@ (@ @)

where N1 = Nyeq+e N7

Let n be a node of type p which is in N — N for one N € 9%, Thanks to Proposition 7.44,
we know that = ¢ sc(n). Moreover, as n is not common to all computation nodes in M™*, we know
that there exists N’ € 97 such that z € sc(u(N’)). Hence, in order to determine the number of
variables to consider to eliminate x and the scope of the function created after the elimination of
x, it actually suffices to consider computation nodes in {u(N), N € 9}, instead of computation
nodes in {(0, ®, N), N € 9M}. Roughly speaking, this means that computation nodes of type p play
only a weighing role and do not basically modify the scopes of the functions manipulated.

This leads us to define several steps to obtain MCDAGs with an improved width. In order to

decompose a computation node n = (maxgs, ®, {(0,®, N), N € N}), we proceed as follows:

1. First, we build a rooted cluster-tree decomposition of the graphical model (sc(n), {val(u(N)),
N € M}) given sc(n) — S.

2. Second, we transform this decomposition into a MCDAG where weights given by plausibility

nodes are reintegrated. To do so, for every cluster c:

e for every ¢ € ®(c), there exists N € 91 such that ¢ = val(u(N)). Then, create a
cluster s and add it to Sons(c); remove ¢ from ®(c) and put it in ®(s); add in (s)
scoped functions in P(N) N P, and add in Sons(s) scoped functions in P(N) — P.
Informally, this step weighs utility functions with plausibility functions left apart for

the computation of a cluster-tree decomposition;

e for every s € Sons(c), create an intermediate level between ¢ and s: remove s from
Sons(c); create a cluster ¢’ such that Sons(¢’) = {s}; add ¢’ to Sons(c); take ®(¢') =0
and (D, ®¢) = (0, ®). Informally, this step create intermediate level in the architec-

ture, which will be useful for the next step.

134 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

3. Third, we move the plausibility weights as “high” as possible in the MCDAG: starting from
the leaves, for every cluster ¢, we remove the plausibilities which weigh every son of ¢. More
precisely, we transfer the scoped functions in Nyegons(c) P(s) to P(pa(c)), and the clusters in
NseSons(c) Sons(s) to Sons(pa(c)). Finally, we “clean” the obtained structure by removing

useless clusters.

Example 7.45. Let us consider the computation node n = (maxg ., ®, {(0,®, N), N € N}) given
in Example 7.42 again, where N = {{U.+},{Uy}, {ns, Uy}, {0, Uz }}.

We first build a rooted cluster-tree decomposition of the graphical model (sc(n),{val(u(N)),N €
MN}) given {t}, i.e. of the graphical model ({x,y, z,t},{U. 1, Uy, Uz, Us}) given {t}. The primal
graph of this graphical model is given in Figure 7.9(a). A rooted cluster-tree decomposition is given
in Figure 7.9(b).

We then add intermediate levels to get a MCDAG, enabling us to weigh the utility functions
and to “prepare” the structure for the weights migration. This is done in Figure 7.9(c).

Last, we put the weights as high as possible in the MCDAG by detecting common weights between
the sons of a given cluster, and we remove useless clusters. This gives the MCDAG in Figure 7.9(d).

This MCDAG exactly corresponds to the smart decomposition given in Example 7.42.

o e |e] |
: {Uy.1} \ H Uyt

Lofel | [o]e] | [o]e]w]

l \ 0 ® max.| @ | Uzt
¢) EERERESHE
c3
A .
© ben) = (0 o] o=] :
@(c3) = {Uzt} >
©
maxg| B
Uy Uy Uz
V(ea) = {x,y} [o]e] v | [o]e]ven] v

P(c2) = {Um,yv Ug}

(a) (b) (e (d)

Figure 7.9: Example of a specific cluster-tree decomposition for a max computation node: (a)
primal graph of the graphical model to be decomposed; (b) rooted cluster-tree decomposition; (c)
MCDAG with utility functions weighted by plausibilities; (d) final MCDAG where weights are put
as high as possible and where useless clusters are removed.

Theorem 7.46 proves that the obtained MCDAG still enables us to compute the answer to a
query and to find optimal decision rules for the decision variables. Optimal decision rules can be
recorded on the separators of the MCDAG (the separator between two clusters ¢ and s € Sons(c)
is V(e) NV (s)).

Theorem 7.46. The value of the MCDAG obtained after having decomposed the macrostructure
is equal to the answer to the query. Moreover, for every non duplicated decision variable x, optimal

decision rules for x in the MCDAG are also optimal in Ans(Q).

7.4. STRUCTURING MULTI-OPERATOR QUERIES IN THE SEMIGROUP CASE 135

Merging some computations

Some clusters in the MCDAG may perform exactly the same computations, even if the computation
x,y° %<, {Pza Py|m7 Uy,z)
may be decomposed into one cluster ¢; such that val(ci) = Y (P: - Py|,) and one cluster ¢} such
that val(cy) = >, (Uy,» - val(c1)). A computation node ny = (32, X, {Ps, Pyjz, Uyt) may be

decomposed into one cluster cz such that val(cz) = > (Py - P,j,) and one cluster ¢, such that

nodes they come from are distinct. For example, a computation node ny = (>

val(cy) = 3_, (Uy-val(cy)). Aswval(er) = val(cz2), clusters ¢ and ¢z can be merged in order to save
some computations. Detecting common clusters is not as easy as detecting common computation
nodes.

Figure 7.10 is an example of MCDAG obtained from a DAG of computation nodes CNDAG(Q)

thanks to cluster-tree decompositions.

7.4.3 Comparison with an unstructured approach

Definition 7.47. Let Q be a query. The width of CNDAG(Q), denoted wonpac(q), i the mini-
mal width of a MCDAG which can be obtained from CNDAG(Q) using cluster-tree decompositions.

Proposition 7.48. Let Q = (Sov, (V,G, P, F,U)) be a query. Computing Ans(Q) with a variable
elimination algorithm on a MCDAG associated with Q is time O((1+|U|)-(1+|P|)-d' Twenpac@)
and space O(|P U U| - d'Twenpac@),

Theorem 7.49 below shows that non surprisingly, structuring multi-operator queries can only
decrease the tree-width. This entails that in terms of tree-width (or induced-width), a variable
elimination algorithm on a MCDAG is as least as good as algorithm VE-answerQ given in the

previous chapter.

Theorem 7.49. Let Q = (Sov,N) be a query on a PFU network N = (V,G,P,0,U). Let
G = (V,{sc(p),p € PUU}) be the hypergraph associated with N'. Then, wenpac@) < wg(Zsov)-

7.4.4 Comparison with existing approaches

Compared to existing architectures for example on influence diagrams, MCDAGs can be exponen-
tially more efficient by strongly decreasing the tree-width, thanks to (1) the duplication technique,
(2) the analysis of extra reordering freedoms, and (3) the use of normalizations conditions. One

can compare these three points with existing works:

e The idea behind duplication is to use all the decompositions (independences) available in
influence diagrams. An influence diagram actually expresses independences both on the
global probability distribution and on the global utility function. MCDAGs separately use
these two kinds of independences, whereas a potential-based approach uses a kind of weaker
“mixed” independence relation. Using the duplication mechanism during the construction of
the MCDAG is better in terms of induced-width than using it “on-the-fly” as in [33].°

10. E.g., for the quite simple influence diagram used in Figure 7.7, the algorithm in [33] gives 2 as an induced-
width, whereas MCDAGs give an induced-width of 1. The reason is that MCDAGs allow to eliminate both r1 before
r2 in the subproblem corresponding to Ug ., and r2 before r1 in the subproblem corresponding to Uy, -

136 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

sz X

UIl?«Tlx

Mg 7015219 +

x17T19
0 |x WAz, + \
U, Py Py
11714 U
max. Ul’l‘{l’n 0ts @ X UT&I‘J (Z) X folw Z;m:r,z,r:s:m X LaT3T5 Pl‘llz
T10T11 212713 | + U ; 11213 o
T13T14T15216 Z19T15 P o3 o7y
(1021112
Ufl‘lsfl‘w !

% szl';;
Zx:lmzxr;;u ToT3Ts len

CNDAG(Q) " P

Ul‘7l‘g Uzhu

Ty

maxy.,, |+

1376

cluster-tree |
decomposition |

i ming,, | +

MCDAG / \

MmN, + Ul‘l?-l'hs

MmN, + Ul‘l?hu

3 U

T10718

i MAXz) g211712 +

T10T11712

| Uy,

' T11T13

i maxg, | +

L maXgyay,| + U‘TUTH

| Uz i Usgans

: P, ‘
I (2] I
1 Y| X| p |
i maxy, | + (2E2) !
| I
I)

P.’X‘ x3
erjzg:r;

max,,

Figure 7.10: Example of a MCDAG obtained from CNDAG(Q) by cluster-tree decomposition
and merging of some clusters performing the same computation.

7.5. CONCLUSION 137

e Weakening constraints on the elimination order can be linked with the usual notion of relevant
information for decision variables. With MCDAGs, this notion is not used only for the sake of
conciseness of decision rules: it is also used to reveal reordering freedoms, which can decrease
the time complexity. Also, some of the ordering freedoms here are obtained by synergism

with the duplication.

e Thanks to simplification rule SR, the normalization conditions enable us not only to avoid
useless computations, but also to improve the architecture structure (SR may indirectly
weaken some constraints on the elimination order). This is stronger than Lazy Propagation

architectures [85], which use the first point only.

Last, the MCDAG architecture contradicts a common belief that using division operations is
necessary to solve influence diagrams with VE algorithms.

If one uses our structuration process to structure the computations performed by MDPs, then
one exactly gets the value iteration algorithm. However, as soon as the MDP becomes factored,
gains can be observed in terms of tree-width. Also, MCDAGs can namely be directly applied
to possibilistic influence diagrams using the possibilistic pessimistic utility theory, or to classical
planning problems using the boolean optimistic expected disjunctive utility (in order to search for

a sequence of decisions to reach one goal of a set of goal states).

7.4.5 Adding feasibilities

As said in the semiring case, feasibilities have a very specific status from the duplication property
point of view. A simple solution to integrate them is to work with potentials, as introduced in

Definition 6.11 page 96, and then to use

e the semiring rewriting rules (without duplication)

e the cluster-tree decomposition techniques for semiring computation nodes.
With this approach, the architecture obtained is a MCTree involving;:

e several elimination operators: min, max, and H, the elimination operator on potentials given

in Definition 6.11 page 96;
e but only combination operator X (the combination operator between potentials).

Finer rewriting rules, not yet mature enough, can be described in the case “semigroup with feasibil-

ities”. They avoid using potentials which prevent from exploiting some available decompositions.

7.5 Conclusion: a generic computational architecture, the
MCDAG architecture

This chapter has shown how to systematically structure multi-operator queries. The structuration

process involves two major steps:

e A macrostructuration step using rewriting rules. This step aims at revealing all possible

decompositions and reordering freedoms, and at exploiting normalization conditions.

138 CHAPTER 7. STRUCTURING MULTI-OPERATOR QUERIES

e A cluster-tree decomposition step. This step exploits the freedoms in the elimination or-
der. It provides us with the MCTree architecture in the semiring case (cf. Definition 7.22
page 121), and with the MCDAG architecture in the semigroup case (cf. Definition 7.40
page 131). These two architectures satisfy unicity and soundness properties. Also, they lead
to a better induced-width (or tree-width). Compared to existing variable elimination-based
computational architectures, the MCDAG architecture we introduce is the only one which

uses both multiple elimination operators and multiple combination operators.

As MCTrees are particular instances of MCDAGs, we actually obtain a unique generic com-
putational architecture, the MCDAG one, which can be used both in the semiring and semigroup
cases. This allows us not to consider the semigroup and semiring cases separately anymore, as

illustrated in Figure 7.11.

rewriting

rules for the

semiring
case

semiring
case

MCDAG

rewriting
semigroup rules for the
case semigroup

case

[algorithms on MCDAG...}

Figure 7.11: Towards a unique computational architecture.

Another way to formulate this conclusion is that the computation of Ans(Q) and of optimal

decision rules for a query @ can be reduced to the following problem:

Let (E,®,®) be a totally ordered MCS.
Let M be a MCDAG involving scoped functions taking values in E and clusters

Compute the value of M and optimal decision rules for the decision variables.

The generic variable algorithm proposed in this chapter consists in saying that as soon as a
cluster ¢ has received val(s) from all its children s € Sons(c), it computes its own value val(c) =
DV (pa(e)-V(e) ((®c¢g<p(c) <p) ®° (®cs€5(ms(c) val(s))) and sends it to each of its parents. The
value of the root cluster then equals the answer to the query.

For each cluster ¢, val(c) can be computed either by eliminating variables in V(pa(c)) — V(c)
step-by-step, as done in this chapter, or by considering all variables in V(pa(c)) — V(c) simultane-
ously. The latter approach, known as a Cluster-Tree Elimination (CTE [7]) algorithm, generalizes
VE algorithms and yields the same theoretical time complexity together with a better space com-

plexity, exponential in the size of the largest separator between two clusters in the MCDAG. Such

7.5. CONCLUSION 139

methods were also used in the litterature under the names of dynamic programming, junction tree

algorithm, or perfect relaxation [90].
Even if these algorithms can answer queries, they use neither backtrack nor branch and bound
techniques. The next step is to enhance the MCDAG architecture with tree search techniques able

to prune the search space. Such an enhancement is the objective of the next chapter.

Chapter 8

A generic structured tree search
on the MCDAG architecture

Answering a PFU query is equivalent to computing the value of a MCDAG. This can be achieved
using a quite natural variable elimination (VE) or cluster-tree elimination (CTE) algorithm which
computes stepwise the value of each cluster of the MCDAG, from the leaves to the root. The
VE algorithm offers a time complexity exponential in the MCDAG-width, but at the price of a
space complexity exponential in the MCDAG-width too. The CTE algorithm gives the same time
complexity and a space complexity exponential in the size of the largest separator between two

clusters.

At the same time, a search technique as depth-first tree search provides a linear space com-
plexity. Moreover, despite its greater theoretical time complexity, tree search often outperforms
variable elimination algorithms in practice, especially when it is enhanced with bound techniques

pruning the search space.

In order to benefit both from the practical efficiency of tree search and from the good theoretical
time complexity of variable elimination, we introduce a generic structured tree search algorithm
which takes advantage of the structural decompositions expressed by the MCDAG architecture.
Such an idea is not new. In particular, several tree search schemes exploiting problems structures
were defined in the last decade [26, 65, 38].

However, these existing schemes are basically designed to compute sequences of mono-operator
eliminations on a mono-operator combination of scoped functions. This mono-operator nature
significantly facilitates the way bounds can be used to prune the search space. Also, the existing
schemes tackle either problems using specific combination and elimination operators, or problems
built upon an algebraic structure making assumptions stronger than those made with a totally
ordered MCS (cd Definition 6.6 page 94).

As a result, structured tree search algorithms capable of handling the multi-operator nature of
generic PFU queries (or, equivalently, of generic MCDAGSs) are needed. As previously mentioned,
this raises new questions concerning the use of bounds in the context of alternating min-, max-,

and @-eliminations.

141

142 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

8.1 Existing structured tree search algorithms

Before defining a new algorithm on MCDAGs, we briefly explain how existing structured tree
search proposals work. Three proposals are presented: algorithms on AND/OR search spaces [38],
recursive conditioning [26], and BTD (Backtrack bounded by Tree Decomposition [65]).

AND/OR search spaces [38] enable mono-operator eliminations on a mono-operator com-
bination of scoped functions of a graphical model M to be computed, and can be used to solve
problems associated with CSPs or BNs. The simplest form of AND/OR search spaces is AND/OR
search trees. They exploit independences represented thanks to a pseudo-tree of the primal graph

of M. Such an approach was initially defined in [53].

Definition 8.1. Given an undirected graph G = (V, E), a rooted tree T = (V, E’) is a pseudo-tree

of G iff any edge in E — E' is an edge connecting a vertex to one of its ancestors in T."

Figure 8.1(b) shows an example of pseudo-tree associated with the graphical model depicted in
Figure 8.1(a). A pseudo-tree induces a search space called an AND/OR search tree. An AND/OR
search tree is a tree containing two types of nodes: (1) OR nodes, labeled with a variable x € V,
and (2) AND nodes, labeled with an assignment (z,a). The successors of an OR node x are AND
nodes (z,a), one for each a € dom(z), while the successors of an AND node (z,a) are OR nodes y,
one for each son of z in the pseudo-tree. The AND/OR search tree associated with the pseudo-tree

of Figure 8.1(b) is given in Figure 8.1(c).

(a)

¢="5 r=me aononnnnon (ol [l lo][x] [olf2]

Figure 8.1: Example of AND/OR search tree: (a) Primal graph of the graphical model M =
({x1, 22, 23,24, 5 }, { Qaraomss Porwszss Parzs p); (D) A pseudo-tree of this primal graph (dotted lines
represent edges of the primal graph which are not in the pseudo-tree); (¢) AND/OR search tree
obtained from the pseudo-tree (with boolean variables).

Informally, an AND/OR search tree expresses that the subproblems rooted at an OR node z
are independent and can be processed separately. For instance, as soon as x; is assigned, variables
in {2, 23,24} and x5 become independent, as soon as z1 and x3 are assigned, x5 and x4 become
independent. In this sense, an AND/OR search tree enables one to define a kind of structured tree
search. This is interesting because it can be much faster to explore an AND/OR search tree than
a standard search tree which assigns variables linearly. With an AND/OR search tree, the time
complexity becomes exponential in the height of the pseudo-tree. 2

From AND/OR search trees, other search spaces, yielding different time and space complexities,

can be defined, such as AND/OR search graphs, obtained by merging equivalent nodes in the

1. Examples of pseudo-trees are DFS spanning trees, whose edges are obtained by building a spanning tree of
the primal graph of G, using an edge selection heuristic called Depth First Search (DFS).
2. An optimal height is O(w - log(|V])), where w is the tree-width of the graphical model [70, 14, 5].

8.1. EXISTING STRUCTURED TREE SEARCH ALGORITHMS 143

AND/OR tree. AND/OR search graphs can induce the same time and space complexities as VE
and CTE algorithms. Algorithms on AND/OR search graphs, which use caching, can be tuned

depending on the memory size available

Recursive conditioning (RC [26]) is an algorithm for exact inference in Bayesian networks.
It exploits the structure of a BN as follows. Given an initial BN, RC conditions on a set of variables
S of the BN (i.e. it assigns a set of variables of the BN), so that the removal of the variables in S
yields two disconnected subnetworks. S is called a cutset. Each disconnected subnetwork is solved
independently by using the same mechanism. This recursive process is applied until subnetworks
contain a unique variable. In the example of Figure 8.1(a), we can first condition on {z;}, and
doing so, we create two disconnected subnetworks. The first subnetwork contains only variable
5. The second one, containing variables x2, x3, and x4, can itself be split by conditioning on z3,
which creates two disconnected subnetworks containing one variable only.

In fact, an implicit tree structure, called a dtree, exists behind the conditioning mechanism and

can be used to find good cutsets.

Definition 8.2. A dtree for a BN (V,G, P) is a rooted binary tree whose leaves correspond to the
conditional probabilities in P. The set of variables involved in a leaf is the scope of the conditional

probability distribution associated with this leaf.

Given a node in the dtree, the cutset associated with it is the set of variables shared between its
left and right subtrees. In the end, RC can be seen as structured tree search exploring a dtree by
assigning cutsets in a depth-first manner. In order to avoid redundant computations, RC can also
trade time for space by using caching strategies. It can also be tuned depending on the memory
size available. This makes RC an any-space algorithm capable of providing a space complexity
exponential in the size of the largest cutset and a time complexity exponential in the BN tree-

width w, as well as a linear space complexity and a time complexity exponential in w - log(|V]).

The BTD algorithm (Backtrack bounded by Tree Decomposition [65]) also achieves a struc-
tured tree search to solve CSPs or valued CSPs. Compared to AND/OR, search spaces and RC,
which use pseudo-trees and dtrees, BTD uses standard cluster-tree decompositions (as defined in
Definition 7.18 page 118), which are the main topic of many existing works [116, 2, 115, 73, 13, 76].

Given a rooted cluster-tree decomposition, the BTD algorithm first performs stepwise assign-
ments of the variables in the root cluster. If the VCSP considered corresponds to a cost mini-
mization task, backtrack occurs if the cost provided by the current assignment is too high. If all
variables in the root cluster ¢y are assigned, then a son cluster ¢y of ¢y is explored. This means
that unassigned variables in ¢; are assigned step-by-step. Again, backtrack occurs if the cost of
the current assignment is greater than some upper bound. If all variables in ¢; are assigned, then
a son cluster of ¢; is explored similarly. If there is no unexplored son cluster, backtrack occurs.

BTD additionally uses recording on cluster separators.

Definition 8.3. The separator between a cluster ¢ and one of its sons s € Sons(c) is the set of

variables defined by sep(c,s) =V (c) NV (s), also denoted improperly ¢ N s.

Given an assignment A of the ancestors of s, the cluster-tree structure entails that the value

val(s)(A) given by cluster s only depends on the assignment A'¢P(¢:5) of the separator sep(c, s).

144 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

Hence, if val(s)(A) is computed once and recorded, then it is useless to compute val(s)(A’) for
all assignments A’ such that Alser(c:s) = A/tseP(e:) " 14ca] consistencies are also used during the
search in order to get bounds on the cost of any extension of the current assignment [65, 29]. If
these bounds violate requirements imposed for example by the best solution found so far, then

backtrack occurs.

From existing works to a generic structured tree search on MCDAGs The three pre-
vious algorithms present many similarities, since pseudo-trees, dtrees, and cluster-tree decompo-
sitions share many common properties (but we do not know formal works establishing precisely
equivalence relations between these structures). In order to develop a generic structured tree
search, we choose to start from the BTD algorithm, since the MCDAG obtained after the query
structuration process is closer to a cluster-tree decomposition than to a pseudo-tree or a dtree.

We incrementally present a generalized BTD algorithm on MCDAGs, starting from a structured
tree search without bounds and caching to a structured tree search using both bounds and caching.
As we shall see, the main difficulty in adapting the BTD algorithm to MCDAGs resides in the use
of bounds to prune the search space.

In the sequel, we assume without loss of generality that there are no free variables in the query.
If the set of free variables V¢, is not empty, it suffices to call the forthcoming algorithms once
for each assignment of Vy,. Also, we assume that there are no feasibilities. The integration of

feasibilities is discussed in Section 8.7.

8.2 A first generic structured tree search

The first algorithm we define simply traverses the MCDAG from the root to the leaves, instead of
propagating information from the leaves to the root as in a variable elimination scheme. We first

introduce a definition essential for the understanding of the rest of the chapter.

Definition 8.4. Let ¢ be a cluster of a MCDAG. Let V. C V(c) — V(pa(c)) be a subset of the
variables to eliminate in c. Let & C ®(c) be a subset of the scoped functions associated with c. Let
A be an assignment of the variables involved in the ancestors of ¢ in the MCDAG and in V(c)—V.
We define val(c, A, V,®) by

val(c, A, V,®) = @° << ®"° tp(A)) ®° < ®° ()val(s)(A)))

14 ped seSons(c
where val(s)(A) is given by Definition 7.41 page 131.

In other words, val(c, A, V,®) corresponds to the elimination of the variables in V' on the
combination of the scoped functions in ® together with the values of the son clusters of ¢. This is
realized for assignment A and using the elimination operator &¢ and the combination operator ®°

of cluster c.

Proposition 8.5. Let M be a MCDAG associated with a query Q. Let ¢ be a cluster in M.

(a) Let v be the root cluster of M. Then, Ans(Q) = val(r, D,V (r), ®(r)).

8.2. A FIRST GENERIC STRUCTURED TREE SEARCH 145

(b) Yz €V, val(c, A, V,®) = @° ((®° w(A-(:v,a))) ®°val(c, A(z,a),V — {z}, & - <I>o))
acdom(z) wedg

where g = {p € | sc(p) N (V — {z}) = 0}
(c) val(c, A, D, ®) = <®c w(A)) ®° < ®° wal(s, A, V(s) —V(e), @(s)))
pED s€Sons(c)

Proposition 8.5 helps us define a first generic structured tree search. More precisely, Proposi-
tion 8.5(a) says that in order to answer a query @ whose associated MCDAG has r as a root, it
suffices to compute val(r,),V (r), ®(r)). A recursive use of Proposition 8.5(b) then gives a method
to compute val(r, D, V(r), ®(r)), by assigning step-by-step the variables in V(r). Once all vari-
ables in V(r) are assigned, quantities like val(r, A, (), ®) must be computed. Proposition 8.5(c),
then says that val(r, 4,0, ®) = (e 9(A)) ®° (@°ses0ons(r) val(s, A, V(s) = V(r),®(s))). Each
val(s, A, V(s) — V(r),®(s)) can be computed by using Proposition 8.5(b) again. Therefore, an
alternation of applications of Propositions 8.5(b) and 8.5(c) enables us to compute Ans(Q).

The associated generic structured tree search on MCDAGs, directly defined from Proposi-
tion 8.5, is called TS-mcdag (like “Tree Search on MCDAG”) and is shown in Figure 8.2. As
it uses structured problems, it is expected to be much more efficient than the unstructured tree

search algorithm given in Section 6.1.

TS-mcdag(c, A, V, ®)
begin
if (V =0) then
S «— Sons(c)
val — & pea p(A)
while § #) do
Choose s € S
S —8—{s}
val — val ®° TS-mcdag(s, A,V (s) — V(c), D(s))
| return (val)

else
Choose z € V
d < dom(z)
Do —{p € ®(c), sc(p) N (V —{x}) = 0}
val +—
while d # () do
Choose a € d
d—d—{a}
val «— val ®°((®°pea, p(A.(x,a))) ®° TS-mcdag(c, A.(x,a),V — {a}, & — o))

return (val)

end

Figure 8.2: A generic structured tree search algorithm on a MCDAG.

The first call is TS-mecdag(r,0,V (r),®(r)). TS-mcdag(c, A, V,®) actually computes the
quantity val(e, A, V, ®). If the set V' of unassigned variables is empty, then the value of each son
cluster is computed, as specified in Proposition 8.5(c). Otherwise, if V' # (), then a variable x to

be assigned is chosen, and the computations specified in Proposition 8.5(b) are performed.
Proposition 8.6. Algorithm TS-mcdag is sound and complete, i.e. it returns Ans(Q).

Proposition 8.7. Let M be a MCDAG associated with a query Q = (Sov, (V,G, P,0,U)). Then,
the space complexity of algorithm TS-medag is O(h - (d+m)), and its time complezity is

146 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

O(m R dh))
where d is the maximum domain size, h is the MCDAG-height, u is the maximum number of
parents of a node in the MCDAG (u =1 if the MCDAG is a MCTree), and m = |P UU| in the

semiring case and m = (14 |P|)(1 + |U|) in the semigroup case.

Proposition 8.7 shows that in addition to the MCDAG-width, the MCDAG-height can be a

criterion to search for good cluster-tree decompositions.

8.3 Adding caching to the structured tree search

Algorithm TS-mcdag may perform many redundant computations, and it is possible to trade
space for time thanks to some caching.

Indeed, let ¢ be a cluster, let s € Sons(c), and let Vy,,.(s) be the set of variables involved in the
ancestors of s in the MCDAG. Let A, be an assignment of sep(c, s). For all assignments A, A" of
Vane(s) — V(s), the MCDAG structure entails that val(s)(A.Asep) = val(s)(A’.Asep). TS-medag
does not use this structural property at all and computes val(s)(A.Asep) = val(s, A.Asep, V(8) —
V(c), ®(s)) for every assignment A of Vo) — V (s). If there are 10 boolean variables in V,c(s) —
V (s), this means that the same computation is performed 219 times instead of once.

A solution to this problem is to record the result of evaluations of quantities such as val(s)(A),
which actually equals val(s)(A'"*). The value recorded for val(s)(A*"%) is denoted rec(s, AL¢M*).
It equals nil if no value is recorded. The space required for this caching depends on the size of
the separators, which can therefore be another parameter quantifying the quality of a cluster-tree
decomposition. The updated algorithm, called RecTS-mcdag as TS-mcdag with Recording, is

shown in Figure 8.3.

RecTS-mcdag(c, A, V, D)
begin
if (V =0) then
S «— Sons(c)
val — & pea p(A)
while S # () do
Choose s € S
S —8—{s}
if (rec(s, A'°™*) = nil) then rec(s, A'*™*) — RecTS-mcdag(s, A, V(s) — V(c), &(s))

val «— val ®@° rec(s, AYN?)

| return (val)

else
Choose z € V
d «— dom(x)
o — {p €, sc(p) N (V —{x}) =0}
val +—
while d # () do
Choose a € d
d—d—{a}
val «— val B ((°yeca, p(A.(z,a))) ®° RecTS-mcdag(c, A.(z,a),V — {z}, ® — $¢))

return (val)

end

Figure 8.3: A structured tree search algorithm using caching.

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 147

Proposition 8.8. Algorithm RecTS-medag is sound and complete, i.e. it returns Ans(Q).

Proposition 8.9. Let M be a MCDAG associated with a query Q = (Sov, (V,G, P,0,U)). Let w
be the MCDAG-width. Computing Ans(Q) with algorithm RecTS-medag on the MCDAG M is
time O(m - d¥t1), where m = |P UU]| in the semiring case and m = (1 + |P|) - (1 + |U|) in the
semigroup case. The space complexity is O(N - s - d®), where N is the number of clusters in the
MCDAG and s is the size of the largest separator.

In fact, algorithm RecTS-mcdag has the same time and space complexities as a cluster-tree
elimination algorithm on a MCDAG, and it performs the same computations. The only difference
is the order in which these computations are made (top-down or bottom-up processing in the
MCDAG).

However, an advantage of RecTS-mcdag is that it can easily be tuned to an any-space version:
if the amount of space required for caching is greater than the memory size available, some recorded

values can simply be destroyed, at the price of a greater time complexity.

8.4 A structured tree search using both bounds and caching

One of the main interest of tree search is to prune the search space using bounds, which leads to
so-called branch-and-bound techniques. These techniques can improve both the practical time and
space complexities, since they can allow some recordings on useless parts of the search space to be
avoided. In other words, by pruning the search space, bounds can enable us to avoid considering

all instantiations of all separators.

8.4.1 A small additional algebraic assumption

For some bounds initializations, we need an additional algebraic assumption enabling us to consider
totally <-ordered MCS (F, &, ®) having a minimum element | and a maximum element T. Some
of the MCS considered, such as ({t, f},V,A), already admit such elements. In fact, if Op < 1g,
then the structure admits 1= Og as a minimum element, and if 15 < Og, then it admits T = 0g
as a maximum element.

In the first case (0p < 1g), we can always add to the structure an element T such that for all
Tifx #0g
O otherwise
obtained is still a totally ordered MCS provided that (x ® y = 0g) — ((x = 0g) V (y = 0g)) holds.

The latter property is satisfied in all standard expected utility structures.

reEU{T}H =T, The=0cT=T, andT@:E:x@T:{ . The structure

In the second case (1 < 0p), it is always possible to invert =<, which gives a total order =’
such that 0 <’ 1, and then to perform a similar extension.
To sum up, we consider totally ordered MCS equipped with a minimum element L= 0 and a

mazimum element T in the following.

8.4.2 Using bounds in presence of several elimination operators

A first difficulty in adapting branch-and-bound techniques to MCDAGs is to handle bounds in the

context of alternating multiple elimination operators. A good starting point to solve this problem

148 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

is the alpha-beta algorithm [74] used in game theory, where min and max operators alternate. This

algorithm is briefly described below.

Let us consider a two-player game whose game tree is shown in Figure 8.4(a). Each internal
node corresponds to a choice of one player, and branches below this node correspond to the different
possible moves. An internal node is labeled with min or max, depending on which player controls
the associated move. Each leaf node is labeled with a value which evaluates the position obtained

if the players play as indicated by the path from the root to this leaf.

A first method to compute the best first move is to perform a depth-first tree search computing
the value v(n) of each max (resp. min) node n as the maximum (resp. minimum) value of its
children. The value of each node as well as the best first move are given in Figure 8.4(a), which
shows that the max-player can achieve a value of 4. The corresponding algorithm, called the

MiniMax algorithm, explores the whole game tree without using bounds.

The MiniMax algorithm actually performs useless computations because several nodes in the
game tree of Figure 8.4(a) do not need to be considered. For example, in Figure 8.4(b), after the
exploration of the two first branches of A, we know that min-node A can achieve a value lesser
than 4. The exploration of the first value of max-node B shows that the value of B is greater than
5 and consequently is useless for the computation of the value of A. Pruning can occur. Similarly,
after the exploration of the two first branches of min-node C, the value of C' is known to be lesser
than 3. This means that if the max-player chooses the move corresponding to the second branch
of the root, the min-player can achieve a value of 3. As the first branch of the root gives a value
of 4, the max player will never choose the second move, and consequently exploring the rest of the

second branch is useless: pruning can occur.

The alpha-beta algorithm enables one to exactly know when the search space can be pruned.
Technically speaking, it uses two bounds called o and 3, in Z U {—00,+0c0}. During search, each
node n needs to satisfy a requirement such as a < v(n) < §, which means that « is a lower bound
and (§ is an upper bound. If @ = —oo, this means that there is no lower requirement, and if
(8 = 400, this means that there is no upper requirement. During the tree exploration, min-nodes
can decrease the upper bound (3, which means that a min-node always seeks values worse than the
ones found so far. At the same time, max-nodes can increase lower bound «, which means that a
max-node always seeks values better than the ones found so far. Pruning occurs when g < a, i.e.

when the requirements on a node value cannot be satisfied.

Alpha-beta techniques have also been adapted for stochastic games [4], where min, max, and

+ operators alternate.

In the context of a structured tree search on MCDAGs, we simply use a lower bound LB and
an upper bound UB, as in the alpha-beta algorithm. This enables us to deal with both several
elimination operators and bounds. Informally, min-clusters will tighten U B while max-clusters
will tighten LB.

Also, in order to have counterparts of —oo and 400, which mean that there is no lower or upper
requirement respectively, we introduce two new elements denoted L.~ and T'. Given a totally
ordered MCS (E,®,®), L~ is an element outside of F which is lesser than any element in F, and

T is an element outside of E which is greater than any element in £ U {1~ }.

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 149

(a) Optimal move 4
(best valuc)e\

QLOLBDEG ~ ©H6DHOO RORY

Figure 8.4: Example of alpha-beta pruning: (a) Game tree explored by the MiniMax algorithm;
(b) Pruned game tree explored by the alpha-beta algorithm.

8.4.3 Using bounds without inverse for the combination operations

A second difficulty consists in dealing simultaneously with bounds and combination operations,
mainly because the algebraic structure we use, a MCS (F,®,®), does not assume the existence
of inverse operations for @ or ®. This problem does not appear with the alpha-beta algorithm
because it manipulates a unique global function providing the leaves values.

Due to the factorization into local functions, one may want to impose a requirement like eg ®
val < UB on some values val to be computed, where eg is a factor which must be combined with
val using ®. Since we do not assume the existence of a division operation ©, one cannot directly
impose val < UB @ eg and take UB’ = UB @ eg as a new simple upper bound for val.

The same holds for requirements such as val @ e < UB, where eg is a factor which must be
combined with val using @, because we do not assume the existence of a difference operation ©
inverse of .

In the end, we need to be able to enforce complex requirements such as eg @ val ©eg < UB or
LB < eg ®val ® eq. Furthermore, factors eg and eq, may not even be exactly known. Only lower
and upper bounds lbg and ubg on eg and lower and upper bounds lbg and ubg, on eg may be
available. In order to manipulate constant factors only (except for the value val to be computed),

one can impose the following weaker requirements:
(LB < ub® ® val B UbéB) A (lb@ ® val B lb@ =< UB) (81)

This leads us to define the notion of complex bounds.

Definition 8.10. A complex bound is a tuple (LB,UB, lbg, ubg, lbg, ubg) such that LB < UB,

150 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

lb® j Ub®, and lb@ j Ub@.

Informally, imposing a complex bound (LB, UB, lbg, ubg, lbg, ubg) on a quantity val means
imposing Equation 8.1. Thanks to complex bounds, some branches of the search space may be cut.
That is to say, if a branch of the structured tree must compute val(c, A, V, ®) while satisfying a
complex bound B, then the exact value of val(c, A, V, ®) is not needed if B is proved to be violated.

In order to represent this, we define the notion of bounded evaluation.

Definition 8.11. Let B = (LB,UB, lbg, ubg, lbg, ubg) be a complex bound. An evaluation of
val(c, A, V, ®) bounded by B, is a couple (Ib,ub) € E? such that Ib < val(c, A, V,®) < ub, and such
that (Ib = ub) V (Ibg @b lbg = ubg ® ub® ubg) V (LB = ubg @ ub®ubs)V (UB < lbgy ® b lbs,).

In other words, an evaluation of val(c, A, V, ®) bounded by B must provide us with lower and

upper bounds b, ub on val(c, A, V, ®@), such that one of the following conditions holds:
1. 1b = ub, i.e. we have the exact value of val(c, A, V, D);

2. lbg ®@1b® lbg = ubg ® ub @ ubg: in this case, one can infer that eg ® val(c, A, V,®) G eg =
lbg @10 bg = ubgy @ ub® ubg. Informally, this means that whatever the exact local value of
val(e, A, V, ®@) is, knowing Ib and ub suffices to ensure that a unique global degree is obtained

after combination with the rest of the problem;

3. LB » ubg ® ub @ ubg, i.e. the upper bound ub proves that val(c, A, V, ®) does not satisfy

the requirements imposed by B5;

4. UB = lbg @ lb @ lbg, i.e. the lower bound lb proves that val(c, A, V, ®) does not satisfy the

requirements imposed by B.

8.4.4 Algorithm definition

In order to specify a structured tree search algorithm using bounds and caching, we use several

functions, which satisfy some specifications:

e A main function called BTD-mcdag(), which returns the answer Ans(Q) to a query Q.

e A function bound(c, A, V,®,valy), which returns a pair (Ib, ub) such that Ib < val(c, A, V,
®) < ub. Parameter valg is an additional parameter which will be combined with [b and ub
after the execution of function bound. It can be used to avoid computing too precise bounds
when not needed: for example, if valy = O, then (Ib,ub) = (L, T) is sufficient to infer that
valg ® b = valyg ® ub = 0.

e Three functions evalClusterMin(c, A, V, ®, B), evalClusterMaxz(c, A, V, ®, B), and evalCluster-
Plus(c, A, V,®,B), which compute an evaluation of val(c, A, V, ®) bounded by the complex

bound B. We use the generic notation evalCluster-&¢ to denote one of these functions.

e A function evalSons(c, A, ®,B), which computes an evaluation of val(c, A, (), ®) bounded by
B. Tt is called evalSons because computing val(c, A,), ®) requires computing the combination

of the values of the son clusters of c.

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 151

A function satisfying its specifications is said to be sound and complete. A function satisfying
its specifications for all clusters ¢ of depth h is said to be sound and complete for clusters of depth
h (the depth of a cluster being the size of the longest path from the root of the MCDAG to ¢). We

informally introduce each function and then establish formal soundness and completeness results.

Function BTD-mcdag (Figure 8.5) Given the root r of a MCDAG, BTD-mcdag() computes
(1b, ub) «— evalCluster-®" (r, 0, V (r), ®(r), By), using complex bound By = (L=, TT, 15, 15,0g,05).
If evalClusterMin, evalClusterMaz, and evalClusterPlus satisfy their specifications, then (Ib, ub) is
an evaluation of val(r, 0, V(r), ®(r)) bounded by By. As val(r,, V(r), ®(r)) = Ans(Q) (cf. Propo-
sition 8.5(a) page 144), (Ib,ud) is an evaluation of Ans(Q) bounded by By. It can easily be shown

that this means that (b = ub = Ans(Q), because By is an “empty” requirement.

BTD-mcdag|()

begin
r « root(MCDAG)
(Ib, ub) «— evalCluster- &" (r,0, V(r),®(r), (L™, T, 15,15,0r,05))
return (Ib)

end

Figure 8.5: Main function: BTD-mcdag.

Function bound This function can simply return (L, T) as the lower and upper bounds on
a quantity val(e, A, V, ®). However, more advanced versions can obviously be defined, thanks to

techniques discussed in Section 8.6.

Function evalClusterMax (Figure 8.6) This function must return an evaluation of val(c, A, V,
®) bounded by B. If V' is empty, then the bounded evaluation is provided by evalSons. Otherwise,
the algorithm chooses an unassigned variable x € V' and computes the set ®¢ of scoped functions
whose scope is assigned if x is assigned. Aswval(c, A, V, ®) = max,egom(z) val(c, A.(z,a), V — {z}, @),
we successively evaluate each val(c, A.(z,a).V—{z}, ®) = (®°,ca, ¢(A.(z,a)))®@val(c, A.(x,a), V-
{z},® — D) (while loop).

Informally, the algorithm is designed so that at each iteration of the while loop, (Ib,ub) is
an evaluation of max,eqom(z)—aval(c, A.(x,a),V —{z}, ®) bounded by B, where d is the set of
values of z which have not been considered yet. This property holds at the beginning, where
(Ib,ub) = (L, 1) and dom(x) —d = 0.

At each iteration, a value a € d is considered. The combination of the scoped functions in ®q
gives a value valy. A lower bound /b’ and an upper bound ub’ on val(c, A.(z,a),V — {z}, ® — Dy)
are computed thanks to the bound function. This implies that valy ®° b and valy ®° ub’ are
respectively lower and upper bounds on wal(c, A.(z,a),V — {x},®). If these lower and upper
bounds do not define a bounded evaluation of val(c, A.(z,a),V — {z}, ®) (test in the “if” block),
then a more precise evaluation of val(c, A.(x,a),V — {x}, ®) is sought, using an updated complex
bound which depends on the combination operator used by the max-cluster.

After the “if” block, a bounded evaluation of val(c, A.(x,a),V — {z}, @) is available. Lower

and upper bounds [b and ub are updated, and the max-cluster may tighten lower bound LB’.

152 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

The iterations of the while loop are stopped if all values of z have been considered (case d =),
if the requirements cannot be satisfied (case LB’ »= UB), or if the exact value of val(c, A,V, ®)
is known (case [b = T, which implies that b = ub = wval(c, A,V,®) = T). If some values a in
dom(x) have not been considered during the iterations of the while loop, then, as no upper bound
on val(c, A.(x,a),V — {z}, @) is available, ub is set to T. Finally, (Ib, ub) is returned.

evalClusterMax(c, A, V, ®, (LB,UB, lbg, ubg, lbe, ubg))

begin

if (V =0) then return (evalSons(c, A, ®, (LB,UB, lbg, ubg,lba,ubg)))

else

Choose z € V

d «— dom(z)

o — {p €D, sc(p) N (V —{x}) =0}

(b, ub) — (L, 1)

LB «— LB

while ((d# 0) A (LB’ < UB) A (Ib # T)) do

Choose a € d

d—d—{a}

valy «— ®@yea, p(A.(z,a))

(1o’ ,ub") < bound(c, A.(z,a),V — {z}, ® — ®g, valo)

if (LB’ < (ubg @ (valp @°ub’)) @B ubg) A (lbg @ (valy @° 1b")Blbey < UB) A (valo@°1V #

valp @° ub") A (Ibg & (valo @° 1) @ lbey # ubg & (valyp @° ub') ® ubg)) then
if ®° =® then B « (LB',UB,valy ® lbg,valy ® ubg, lba, ubg)
else B « (LB',UB,lbg,ubg,lbg ® lbgy & valy, ubg ® ubg ® valy)
(It',ub") <+ evalClusterMax(c, A.(z,a),V — {z},® — o, B’)

ub «— max(ub, valy @ ub")

b «— max(lb, valo ®°1b")

| LB — max(LB',lbg @ lb® lbe)

if (d #0) then ub«— T
| return ((b,ub))

end

Figure 8.6: Bounded evaluation of a max-cluster.

Function evalClusterMin (Figure 8.7) Function evalClusterMin(e, 4, V, ®,) must return
an evaluation of val(c, A,V,®) bounded by B. Its pseudo-code is similar to evalClusterMaz.
The unique difference is that at each iteration of the while loop, (Ib,ub) is an evaluation of
MiNgedom (z)—a val(c, A(x,a),V — {z}, @) bounded by B (hence the initialization (Ib, ub) « (T, T)).
Moreover, instead of strengthening the global lower bound LB’, evalClusterMin may strengthen

the global upper bound U B’ in order to find assignments with an ever worse value.

Function EvalClusterPlus (Figure 8.8) The evaluation of a cluster having @ as an elimi-
nation operator is different from max or min clusters evaluations when @ ¢ {min, max}. If the
set of unassigned variables is empty, evalClusterPlus(c, A,V,®,B) must return an evaluation of
val(c, A, D, ®) bounded by B. Such an evaluation is provided by evalSons(c, A, ®, B).

Otherwise, we choose a variable x € V. For each value a in dom(x), a lower bound tablb[a] and
an upper bound tabubla] on val(c, A.(x,a),V — {x}, @) are computed. This enables us to initialize
a lower bound /b and an upper bound ub on val(c, A, V, ®) = Gacdom(x) val(c, A.(z,a),V — {z}, ®).

As long as a bounded evaluation of val(c, A, V,®) is not available, the while loop is pro-

cessed, i.e. a value a not yet considered in dom(z) is chosen. A more precise evaluation of

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 153

evalClusterMin(c, A, V, ®, (LB,UB, lbg, ubg, lbe, ubg))

begin

if (V =0) then return (evalSons(c, A, ®, (LB,UB, lbg, ubg, lbg, ubg)))

else

Choose z € V

d < dom(z)

o — {p €D, sc(p) N (V —{x}) =0}

(Ib,ub) — (T, T)

UB —UB

while ((d # 0) A (LB < UB') A (ub #1)) do

Choose a € d

d—d—{a}

valo «— ®@yea, p(A.(z,a))

(It', ub") + bound(c, A.(z,a),V — {z}, ® — &g, valy)

if (LB < (ubg ® (valo ®@° ub)) Dubg) A (lbg @ (valy @° Ib") B by < UB') A(valo@°1V #

valp @° ub") A (Ibg & (valo @° 1) @ lbey # ubg & (valyp @° ub') ® ubg)) then
if ° =® then B’ « (LB,UB’,valy ® lbg, valy ® ubg, lbg, ubg)
else B « (LB,UB’,lbg,ubg, lbg ® lbgy & valp, ubg & ubg & valy)
(It',ub") < evalClusterMin(c, A.(z,a),V — {z},® — o, B')

ub < min(ub, valo ®° ub")

Ib < min(lb, valy @° 1b")

| UB' — min(UB', ubg ® ub ® ubg)

if (d#0) then b — L

| return ((Ib,ub))

end

Figure 8.7: Bounded evaluation of a min-cluster.

val(e, A.(xz,a),V — {x},®) is computed using an updated complex bound B’. The computa-
tion of this new bound uses lb_, and ub_,, which are lower and upper bounds respectively
over ®y'edom(z)—{a} Val(c, A.(x,a"),V —{z}, ®). Once a bounded evaluation of val(c, A.(z,a),V —
{z}, ®) is available, Ib and ub are updated, as well as variable res. It can be shown that when the
conditions of the while loop hold, res always equals ©,cdom(z)—d val(c, A.(z,a),V — {x}, ®).

If the conditions of the while loop are not satisfied, then this exactly means that (Ib, ub) is an
evaluation of val(c, A, V, ®) bounded by B, hence (Ib, ub) is returned.

Function evalSons (Figure 8.9) This function must return an evaluation of val(c, A, (), ®) =
(®°ped ©(A)) @ (2ses0ons(c) val(s)(A)) bounded by B = (LB, U B, lbg, ubg, lbg, ubg,).

It does not record the exact value of val(s)(A*7¢) for each son cluster s € Sons(c) using the
caching structure of algorithm RecTS-mcdag, since because of pruning, backtrack can occur be-
fore the exact value of val(s)(A'*7¢) is known. The caching structure instead records a lower bound
denoted LB(s, A}*"¢) and an upper bound denoted U B(s, A*"¢) on val(s)(A+*7¢). These bounds
are initialized with | and T respectively, and they always satisfy LB(s, A'*1¢) < val(s)(At57¢) <
UB(s, A¥*7¢). If LB(s, A'*N¢) = UB(s, A}*"¢), then val(s)(A'*7¢) is known. The data structures
used to record LB(s, A¥"¢) and UB(s, A}*"¢) can be sparse, since for example Binary Decision
Diagrams [1, 21] or hash tables can be used instead of large tables in which many recorded values
equal 1 or T. Moreover, it is possible to forget some bounds when the memory size available

becomes too small.

Function evalSons works as follows. If Sons(c) = 0, then val(c, A,0, ®) = @“,ca ¢(A) and it

154 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

evalClusterPlus(c, A, V, ®, (LB,UB, lbg, ubg, lbg, ubg))

begin

if (V =0) then return (evalSons(c, A, ®, (LB,UB, lbg, ubg, lbg, ubg)))
else

Choose z € V

o — {p €, sc(p) N (V —{x}) =0}

foreach a € d do (tablbla], tabubla]) < bound(c, A.(z,a),V — {z}, P, 1E)
do — {a € dom(z), tablbla] = tabubla]}

res «— @qed, tablbla)

d «— dom(z) — do

(1b,ub) «— (res @ (Dacatablblal), res ® (Pacaq tabublal))

while (LB < ubgp ® ub @ ubg) A (Ibg ® Ib® b < UB) A (Ib £ ub) A (Iby @ Ib @ lbs #
ubg ® ub @ ubg)) do

Choose a € d

d—d—{a}

valy «— ®peca, p(A.(z,a))

(Ib-,,ub-,) < (res® (Darcqtablbla’]) ,res @ (Dareq tabubla’]))

B' «— (LB,UB,lbg ® valy,ubgy @ valo, lbgy @& (Ibg ® lb-q), ubg @ (ubg @ ub-q))
(lbq,ubs) < evalClusterPlus(c, A.(z,a),V — {z}, ® — &0, B)

(1b, ub) «— (Ib—a ® (valp & lba), ub-q ® (valo @ uby))

res «— res ® (valo ® lby)

return ((Ib, ub))

end

Figure 8.8: Bounded evaluation of a & cluster.

is straightforward that the pair returned is (Ib, ub) = (®°,ca ©(A), ®°pca p(A)).

Otherwise, a son cluster s is considered and a bounded evaluation of val(s)(A) is sought. We
first compute lower and upper bounds lb-; and ub-; on (2°,ca P(A)) (D5 e Sons(c)—{s} val(s')(A)),
i.e. on the part of the problem which does not depend on s. We use lb—; and ub_s as parameters
to compute a complex bound to be imposed on the function in charge of providing a bounded
evaluation (Ibs, ubs) of val(s)(A) = val(s, A,V (s) — V(c),®(s)). Once (Ibs,ubs) is available, the
recorded lower and upper bound on val(s)(A) are updated. More precisely, as both val(s)(A) = lbs
and val(s)(A) = LB(s, A7), we can infer that val(s)(A) = max(lbs, LB(s, A*"¢)). Simi-
larly, as both wval(s)(A) =< ubs and val(s)(A) =< UB(s, A7), we can infer that val(s)(A) <
min(ubs, UB(s, A'*7¢)). This explains the updating of LB(s, A'**"¢) and UB(s, A»*"¢). A local
variable res is updated too, and it can be shown that if the conditions of the while loop are satis-
fied, then we have res = (®°,ca ©(A)) @ (®°seSons(c)—s val(s)(A)). Lower and upper bounds b
and ub on val(c, A,), ®) are also updated, using lb—, ub_,, LB(s, A**7¢), and UB(s, A7),

When the conditions of the while loop are not satisfied, this exactly means that (Ib, ub) is an
evaluation of val(c, A,), ®) bounded by B, hence (Ib, ub) is returned.

Soundness and completeness of algorithm BTD-mcdag

Lemma 8.12. If function bound is sound and complete and if evalSons is sound and complete

for clusters of depth h, then evalClusterMax is sound and complete for clusters of depth h.

Lemma 8.13. If function bound is sound and complete and if evalSons is sound and complete

for clusters of depth h, then evalClusterMin is sound and complete for clusters of depth h.

8.4. A STRUCTURED TREE SEARCH USING BOTH BOUNDS AND CACHING 155

evalSons(c, A, ®, (LB, UB, lbg, ubg, lbg, ubg))
begin
So « {s € Sons(c), LB(s, A'*) = UB(s, A'*)}
res — (@ pes 9(A)) ®° (& ses, LB(s,A'))
S« Sons(c) — Sy
(Ib, ub) « (res @° (®@°secs LB(s, A'*)),res @° (2°,c5 UB(s, A}%)))
while (LB < ubg@ub®ube)A(lbe@iblbs < UB)A(Ib £ ub)A(lbe@1b®lbe # ubs@ubdubs))
do
Choose s € S
S — S —{s}
(Ib—s, ub—s) «— (res ®° (®Csles LB(s, Ais,)) ,res ®° (®csles UB(s', Ais,)))
if ® = ® then B « (LB,UB,lb-s ® lbg, ub—, ® ubs, lbs, ube)
else B « (LB,UB, lbs,ubg, lbs, lbe ® lbg @ lbs, ube @ ubg @ ub-,)
(Ibs,ubs) «— EvalCluster-®°(s, A,V (s) — V(c), ®(s), B)
LB(s, A**) « max(lbs, LB(s, A'*))
UB(s, A'*) « min(ubs, UB(s, A**))
(Ib,ub) — (Ib—s ®° LB(s, A'®), ub_s @ UB(s, A**))
| res «— res®° LB(s, A'®)
return ((1b, ub))

end

Figure 8.9: Bounded evaluation of the sons of a cluster.

Lemma 8.14. If function bound is sound and complete and if evalSons is sound and complete

for clusters of depth h, then evalClusterPlus is sound and complete for clusters of depth h.
Lemma 8.15. Function evalSons is sound and complete for clusters of maximal depth.

Lemma 8.16. If function bound is sound and complete, if evalClusterMin, evalClusterMax,
and evalClusterPlus are sound and complete for clusters of depth h, then evalSons is sound and

complete for clusters of depth h — 1.
Lemma 8.17. If function bound is sound and complete, then evalSons is sound and complete.

Theorem 8.18. If function bound is sound and complete, then algorithm BTD-mecdag is sound

and complete, i.e. it returns Ans(Q).

Proposition 8.19. Let M be a MCDAG associated with a query Q = (Sov, (V,G, P,0,U)). Then,
the time complexity of algorithm BTD-mecdag is O(m - p - d"), where h is the MCDAG-height, p
is the mazimum number of parents of a node in the MCDAG (=1 if the MCDAG is a MCTree),
and m = |[PUU] in the semiring case and m = (1+|P|)(14|U|) in the semigroup case. The space
complexity is O(N - s -d®), where N is the number of clusters in the MCDAG and s is the size of

the largest separator.

The theoretical time complexity of algorithm BTD-mcdag is worse than the theoretical time
complexity of algorithm RecTS-mcdag, and both algorithms have the same space complexity. 3
However, this does not mean that RecTS-mcdag always outperforms BTD-mcdag, since these
elements are just theoretical complexities. In practice, a tree search using bounds, despite its worse

theoretical time complexity, often outperforms variable elimination algorithms.

3. When the set E of the MCS (E,®,®) is known to be finite, it is possible to show that the time complexity
becomes O(m - |E| - d**1), where w is the width of the MCDAG.

156 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

Note that algorithm BTD-mcdag generalizes both the alpha-beta algorithm used in game
theory and the BT D algorithm used to solve CSPs and VCSPs. It can be used to solve stochastic
SAT problems, stochastic CSPs, QBFs, QCSPs, influence diagrams, factored MDPs, possibilistic
influence diagrams, MAP (Maximum A Posteriori hypothesis) problems, or probabilistic planning
problems. It suffices to replace ®° and ¢ by their instantiations in each of these formalisms. This

shows the interest of defining generic algorithms.

8.5 Using division and difference operators

Complex bounds make it possible to define a structured tree search using bounds and caching.
Nevertheless, using complex bounds is not free, because for each test involving the global lower
bound LB or the global upper bound UB, one ® operation and one & operation are performed,
in addition to the comparison operation testing whether LB or UB is satisfied.

This section shows how additional algebraic assumptions enable us to use simple bounds
(LB,UB) and simple comparisons such as (LB < ub) A (Ib < UB), instead of complex bounds
(LB,UB,lbg, ubg, lbg, ubg) and complex comparisons such as (LB < ubg ® ub & ubg) A (lbg ®
b lbg < UB).

Basically, the additional algebraic assumptions allowing us to use simple bounds are related to
the existence of inverse operations for ® and @. They are similar to the assumptions used in VCSPs
that are said to be fair [25] or in semiring-based CSPs enhanced with a division operation [9]. They

can be enounced as follows:

e Additional axiom on @, denoted “Az®”:

For all z,y € F such that © <y, the set {z € F |y = 2@ x} has a maximum element denoted

y © x. In other words, we assume that there is a maximal difference of y and x.

e Additional axiom on ®, denoted “Az®”, with two disjoint versions:

— Az9: either 1g = T and for all #,y € E such that x <y, the set {2 € E|z = z® y}

has a maximum element denoted x @ y (i.e. there is a maximal division of z and y).

— Az$:or1p # T and T+ = T4 and for all x,y € E such that y ¢ {0g, T}, there exists
a unique z € F, denoted x @ y, such that x =y ® z

We also adopt the conventions L™ Cx =1~, TT S =T, L= 0z =L",and TT@x =TT for
allx € E.

Axioms Az® and Az© are satisfied in several usual cases. For example, the extra assumption on
@ holds with (E, <,&) = ([0, +00], <,+), (E,=,®) = ([0, +00], >, min), or (E,=,&) = ([0,1], <
,max). The extra assumption on ® is satisfied with (F,<,®) = ([0, +o0],>,+) or (E,=,®) =
([0,1], <, min) for the first case (1g = T), and with (F, X, ®) = ([0, +00], <, x) for the second case
(Ig#T).

As shown in Table 8.1, as soon as Ax® and Az® hold, it is possible to avoid using complex

bounds. This table shows that given a quantity val to be computed, requirements such as a@val <

4. This means that T is not initially is the MCS and is added as described in Section 8.4.1 page 147.

8.5. USING DIVISION AND DIFFERENCE OPERATORS 157

UB, a®val = LB, a®val < UB, or a®uval > LB can be transformed into requirements for which
it suffices to compare val with an updated lower bound LB’ or with an updated upper bound U B’.

For example, row 1 imposes the requirement a ®val < UB. If UB =< a, then, as a = a®0g =
o @ val, we can infer that the requirement is never satisfied. Hence, we can impose an equivalent
unsatisfiable requirement on val, written as val <1 7. As for row 2, if « < UB, then UB © « is
defined and a« @ val < U B implies that val < UB6 « (because if val = UBSa, then val®a = UB
by monotonicity of ®). In general, the inverse implication (val < UB © «) — (o ® val < UB)
does not hold, which means that the complex requirement o & val < UB can yield more pruning
than the simpler requirement val < UB & a. However, as soon as @ is strictly monotonic, the
equivalence (val < UB © a) < (o @ val < UB) holds whenever o < UB.

In both cases, rows 1 and 2 enable us to replace o @ val < UB by val < UB’, where UB' is a
new simple upper bound.

For row 6, the requirement o ® val < UB is imposed and aw < UB holds. Then, as 1g = T
with Az{, we can infer that o ® val < a ® 1p < UB, hence the requirement is always satisfied.

This is equivalent to impose val < UB’ with UB’ = T as a new upper bound.

| Case | Complex requirement | Condition | Simpler requirement |

Ax® a®Pval < UB UB < « val <1~

a<UB val < UB 6 «
LB < a®val LB <« val =1~

a=LB val = LB © «

A:c1® a®uval < UB UB < « val < UB Q «
a<UB val < TT

LB < a®wval LB <« val = LB © «
a=<LB val = T+

Axd a®uval < UB a¢g{0g T} val < UB © o
a=0g val < TT

LB < a®val a¢{0g, T} val = LB O «
(a=0g)AN(LB#17) val = TT
(a=0g)AN(LB=1") val =17~
a=T val =1~

Table 8.1: From complex bounds to simple bounds using difference and division operations, for
(a,val) € E? and LB < UB. For Az, the requirement o ® val < UB together with the case
o = T is not considered because it will never be used in practice (roughly speaking, when Ax$
holds and when o ® val < UB will be required required, o will always be a lower bound on some
quantity in F — {T}, hence it does not equal T).

In fact, in order to be simpler and to be always able to write (a®wval < UB) — (val < UB©S«)
and (LB < a ®val) — (val = LB © «), it suffices to extend the definition of © by y © x =1~
whenever y < z. In order to write (o ® val < UB) — (val < UB @) and (LB < o ® val) —
(val = LB @ a) when Azf holds, it suffices to extend the definition of @ by @y = T+ whenever
y < x. In order to write (¢ ®@wval < UB) — (val < UB®a) and (LB < a®wval) — (val = LB «)
when Ax2® holds, it suffices to extend the definition of @ by x @0 = TTifa 4A1~, 1L~ @0 =1,
andz@ T=1L"ifz<T.

Thanks to Az® and Az®, new algorithms using simple bounds can be specified. Simple bounds

enable us to define a much simpler notion of bounded evaluation.

Definition 8.20. An evaluation of val(c, A, V, ®) bounded by a simple bound (LB,UB), is a couple

158 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

(Ib,ub) € E? such that b < val(c, A, V,®) < ub and (Ib=ub) V (UB < 1b) V (ub < LB).

In other words, an evaluation of val(c, A, V, ®) bounded by (LB, UB) is simply a pair of lower
and upper bounds on wval(c, A, V, ®) which either provides the exact value of val(c, A, V,®), or
proves that one of the bounds is not satisfied.

The new functions evalClusterMax(c, A, V, ®, LB, U B), evalClusterMin(c, A, V, ®, LB, UB),
and evalClusterPlus(c, A, V, ®, LB, U B) are required to compute an evaluation of val(c, A, V, ®)
bounded by (LB,UB), and the new function evalSons(c, A, ®, LB,UB) is required to compute
an evaluation of val(c, A, 0, ®) bounded by (LB,UB). The new main function is called BTD-

answerQ().

Function BTD-answerQ() (Figure 8.10) This main function simply computes an evaluation

of the root cluster using (L=, TT) as inviolable simple bounds. Therefore, it gets lower and upper
bounds (Ib, ub) such that Ib = ub = val(r,0, V (r), ®(r)), i.e. Ib=ub= Ans(Q).

BTD-answerQ()

begin
r « root(MCDAG)
(1b, ub) + evalCluster- &" (r,0,V(r),®(r), L=, T1)
return (Ib)

end

Figure 8.10: Main function: BTD-answerQ.

Other functions (Figures 8.11 to 8.14) The other functions are similar to the previous ones.
The differences are the stopping conditions determining whether a bounded evaluation is available,
and the use of division and difference operations to compute new simple bounds. The instructions
associated with the handling of simple bounds are underlined. Given a cluster ¢, we denote by ©°
the operation @ if ®° = ®, and © if ®° = @.

For example, for evalClusterMaz, the new bounds (LB”,UB") computed when further compu-
tations are needed simply mean that a complex requirement such as LB’ < valp®“val(c, A.(z,a), V —
{z},® — ®y) < UB is transformed into the simpler requirement LB’ @°valy < val(c, A.(z,a),V —
{z},® — @) < UB @ valp. The modification of evalClusterMin is similar.

As for evalClusterPlus, b, and ub-, are respectively lower and upper bounds on the quantity
Do’ edom(z)—{a} val(c, A(x,a"),V — {x},®). We can impose on wal(c, A.(x,a),V — {x},®) the
requirements LB < val(c, A.(z,a),V —{z}, @) ®ub_, and val(c, A.(z,a),V —{z}, ®)®lb-, < UB.
Using val(c, A.(z,a),V — {z},®) = valy ® val(c, A.(x,a),V — {z},® — Dy), these requirements
can be transformed into the weaker but simpler requirements val(c, A.(z,a),V — {z}, & — ®¢) >
(LB © ub-,) @ valp and val(c, A.(x,a),V — {z},® — ®y) < (UB & lb-,) @ valp. This explains the
new simple bounds used.

Concerning evalSons, the complex requirements LB < ub_s ®° val(s, A,V (s) — V(c), ®(s))
and b5 ®@° val(s, A,V (s) — V(c),®(s)) < UB can be transformed into the simpler requirements
val(s, A,V (s) — V(e),®(s)) = LB @° ub-s and val(s, A,V (s) — V(c),®(s)) < UB @° lb-s, hence

the new bounds used.

8.5. USING DIVISION AND DIFFERENCE OPERATORS

159

evalClusterMax(c, A, V,®, LB,UB)

begin

if (V =0) then return (evalSons(c, A, ®, LB,UB))
else

Choose z € V

d < dom(z)

Do — {p € @, sc() N (V — {z}) = 0}

(Ib,ub) — (L, 1)

LB — LB

while ((d # 0) A (LB’ < UB) A (Ib# T)) do

Choose a € d

d—d—{a}

valy — ®°yea, p(A.(x,a))

(16", ub") + bound(c, A.(z,a),V — {z}, ® — &g, valy)
if ((LB' < valo®@°ub’) A (valo @°1Y" < UB) A (valo @° 1" # valp @° ub')) then
L (LB”,UB") « (LB’ ©° valp, UB ©° valp)

(It',ub") — evalClusterMax(c, A.(z,a),V — {z},® — ®o, LB",UB")
ub «— max(ub, valo @° ub’)
Ib + max(lb, valo @° Ib")
| LB’ «— max(LB',1b)
if (d#0) then ub— T
| return ((Ib,ub))

end

Figure 8.11: Bounded evaluation of a max-cluster using simple bounds.

evalClusterMin(c, A, V,®, LB, UB)
begin
if (V. =0) then return (evalSons(c, A, ®, LB,UB))
else
Choose z € V
d «— dom(x)
o — {p €D, sc(p) N (V —{x}) =0}
(Ib,ub) — (T, T)
UB'—UB
while ((d # 0) A (LB < UB') A (ub #1)) do
Choose a € d
d—d—{a}
valy «— ®@°yea, p(A.(z,a))
(1o’ ,ub") — bound(c, A.(z,a),V — {z}, ® — Po, valo)
if ((LB < (valo®°ub’) A (valo @' < UB') A (valo @° b’ # valo ®° ub’)) then
(LB”,UB") « (LB ©° valg, UB’ ©° valp)
L (It',ub") < evalClusterMin(c, A.(z,a),V — {z},® — &, LB", UB")
ub «— min(ub, valo @ ub")
b« min(lb, valp ®°1b")
| UB' — min(UB’, ub)
if (d#0) then b — L
| return ((b,ub))

end

Figure 8.12: Bounded evaluation of a min-cluster using simple bounds.

160 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

evalClusterPlus(c, A,V,®, LB,UB)

begin
if (V =0) then return (evalSons(c, A, ®, LB,UB))
else
Choose z € V

Do — {p € ®, sclp) N (V — {z}) = 0)

foreach a € d do (tablbla],tabubla]) « bound(c, A.(z,a),V — {z},®,1E)
do «— {a € dom(x), tablbla] = tabubla]}

res «— Gaed, tablbla)

d — dom(z) — do

(Ib,ub) — (res @ (Pacatablblal), res B (Paea tabublal))

while ((LB < ub) A (Ib < UB) A (Ib # ub)) do

Choose a € d

d—d—{a}

valy — Qgeca, p(A.(x,a))

(Ib-,,ub-,) < (res® (Darcqtablbla’]) ,res ® (Dareq tabubla’]))

(LB, UB’) «— ((LB & ub-,) @ valo, (UB & 1b-,) @ valp)

(Ibg,ub,) < evalClusterPlus(c, A.(z,a),V — {z}, ® — &0, LB',UB’)
(1b,ub) < (lb-a & (valp @ lba), ub-a & (valo @ uba))

| res «—res @ (valo @ lba)

| return ((b,ub))

end

Figure 8.13: Bounded evaluation of a & cluster using simple bounds.

evalSons(c, A, ®, LB,UB)
begin
So « {s € Sons(c), LB(s, A'*) = UB(s, A'*)}
res — (®°pen p(A)) @ (®°ses, LB(s, A*))
S «— Sons(c) — So
(Ib,ub) «— (res @° (®°5es LB(s, AY)), res ®° (®°,c5 UB(s, A'*)))
while ((LB < ub) A (Ib < UB) A (Ib # ub)) do
Choose s € S
S—S—{s}
(Ib—s, ub—s) «— (res®° (®05/65 LB(S',ALS,)) ,res ®° (@Cs,es UB(s',AlS,)))
(LB’,UB') — (LB 0° ub_., UB 0° Ib_,)
(Ibs, ubs) < EvalCluster-&°(s, A,V (s) — V(c), ®(s), LB, UB’)
LB(s, A**) « max(lbs, LB(s, A**))
UB(s, A'®) « min(ubs, UB(s, A'*))
(Ib,ub) «— (Ib—s ®° LB(s, A*®), ub_s @ UB(s, A**))
| res «— res®° LB(s, A'®)
return ((1b, ubd))

end

Figure 8.14: Bounded evaluation of the sons of a cluster using simple bounds.

8.6. COMPUTING BOUNDS BY INFERENCE MECHANISMS 161

Theorem 8.21. If function bound is sound and complete, then BTD-answerQ is sound and

complete too, i.e. it returns Ans(Q).

8.6 Computing bounds by inference mechanisms

This section defines a catalog of techniques which can be used to provide lower and upper bounds
on the answer Ans(Q) to a query Q. They are also interesting to compute bounds on a quantity
such as val(c, A, V, ®), because val(c, A, V, @) can actually be seen as a query too, if we recompose
the scoped functions and the eliminations which are in the descendants of cluster ¢ in the MCDAG.

The techniques presented enable the bound function to return bounds better than poor (L, T).

Computing bounds by propagation A first possible mechanism is to propagate information,
in the spirit of constraint propagation [84]. The algebraic structure offers two specific elements,
1=0g and T. The first is an annihilator for ®, and the second is an annihilator for @. Hence,

given a query Q = (Sov, (V,G, P,0,U)), it is possible to propagate information as follows:

e In the semiring case, where Ans(Q) = Sov(®ecpuvy), we can enforce any level of consistency
(forward checking, arc consistency, k-consistency...) in order to propagate degree Og. This
can prune the search space by removing values in the current variables domains. As with usual
constraint propagation techniques, once the domain of a variable is empty, the algorithm can

backtrack because the result of the currently explored subtree then necessarily equals 0.

e In the semigroup case, where Ans(Q) = Sov((®pepp) @ (Bpecrp)), we can proceed as follows.
First, as in the semiring case, degree Og can be propagated amongst plausibility functions
in order to remove values in the variables domains. Second, value T can be propagated
among utility functions. Backtrack can then occur if we prove that the current assignment
A satisfies either ®,epp(A) = 0p, or (Rpepp(A) # 0g) A (Bpcup(A) =T).

As it has been done for QCSPs, it should be possible to adapt Quantified Arc Consistency
(QAC [15]) to the MCS case. This could lead to better bounds. Works concerning this kind
of generalized arc-consistency are not presented in this thesis for maturity reasons. The main
difficulty resides in the presence of @ eliminations when @ ¢ {min, max}.

Works on soft local consistencies [84, 11, 25, 79] for semiring CSPs or VCSPs could also be
considered in order to prune the search space by propagating all elements of E (and not only Og
or T).

Computing bounds by switching quantifiers

Proposition 8.22. Let ¢ be a scoped function taking values in a totally <-ordered set E. let S

and S’ be two disjoint sets of finite domain variables. Then,

max min =< minmax
S S’ vo= S’ S ¥
max® e =X @Gmaxe
S s/ s’ S
@ min min @
§ Y U5 Y

PN

162 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

By relaxing the constraints on the elimination order, this technique can help to reduce the
tree-width (or induced-width) of the considered computation.

For example, in order to get bounds on val = ming,, . ., Mmaxy(Aic[1 n)Pa;,y), ONE can write
val = Ib, with [b = max, ming, . ., (Aig[1,n]¥Pz:y)- The tree-width associated with the computa-
tion of wal is n, because y is necessarily eliminated first, whereas the tree-width associated with
the computation of (b is 1. Therefore, even if the quantity to be bounded is hard to compute,

computing a bound by switching some eliminations can be easy.

Computing bounds by relaxing quantifiers We continue the catalog of possible techniques
to compute bounds, with a technique consisting in replacing some quantifiers in the sequence of

eliminations to be performed. More precisely, this technique uses Proposition 8.23:

Proposition 8.23. Let (V,G, P,0,U) be a PFU network, and let ¢ € Cg(G) be an environment

component in G. Then, for every scoped function o,
min g X O((@peraneP) © ¢) < max

Together with the quantifier switching mechanism, this technique can give lower and upper

bounds on the answer to a query:

e In order to get a lower bound on Ans(Q) for a query @, it suffices to replace all max-
and @-eliminations by min-eliminations and to remove all plausibility functions from the
PFU network. For example, let us consider a query Q = (Sov, (V, G, P,,U)) where Sov =

min,, MaXy, , Oz, MaXy, By, Min,, and where P = {P, Py | 24,25} contains two local

Y

plausibility functions. We can write:

ATLS(Q) Z min min ¢ min & min(Pam |z2 @ Py | 24,8 O (®Ui€UUi))
r1 X2,X3 x4 T5 T L7
> min min ©(P,, |, ® min GB(PI6 | 20,2 @ Min(Dy, evls)))
L1 X2,T3 T4 x5 x7
> min min min min min mln(@U cvli)

T1 T2,T3 T4 T5 Ze

e Similarly, in order to get an upper bound on Ans(Q) for a query @, it suffices to replace all
min- and @-eliminations by max-eliminations and to remove all plausibility functions from

the PFU network. With the same query as above, we can write:

Ans(Q) = maxmax @ max @ maX(PML |22 ® Prg|as,zs @ (Bu,evUi))
xT7

T1 2,3 x4 T5 Tg

PN

max max (P, | ,, ® max GB(PI6 | 24,25 @ Max(®y,evUi)))
x7

T1 T2,T3 x4 zs5

< max max max max max max(EBU cvUi)
T To,ws w4 T w6
The key point which can make such a mechanism efficient in practice is that in order to obtain
the lower and upper bounds given above, we must compute a mono-operator sequence of elimi-
nations. As there are no constraints on the elimination order, the computation of b and ub can
be easy even if the initial problem is hard, all the more so, since the plausibility functions are

removed. For example, let us consider the influence diagram associated with the computation of

8.6. COMPUTING BOUNDS BY INFERENCE MECHANISMS 163

maxy,), o mMaXy, > o (Poy * Poy|zy,00 * Pry|as * (Usy oy + Usg + Usyzs)). Using MCDAGs, this
computation has a tree-width of 4. In order to compute Ib = ming, 4, 424,05 (Usr,5a T Uss + Uy, zs5)
and ub = MaXy, 2y 44,2405 (Usy,zs + Uzs + Usy zs), the tree-width is only 1.

For QBF's, the mechanism consisting in replacing min by max in order to get bounds has already
been used and proved to be efficient in practice [120]. The corresponding proposal defines a solver
which, at some steps during search, replaces V quantifiers by 3 quantifiers in order to get an upper
bound on a QBF, this upper bound being computed by using a SAT solver. The authors are not

aware of the use of such methods for stochastic CSPs or influence diagrams.

Mini-buckets [40] Mini-buckets are generic tools which can be used to approximate and bound
a computation to be performed, e.g. in constraint optimization or Bayesian networks. They were
shown to be very successful in practice on various problems.

The idea is to force an inference algorithm such as a VE algorithm to consider only a limited
number of variables simultaneously, which ensures a bounded computation time at the price of
giving only a bound on the exact value which should be computed. The number of variables which
can be considered simultaneously is a parameter of the mini-bucket technique. It defines a trade-off
between the quality of the bound obtained and its computation time.

For example, in order to compute maxy(Yz.y + ¢z,> + ©a.t), & VE algorithm needs to consider
four variables simultaneously. The mini-buckets technique can consist in writing maxg,(¢q,, +
Opz + Qo) = (Maxy @g) + (Maxy @g2) + (Max, @g¢). The right part of this inequality is an
upper bound computable by considering only 2 variables simultaneously. Similarly, in order to
obtain an upper bound on a quantity such as Y (@4 - @z,> - @ot) by considering at most two
variables simultaneously, it suffices to compute (>°, @uy) - O, Ya,z) - O, Pat)-

Transposed to the MCS algebraic structure, the mini-bucket technique can be described as in

Proposition 8.24.

Proposition 8.24. Let (E,®,®) be a totally ordered MCS having O as a minimum element. Let

w1, P2 be two scoped functions onto E. Then, for every set of variables S,

maxs(p1 ® 2) = (maxg 1) ® (maxs)
maxs(p1 @ p2) = (maxgepr) @ (maxs)
ming(p1 ® ¢2) = (ming 1) @ (ming ¢2)
ming(p1 @ ¢2) = (ming 1) & (ming ¢2)
Bs(p1 ®p2) = (Bsp1) ® (Bsp2)

Obtaining bounds by simplifying the algebraic structure It should also be possible to
reuse approaches modifying the agebraic structure at stake in order to obtain bounds on a given
quantity. As in [8], which introduces the notion of abstraction of semiring CSPs, the basic idea can
be to work on a transformed version of an initial problem (obtained via an algebraic transformation
preserving some properties and easier to solve), and then to bring some information back to the
initial problem.

A similar idea is developed in [30] for bounding the optimum value of a valued CSP. More
precisely, given an initial VCSP P expressed on a valuation structure S, it is possible first to

simplify it to obtain a VCSP P’ expressed on a simpler valuation structure S’, second to solve

164 CHAPTER 8. A GENERIC STRUCTURED TREE SEARCH

P’ and third to induce lower and upper bounds by bringing back some information to the initial

VCSP P. Such an approach is shown to be efficient both on random and real problems.

8.7 Integrating feasibilities

Again, feasibilities have been left apart in this chapter. But again, integrating them in the previous

scheme is possible. Two main mechanisms can be used:

e The first mechanism is easy and works as follows: when variable z is assigned with value a,
we can directly test whether A.(x, a) is feasible, for example by using a SAT solver in parallel
with the BTD algorithm. If A.(z,a) is not feasible, then another value of x is considered.
Otherwise, the search progresses normally. This first technique can be implemented by adding

a single line in the algorithm in order to test whether the current assignment is feasible.

e Second, one can maintain lower and upper bounds on the feasibility of the current assignment.
If the upper bound on this feasibility equals f, then the current assignment is not feasible
and the algorithm backtracks. If the lower bound on the feasibility degree equals ¢, then it
is sure that the assignment is feasible. Compared to the first method, this second technique
is harder to implement since it modifies the structure of the algorithm itself, but it has the

advantage of not solving a potentially hard satisfiability problem at each step of the search.

8.8 Summary and perspectives

This chapter has shown how a generic structured tree search using bounds can be defined to
compute the value of a MCDAG. The key points are the handling of multiple elimination operators
and the handling of bounds. Complexity results have also been provided. They can vary depending
on the amount of space used by the algorithm and are characterized by the MCDAG-width, the
MCDAG-height, or the maximum separator size.

In another direction, approximate algorithms using sampling and local search could also have
been considered: sampling when eliminations with + (4, and not @) are performed [87, 114], local
search when eliminations with min or max are performed [88]. This is one of the perspectives in
the quest for other generic approaches.

From a practical point of view, the algorithms developed in this chapter present several elements

whose influence remains to be studied:

e Heuristic for the choice of the variable to be assigned in the current cluster, heuristic for the

choice of a value for a variable, heuristic for the choice of a son cluster to be considered...

e Computation of bounds: some clues have been provided concerning the computation of
bounds, but there is still a lot to do in order to determine good settings (e.g. concerning the

degree of local consistency).

Many elements are well-known concerning these parameters in each of the formalisms subsumed
by the PFU framework. In order to get a better knowledge concerning their “generic” influence,
and also in order to test the practical efficiency of the algorithms defined, experiments are needed.

That is why we have developed a generic solver to answer generic PFU queries.

Chapter 9

A generic solver for answering

PFU queries

This chapter briefly introduces the solver developed to answer generic PFU queries. It first fo-
cuses on problems description formats and then briefly presents the generic implemented solver.
The main goal of this chapter is to convince the reader that the PFU framework is not just an

abstraction.

9.1 Description of problems

Before introducing the PFU solver, we describe how instances of PFU networks and PFU queries are
represented. An XML format has been defined, and some existing formats representing problems
in formalisms subsumed by the PFU framework can also be used. The XML format dissociates the
description of PFU networks and the description of queries, because several queries can be asked
on a given PFU network. The algebraic structure is not described as an XML file (more details in
Section 9.2).

9.1.1 XML representation of PFU networks

In order to specify an XML representation of PFU networks, it is important to note that we
dissociate functions from scoped functions. This distinction is done for conciseness reasons because
a function ¢ can be used by several scoped functions (S, ¢). Similarly, we explicitly define domains
as elements dissociated from variables, because a given domain can be used by several variables.
In fact, the XML representation used is close to the representation used in [16], which defines an
XML representation format for CSPs.

A PFU network is represented, as shown Figure 9.1, by an element called pfunet, which contains
several elements defining the tuple (V, G, P, F,U):

e The elements called name, author, date contain respectively a name for the PFU network,

the name(s) of the author(s), and a date.

165

166 CHAPTER 9. A GENERIC SOLVER FOR ANSWERING PFU QUERIES

<pfunet>

<name>Business Dinner Problem</name>
<author>Cedric Pralet</author>
<date>02-02-2006</date>

<domains nbDom="3">
<domain id="mcval" type="string" description="extension" values="meat fish"/>
<domain id="wval" type="string" description="extension" values="white red"/>
<domain id="bool" type="bool" description="extension" values="true false"/>
</domains>

<plausfunctions nbPlausFunctions="4">

<plausfunction id="pfuncl" domains="bool bool" default_degree="0" nbInst="2">
<instance assignment="true false" degree="0.6"/>
<instance assignment="false true" degree="0.4"/>

</plausfunction>

<plausfunction id="pfunc2" domains="bool bool" default_degree="1" nbInst="1">
<instance assignment="false true" degree="0"/>

</plausfunction>

</plausfunctions>

<feasfunctions nbFeasFunctions="1">
<feasfunction id="ffuncl" domains="mcval wval" default_degree="true" nbInst="1">
<instance assignment="fish red" degree="false"/>
</feasfunction>
</feasfunctions>

<utilfunctions nbUtilFunctions="3">
<utilfunction id="ufuncl" domains="bool bool" default_degree="0" nbInst="1">
<instance assignment="true false" degree="bottom"/>
</utilfunction>
<utilfunction id="ufunc2" domains="bool" default_degree="0" nbInst="1">
<instance assignment="true" degree="10"/>
</utilfunction>

</utilfunctions>

<variables nbVar="6">
<variable id="mc" nature="decision" domain="mcval" description="main course choice"/>
<variable id="w" nature="decision" domain="wval" description="wine choice"/>
<variable id="bpJ" nature="environment" domain="bool" description="John’s beginning pres."/>
<variable id="bpM" nature="environment" domain="bool" description="Mary’s beginning pres."/>

</variables>

<plausibilities nbPlaus="5">
<plausibility id="pl" scope="bpJ bpM" function="pfunci"/>
<plausibility id="p2" scope="bpJ epJ" function="pfunc2"/>
<plausibility id="p3" scope="bpJ w epJ" function="pfunc3"/>

</plausibilities>

<feasibilities nbFeas="1">

<feasibility id="f1" scope="mc w" function="ffunci"/>
</feasibilities>

<utilities nbUtil="3">
<utility id="ul" scope="bpJ epJ" function="ufuncl"/>
<utility id="u2" scope="epJ" function="ufunc2"/>

</utilities>

<components nbComp="4">

<component id="c1" nature="decision" vars="mc w" scoped_f="f1" parents=""/>
<component id="c2" nature="environment" vars="bpJ bpM" scoped_f="pl" parents=""/>
<component id="c3" nature="environment" vars="epJ" scoped_f="p2 p3" parents="cl c2"/>
</components>
</pfunet>

Figure 9.1: XML representation of the PFU network of the dinner problem.

9.1.

DESCRIPTION OF PROBLEMS 167

e The element called domains has an attribute called nbDom and contains elements called

domain. Attribute nbDom equals the number of occurrences of elements domain.

Each element domain is empty and contains attributes id (identifier for the domain), type
(the types allowed are string, int, float, double, and bool), description (says if the domain is
represented in extension as a set of values, or in intension as an interval plus a constant step
between two values in the interval), and values (which specifies either the set of values, or

the bounds of the interval and the step).

The element called plausfunctions has an attribute called nbPlausFunctions and contains
elements called plausfunction. nbPlausFunctions is the number of occurrence of elements

plausfunction.

Each element plausfunction defines an unscoped plausibility function ¢. It has a set of
attributes called id (identifier), domains (list of domain identifiers), default_degree (default
degree given by the function), and nblnst (number of assignments A of the domains such that
p(A) # default_degree). Each element plausfunction also contains elements called instance.
nblnst is the number of occurrences of elements instance. Each element instance is empty
and admits attributes called assignment and degree, which correspond respectively to an

assignment A of the domains and to ¢(A).

The elements called feasfunctions and utilfunctions satisfy similar specifications. A possible

improvement of the XML format could be to allow for functions defined by formulas.

The element called wvariables admits an attribute nbVar and contains elements variable.

Attribute nbVar is the number of occurrences of elements variable.

Each element variable is empty and has a set of attributes called id (variable name), nature
(decision or environment variable), domain (domain of values of the variable), and description

(what the variable represents).

Therefore, the element called variables defines the set V' of variables of a PFU network.

The element called plausibilities has an attribute nbPlaus and contains occurrences of ele-

ments plausibility. Attribute nbPlaus is the number of occurrences of elements plausibility.

Each element plausibility is empty and has a set of attributes called id (identifier), scope
(scope of the plausibility function, defined by a list of variables), and function (an identifier

which must correspond to a plausfunction element).

In other words, the elements plausibilities define the set P of plausibility functions of the
PFU network. The description of elements feasibilities and utilities is similar, and they define

the sets F' and U of feasibility and utility functions of a PFU network respectively.

The element called components admits an attribute called nbComp and contains elements

called component. Attribute nbComp is the number of occurrences of elements component.

Each element component is empty and has a set of attributes called id (name of a component
¢), nature (decision of environment component), vars (variables involved in the component),
scoped_f (scoped functions in Fact(c)), and parents (list of parent components of ¢ in the
DAG of the PFU network).

168 CHAPTER 9. A GENERIC SOLVER FOR ANSWERING PFU QUERIES

Therefore, the element called components enables us to model the DAG G of a PFU network.

More formally, the DTD (Document Type Definition) which defines the syntax of the XML

documents describing PFU networks is given in Appendix D.

9.1.2 XML representation of queries

An XML representation of queries is also available. Basically, queries are defined by a PFU network
and by a sequence of operator-variable(s) pairs. We also explicitly specifiy the decision variables
for which optimal decision rules are sought.

Figure 9.2 gives an example of an XML representation of a query on the dinner problem. The
associated query corresponds to a situation where Peter chooses both the wine and the main course
after knowing who is present at the beginning, and optimal decision rules for the main course choice
mec and for the wine choice w are sought. A query is defined by an element called query, which

contains several elements:

e The elements called name, author, and date contain a name for the query, the name(s) of

the author(s), and a date.

e The element called pfunet is an empty element which has an attribute called file. This
attribute indicates the XML file describing the PFU network used by the query.

e The element called sov has an attribute nbStages and contains elements called op_var_pair.
Attribute nbStages is the number of occurrence of elements op_var_pair.

Each element op_var_pair is an empty element which has three attributes: op (elimination
operator equal to “MIN”, “MAX”, or “PLUS”), vars (list of variables to eliminate), and

record (list of variables for which a decision rule must be recorded).

More formally, the DTD associated with XML files describing queries is given in Appendix D.

<query>

<name>If Peter knows who is present at the beginning</name>
<author>Cedric Pralet</author>
<date>19-09-2005</date>

<pfunet file="pfunet.xml"/>

<sov nbStages="3">
<op_vars_pair op="PLUS" vars="bpJ bpM"/>
<op_vars_pair op="MAX" vars="mc w" record="mc w"/>
<op_vars_pair op="PLUS" vars="epJ epM"/>

</sov>

</query>

Figure 9.2: XML description of a query.

9.1.3 Reading others formats

The solver is also able to read existing description formats defined in formalisms subsumed by the
PFU framework: the QDIMACS format, which enables QBFs to be defined, the ERGO format,
which enables Bayesian networks to be defined, and a format “.net” used to specify influence

diagrams. Also, problems can be defined via an XML format called “.dpfu”. Roughly speaking,

9.2. SOLVER DESCRIPTION 169

this format enables us to specify kinds of “dynamic” PFU networks, in which we describe first
a standard PFU network associated with step 0, and second transition functions (as in MDPs)
specifying plausibility and feasibility functions associated with the variables in the PFU network

at step t + 1, depending on the variables in PFU network at step t¢.

9.2 Solver description

The solver is written in C++. It is generic because it can work with different instances of elimina-
tion and combination operators, and with different data types (bool, int, float, double). We briefly
describe its main features, by explaining how PFU networks and queries are represented, how the
algebraic structure is defined, how problems are read, and which algorithms are currently imple-
mented. The global structure of the classes involved in our generic solver is given in Figure 9.3

(this figure assumes that the reader is familiar with the UML representation language).

PFU networks and queries The main classes which enable PFU networks and queries to be

defined are:

e A class called Domain, which enables a domain of values to be represented. It has two
specializations called TypedDomainExt (for a domain represented in extension) and Typed-
DomainInt (for a domain represented in intension as an interval and a constant step between

two values in the interval).

e A class called Variable, which enables variables to be represented. A variable notably has an

instance of class Domain in its attributes.

e A class called Scope: instances of this class are list of variables. This class offers some

functions to manipulate scopes.

e A class called Component: an instance of this class corresponds to a component of the PFU
network. A component has a scope which defines the variables involved in the component, a

list of parent components, and a list of scoped functions associated with it.

e A class called Function: instances of this class correspond to functions (without a scope).
This class has a list of domains as an attribute. The cartesian product of these domains

represents the domain of definition of the function.

Class Function has four specializations called Clause, FunctionExt, FunctionTrie, and Mul-
tiFunction. These specializations correspond to different representations of the function:
instances of class Clause are functions represented as boolean clauses (this is useful to treat
QBFs), instance of class FunctionEzt are functions represented as a table of values, one for
each element of the cartesian product of the domains, instance of class FunctionTrie are
represented using a sparse data structure classically called a trie, and instance of class Mul-
tiFunction are represented as a set of functions (class MultiFunction is useful for example to

represent the aggregation of all utility functions in a compact way).

e A class called ScopedFunction: instances of this class are scoped functions. In its attributes,

this class has an instance of class Function (the function of the scoped function), an instance

€6 9In3I

“I9ATOS 97} JO 9anjONI}g

TypedDomainIn

<« holds on

ypedDomainExf

is involved in »

VAV

.11 *
Domain

(QdimacsReade

ErgoReader

]|
D\

#(leucryRcadc*

q)otnctQuoryReado‘r

Reader !

bl
!
L

parent »
*

% *
belongs to a » 1 * ; * has 1 ;

= Component - —ScopedFunctior asa¥ | Function K]
<« associated with ‘
‘* *

7 wses ¥

contains »

* LWAVARV

of
*
! OpVars eliminated variables »

eliminated variables »

1| Scope
1

‘AlgebraicStruetur#

I Algebraic structure;

0LT

SATIAND NAd DNTHAMSNY OA YAATOS DIYANAD V6 HALIVHD

9.2. SOLVER DESCRIPTION 171

of class Scope (the scope of the scoped function), and an instance of class Component (the
component to which the scoped function is associated, if it is a plausibility or a feasibility

function).

e A class called Pfunet: instances of this class represent PFU networks. In its attributes, this
class has a list of domains, a list of variables, a list of components, three lists of scoped
functions (one for each type of scoped function), and lists of functions used by the scoped

functions.

e A class called OpVars, which defines operator-variables pairs. The variables of an operator-

variables pair are represented by a scope.

e A class called Query, whose instances are queries on PFU networks. In its attributes, this

class has an instance of class Pfunet and an instance of class OpVars.

Readers Several classes enable us to read PFU networks and queries. The corresponding
classes are Reader, QdimacsReader (to read QBFs in the QDIMACS format), ErgoReader (to
read Bayesian networks in the ERGO format), DotnetQueryReader (to read influence diagrams
in the “net” format), XmlQueryReader (to read queries specified in the XML format previously
described), and DpfuQueryReader (in order to read queries expressed in the “.dpfu” format).

Algebraic structure An included file “globaldef.h” contains the type deg_t of the plausibility
and utility degrees manipulated (we assume that plausibilities and utilities have the same type).
The solver is currently able to deal with deg_t € {bool, int, float, double}.

The operators used can be defined in two ways:

e First, operators ®;, ®u, Qpu, Bp, and By, as well as 0, 1,, and 0,, can be explicitly defined
as parameterized macros. This enables a user to directly specify a new expected utility

structure if needed.

e When the algebraic structure is a totally ordered MCS, we use another representation. A class
AlgebraicStructure defines algebraic structures. In its attributes, this class has two instances
of class Operator. These instances define the operators & and ® of the MCS. The exact
operators used in the executable are defined by a macro called ALGEBRAICSTRUCTURE,

involved in the preprocessor conditional compilation directives.

Macro ALGEBRAICSTRUCTURE refers to an element in a hard-coded list of algebraic
structures: (1) probabilistic expected additive utility, (2) probabilistic expected satisfaction,
(3) possibilistic optimistic expected utility, (4) possibilistic pessimistic expected utility, (5)
expected utility structure with kappa-rankings and only positive utility degrees. Note that
when deg_t = bool, algebraic structures (3) and (4) allow boolean optimistic and pessimistic

expected conjunctive utilities to be used.

Class Operator has several specializations: MinOperator, MaxOperator, PlusOperator, and
TimesOperator. Each of these specializations must implement a function merge(T a,T b),
which combines a and b with the operator associated with the class (T is a generic type).

In fact, MinOperator, MazOperator, PlusOperator, and TimesOperator perform this merging

172 CHAPTER 9. A GENERIC SOLVER FOR ANSWERING PFU QUERIES

using min, max, +, and X respectively. Extending this list is possible by hard-coding other

operators.

Solver The solver itself involves several elements. First, a class Solver is defined. It has an
instance of class Query in its attributes, which corresponds to the query to be solved by the solver.
Class Solver is able to answer queries in the very general case, i.e. with an algebraic structure
which is only an expected utility structure and with feasibilities, thanks to a method implementing
algorithm TreeSearch-answerQ given in Chapter 6 page 90.

This class is specialized by class BtdSolver, which contains methods capable of computing the
answer to a query when there are no feasibilities. The algorithms currently available are T'S-
mcdag, RecTS-mcdag, BTD-mcdag, and BTD-answerQ (see previous chapter). Hence, all
the algorithms based on tree search are implemented. These methods are valid when the algebraic
structure is a totally ordered MCS. Class BtdSolver uses a class Cluster which enables MCDAG
clusters to be represented.

Class Cluster has in its attributes a parent cluster, an operator to use as the cluster elimination
operator @&¢, an operator to use as the cluster combination operator ®°¢, and instances of class
Recording, which enable to record lower and upper bounds over the separator of the cluster with
its parents.

Class Recording has two specializations, which correspond to a recording performed via tables
and via tries respectively. The second data structure is interesting because it is sparse.

A class called Graph is also used to perform operations on graphs, like computing cluster-tree
decompositions. Cluster-tree decompositions are computed using the so-called min-fill heuristic.

The solver can use heuristics for choice points:

e Choice of the next variable to assign inside a given cluster: lexicographic or choice of a

variable having a minimal current domain (ties broken lexicographically).

e Choice of a value to assign to a given variable: lexicographic or choice of a value having a

minimal or a maximal utility degree obtained by inference.

e Choice of a son cluster to explore: lexicographic or choice of a son of minimum height in the
MCDAG.

The unique form of constraint propagation implemented (for the bound function) is the propa-
gation of O using backward checking, forward checking, or arc consistency, and a form of valued

forward checking [123] restricted to the currently explored cluster.

9.3 Perspectives

Some experiments have been performed, but much more are needed in order to obtain practical

results on several points:
e Compare the algorithms previously defined in terms of pratical complexity:

— quantify the gains in using MCDAGs exploiting the query structure,

— compare VE algorithms with structured tree search methods,

9.3. PERSPECTIVES 173

— compare structured tree search algorithms for various parameter settings: caching or
not, complex or simple bounds, heuristics for variable, value, or cluster choices, and

techniques used to compute bounds (soft local consistency, quantifier switching...).
e Compare the implemented methods with existing algorithms designed in a specific formalism.

e Evaluate the complexity given by an expected utility (EU) structure. More precisely, EU
structures vary from structures which are more qualitative (such as possibilistic EU) to
structures which are more quantitative (such as probabilistic EU) or structures which mix
qualitative and quantitative approaches (such as EU based on s-rankings). We could compare
the pratical time and space complexities of these plausibility-utility models, in order to

analyze the gains and costs in using a more or less qualitative or quantitative approach.

Conclusion

Synthesis of the contributions

In the last decades, Al has witnessed the design and study of numerous formalisms for reasoning
about decision making problems. In this thesis, we have built a generic flexible framework to model
sequential decision making problems involving plausibilities, feasibilities, and utilities. This frame-
work covers many existing approaches, including hard, valued, quantified, mixed, and stochastic
CSPs, Bayesian networks, Markov random fields, finite horizon probabilistic or possibilistic MDPs,
or influence diagrams, as well as unpublished formalisms. The result is an algebraic framework built
upon decision-theoretic foundations: the PFU framework. The two facets of the PFU framework
are explicit in Theorem 5.9, which states that the operational definition of the answer to a query
is equivalent to the decision tree-based semantics. This is the result of a design that accounts both
for expressivity and for computational aspects. Compared to related works [127, 32, 75], the PFU
framework is the only algebraic framework which directly deals with different types of variables
(decision and environment variables), different types of local functions (plausibilities, feasibilities,
utilities), and different types of combination and elimination operators.

From an algorithmic point of view, generic algorithms based on tree search and variable elim-
ination have been defined. Decomposability conditions enabling factorizations to be exploited
have been identified and used in a generic unified variable elimination algorithm (potentially us-
ing so-called potentials). In another direction, a generic approach to query optimization has led
to the definition of original architectures for answering queries, called multi-operator cluster trees
and multi-operator cluster DAGs. These architectures have been built thanks to a two-step struc-
turation process using rewriting rules and cluster-tree decomposition techniques, and they lead
to an improved width. Based on these architectures, structured tree search algorithms have been
designed, using more or less sophisticated mechanisms such as recording or bounds. The main dif-
ficulty has lain in handling the multi-operator nature of PFU queries, both in terms of elimination
and combination. Obviously, some assumptions made by the PFU framework could be discussed.
But it should be noted that the assumptions made have enabled various algorithmic approaches
to be considered. Finally, a generic solver able to answer PFU queries has been developed.

All these contributions are summed up in Figure 9.4

From a more global point of view, the conclusions of this thesis can be stated as follows:

1. Building a generic framework encompassing many existing AI formalisms is possible, and
the obtained framework is not intractable. It is just a generic form of algebraic composite

graphical model.

175

"6 2anS1y

‘sSuormnqrIjuod jo K.I”BIHUIHS

Knowledge representation (Part I)

Existing formalisms for sequential decision making
with uncertainties, feasibilities, and utilities

Analysis of existing formalisms (based on SAT, CSPs,
BNs, classical planning, MDPs, valuation algebras...)

® Basic ingredients of a generic encompassing framework

Algebraic structure
Definition of plausibility structures, utility structures,

and expected utility structures

Extension of previously existing structures
in order to handle sequential decision making
and for algorithmic considerations

and conditional independence

Queries

Equivalence between decision trees and sequences
of eliminations on combinations of scoped functions

-

PFU networks
Definition of a generic composite graphical model
(basic elements: variables, scoped functions,
DAG encoding normalization conditions)
Equivalence between factorization

Subsumption of many existing queries }

Algorithms (Part II)

————————————————————————— » Task: answer a query and find optimal decision rules

I
'

First generic algorithms

A generic tree—search scheme

A generic VE algorithm able to answer queries using
all factorizations if decomposability conditions hold

Soundness and theoretical complexity results

A J

Structuration of multi-operator queries

Rewriting rules in the semiring and semigroup cases,
and adaptation of cluster—tree decomposition techniques

Definition of a generic computational architecture: MCDAGSs

Soundness, unicity, and theoretical complexity results

\ J
Structured tree search on MCDAGs

Definition of a generic structured tree search
possibly using caching and bounds (complex or simple)

Soundness and theoretical complexity results

Solver

Definition of XML formats

Implementation of a generic solver
(the framework is not just an abstraction)

9.1

NOISN'TONOD

CONCLUSION 177

2.

Generic unified algorithms can be defined in this framework, and, as in usual algebraic
approaches, topological parameters such as width play an important role in the theoretical
time and space complexities. In terms of width, an accurate analysis of the multi-operator

queries considered can be helpful.

Answering multi-operator queries can be reduced to answering several mono-operator queries
organized in a generic architecture called the MCDAG architecture. The latter can be system-
atically obtained, and once it is, existing methods for the mono-operator case are reusable.
The main difficulty yielded by this architecture is the handling of bounds. The reason is that
bounds must face the multi-operator nature of queries (both in terms of combination and
elimination), because they are used globally in the whole architecture. In fact, MCDAGSs can
be used whatever the resolution method is (variable elimination, tree search, or local search),

because they just express decompositions.

Perspectives

The perspectives of this work are multiple:

As mentioned at the end of Chapter 9, performing experiments is one of the short term

objective, in order to get a better knowledge concerning the algorithms developed.

The structuration methods reason at the variables level. We could also try to exploit a finer

structure, at the function values level, using approaches such as Binary Decision Diagrams
(BDDs [1, 21]) or Negation Normal Forms (NNFs [28]).

Also, we could study more precisely the results provided by the structuration methods for
PFU queries and networks replicated from one step to another, as in factored Markov decision

processes.

A lot of work remains to be performed concerning bounds, in order to develop a kind of

generalized quantified soft local consistency.

At a higher level, two opposite attitudes can be adopted concerning the framework itself.
These attitudes are not incompatible, and correspond respectively to a generalization and a

specialization strategy:

— We can continue the quest for genericity, in order to be more expressive. Also, we could
define kinds of “multi-queries” allowing several queries to be asked simultaneously as is

done in BNs to compute several marginal probability distributions simultaneously.

— Or we can identify some basic problems and focus on them. More precisely, the MCDAG
architecture shows that the elementary problems to be solved often consist of computing
quantities such as 3 ¢([[,cq ¥), maxs(d-, cqp ¢), or maxs(minges ¢). These elemen-
tary problems correspond to the kind of computations performed in BNs [96], weighted
CSPs [80], and fuzzy CSPs [42] respectively. In order to justify this specialization ap-
proach, we must exhibit morphisms between generic MCDAGs and MCDAGs using just
the three elementary problems listed above [25]. Provided that this algebraic step is per-
formed, one can see the MCDAG architecture as a melting pot of these three elementary

problems, at the frontier between BNs and soft CSPs.

178 CONCLUSION

In the next years, the PFU framework will maybe enable other algorithmic ideas to be integrated
in an efficient and flexible generic solver. This would be an opportunity to gather many efforts
performed in different communities, and to benefit from the fertile links between algebra, graphical

models, and combinatorial optimization.

List of Tables

3.1 Examples of expected utility structures. 60
6.1 Expected utility structures satisfying Az"% or AxS¢. 93
6.2 Use of the generic variable elimination algorithm VE-answerQ. 98
7.1 Impact of the structuration process on some instances of the QBF library. 123
8.1 From complex bounds to simple bounds.o 157
A1 Notations. o 193

179

List of Figures

1.1 A composite graphical model.o 20
2.1 Graph coloring problem. 25
2.2 An optimal policy for a stochastic CSP. 32
2.3 DAG of the Bayesian network of Mr Holmes’ alarm problem. 33
2.4 An influence diagram. 37
2.5 A copper (Cu) / manganese (Mn) spin glass. 38
2.6 A blocks world problem. 42
2.7 Representation of a 4-step MDP. 44
2.8 A sequential decision problem modelable with MDPs. 46
2.9 Factored and unfactored MDPs. oL oo o 49
4.1 A PFUnetwork. e 71
6.1 A generic tree search algorithm to answer a query. 90
6.2 A first generic variable elimination algorithm for answering a query. 91
6.3 A generic variable elimination algorithm using factorization. 95
6.4 TIllustration of the induced-width under an elimination order. 102
6.5 Stochastic CSP example. L 105
6.6 Influence diagram example (before and after duplication). 106
7.1 A computation node (sov,®, N). 110
7.2 Example of application of the rewriting rules in the semiring case. 113
7.3 Macrostructuration of a query using simplification rule SR. 115
7.4 Macrostructuration algorithm in the semiring case. 117
7.5 Construction of a cluster-tree decomposition. 120
7.6 Example of a Multi-operator Cluster Tree (MCTree). 122
7.7 Application of rewriting rules for @-eliminations in the semigroup case. 126
7.8 Application of rewriting rules for max-eliminations in the semigroup case. 128
7.9 Example of a specific cluster-tree decomposition for a max computation node in the
SEINIGTOUDP CASE. .« v v v v e v e e e e e e e e e e e e e 134
7.10 Example of a Multi-operator Cluster DAG (MCDAG). 136
7.11 Towards a unique computational architecture. 138
8.1 Example of AND/OR search tree. 142

182

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

9.1
9.2
9.3
9.4

B.1
B.2
B.3
B4

C.1
C.2

C.3
C4

D.1
D.2

LIST OF FIGURES

A generic structured tree search algorithm on a MCDAG. 145
A structured tree search algorithm using caching. 146
Example of alpha-beta pruning. 149
Main function: BTD-medag. 151
Bounded evaluation of a max-cluster. o000 152
Bounded evaluation of a min-cluster. Lo 153
Bounded evaluation of a @ cluster. L 0oL 154
Bounded evaluation of the sons of a cluster. 155
Main function: BTD-answerQ. 158
Bounded evaluation of a max-cluster using simple bounds. 159
Bounded evaluation of a min-cluster using simple bounds. 159
Bounded evaluation of a & cluster using simple bounds. 160
Bounded evaluation of the sons of a cluster using simple bounds. 160
XML representation of the PFU network of the dinner problem.. 166
XML description of a query. Lo 168
Structure of the solver.o 170
Summary of contributions. 176
MacroStruct(sov, V,P,U). 233
Function which builds CNDAG)(Q,0). . . .« o o v i it 234
Function implementing the rewriting for an elimination ®,. 235
Function implementing the rewriting for an elimination with an operator distinct

from e 236
View of the goal constellation. 00000 264
On an orbital plane, launch of a satellite and transfer of a spare satellite from the

spare orbit to the operationalone. o Lo 264
Network of scoped functions. 268
DAG representing normalization conditions. 268
DTD (Document Type Definition) for the XML representation of queries. 269

DTD (Document Type Definition) for the XML representation of PFU networks. . 270

Bibliography

[1] S.B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, 27(6), 1978.

[2] S.A. Arnborg. Efficient Algorithms for Combinatorial Problems on Graphs with Bounded
Decomposability - A Survey. BIT, 25:2-23, 1985.

[3] F. Bacchus and A. Grove. Graphical Models for Preference and Utility. In Proc. of the
11th International Conference on Uncertainty in Artificial Intelligence (UAI-95), pages 3—
10, Montréal, Canada, 1995.

[4] B.W. Ballard. The *-Minimax Search Procedure for Trees Containing Chance Nodes. Arti-
ficial Intelligence, 21(3):327-350, 1983.

[5] R.J. Bayardo and D.P. Miranker. On the Space-Time Trade-off in Solving Constraint Sat-
isfaction Problems. In Proc. of the 1jth International Joint Conference on Artificial Intelli-
gence (IJCAI-95), pages 558-562, Montréal, Canada, 1995.

[6] M. Benedetti. Quantifier Trees for QBF. In Proc. of the 8th International Conference on
Theory and Applications of Satisfiability Testing (SAT-05), St. Andrews, Scotland, 2005.

[7] U. Bertelé and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.

[8] S. Bistarelli, P. Codognet, and F. Rossi. Abstracting Soft Constraints: Framework, Proper-
ties, Examples. Artificial Intelligence, 139:175-211, 2002.

[9] S. Bistarelli and F. Gadducci. Enhancing Constraints Manipulation in Semiring-based For-
malisms. In Proc. of the 17th European Conference on Artificial Intelligence (ECAI-06),
Riva del Garda, Italy, 2006.

[10] S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings. In Proc. of
the 14th International Joint Conference on Artificial Intelligence (1JCAI-95), pages 624—630,
Montréal, Canada, 1995.

[11] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Satisfaction and Opti-
mization. Journal of ACM, 44(2):201-236, 1997.

[12] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier. Semiring-Based
CSPs and Valued CSPs: Frameworks, Properties and Comparison. Constraints, 4(3):199—
240, 1999.

[13] H. L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybernetica, 11:1-21, 1993.

183

184

[14]

18]

[19]

[20]

28]

BIBLIOGRAPHY

H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating Treewidth,
Pathwidth, Frontsize, and Shortest Elimination Tree. Journal of Algorithms, 18:238-255,
1995.

L. Bordeaux and E. Monfroy. Beyond NP: Arc-consistency for Quantified Constraints. In
Proc. of the 8th International Conference on Principles and Practice of Constraint Program-
ming (CP-02), Tthaca, New York, USA, 2002.

F. Boussemart, F. Hemery, and C. Lecoutre. Description and Representation of the Problems

selected for the First International Constraint Satisfaction Solver Competition, 2005.

C. Boutilier, R. Brafman, H. Hoos, and D. Poole. Reasoning With Conditional Ceteris
Paribus Preference Statements. In Proc. of the 15th International Conference on Uncertainty
in Artificial Intelligence (UAI-99), Stockholm, Sweden, 1999.

C. Boutilier, T. Dean, and S. Hanks. Decision-Theoretic Planning: Structural Assumptions

and Computational Leverage. Journal of Artificial Intelligence Research, 11:1-94, 1999.

C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic Dynamic Programming with Fac-
tored Representations. Artificial Intelligence, 121(1-2):49-107, 2000.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-Specific Independence in
Bayesian Networks. In Proc. of the 12th International Conference on Uncertainty in Artificial
Intelligence (UAI-96), pages 115-123, Portland, Oregon, USA, 1996.

R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677-691, 1986.

R. Chellappa and A. Jain. Markov Random Fields: Theory and Applications. Academic
Press, 1993.

F. Chu and J. Halpern. Great Expectations. Part I: On the Customizability of Generalized
Expected Utility. In Proc. of the 18th International Joint Conference on Artificial Intelligence
(1JCAI-03), Acapulco, Mexico, 2003.

F. Chu and J. Halpern. Great Expectations. Part II: Generalized Expected Utility as a
Universal Decision Rule. In Proc. of the 18th International Joint Conference on Artificial
Intelligence (IJCAI-03), pages 291-296, Acapulco, Mexico, 2003.

M. Cooper and T. Schiex. Arc Consistency for Soft Constraints. Artificial Intelligence,
154(1-2):199-227, 2004.

A. Darwiche. Recursive Conditioning. Artificial Intelligence, 126(1-2):5-41, 2001.

A. Darwiche and M.L. Ginsberg. A Symbolic Generalization of Probability Theory. In Proc.
of the 10th National Conference on Artificial Intelligence (AAAI-92), pages 622-627, San
Jose, CA, USA, 1992.

A. Darwiche and P. Marquis. A Knowledge Compilation Map. Artificial Intelligence, 17:229—
264, 2002.

BIBLIOGRAPHY 185

[29]

[30]

32]

[33]

[42]

S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition and Soft Local Con-
sistency in Weighted CSP. In Proc. of the 21st National Conference on Artificial Intelligence
(AAAI-06), Boston, MA, USA, 2006.

S. de Givry, G. Verfaillie, and T. Schiex. Bounding the Optimum of Constraint Optimiza-
tion Problems. In Proc. of the 3rd International Conference on Principles and Practice of

Constraint Programming (CP-97), Schloss Hagenberg, Austria, 1997.

T. Dean and K. Kanazawa. A Model for Reasoning about Persistence and Causation. Com-
putational Intelligence, 5(3):142-150, 1989.

R. Dechter. Bucket Elimination: a Unifying Framework for Reasoning. Artificial Intelligence,
113(1-2):41-85, 1999.

R. Dechter. A New Perspective on Algorithms for Optimizing Policies under Uncertainty. In
Proc. of the 5th International Conference on Artificial Intelligence Planning and Scheduling
(AIPS-00), pages 72-81, Breckenridge, CO, USA, 2000.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

R. Dechter and Y. El Fattah. Topological Parameters for Time-Space Tradeoff. Artificial
Intelligence, 125(1-2):93-118, 2001.

R. Dechter and D. Larkin. Hybrid Processing of Beliefs and Constraints. In Proc. of the 17th
International Conference on Uncertainty in Artificial Intelligence (UAI-01), pages 112-119,
Seattle, WA, USA, 2001.

R. Dechter and R. Mateescu. Mixtures of Deterministic-Probabilistic Networks and their
AND/OR Search Space. In Proc. of the 20th International Conference on Uncertainty in
Artificial Intelligence (UAI-04), Banff, Canada, 2004.

R. Dechter and R. Mateescu. AND/OR Search Spaces for Graphical Models. To appear in
Artificial Intelligence Journal, 2006.

R. Dechter, I. Meiry, and J. Pearl. Temporal Constraint Networks. Artificial Intelligence,
49:61-95, 1991.

R. Dechter and I. Rish. Mini-Buckets: A General Scheme for Bounded Inference. Journal of
the ACM, 50(2):107 — 153, 2003.

R. Demirer and P.P. Shenoy. Sequential Valuation Networks: A New Graphical Technique for
Asymmetric Decision Problems. In Proc. of the 6th European Conference on Symbolic and
Quantitavive Approaches to Reasoning with Uncertainty (ECSQARU-01), pages 252-265,
London, UK, 2001.

D. Dubois, H. Fargier, and H. Prade. The Calculus of Fuzzy Restrictions as a Basis for
Flexible Constraint Satisfaction. In Proc. of the 2nd IEEE Conference on Fuzzy Sets, pages
1131-1136, San Francisco, CA, 1993.

186

[43]

[44]

[47]

[48]

[51]

[52]

[53]

BIBLIOGRAPHY

D. Dubois and H. Prade. Possibility Theory as a Basis for Qualitative Decision Theory. In
Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), pages
1925-1930, Montréal, Canada, 1995.

H. Fargier and J. Lang. Uncertainty in Constraint Satisfaction Problems: A Probabilistic
Approach. In Proc. of the European Conference on Symbolic and Quantitavive Approaches
of Reasoning under Uncertainty (ECSQARU-93), pages 97-104, Grenade, Spain, 1993.

H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiex. Mixed Constraint Satisfaction :
a Framework for Decision Problems under Uncertainty. In Proc. of the 11th International
Conference on Uncertainty in Artificial Intelligence (UAI-95), Montréal, Canada, 1995.

H. Fargier, J. Lang, and T. Schiex. Selecting Preferred Solutions in Fuzzy Constraint Satisfac-
tion Problems. In Proc. of the 1st Furopean Congress on Fuzzy and Intelligent Technologies
(EUFIT-93), Germany, 1993.

H. Fargier, J. Lang, and T. Schiex. Mixed Constraint Satisfaction: a Framework for Decision
Problems under Incomplete Knowledge. In Proc. of the 13th National Conference on Artificial
Intelligence (AAAI-96), pages 175-180, Portland, OR, USA, 1996.

H. Fargier and P. Perny. Qualitative Models for Decision Under Uncertainty without the
Commensurability Assumption. In Proc. of the 15th International Conference on Uncertainty
in Artificial Intelligence (UAI-99), pages 188-195, Stockholm, Sweden, 1999.

R. Fikes and N. Nilsson. STRIPS: a New Approach to the Application of Theorem Proving.
Artificial Intelligence, 2(3-4):189-208, 1971.

P.C. Fishburn. The Foundations of Expected Utility. D. Reidel Publishing Company, Dor-
drecht, 1982.

P. Fonk. Réseaux d’Inférence pour le Raisonnement Possibiliste. PhD thesis, Université de

Liege, Belgique, Faculté des sciences, 1994.

E. Freuder and R. Wallace. Partial Constraint Satisfaction. Artificial Intelligence, 58:21-70,
1992.

E.C. Freuder and M.J. Quinn. Taking Advantage of Stable Sets of Variables in Constraint
Satisfaction Problems. In Proc. of the 9th International Joint Conference on Artificial Intel-
ligence (IJCAI-85), pages 1076-1078, Los Angeles, CA, USA, 1985.

N. Friedman and J. Halpern. Plausibility Measures: A User’s Guide. In Proc. of the 11th
International Conference on Uncertainty in Artificial Intelligence (UAI-95), pages 175-184,
Montréal, Canada, 1995.

M. Frydenberg. The Chain Graph Markov Property. Scandinavian Journal of Statistics,
17:333-353, 1990.

L. Garcia and R. Sabbadin. Possibilistic Influence Diagrams. In Proc. of the 17th European
Conference on Artificial Intelligence (ECAI-06), pages 372-376, Riva del Garda, Ttaly, 2006.

BIBLIOGRAPHY 187

[57]

[58]

[60]

[65]

[66]

[68]

M. Garey and D. Johnson. Computers and Intractability : A Guide to the Theory of NP-
completeness. W.H. Freeman and Company, 1979.

M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice. Morgan
Kaufmann, 2004.

P.H. Giang and P.P. Shenoy. A Qualitative Linear Utility Theory for Spohn’s Theory of
Epistemic Beliefs. In Proc. of the 16th International Conference on Uncertainty in Artificial
Intelligence (UAI-00), pages 220-229, Stanford, California, USA, 2000.

R.P. Goldman and M.S. Boddy. Expressive Planning and Explicit Knowledge. In Proc. of the
3rd International Conference on Artificial Intelligence Planning Systems (AIPS-96), pages
110-117, Edinburgh, Scotland, 1996.

G.Verfaillie, F.Garcia, and L.Peret. Deployment and Maintenance of a Constellation of Satel-
lites: a Benchmark. In Workshop on Planning under Uncertainty and Incomplete Information

(ICAPS’03), pages 119-127, Trento, Italie), 2003.

J. Halpern. Conditional Plausibility Measures and Bayesian Networks. Journal of Artificial
Intelligence Research, 14:359-389, 2001.

J.M. Hammersley and P. Clifford. Markov Fields on Finite Graphs and Lattices. Unpublished,
1971.

R. Howard and J. Matheson. Influence Diagrams. In Readings on the Principles and Ap-
plications of Decision Analysis, pages 721-762. Strategic Decisions Group, Menlo Park, CA,
USA, 1984.

P. Jégou and C. Terrioux. Hybrid Backtracking bounded by Tree-decomposition of Constraint
Networks. Artificial Intelligence, 146(1):43-75, 2003.

F. Jensen, F.V. Jensen, and S. Dittmer. From Influence Diagrams to Junction Trees. In
Proc. of the 10th International Conference on Uncertainty in Artificial Intelligence (UAI-94),
pages 367-373, Seattle, WA, USA, 1994.

F.V. Jensen, T.D. Nielsen, and P.P. Shenoy. Sequential Influence Diagrams: A Unified
Asymmetry Framework. In Proceedings of the Second Furopean Workshop on Probabilistic
Graphical Models (PGM-04), pages 121-128, Leiden, Netherlands, 2004.

F.V. Jensen and M. Vomlelova. Unconstrained Influence Diagrams. In Proc. of the 18th
International Conference on Uncertainty in Artificial Intelligence (UAI-02), pages 234-241,
Seattle, WA, USA, 2002.

J.Gebhardt and R.Kruse. Background and Perspectives of Possibilistic Graphical Models.
In Proc. of the European Conference on Symbolic and Quantitavive Approaches of Reasoning
under Uncertainty (ECSQARU-97), pages 108—-121, Bad Honnef, Germany, 1997.

C. Jordan. Sur les Assemblages de Lignes. Journal fir die Reine und angewandte Mathematik,
70:185-190, 1869.

188

[71]

[72]

[80]

[36]

BIBLIOGRAPHY

L. Kaelbling, M. Littman, and A. Cassandra. Planning and Acting in Partially Observable
Stochastic Domains. Artificial Intelligence, 101(1-2):99-134, 1998.

L. Khatib, P. Morris, R. Morris, and F. Rossi. Temporal Constraint Reasoning with Prefer-
ences. In Proc. of the 17th International Joint Conference on Artificial Intelligence (IJCAI-
01), Seattle, WA, USA, 2001.

U. Kjaerulff. Triangulation of Graphs - Algorithms Giving Small Total State Space. Tech-
nical Report Tech. Report. R 90-09, Dept. of Mathematics and Computer Science, Aalborg
University, Denmark, 1990.

D. Knuth and R. Moore. An Analysis of Alpha-Beta Pruning. Artificial Intelligence, 8(4):293—
326, 1975.

J. Kolhas. Information Algebras: Generic Structures for Inference. Springer, 2003.

AM.C.A. Koster, H.I.. Bodlaender, and S.P.M. Van Hoesel. Treewidth: Computational

Experiments. Technical report, Zentrum fiir Informationstechnik, Berlin, 2001.

N. Kushmerick, S. Hanks, and D. Weld. An Algorithm for Probabilistic Planning. Artificial
Intelligence, 76(1-2):239-286, 1995.

J. Larrosa. On the Time Complexity of Bucket Elimination Algorithms. Technical report,
An ICS technical report, 2001.

J. Larrosa and T. Schiex. In the quest of the best form of local consistency for weighted csp.
In Proc. of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03),
Acapulco, Mexico, 2003.

J. Larrosa and T. Schiex. In the Quest of the Best Form of Local Consistency for Weighted
CSP. In Proc. of the 18th International Joint Conference on Artificial Intelligence (IJCAI-
03), pages 239244, Acapulco, Mexico, 2003.

S. Lauritzen and D. Nilsson. Representing and Solving Decision Problems with Limited
Information. Management Science, 47(9):1235-1251, 2001.

M. Littman, S. Majercik, and T. Pitassi. Stochastic Boolean Satisfiability. Journal of Auto-
mated Reasoning, 27(3):251-296, 2001.

W. Lovejoy. A Survey of Algorithmic Methods for Partially Observed Markov Decision
Processes. Annals of Operations Research, 28(1-4):47-66, 1991.

A. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8(1):99-118,
1977.

A. Madsen and F.V. Jensen. Lazy Evaluation of Symmetric Bayesian Decision Problems. In
Proc. of the 15th International Conference on Uncertainty in Artificial Intelligence (UAI-99),
pages 382-390, Stockholm, Sweden, 1999.

D. McDermott. PDDL, the Planning Domain Definition Language. Technical report, Yale
Center for Computational Vision and Control, 1998.

BIBLIOGRAPHY 189

[87]

[38]

[89]

[90]

[91]

[99]

[100]

[101]

N. Metropolis and S. Ulam. The Monte Carlo Method. Journal of the American Statistical
Association, 44, 1949.

S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing Conflicts: a Heuristic Repair
Method for Constraint Satisfaction and Scheduling Problems. Artificial Intelligence, 58:160—
205, 1992.

G. Monahan. A Survey of Partially Observable Markov Decision Processes: Theory, Models,
and Algorithms. Management Science, 28(1):1-16, 1982.

U. Montanari and F. Rossi. Constraint Relaxation may be Perfect. Artificial Intelligence,
48:143-170, 1991.

P. Ndilikilikesha. Potential Influence Diagrams. International Journal of Approximated
Reasoning, 10:251-285, 1994.

T.D. Nielsen and F.V. Jensen. Representing and solving asymmetric decision problems.
International Journal of Information Technology and Decision Making, 2:217-263, 2003.

C. Papadimitriou. Computational Complezity. Addison-Wesley Publishing Company, 1994.

J. Park and A. Darwiche. Complexity Results and Approximation Strategies for MAP Ex-
planations. Journal of Artificial Intelligence Research, 21:101-133, 2004.

J. Pearl. Fusion, Propagation and Structuring in Belief Networks. Artificial Intelligence,
29:241-288, 1986.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, 1988.

P. Perny, O. Spanjaard, and P. Weng. Algebraic Markov Decision Processes. In Proc. of
the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh,
Scotland, 2005.

M.S. Pini, F. Rossi, K.B. Venable, and S. Bistarelli. Bipolar Preference Problems. In Proc.
of the 17th European Conference on Artificial Intelligence (ECAI-06), Riva del Garda, Ttaly,
2006.

C. Pralet, T. Schiex, and G. Verfaillie. Algorithmes et Complexités Génériques pour
Différents Cadres de Décision Séquentielle dans I'Incertain. Revue d’Intelligence Artificielle,

a paraitre.

C. Pralet, T. Schiex, and G. Verfaillie. Decomposition of Multi-Operator Queries on Semiring-
based Graphical Models. In Proc. of the 12th International Conference on Principles and
Practice of Constraint Programming (CP-006), pages 437-452, Nantes, France, 2006.

C. Pralet, T. Schiex, and G. Verfaillie. From Influence Diagrams to Multioperator Cluster
DAGs. In Proc. of the 22nd International Conference on Uncertainty in Artificial Intelligence
(UAI-06), Cambridge, MA, USA, 2006.

190 BIBLIOGRAPHY

[102] C. Pralet, T. Schiex, and G. Verfaillie. Une Nouvelle Architecture de Calcul pour Résoudre
des Diagrammes d’Influence. In Journées Francophones sur la Planification, la Décision et

I’Apprentissage pour la conduite de systémes (JFPDA-06), Toulouse, France, 2006.

[103] C. Pralet, G. Verfaillie, and T. Schiex. An Algebraic Graphical Model for Decision with Un-

certainties, Feasibilities, and Utilities. Journal of Artificial Intelligence Research, to appear.

[104] C. Pralet, G. Verfaillie, and T. Schiex. Un Cadre Graphique et Algébrique pour les Problémes
de Décision incluant Incertitudes, Faisabilités et Utilités. Revue d’Intelligence Artificielle, a

paraitre.

[105] C. Pralet, G. Verfaillie, and T. Schiex. Composite Graphical Models for Reasoning about
Uncertainties, Feasibilities, and Utilities. In Proc. of the CP-05 International Workshop on
”Preferences and Soft Constraints”, Sitges, Spain, 2005.

[106] C. Pralet, G. Verfaillie, and T. Schiex. Requétes Complexes sur des Réseaux de Croyance-
Faisabilité-Désir. In Journées Francophones de Programmation par Contraintes (JEPC-05),
Lens, France, 2005.

[107] C. Pralet, G. Verfaillie, and T. Schiex. Décision avec Incertitudes, Faisabilités et Utilités:
vers un Cadre Algébrique Unifié. In Journées Francophones sur la Planification, la Décision

et I’Apprentissage pour la conduite de systémes (JFPDA-06), Toulouse, France, 2006.

[108] C. Pralet, G. Verfaillie, and T. Schiex. Decision with Uncertainties, Feasibilities, and Utilities:
Towards a Unified Algebraic Framework. In Proc. of the 17th FEuropean Conference on
Artificial Intelligence (ECAI-06), pages 427-431, Riva del Garda, Ttaly, 2006.

[109] C. Pralet, G. Verfailllie, and T. Schiex. Belief and Desire Networks for Answering Com-
plex Queries. In Proc. of the CP-04 Workshop on ”Constraint Solving under Change and
Uncertainty”, Toronto, Canada, 2004.

[110] R.C. Prim. Shortest Connection Networks and some Generalisations. Bell System Technical
Journal, 36:1389-1401, 1957.

[111] M. Puterman. Markov Decision Processes, Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 1994.

[112] L.R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. In IEEE, volume 77(2), pages 257-286, 1989.

[113] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Algebraic Decision Diagrams and Their Applications. In IEEE /ACM International Confer-
ence on CAD, pages 188-191, Santa Clara, California, USA, 1993. IEEE Computer Society

Press.

[114] C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, second
edition, 2004.

[115] N. Robertson and P.D. Seymour. Graph Minors ii: Algorithmic Aspects of Treewidth.
Journal of Algorithms, 7:309-322, 1986.

BIBLIOGRAPHY 191

[116] D.J. Rose. Triangulated Graphs and the Elimination Process. Journal of Mathematical
Analysis and Applications, 32, 1970.

[117] F. Rossi, B. Venable, and N. Yorke-Smith. Simple Temporal Problems with Preferences and
Uncertainty. In Proc. of the CP-03 Workshop on ”Handling Change and Uncertainty”, Cork,
Ireland, 2003.

[118] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach (second edition).
Prentice-Hall, 2003.

[119] R. Sabbadin. A Possibilistic Model for Qualitative Sequential Decision Problems under Un-
certainty in Partially Observable Environments. In Proc. of the 15th International Conference
on Uncertainty in Artificial Intelligence (UAI-99), pages 567-574, Stockholm, Sweden, 1999.

[120] H. Samulowitz and F. Bacchus. Using SAT in QBF. In Proc. of the 11th International
Conference on Principles and Practice of Constraint Programming (CP-05), pages 578-592,
Sitges, Spain, 2005.

[121] T. Sang, P. Beame, and H. Kautz. Solving Bayesian Networks by Weighted Model Counting.
In Proc. of the 20th National Conference on Artificial Intelligence (AAAI-05), pages 475-482,
Pittsburgh, PA, USA, 2005.

[122] T. Schiex. Possibilistic Constraint Satisfaction Problems or “How to handle soft con-

straints 77. In Proc. of the 8th International Conference on Uncertainty in Artificial In-
telligence (UAI-92), Stanford, CA, USA, 1992.

[123] T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems : Hard and
Easy Problems. In Proc. of the 14th International Joint Conference on Artificial Intelligence
(IJCAI-95), pages 631-637, Montréal, Canada, 1995.

[124] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, 1998.
[125] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.

[126] L. Shapiro and R. Haralick. Structural Descriptions and Inexact Matching. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 3:504-519, 1981.

[127] P. Shenoy. Valuation-based Systems for Discrete Optimization. Uncertainty in Artificial
Intelligence, 6:385-400, 1991.

[128] P. Shenoy. Valuation-based Systems for Bayesian Decision Analysis. Operations Research,
40(3):463-484, 1992.

[129] P. Shenoy. Conditional Independence in Valuation-Based Systems. International Journal of
Approxzimated Reasoning, 10(3):203-234, 1994.

[130] P.P. Shenoy. Valuation Network Representation and Solution of Asymmetric Decision Prob-
lems. Furopean Journal of Operational Research, 121:579-608, 2000.

[131] J.E. Smith, S. Holtzman, and J.E. Matheson. Structuring Conditional Relationships in
Influence Diagrams. Operations Research, 41:280-297, 1993.

192

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

BIBLIOGRAPHY

E.J. Sondik. The Optimal Control of Partially Observable Markov Processes. PhD thesis,
Stanford University, 1971.

W. Spohn. A General Non-Probabilistic Theory of Inductive Reasoning. In Proc. of the 6th
International Conference on Uncertainty in Artificial Intelligence (UAI-90), pages 149-158,
Cambridge, MA, USA, 1990.

T.Vidal and M.Ghallab. Dealing with Uncertain Durations in Temporal Constraint Networks
dedicated to Planning. In Proc. of the 12th European Conference on Artificial Intelligence
(ECAI-96), Budapest, Hungary, 1996.

G. Verfaillie and C. Pralet. The Basic Ingredients of a Constraint-based Framework for
Decision-making under Uncertainty. In Proc. of the CP-05 International Workshop on ”Con-

straint solving under Change and Uncertainty”, Sitges, Spain, 2005.

T. Vidal and H. Fargier. Handling Contingency in Temporal Constraint Networks: From
Consistency to Controllabilities. Journal of Erperimental and Theoretical Artificial Intelli-
gence, 11(1):23-45, 1999.

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behaviour. Princeton
University Press, 1944.

T. Walsh. Stochastic Constraint Programming. In Proc. of the 15th FEuropean Conference
on Artificial Intelligence (ECAI-02), pages 111-115, Lyon, France, 2002.

P. Weng. Axiomatic Foundations for a Class of Generalized Expected Utility: Algebraic
Expected Utility. In Proc. of the 22nd International Conference on Uncertainty in Artificial
Intelligence (UAI-06), Cambridge, MA, USA, 2006.

E. Weydert. General Belief Measures. In Proc. of the 10th International Conference on
Uncertainty in Artificial Intelligence (UAI-94), pages 575-582, 1994.

N. Wilson. Decision-Making with Belief Functions and Pignistic Probabilities. In Proc.
of the European Conference on Symbolic and Quantitavive Approaches of Reasoning under

Uncertainty (ECSQARU-93), pages 364-371, Grenade, Spain, 1993.

N. Wilson. An Order of Magnitude Calculus. In Proc. of the 11th International Conference
on Uncertainty in Artificial Intelligence (UAI-95), pages 548-555, Montréal, Canada, 1995.

H.L.S. Younes and M.L. Littman. PPDDL: An Extension to PDDL for Expressing Planning
Domains with Probabilistic Effects. Technical Report CMU-CS-04-167, Carnegie Mellon
University, Pittsburgh, PA, 2004.

N.L. Zhang, R. Qi, and D. Poole. A computational theory of decision networks. International
Journal of Approzimated Reasoning, 2(11):83-158, 1994.

Appendix A

Notations

Symbol Meaning

Dp Elimination operator on plausibilities
Du Elimination operator on utilities
®p Combination operator for plausibilities
R Combination operator for utilities
Rpu Combination operator between plausibilities and utilities
=p Partial order on plausibilities
=<u Partial order on utilities
* Truncation operator
O Unfeasible value
Ve Environment variables
Vb Decision variables
dom(z) Domain of values of a variable z
dom(S) [I.csdom(z)
G Directed Acyclic Graph (DAG)

pac(x) Parents of x in the DAG G
ndg () Non-descendant of = in the DAG G

Ce(G) Set of environment components of G
Cp(Q) Set of decision components of G
P; Plausibility function
F; Feasibility function
U; Utility function
Fact(c) P; or F; factors associated with a component ¢
se(Ly) Scope of a local function L;
Ps Plausibility distribution over S
Ps,y | 5o Conditional plausibility distribution of S; given S»
Fs Feasibility distribution over S
Fsy |8, Conditional feasibility distribution of S; given So
Sov Sequence of operator-variable(s) pairs

Sem-Ans(Q)) Semantic answer to a query @ (decision trees)
Op-Ans(Q) Operational answer to a query Q
Ans(Q) Answer to a query @

Table A.1: Notations.

193

Appendix B

Proofs

B.1 Proofs of Chapter 3

Proof of Proposition 3.10 (page 59). 1t is sufficient to verify each of the required axioms succes-
sively. O

Proof of Proposition 3.7 (page 56). Given that @, is associative and commutative, ®,¢, Ps: =
Gpg (Ppg_g Ps) = ©pg Ps = 1,. Thus, Ps: : dom(S’) — E, is a plausibility distribution over
S’ O

B.2 Proofs of Chapter 4

Proof of Theorem 4.3 (page 64). Let Pg be a plausibility distribution over S. For all S, S disjoint
subsets of S and for all A € dom(S; U Sz) satisfying Ps,(A) # 0,, let us define Pg, |g,(A4) =
max{p € E,|Ps, s,(A) = p®, Ps,(A)}. We must show that the Pg, | g, functions satisfy axioms
a, b, ¢, d, e of Definition 4.2.

(a) By definition of Pg, |5, and by distributivity of ®@, over ®,, one can write
Psz = EB;DS1 P51752 = 691751 (P51 | S2 Rp ,PSQ) = (EBIDS1 Psl | 52) ®p Psz'
As Pg, =5 Ps,, one can infer that ®pg, Ps,|s, Zp 1p. Let Az be an assignment of Sy satis-
fying Ps,(A2) # 0,. Assume that the hypothesis (H): “®, 4 Ps, |s,(A2) <p 1,” holds.
Then, for all A; € dom(Sl), 7351_’52 (AlAQ) =p PS2 (AQ), since if 7351152 (AlAQ) = PS2 (AQ),
then Ps, | 5,(A1.42) = 1,, which implies that @,y Ps, |s,(A2) =p 1, by monotonicity of .
Moreover, (H) implies that there exists a unique p € E,, satisfying (69,,51 Ps, |5,(A2)) Dpp =
1,. Combining this equation by Pg,(A2) gives Pg,(A2) @) Ps,(A2) @, p = Ps,(A2), ie.
Ps,(A2) @, (1, ®p p) = Ps,(As2). This implies that 1, &, p <, 1,. Given that 1, &, p =, 1,

(by monotonicity of @,), we obtain 1, &, p = 1,. We analyze two cases.

o Ifp <, 1y, there exists a unique p’ satisfying p'®pp = 1,. Asboth (©pg Ps, |s,(A2)) Bpp
=1, and 1, @, p = 1,, this entails that ®,¢ Ps,|s,(A2) = 1, which contradicts (H).

o If p=1,, then 1,4, 1, = 1,. This entails that &, is idempotent. Let dom’ be a subset
of dom(S1) such that @y, 00 Psy,s,(A1.42) = Ps,(A2). Let A} € dom’. One can

195

196 APPENDIX B. PROOFS

write:

PSl;SQ (AIIAQ) Dp (EBPAledom/—{A’l} PSl;SQ (A1A2)) = Psz (A2)
Psy,5:(A1-A2) @p (Dp 4, cgom: Psi1,5:(A1.42)) = Ps,(A2) (as @, is idempotent)

As Ps, s, (A].As) <, Ps,(A2), there exists a unique p” € E,, such that Pg, s, (A].A2)®,
p"" = Ps,(Az). Therefore, D®p A, cdom’ PS1.5: (A1.A9) = EBpAledom/_{A,l} Ps,.5,(A1.A3),
which gives ©p 4 g (a1} Ps1.55 (A1.Az) = Pg,(Az).

The assumption @©p 4 cgonr Psi,5:(A1.42) = Ps,(A2) holds for dom’ = dom(S1). Re-
cursively applying the previous mechanism by removing one assignment in dom’ at each
iteration leads t0 @©p 4 cyom Psi,8:(A1.42) = Ps,(A2) with |dom/| = 1, i.e. it leads to
Ps,.5, (A Ay) = Pg,(As) with dom’ = {A]}. As a result, we obtain a contradiction.

In both cases, a contradiction with (H) is obtained, whereby @, Ps, |s,(A2) = 1p.
(b) Ps, = Ps, 10 ©p Po = Psy 10 @p (Gpg Ps) = Ps, 10 @p 1p = Ps, j0-

(d) Let A € dom(S1US2US3) satistying P, s,(A) # 0p. Then, Pg, 5, |5,(A) = Pg, | 35,5, (A) @p
Ps, | s,(A) holds, because:

o If Pg, 5,.5,(A) <p Ps,(A), then, there exists a unique p € E, such that Pg, g, 5,(A) =
P®pPs;(A). Asboth Ps, s, 5,(A) = Pg, 5, 5,(A)@pPs,(A) (by definition of Pg, g, |s,)
and Ps, s,,55(A) = Ps, | 52,85 (A) @p Ps, | 55(A) ®p Ps,(A) (by definition of Pg, |g, s,
and Pg, | g,), this implies that Pg, g,|g,(A) = Ps, | 55,55 (A) @p Pg, | 55(A).

e Otherwise, Ps, s, 5,(A) = Ps,(A). This implies that 1, =<, Pg, 5,|9,(A4) and, as
Ps, 55155 (A) Zp 1, that Pg, g, s,(A) = 1,. Similarly, this entails that Pg, | g,(A4) =1,
and Pg, | 5,,5,(A) = 1, (the monotonicity of @, implies that Ps, s, 5,(A) = Ps,,5,(A4) =
Ps,(A)). As 1, =1, ®p 1, we get Pg, g, 5,(A) = Ps, | 55,5, (A) @p Py, |5, (A).

(C) 692051 P51752 |Ss — 692051 (PS1 | S2,S3 Op PSQ | 5'3) (uSing (d))
= (Bpg, Psy|52.5:5) @p Ps, s, (because ®, distributes over @)
Ps,| s, (using (a))

(e) Assume that Ps, s, .5, = Ps, |35 @p Ps, |5, @p Ps;. Let A € dom(Sy U So U S3) such that
Ps;(A) # 0p. Then, Pg, s, 3,(A) = Ps, | 5,(A) ®p Ps, | 5,(A) holds, because:

o If Pg, 5,5,(A) <, Ps,(A), there exists a unique p € E, such that Pg, s, 5,(4) =
p ®P PSB. (A)v and therefore P51,Sz | Sa (A) = PSl | Sa (A) ®P PSQ | S3 (A)

e Otherwise, one can write Pg, | g,(A) = Ps,|5,(A) = Ps, s,|5,(A) = 1, by using a rea-
soning similar to the one of (d), and therefore Pg, g,|5,(A) = Pg, | 5,(A) = Ps, | 35 (A).

O
Proof of Proposition 4.5 (page 65).

1. Symmetry axiom: directly satisfied by commutativity of ®,,.

B.2. PROOFS OF CHAPTER 4 197

2. Decomposition aziom: Assume that I(S1,S2 U S3|S4) holds. Then,
Psi,85185 = Ppg, Ps1,85,85 54
= Dpg, (Ps,|5, ®p Ps,.55|5,) (since I(S1, 52U Sz Sy))
= Ps, |5, Op (Bpg, Ps,.55|54) (by distributivity of ®, over @)

= Ps, |55 ®p Ps, | Sa
It proves that I(S1,S2 | S4) holds.

3. Weak union axiom: Assume that I(Sq,S2 U Ss|S4) holds. The decomposition axiom entails
that I(S1,S3|Sy) is also satisfied. Then,
Ps,.52,55.5: = P$,,95,85| 5. @p Ps, (chain rule)
= Ps, |5, @p Ps,,85 15, @p Ps, (since 1(S1, 8 U Ss|S4))
= Ps, 15 @p Ps, |5, @p Ps, @p Psy| 55,9, (chain rule)
= Ps,.55]5: @p Ps, @p Ps, | 55,5, (since I(S1,S3|54))

= Ps | 53,54 p Ps, | S3,84 Op Pss,54 (chain rule)
From axiom (e) in Definition 4.2, one can infer that Pg, g, |s,.5, = Ps, | 85,9 @p PS, | 85,54

ie. I(Sl, S2 | Sg @] 84) holds.

4. Contraction axiom Assume that I(S1,S2|Ss) and I(S1,S3|S2 U Ss) hold. Then,
Ps,,92,5518s = Py,84]52,9: @p Ps,| s, (chain rule)
= P, 19,5 @p Psy| 55,9, @p Psy| s, (since 1(S1,53|S2 U S4))
Ps,,521 52 @p Psy | 85,5, (chain rule)
= Ps,|5: ®p Ps, |5, @p Psy | 55,5, (since I(S1, 52| S1))

= Ps, |5, @ Ps,,5,15, (chain rule)
It proves that I(S7,S2 U Ss|Sy) holds.

Proof of Theorem 4.8 (page 66).

(a) First, if |C(G)| = 1, G contains a unique component ¢;. Then, ®pece() Pelpac(c) = Pey 0 =
Pe,: the proposition holds for |C(G)| = 1.

Assume that the proposition holds for all DAGs with n components. Let G be a DAG of
components compatible with a plausibility distribution Pg and such that |C(G)| = n + 1.
Let ¢g be a component labeling a leaf of G. As G is compatible with Pg, one can write
I(co,ndg(co) — pac(co) | pac(co)). As co is a leaf, ndg(co) = S — ¢, and consequently
I(co, (S — co) — pag(co)|pac(co)). This means that Pg_pa(co) | pac(co) = Peo|pac(co) Op
P(5—co)—pac(co) | pac(co)- Combining each side of the equation by Ppqp (o) gives

PS = Pco | pac (co) ®p PS*CQ'
Let G’ be the DAG obtained from G by deleting the node labeled with ¢g. Then, for every

component ¢ € C(G'), pag:(c) = pag(c) (since the deleted component ¢y is a leaf). Moreover
ndg (c) equals either ndg(c) or ndg(c) — o (again, since the deleted component ¢y is a leaf).
In the first case (ndg/(c) = ndg(c)), the property I(c,ndg(c) — pag(c)|pac(c)) directly
implies I(¢,ndgr(c) — pags(¢) | pac:(c)). In the second case (ndgs(c) = ndg(c) — ¢p), the de-
composition axiom allows us to write I(c,ndg (c) — pagr(c)|pag:(c)) from I(c,ndg(c) —
pag(c) |pag(c)). Consequently, G’ is a DAG compatible with Ps_.,. As |C(G')| = n,

198

APPENDIX B. PROOFS

the recurrence assumption gives Pg_., = Dpecc(ar) Pe|pac(e)» which implies that Ps =

®pcec(c) Pe|pac(e)- This ends the proof by recurrence.

Assume that for every component ¢, L pqp(c)(A) is a plausibility distribution over ¢ for all
assignments A of pag(c). For |C(G)| = 1, C(G) = {c1}. Then, vs = L., is a plausibility
distribution over ¢;. Moreover, as vy|9 = 1p, one can write Ye,up|0 = Ve, |0 ©p V0|0, 1€
I(c1,010). Therefore, G is compatible with ~.,: the proposition holds for |C(G)| = 1.

Assume that the proposition holds for all DAGs with n components. Let us consider a DAG
G with n + 1 components. We first show that vg is a plausibility distribution over .S, i.e.
Spg (®PceC(G) L pac(e)) = 1p. Let co be a leaf component in G. As ¢ is a leaf, the unique
scoped function whose scope contains a variable in ¢p i Ly pag(co)- By distributivity of &,
over @y, this implies that

Bpey (Opeec(a) Lepac) = (Dpe, Leopac(cn) @p (Oneee(@)—{eoy Lewac(e)
Given that Lc, pa(co)(A) is a plausibility distribution over ¢o for all assignments A of pag(co),
Sy, Ly pac(co) = Lp- Consequently,

e (Opeec(a) Lepac(e) = ®pecc(a)—feop Lewac (o)

Applying the recurrence hypothesis to the DAG with n components obtained from G by
deleting ¢g, one can infer that DPps_co (®pceC(G),{CO} Le pac(e)) = 1p. This allows us to write
Bpg_c (®pC0 (®pC€C(G) Lepac(e))) = 1p, ie. @pgvs = 1,0 s is a plausibility distribution
over S. It remains to prove that G is a DAG of components compatible with yg. Let ¢ € C(G).
We must show that (¢, ndg(c) — pac(c) | pac(c)) holds. Two cases are analyzed.

L. If ¢ = ¢, We must prove Ye, nde(co)—pac (co) | pac(co) = Yeo | pac (co) @pVYnde (co)—pac (co) | pac (co)-
First,

Yeopac(co) = DPps_(coUpac(co)) (®PCEC(G)LC-,PGG(C))

(GBPSf(coUpag(co)) (®pc€C(G)f{co} LC»PU«G(C))) ®@p LCO»PU«G(CO)
(because ®, distributes over @, and sc(Lcy pag(co)) € co U pag(co)
= (®rs_pac(eo) (Freec(a) Lepaa(e))) @p Leg pac(co)

(because @, distributes over @, and ¢, Ly pac(co) = 1p)

Ypac (co) @p Leo,pac (co)

From this, it is possible to write:
Ynde(co)—pac(co) | pac(co) p Veo | pac(co) Op Vpag(co)
= Tnda (co)—pac (co) | pac (co) ©p Veo,pac (co)
= Tnde (co)—pac (co) | pac (co) @p Vpac(co) Op LC(),paG(CO)
= Ynde(co) ®p Lo, pac (co)
= V5—{co} @p Ly pac(cy) (Decause cg is a leaf in &)

= (®pc€C(G)f{co} Le pac(e) ®p Leg,pac (co)
L

= Bpeec(a) Lepac(e)
=7s
Using axiom (e) of Definition 4.2, this entails that Vnae (co)—pac (o) | pac (co) @pVeo | pac (co) =

YS—pac(co) | pac(co)s 16+ as S = co Undg(co), that I(co,ndg(co) — pac(co) | pac(co)).
2. Otherwise, ¢ # ¢o. Let G’ be the DAG obtained from G by deleting ¢g. G’ contains n

components: the recurrence hypothesis enables us to write I(c, nde (¢)—pag(¢) | pag:(c)).

B.2. PROOFS OF CHAPTER 4 199

As ¢ is a leaf in G, ¢ ¢ pag(c), which implies pag(c) = pag(c). Thus, I(c,ndg(c) —

pac(c) | pac(c)).

(i) If ndgr(c) = ndg(c), then I(c,ndg(c) — pac(c) | pac(c)) directly holds.

(ii) Otherwise, ndg:(c) # ndg(c). As cg is a leaf in G, this is equivalent to say that
ndg(c) = ndg(¢) U cg. This means that ¢ is not an ancestor of ¢p, and a for-
tiorl ¢ ¢ pag(cp). In the following, the four semigraphoid axioms are used to
prove the required result. From the decomposition axiom, from I(co,ndg(co) —
pag(co) | pac(co)), and from (c Unde (c)) C ndg(co) (because ndg(co) = S — ¢o),
it is possible to infer that I(co, (¢ U ndg/(c)) — pag(co)|pac(co)), or, in other
words, as ¢ N pag(co) = 0, that I(co,c U (ndg/(¢) — pag(co)) | pac(co)). Using
the weak union axiom leads to I(co, ¢| (ndg (¢) —pac(co))Upag(co)) and, using the
symmetry axiom, to I(c,co | (ndg(¢) — pag(co)) Upag(co)). As shown previously,
I(e,ndg(c)—pag(c) | pac(c)). Together with I(c, cq | (nde (¢)—pac(co))Upac(co)),
the contraction axiom allows us to infer I(c, (ndg/(¢)—pag(c))Uco | pac(c)). Asco ¢

pag(c) and ndg(c) = ndg/(c) U cg, this means that I(c,ndg(c) — pag(c)) | pag(c)).

We have proved that G is compatible with ~vg. Consequently, the proposition holds if there

are n + 1 components in G, which ends the proof by recurrence.

O

Proof of Proposition 4.10 (page 67). Let n € N*. If Opici,n) 1p = lp, then po = 1, satisfies the
required property. Moreover, in this case, the distributivity of ®, over @, implies that for all
p € By, Dpicfin P = P Therefore, if Dpicin P = 1, then p =1, which shows that pg is unique.

Otherwise, ©p,c(y ,, 1p 7 1p- In this case, as 1, =, @p,(;) 1p by monotonicity of @, one can
write 1, <, Dpiei1,n] 1p. The second item of Theorem 4.3 then implies that there exists a unique

po € E, such that 1, = py ®) (®pi€[17n] 1p), i.e. such that 1, = Bpic(1,n Po- O

Proof of Proposition 4.12 (page 68). Pvy v, = Pvy v, @p Po, Where py is the element of E), such
that Dpicn,|dom(vp) PO = 1,. Then,
Opyuvp Pvevo = DBpyuuv, (Pvs|vio ®p Po)

Spy, (Bpy, Pvi || vp) ®p Po)
= Opy, Po

DPpic(1,|dom(vp)|) PO

=1,

This proves that Py, v, is a plausibility distribution over Vg U Vp.

As Pvp vy = Py |vp @p po and Py, vy, = Py vy @p Pyp, one can write Py, (v, @p po =
Pvi | vio ®@p Pvpp- Moreover, Py, = @py. Py, vy = Opy, (Pv || v ®pPo) = po- Thus, Py, v, @p

Po = Py | vp @ppo. Summing this equation |dom(Vp)| times with @, gives Py, v, = Pyy v, O

Proof of Proposition 4.14 (page 68). The result is proved only for Py, v, (the proof for Fy,, v,
is similar). The completion of Py, | v,, looks like Py, v, = Py, (v, @p Po. Gy being compatible
with this completion, Theorem 4.8a entails that Py, v, = ®Opecc(a,) Pc|pacp(c). As the decision
components are roots in G, one can infer, by successively eliminating the environment components,

that Py, = @pVE Pvg,vp = ®pC€CD(GP) Pe.

200 APPENDIX B. PROOFS

On the other hand, Py, = Spy, (PVE Vo ©p po) = po. This proves that ®Opeccn(Gy) Pe = po.
Therefore, Py, vi, = Pvg|vp @p 20 = (Dpeecy(a,) Pe|pac,(c) ®p po. Summing this equation
|dom(Vp)| times with @&, gives Py, v, = Bpeccn(G,) Pelpac, (@) As Ce(Gp) = Cg(G) and
pag,(c) = pag(c) for every c € Cg(G), this entails that Py, |y, = Dpeecn(c) Pelpac(c): O

B.3 Proofs of Chapter 5

Proof of Proposition 5.3 (page 77). Proposition 5.3 is entailed by the DAG structure: indeed, as
variables are organized in a DAG, it is sufficient to build a sequence Sov as follows. At the
beginning, Sov = () and G is the DAG of the PFU network. While the DAG G is not empty,
(1) select a leaf component ¢ in G; (2) if ¢ is a decision component, then Sov « (max,c).Sov;

otherwise, Sov «— (@, c).Sov; (3) delete ¢ from G. O

Proof of Proposition 5.5 (page 78). We denote by po the element in E,, such that the completion
of Py, |1 vp, equals Py, | v, @ po. Note that pg # 0, since it must satisfy Dpic(1,|dom (Vo) PO = 1p.

Lemma B.1. Let (E,,®,,®,) be a conditionable plausibility structure. Then, (p1 @, p2 = 0,) <
((p1 =0p) V (p2 =0p)).

Proof of Lemma B.1. First, if p; = 0, or po = 0p, then p; ®, po = 0,. Conversely, assume that
p1 ®p p2 = 0p. Then, if p; >, 0p, the conditionability of the plausibility structure together
with p; ®, 0, = 0, entails that p, = 0,. Similarly, if p, >, 0,, then p; = 0,. Therefore
(p1 ®pp2 =0,) = ((p1 =0p) V (p2 = 0,)). a

Lemma B.2. Assume that the plausibility structure is conditionable. Let Sy, So be disjoint subsets

of Vg. Then, Ps, | s, vy = Psy|85,vp-

Proof of Lemma B.2. On one hand, Pg, s,|v, = Ps,|8.,vp @p Ps,|vp- On the other hand,
Psi,8:1vp = Psy,salive = Psy 18211 ve ©p Psyjivp = Psy 5211 v @p Psy | vp-

Let A be an assignment of V. If Pg, g,|v,(A4) <p Ps, v, (A), then the conditionability of
the plausibility structure entails that Pg, | s,,v;, (A) = Ps, | s, || vp (A). Otherwise, Pg, s, v, (A) =
Ps, v, (A), which also entails that Pg, g, v,(4) = Ps,|v,(A). In this case, Pg,|s,v,(A) =

Psl || S2,Vp (A) = 1p. Therefore, Psl | S2,Vp = Psl | So || Vp

O

(1) Assume that Vg # 0. Let S; be the leftmost set of environment variables appearing in Sov and
let A € dom(I(S;)). Using I(S;) N Ve = 0, one can write Pj(g,)(A) = Spy_i(s;) Pve.vo (A) =
GBPVD_Z(Si)(@pVE Pvevp(A)) = Spvp—i(s:) PO # 0,. Therefore, Pg, |1(s,)(A) is well-defined.

(4) Let lg(S;) =1(S;)NVE and Ip(S;) = 1(S;) NVp. For a set of variables S, we denote by d¢(.5)
the set of variables in V' which are descendant in the DAG G of at least one variable in S.
First, Ps,in(s)11ve = Doy, (s,uie(s.)) PVellVe = Povy—(s,uin(s,) (Ppp,ep Fj)- By def-
inition of a query, variables in Vg Ndg(Vp — Ip(S;)) do not belong to S; U lg(S;) (the
environment variables that are descendant of as-yet-unassigned decision variables are not
assigned yet, either).

Thus, Psiie(s)llve = @PVEf(SiUlE(Si)Udg(VD7lD(Si))) (®ij¢Fact(c),cCVEﬁdG(VD7lD(Si)) bj).
This equality is obtained by successively eliminating (using the normalization conditions)

B.3.

PROOFS OF CHAPTER 5 201

the environment components included in dg(Vp — Ip(S;)). As the scope of a plausibility
function P; € Fact(c) is included in ¢ U pag(c), this equality entails that Pg, ;. (s,) || v, does
not depend on the assignment of Vp —Ip(S;). Morever, Py, (s,)(vp = Ds; Ps, 105, || v does
not depend on the assignment of Vp too. As Pg, |i,(s,) (| vy = max{p € Ep|Ps, 1505 vp =
P ®p Piy(s,) || v > this also entails that Pg, |1,(s,)|/ v, does not depend on the assignment of

Vp. It can be denoted Pg; |1,(5;) [11p(S:)-

Let us show that P, 1(s;) = Ps;|15(5:)|1p(s:)- First,
Psiis) = Bpvp_ip(sy) Psile(s0.Vo = Povy 15 (s0) (Psi 116(5),Vo ®p Pis(si),vo)
= Bpvy1ps) (Psilies)lIvo @p Pig(si),vp) (using Lemma B.2)
= PSi [1e(S:) || VD @p (GBPVD—lD(Si) PZE(Si),VD)
(since Psg, |15(s,) || vp does not depend on the assignment of Vp —I(5;))
= Psijiwsollvo @p Pusi)
Let A be an assignment of V.

— If Pg, 1(5,)(A) <p Pics,)(A), then the conditionability of the plausibility structure di-
rectly entails that Pg, |is,)(A) = Ps, |1x(5:) || v (4)-

— Otherwise, Pg, i(s,)(A) = Pys,)(A). In this case, Pg, |;s,)(A) = 1,. Next, on one hand,
Pusy = Goyv_ys)(Pviel1ve © Po) = Dpyp, 1,50 (Pis(si) |1 vo ©p Po)- On the other
hand, Ps, u(s;) = @py_(s,u1050) (Pve 1vo @b P0) = Soyy 150 (Psistesi) 11 Vo @p Do)
As P, 15, (A) = Pys,)(A), one can infer that ®pVD71D(Si)(PlE(Si) Vb (A) ®p po) =
GBPVD—lD(Si)(,PSiJE(Si) ||V (A) @ppo). As neither Py (s,)||vp DOT Ps, 15,y || vp depends
on the assignment of Vp —Ip(;), this entails that Py, (s,) || vp (4) @ (Bpyy, 4, (s,) P0) =
Psiin(s0) 11 Vo (A) @p (Dpy, 4, (5, Po)- Summing this equation |dom(Ip(S;))| times gives
Psitn(s) Vo (A) = Piisy 1vp (A), and thus Ps, ji,(s:) v (A) = 1p = Psiusi) (A)-

The results can be extended to feasibilities.

Let ¢,7 € [1,k] such that i < j, S; C Vg, S; C Vg, and r(S;) NI(S;) C Vp (S; is the first set
of environment variables appearing at the right of S; in Sov). Let (A, A") € dom(I(S;)) X
dom(S;) such that Pg, |;(s,)(A) is well-defined (i.e. Py(s,)(A) # 0,) and Pg, |y(s,)(A.A") # 0.
Let A” be an extension of A.A" over I(S;). We must show that Py |s,)(A”) is well-defined,
i.e. that Pyg,)(A”) # 0. As Pg,|i(s,)(A.A") # 0, and Pyg,)(A) # 0p, Lemma B.1 implies
that Pg, i(s,)(A.A") # 0,. Similarly to the proof of point (4), it is possible to show that Py
does not depend on the assignment of I(.S;) — (S; UI(S;)). Therefore, for every A” extending
A A" over 1(S;), Opi(s;)—(S:UL(S:)) Pis;)(A") # 0p, which implies that Py(g,)(A"”) # 0p.

Proof similar to point (2), except that plausibilities are replaced by feasibilities and decision

variables are replaced by environment ones.

O

Proof of Theorem 5.9 (page 81). Let Ay, be an assignment of the set of free variables Vj, such
that Fv, (Af,) = f. The semantic based definition gives (Sem-Ans(Q))(Ays,) = ¢. Given that
Fvp (Ar) = Vvovy, Frgvo (Apr) = Vvovy, Fvp v (Apr) = Vvov;, (Arer Fi(Ayr)) (since the
completion of Fy,, || v, gives Fy,, v, = Fvp,vi), one can infer that for every complete assignment

202 APPENDIX B. PROOFS

A" extending Ay, Aper Fi(A”) = fand (Arer Fi(A"))x(@pp c p Pi(A") @pu (@uv,cv Ui(A")) =
0. As min(Q, 0) = max (0, Q) = O @, ¢ = O, this entails that (Op-Ans(Q))(As,) = O too.
We now analyze the case Fy, (Ap.) =t. We use A” to denote a complete assignment which

must be considered with the semantic definition. Using the properties:
® D ®py, min(uq, us) = min(p Qpy w1, p Qpy u2) (right monotonicity of &),
® D ®py max(ur, uz) = max(p @py, U1, P Opy 2) (right monotonicity of ®p.),
® D Qpy (U1 By u2) = (P Qpy 1) Doy (P Rpy, u2) (distributivity of &y, over @y,),
® D1 Qpu (P2 @pu u) = (P1 ®p P2) Qpu U,

one can “move” all the Pg, |s,)(A.A") to get, starting from the semantic definition,
(Bpicp p.scve Psilis) (A7) @pu Uy (A7)
on the right of the elimination operators.

Let us prove that this quantity equals Py, v, (A"”) @pu Uy (A”). Let S be the rightmost set
of quantified environment variables. The chain rule enables us to write Py, |v, = Ps|iz(s),vp @p
Piy(s)|vp, Where [g(S) = I(S) N Vg. Moreover, using Lemma B.2 and Proposition 5.5(4), one
can write Pgip(5).vp = Psjins)|vo = Psjis). Therefore, Pyy vy, = Psjics) @p Pig(s)| v
Recursively applying this mechanism leads to: Py, v, = ®pici1,k],8:iC Ve Ps. |i(s;)- Therefore, we
obtain Py, | v, (A"”) ®pu Uy (A”) on the right of the elimination operators.

The semantic definition of the query meaning can be updated a bit, thanks to Lemma B.1. This
lemma implies that conditions like Pg|;g)(A.A") # 0,, which are used only when P;(g)(A) # 0y,
are equivalent to Pg gy(A.A") # 0, since Pg j(5)(A.A") = Pg|is)(A.A") @, Pys)(A). As a result,
the operators Buaredom(S),Ps | 1(s)(A. A7)0, CAN be replaced by Buaredom(S), Ps.i(s)(A.A) A0, -

Similarly, in the eliminations minsedom(s),#s (s (a.4")=t, the conditions Fg ;(s) (A.A") =t can

be replaced by Fg (s)(A.A") = t. The same holds for the eliminations max,edom (), 7s | 15, (A.A")=t-

We now start from the operational definition and show that it can be reformulated as above.
The operational definition applies a sequence of eliminations over the variables domains, on the
global function (Ap,er F;) * (®pPi€P P;) ®pu (Au,ev Us), which also equals Fy,, | v, * Py | v, @pu
Uy . Let S be the leftmost set of quantified decision variables. Let A be an assignment of I(S).
Assume that S is quantified by min. Let Ay € dom(S) such that Fg;s)(A.Ag) = f. It can be
inferred that for all complete assignment A” extending A.Ag, Fy, v, (A”) = f, and consequently
Fvpve(A”) = f. This implies that Fy, v, (A”) x Py, v, (A") @pu Uy (A”) = O. Given that
min(Q, §) = max(Q, Q) = O @, O = O, we obtain Qo,(N,Sov, A.Ag) = ¢. As min(d,) = d,
this entails that minascaom(s) @or (N, Sov, A.A") = mingrcaom(s)—{a,} Qor(N, Sov, A.A"). Thus,
mingredom(s) can be replaced by minasedom(s) Fs s (A.A7)=t (as Fv,,(A) = t, there exists at
least one assignment A’ € dom(S) such that Fg;5)(A.A") = t). The same result holds if S is
quantified by max. Applying this mechanism to each set of quantified decision variables from
the left to the right of Sov, we obtain that minysegom(s) and maxacgom(s) can be replaced
by MIN A’ €dom(S), Fs.i(s)(A. A=t and MAX A’ dom (S), Fs. (s (AA')=t respectively. Moreover, it can be
shown that for every complete assignment A” which is now considered, Fy,, | v, (A”) = t. It is then
possible to replace Fy,, | v, (A”) * Py, | v, (A”) @pu Uy (A”) by Py vy, (A”) @pu Uy (A”).

B.3. PROOFS OF CHAPTER 5 203

We now update each ©uarcdom(s) Qor (N, Sov, A.A’). Let S be the leftmost set of quan-
tified environment variables. Let A be an assignment of I(S). Let Ay € dom(S) such that
Pgi(s)(A.Ag) = 0,. Then, for all complete assignments A” extending A.Ag, Py, v, (4”) = 0y,
and thus Py, v, (A") @puUy (A”) = 0,. As min(0y,0,) = max(0y,0,) = 0y ©y 0y = 0., we obtain
Qo (N, Sov, A.Ay) = 0y. As d ®, 0, = d, computing By a’caom(s) Qor(N, Sov, A.A’) is equiva-
lent to computing ®u arcdom(s)—{a} Qor(N, Sov, A.A"). Thus, ©uarciom(s) can be replaced by
DuAredom(S).Ps.is)(A.A)20, (a8 Pis)(A) # 0p, there exists at least one assignment A € dom(S)
satisfying Pg ;(5)(A.A") # 0,). Applying this mechanism, considering each set of quantified envi-
ronment variables from the left to the right of Sov, enables us to get ©uaredom(s),Ps,s)(4,47)£0,
instead of ©u arcdom(s)-

Consequently, we have found a function ® such that Sem-Ans(Q) = ® and Op-Ans(Q) = P.
Moreover, the optimal policies for the decisions for Sem-Ans(Q) are optimal policies for decisions
for ®. Indeed, the transformation rules used preserve the set of optimal policies. The same holds
for Op-Ans(Q) and ®. Tt entails that Sem-Ans(Q) = Op-Ans(Q), and that the optimal policies
for Sem-Ans(Q) are the same as those for Op-Ans(Q). O

Proof of Theorem 5.12 (page 82).

Lemma B.3. Let (E,, E,, ®y, @pu) be an expected utility structure such that E,, is totally ordered
by <. Let vs,,s, be a local function on E,, whose scope is S1 U Sy. Then,

ma. D A).A) = @, ma
¢:dom(52)§dom(51)Aedom(52)751’sz (¢(A).4) D MAX Y, 5,
Moreover, ¥ : dom(S2) — dom(S1) satisfies (maxs, Vs,,s,)(A) = 7s,,5,(V(A).A) for all A €

dom(S2) iff MaXg.dom(Ss)—dom(S,) Pudcdom(Ss) V51,52 (P(A)-A) = Buacdom(ss) V51,52 (V(A).A). In
other words, the two sides of the equality have the same set of optimal policies for Si.

Proof of Lemma B.3 (page 203). Let ¢ : dom(S2) — dom(S1) be a function such that
maXe:domn, (S)—dom(S1) 69uAEdom(S’g) V51,52 ((b(A)A) = 69uAEdom(Sg) V51,52 ((bO(A)A)
Given that for all A € dom(S2), ¥s,,5,(¢0(A).A) <y MaXAredom(s,) V51,5, (A A), the monotonic-
ity of @, entails that ®uA€dom(S2) VS1,82 (¢O(A)A) =u EBUAGdOm(Sz) maxAredom(Sy) VS1,S2 (A/A)
Thus,
MaXg:dom(Sz)—dom(S1) PuAcdom(Ss) V51,52 ((A).A) =y Dug, MaxXg, Vs,,Ss-

On the other hand, let ¢y : dom(S3) — dom(S1) be a function such that YA € dom(S2),

(maXSI ’751752)(’4) = 751,52 (wO (A)A) Then,

69%92 maxs, vs,,5, = Dy V51,82 (’lﬁo(A)A) =u max Dy V51,82 (¢(A)A)
Aedom(Sa) ¢:dom(S2)—dom(S1) Acdom(Sz)

The antisymmetry of <, implies the required equality. The equality of the set of optimal
policies over Sy is directly implied by the equality. O
We now give the proof of the theorem, which uses for some cases the previous lemma.

1. (CSP based problems [84])

Let us consider a CSP over a set of variables V' and with a set of constraints {C4,...,Cyp,}.

204 APPENDIX B. PROOFS

(a) (Consistency, solution finding) Consistency can be checked with the query @ = (N, (max, V)),
where N' = (V,G,0,0,U) (all variables in V are decision variables, G is reduced to a
unique decision component containing all variables, and U = {C4, ..., Cy,}), and where
the expected utility structure is boolean optimistic expected conjunctive utility (row 6 in
Table 3.1). Computing Ans(Q) = maxy (Ci A ... A Cyp,) is equivalent to checking con-
sistency, because Ans(Q) = t iff there exists an assignment of V satisfying C1 A...AC)p,

i.e. iff the CSP is consistent. In order to get a solution when Ans(Q) = ¢, it suffices
to record an optimal decision rule for V. Integer Linear Programming [124] with finite

domain variables can be formulated as a CSP.

(b) (Counting the number of solutions) The expected utility structure considered for this
task is probabilistic expected satisfaction (row 2 in Table 3.1). The PFU network is
N = (V,G, P,0,U), where all variables in V are environment variables, G is a DAG with
a unique component ¢ =V, P = {Ly}, Lo being a constant factor equal to 1/|dom(V)]
such that Fact(co) = {Lo}, and U = {C4,...,Cp}. Implicitly, Ly specifies that the
complete assignments are equiprobable. It enables the normalization condition “for all
¢ € Cu(G), ®p, Bpp.c pacr(ey i = 1p” to be satisfied, since 3, (1/|[dom(V)|) = 1. The
query to consider is then @ = (N, (+,V)). It is not hard to check that this satisfies the
conditions imposed on queries and Ans(Q) = >, (1/Lo x (Cy X ... x Cp,)) gives the

percentage of solutions of the CSP. Ly x Ans(Q) gives the number of solutions.

2. (Solving a Valued CSP (VCSP [123]))
In order to model this problem, the only difficulty lies in the definition of an expected utility
structure. In a VCSP, a triple (F, ®, =) called a valuation structure is introduced. It satisfies
properties such as (F,®) is a commutative semigroup, > is a total order on E, and E has
a minimum element denoted T. The expected utility structure to consider is the following
one: (Ep, &p,®p) = ({t, f1V,N), (Bu,®y) = (E,®), and the expected utility structure is
(Ep, By, ®u, @pu), with @&, = min and ®,, defined by “false®@p,u =T and true@p, u = u”
(it is not hard to verify that this structure is an expected utility structure). Next, the
PFU network is N' = (V,G,0,0,U), where V is the set of variables of the VCSP, G is a
DAG with only one decision component containing all the variables, and U contains the soft
constraints. The query @ = (min, V') enables us to find the minimum violation degree of the

soft constraints. A solution for the VCSP is an optimal (argmin) decision rule for V.

3. (Problems from the SAT framework [82])
In the SAT framework, queries on a conjunctive normal form boolean formula ¢ over a set

of variables V' = {xy,...,x,} are asked.

Let us first prove that an extended SSAT formula can be evaluated with a PFU query.
An extended SSAT formula is defined by a triple (¢,0,q) where ¢ is a boolean formula in
conjunctive normal form, 6 is a threshold in [0, 1], and ¢ = (q1x1) ... (gn2n) 18 a sequence
of quantifier /variable pairs (the quantifiers are 3, V, or f; the meaning of A appears below).
If one takes f < t, the value of ¢ under the quantification sequence ¢, val(¢, q), is defined
recursively by: (i) val(¢,0) = 1 if ¢ is ¢, 0 otherwise; (ii) val(¢, (3z)¢') = max, val(¢,q');
(ili) val(¢, (Vo) q') = mingval(o,q); (iv) val(e, (Ax)q') = >, 0.5 -val(¢,q'). Intuitively,
the last case means that A quantifies boolean variables taking equiprobable values. An

B.3. PROOFS OF CHAPTER 5 205

extended SSAT formula (¢,6,q) is t iff val(¢,q) > 6. If S denotes the set of variables
quantified by f, an equivalent definition of val(¢,q) is: (") val(é,?) = 0.5/ if ¢ is t, 0
otherwise; (ii’) val(¢, (3x) ¢’) = max, val(¢,q’); (iii’) val(¢, (V) q') = ming val(g,q’); (iv’)
val(g, (F2) o) = 5, val(6,¢).

This second definition proves that val(¢,q) can be computed with the PFU query defined
by: (a) expected utility structure: probabilistic expected satisfaction (row 2 in Table 3.1);
(b) PFU network: N = (V,G, P,(,U), with V the set of variables of the formula ¢ (the
decision variables are the variables quantified by 3 or V), G a DAG without arcs, with one
decision component per decision variable and a unique environment component containing
all variables quantified by A, P = {Lo}, Lo being a constant factor equal to O.5‘VE|, and U
the set of clauses of ¢; (¢) query: Q = (N, Sov), Sov being obtained from ¢ by replacing 3,
v, and A by max, min, and + respectively. Then, Ans(Q) = val(¢, q), which implies that the
value of an extended SSAT formula (¢, 6, q) is the value of the bounded query (N, Sov, 6).

SSAT is a particular case of extended-SSAT and is therefore covered. SAT, MAJSAT, E-
MAJSAT, QBF are also particular cases of extended SSAT. As a result, they are covered
by PFU bounded queries. More precisely, SAT corresponds to a bounded query of the form
Q = (N, (max,V),1); MAJSAT (“given a boolean formula over a set of variables V, is it
satisfied for at least half of the assignments of V) corresponds to a bounded query of the form
(N, (+,V),0.5); EEMAJSAT (“given a boolean formula over V = Vi U Vp, does there exist
an assignment of Vp such that the formula is satisfied for at least half of the assignments
of Vg?”) corresponds to a bounded query of the form (N, (max, Vp).(+,VE),0.5); QBF
corresponds to a bounded query in which max over existentially quantified variables and min

over universally quantified variables alternate.

4. (Solving a Quantified CSP (QCSP [15]))
A QCSP represents a formula of the form Q1 ... Qnx, (C1 A...ACy,), where each Q; is a
quantifier (V or 3) and each C; is a constraint. The value of a QCSP is defined recursively as
follows: the value of a QCSP without variables (i.e. containing only ¢, f, and connectives)
is given by the definition of the connectives. A QCSP Jz gesp is t iff either gesp((z,t)) =t
or gesp((z, f)) = t. Assuming f < ¢, it gives that Jx gesp is ¢ iff max, gesp = . A
QCSP Vz gesp is t iff gesp((x,t)) = t and qesp((z, f)) = ¢. Equivalently, Va gesp is ¢
iff min, gesp = t. It implies that the value of a QCSP is actually given by the formula
op(Q1)zy - 0p(Qn)z, (C1 A ... ACh), with op(3) = max and op(V) = min. It corresponds
to the answer to the query (N, (op(Q1),21). (op(Qn), xy)), where N = (V. G,0,0,U) (V
is the set of variables of the QBF, G is a DAG with only one decision component containing
all variables, and U is the set of constraints), and where the expected utility structure is

boolean optimistic expected conjunctive utility (row 6 in Table 3.1).

5. (Solving a mixzed CSP or a probabilistic mized CSP [}7])

A probabilistic mized CSP is defined by (i) a set of variables partitioned into a set W of
contingent variables and a set X of decision variables; an assignment Ay, of W is called
a world and an assignment Ax of X is called a decision; (ii) a set C = {C,...,Cp} of

constraints involving at least one decision variable; (iii) a probability distribution Py over

206

APPENDIX B. PROOFS

the worlds; a possible world Ay (i.e. such that Py (Aw) > 0) is covered by a decision Ax

iff the assignment Ayy.Ax satisfies all the constraints in C.

On one hand, if a decision must be made without knowing the world, the task is to find
an optimal non-conditional decision, i.e. to find an assignment Ax of the decision variables
that maximizes the probability that the world is covered by Ax. This probability is equal to
DA | (Crx..xCo)(Ax A)=1 P (Aw) =32y (Pw x C1 x ... x Cp). As atesult, an optimal
non-conditional decision can be found by recording an optimal decision rule for X for the
formula maxx >y, (Pw x C1 x ... x Cy,). The previous formula actually specifies how to
solve such a problem with PFUs. The algebraic structure is probabilistic expected utility
(row 2 in Table 3.1), the PFU network is N' = (V,G, P,0,U), with Vp = X, Ve = W, G
a DAG without arc, with one decision component X and a set of environment components
that depends on how Py is specified, P is the set of factors that define Py, and finally
U={Cy,...,Cp}. The query is then @ = (N, (max, X).(+, W)).

On the other hand, if the world is known when the decision is made, the task is to look for an
optimal conditional decision, i.e. to look for a decision rule ¢g : dom(W) — dom(X) which
maximizes the probability that the world is covered. In other words, the goal is to compute
MAX g dom(W)—dom(X) 2 Ay edom(W) | (Cr x...x C) (Aw-d(Aw))=1 LW (AW) =

MAXg: dorm (W)—dom(X) ZAWedom(W) (Pw x Cy x ... x Cp) (Aw.0(Aw)). Due to Lemma B.3,
it also equals >, maxx (Pw x C1 x ... x Cy,), and ¢ can be found by recording an opti-
mal decision rule for X. It proves that the query Q = (N, (+, W).(max, X)) enables us to

compute an optimal conditional decision.

With Mized CSP, Py is replaced by a set K of constraints defining the possible worlds. The
goal is then to look for a decision, either conditional or non-conditional, that maximizes the
number of covered worlds. This task is equivalent, ignoring a normalizing constant, to find a
decision that maximizes the percentage of covered worlds. This can be solved using the set
of plausibility functions P = K U {Np}, with Ny a normalizing constant ensuring that the
normalization condition on plausibilities holds. Ny is the number of possible worlds, but it
does actually not need to be computed, since it is a constant factor and we are only interested

in optimal decisions.

. (Stochastic CSP (SCSP) and stochastic COP (SCOP) [138])

Formally, a SCSP is a tuple (V, S, P,C,#), where V is a list of variables (each variable x
having a finite domain dom(x)), S is the set of stochastic variables in V, P = {Ps|s € S}
is a set of probability distributions (in a more advanced version of SCSP, probabilities over
S may be defined by a Bayesian network; the subsumption result is still valid for this case),
C={C,...,Cy} is a set of constraints, and 6 is a threshold in [0, 1].

A SCSP-policy is a tree with internal nodes labeled with variables. The root is labeled with
the first variable in V', and the parents of the leaves are labeled with the last variable in
V. Nodes labeled with a decision variable have only one child, whereas nodes labeled with
a stochastic variable s have |[dom(s)| children. Leaf nodes are labeled with 1 if the complete
assignment they define satisfies all the constraints in C', and with 0 otherwise. With each leaf
node can be associated a probability [], g Ps(As), where Ag stands for the assignment of
implicitly defined by the path from the root to the leaf. The satisfaction of a SCSP-policy

B.3. PROOFS OF CHAPTER 5 207

is the sum of the values of the leaves weighted by their probabilities. A SCSP is satisfiable
iff there exists a SCSP-policy with a satisfaction of at least . The optimal satisfaction of a

SCSP is the maximum satisfaction of all SCSP-policies.

For the subsumption proof, we first consider the problem of looking for the optimal sat-
isfaction of a SCSP. In a SCSP-policy, each decision variable x can take one value per
assignment of the set preds(x) of stochastic variables which precede z in the list of vari-
ables V. Instead of being described as a tree, a SCSP-policy can be viewed as a set of
functions A = {¢* : dom(preds(x)) — dom(z)),x € V — S}, and its value is val(A) =
> asedom(s) Ulses Ps X Ie,ec CZ-)(AS.(IG‘}75¢”” (As))). The goal is to maximize the pre-
vious quantity among the sets A. Let y be the last decision variable in V', and let ®¥ be the

set of local functions ¢V : dom(preds(y)) — dom(y) defining a decision rule for y. Then,

Jnax val(A) = max > (> IIPx II eds(_; ¢:(49)).
Asedom(preds(y)) S—preds(y)seS c;eC

By Lemma B.3, the previous quantity also equals:

D preds () Xy D5 pred. () (ITses Ps x T, ec Ci)- A recursive application of this mecha-
nism shows that the answer Ans(Q) to the query @ described below is equal to the optimal
satisfaction of a SCSP:

e expected utility structure: row 2 in Table 3.1 (probabilistic expected satisfaction)

e PFU network: N = (V' G, P,(),U), with V' the set of variables of the SCSP; Vg = S
and Vp = V' — S; G is a DAG without arcs, with one component per variable; P =
{Ps|s € S}; Fact({s}) = {Ps}; U is the set of constraints of the SCSP;

e query: Q =(N, Sov), with Sov=t(V') (V is the list of variables of the SCSP), t(V) being
(+.A{zhH)t (V") ifz e S

recursively defined by ¢(0) = () and ¢t(z.V") = .
(max, {z}).t(V") otherwise

An optimal SCSP-policy can be recorded during the evaluation of Ans(Q). The satisfiability
of a SCSP can be answered with the bounded query (N, Sov,6). Again, a corresponding

SCSP-policy can be obtained by recording optimal decision rules.

With Stochastic Constraint Optimization Problem (SCOP), the constraints in C' are additive

soft constraints. The subsumption proof is similar.

7. (Classical planning problems (STRIPS-like planning [49, 58]))
In order to search for a plan of length lesser than k, one can simply model a classical planning
problem as a CSP. Such a transformation is already available in the literature [58]. However,
one can also model a classical planning problem more directly in the PFU framework. More
precisely, the state at one step is described by a set of boolean environment variables, one
per ground atom. For each step, there is a unique decision variable whose set of values
corresponds to the name of all ground instances of operators. Plausibility functions are
deterministic functions which link variables in step ¢ to variables in step ¢t +1 (these functions
simply specify the positive and negative effects of ground operators). The initial state is also
represented by a plausibility function linking variables in step 1. Feasibility functions define
preconditions for an action to be feasible. They link variables in a step t to the decision

variable of that step. Utility functions are boolean functions describing the goal state. They

208

APPENDIX B. PROOFS

hold over variables in step k. In order to search for a plan of length lesser than &, the sequence
of elimination is a max-elimination on all variables. The expected utility structure used is

the boolean optimistic expected disjunctive utility.

(Influence diagrams [64])

We start from the definition of influence diagrams of Section ?7?. With each decision variable
d, one can associate a decision rule §¢ : dom(pac(d)) — dom(d). An influence diagram policy
(ID-policy) is a set A = {§%|d € D} of decision rules (one for each decision variable). The
value val(A) of an ID-policy A is given by the probabilistic expectation of the utility:

J— . . d
’UCLZ(A)— Z ((Hps\pac(s)) X (Z Ul))(AS'(d€D6 (AS)))
Asedom(S) s€S U;eU
To solve an influence diagram, one must compute the maximum value of the previous quan-

tity and find an associated optimal ID-policy. Using Lemma B.3 and the DAG structure, it
is possible to show, using the same ideas as in the SCSP subsumption proof, that the optimal
expected utility is given by the answer to the query @ below (associated optimal decision

rules can be recorded during the evaluation of Ans(Q)):

e expected utility structure: row 1 in Table 3.1 (probabilistic expected utility);

e PFU network: A" = (V,G’, P,0,U); V is the set of variables of the influence diagram,
G’ is the DAG obtained from the DAG of the influence diagram by removing utility
nodes and arcs into decision nodes; in G’, there is one component per variable; P =
{Ps | pac(s),5 € Ve} and Fact({s}) = {Ps|pag(s)}; U is the set of utility functions
associated with utility nodes.

e PFU query: Q = (N, Sov), with Sov obtained from the DAG of the influence diagram as
follows. Initially, Sov = (). In the DAG of an influence diagram, the decisions are totally
ordered. Let d be the first decision variable in the DAG G of the influence diagram (i.e.
the decision variable with no parent decision variable). Then, repeatedly update Sov
by Sov «— Sov.(+,pac(d)).(max, {d}) and delete d and the variables in pag(d) from G
until no decision variable remains. Then, perform Sov < Sov.(+, S), where S is the set

of chance variables that have not been deleted from G.

9. (Finite horizon MDP [111, 89, 119, 19, 18]) In order to prove that the encoding in the

PFU framework given in Sections 4.6 and 5.6 actually enables us to solve a T' time-steps
probabilistic MDP, we start by reminding the algorithm used to compute an optimal MDP-
policy. Usually, a decision rule for dr is chosen by computing V} = maxgq, Rsy ar. Ve is
the optimal reward which can be obtained in state sp. At a time-step i € [1,T[, a decision
rule for d; is chosen by computing Vi = maxa, (Rs;.a, +>_;,, | Poiyi (50 X Vei,,)- Last, the

optimal expected value of the reward, which depends on the initial state sq, is V" .

Let us prove by recurrence that for all i € [1,T — 1],

V{, = maxg, ZSQ - - INaXg; Zsi“ ((er[l,i] Py sdi) X ((Zke[l,i] Ry a,) + Vstﬂ))
This proposition holds for i = 1, since
Ve = maxg, (Rsydy + D, Paylsinds X Vi)
= maxa,)y, (Poy(sy,a X (Reya, +V3y)) (since 30 P,y = 1)
Moreover, if the proposition holds at step i — 1 (with ¢ > 1), then

Vs*l = maxgq, 252 - .maxq; Esi ((er[l,i—l] P5k+1 ISk;dk) X ((Zke[l,i—l] Rskﬁdk) + V;:))

B.3. PROOFS OF CHAPTER 5 209

Given that
(Eke[l,ifl] Ry, a.) + Ve = (Eke[l,ifl] Ry, a,) + maxa, (Rs, ., + Esiﬂ Py si,ds X Vstﬂ)
= 1InaXy; ((Zke[l,i} Ry a.) + Zsiﬂ P,y sidi % Vstﬂ)
= maXg; Esiﬂ Pslurl | si,di X ((Eke[l,i] Rskvdk) + Vstﬂ)
(the last equality holds since > P, s, 4, = 1), it can be inferred that
(er[l,i—l] Papir sidi) X ((Eke[l,i—l] Ry a) +V3)

= maxg; Zsiﬂ ((er[l,i] P5k+1 | Skxdk) X ((Eke[l,i] RSk»dk) + V5t+1))
which proves that the proposition holds at step i. This proves that the proposition holds at

step T', and therefore V¥ = Ans(Q). Furthermore, as each step in the proof preserves the
set of optimal decision rules, an optimal MDP-policy can be recorded during the evaluation

of Ans(Q).

We now study the case of partially observable finite horizon MDP (finite horizon POMDP).
In a POMDP; one adds for each time step ¢ > 1 a conditional probability distribution P, |,
of making observation o, at time step ¢ given the state s;. The value of s; remains unob-
served. We also assume that a probability distribution Ps, over the initial state is available.
The subsumption proof for this case is more difficult. We consider the approach of POMDP
which consists in finding an optimal policy tree. This approach is equivalent to compute,
for each decision variable d;, a decision rule for d; depending on the observations made so
far, i.e. a function ¢% : dom({o2,...,0:}) — dom(d;). The set of such functions is denoted
Pl A set A = {¢¥,..., ¢} is called a POMDP-policy. The value of a POMDP-policy
is recursively defined as follows. First, the value of the reward at the last decision step,
which depends on the assignment A, of sy and on the observations Oz_,7 made from the
beginning, is V(A)sy.05.....0,(Asp-O27) = Ry ar(Asy, ¢ (Oa—7)). At a time step i, the
obtained reward depends on the actual state A, and on the observations Os_.; made so far.
Its expression is:
VI(A)s; 02,000, (As;-O21)
= (Rsiai + 26,y Poia [sids X 2oopiy Poira1sizr X V(A)siir,01,00001) (A)

where A = A, .¢% (03_;).05_,; (this equation is equivalent to the recursive formula used to
define the value of a policy tree for a POMDP; see [71] for a more complete presentation
of policy trees for finite horizon POMDP). Finally, the expected reward of the POMDP-
policy A is V(A) = >, Ps, x V(A)s,. To solve a finite horizon POMDP consists in

computing the optimal expected reward among all POMDP-policies (i.e. in computing

Using a recurrence as in the observable MDP case, it is first possible to prove that for a

problem with T steps,
V= max¢d1,...,¢dT Eoz or Zsl,...,sT ﬁV

with Sy = (Ps, x Hie[l,T[PSz‘+1 ['si,ds X Hie[l,T[P0i+1 [si+1) X (Zie[l,T] Rsiadi)
From this, a recursive use of Lemma B.3 enables us to infer that

V* = maxg, 202 maxg, 203 maxg, .. . ZOT maxg,. ZSI o BV

It proves that the query defined below enables us to compute V* as well as an optimal policy:

.....

e algebraic structure: probabilistic expected utility (row 1 in Table 3.1);

e PFU network: N = (V,G, P,0,U); V equals {s;|i € [1,T]} U{o;|i € [2,T|}U{d;|i €

210

10.

APPENDIX B. PROOFS

1,7}, with Vp = {d;|i € [1,T]}; G is a DAG with one variable per component; a
decision component does not have any parents, an environment component {o;} has
{si} as parent, and a component {s;+1} has {s;} and {d;} as parents; P = {Ps, } U
{Poifsiant € (LT =1} U{F, s, |1 € [2,T]}; Fact({s1}) = {Ps, }, Fact({sit1}) =
{Ps,., 51,4} and Fact({o;}) = {P,,|s,}; last, U = {Rq, 4, |7 € [1,T]};

e PFU query: based on the DAG, a necessary condition for a query to be defined is that
each decision d; must appear at the left of the variables in {sx |k € [i+1,T|}U{o |k €
[i + 1,T7}; the query considered is Q = (N, Sov), with
Sov = (max, dy).(+, 02).(max, dz). (+, or).(max, dr).(+, {s1,...,s7}).

The proofs for finite horizon (PO)MDP based on possibilities or on x-rankings are similar.
As for the subsumption of factored MDP, one can first argue that every factored MDP can
be represented as a usual MDP, and therefore as a PFU query on a PFU network. Even
if this is a sufficient argument, we can define a better representation of factored MDPs in
the PFU framework: it corresponds to a representation where the variables describing states
are directly used together with the local plausibility functions and rewards, which can be

modeled by scoped functions (defined as decision trees, binary decision diagrams...).

(Queries on Bayesian networks, Markov random fields, and chain graphs [96, 55])
It suffices to consider chain graphs, since Bayesian networks and Markov random fields are
particular cases of chain graphs. The subsumption proofs are provided for the general case

of plausibility distributions defined on a totally ordered conditionable plausibility structure.

(a) (MAP, MPE, and probability of an evidence) As MPE (Most Probable Explanation)
and the computation of the probability of an evidence are particular cases of MAP
(Maximum A Posteriori hypothesis), it suffices to prove that MAP is subsumed. The
probabilistic MAP problem consists in finding, given a probability distribution Py,
a Maximum A Posteriori explanation to an assignment of a subset O of V' which has
been observed (also called evidence). More formally, let D denote the set of variables on
which an explanation is sought and let e denote the observed assignment of O. The MAP
problem consists in finding an assignment A* of D such that max cgom(p) Pp|o(A.¢) =
Pp|o(A*.e). As Pp|o = Pp,o/Po, one can write:

maxcdom(p) Ppjo(A.e) = (maxaciom(p) Pp,o(A.e))/Pol(e)
= (maxXaedom(D) 2_a'edom(v—(puoy) v (A.e.A"))/Po(e)

Thus, computing maxp v, puo) Pv(e) is sufficient (the difference lies only in a nor-
malizing constant). This result can be generalized to all totally ordered conditionable
plausibility structures.

Indeed, as ®, is monotonic, Maxacdom(p) Pp,0(A.¢) = (Maxacdom(p) Ppjo(A.€)) @)
Pol(e). If maxaeqom(p) Pp,o(A.e) <, Pol(e), then there exists a unique p € E, such
that max aegom(p) Pp,o(A.€) = p®,Po(e). This gives us p = maxaeqom(p) Pp|o(A-€).
Otherwise, if maxaciom(p) Pp,0(A.¢) = Pol(e), then one can infer that there exists
A* € dom(D) such that Pp o(A*.e) = Po(e), and therefore Pp|o(A*.e) = 1,. Thus,
maxscdom(p) Pp|o(A.e) = 1, too. This shows that determining max e gom(p) Pp,o(A.€)

gives max cdom(p) Ppjo(A.e).

B.3. PROOFS OF CHAPTER 5 211

Moreover, if A* € argmax{Pp o(A’.e), A’ € dom(D)}, then max{p € E, | Pp,o(A*.e) =
p ®p Pole)} =, max{p € E,|Pp,o(A.e) =p®, Pole)} for all A € dom(D). There-
fore, an optimal assignment of D for maxp Pp,o(e) is also an optimal assignment of D
for maxp Ppo(e). As aresult, the MAP problem can be reduced to the computation of
maxp Pp,o(e) = maxp Spy_(pyo) Pv(e) = maxp Gpy_p (Pv @ d0)
where 0o is the scoped function with scope O such that do(e’) = 1, if ¢/ = e, 0, other-
wise. We define a PFU query whose answer is Ans(Q) = maxp @, ,(Pv ®, d0):

e the plausibility structure is (E,, ©,, ®p), the utility structure is (E,, ®,) = (Ep, @p),
and the expected utility structure is (E,, Ey, ®u, Qpu) = (Ep, Ep, ®p, @p);

e PFU network: the difficulty in the definition of the PFU network lies in the fact
that normalization conditions on components must be satisfied. The idea is that
only the components in which a variable in D U O is involved have to be modified.
The PFU network is N' = (V, G, P,0,U); V the set of variables of the chain graph;
Vp =D and Vg =V — D; G is a DAG of components obtained from the DAG
G’ of the chain graph by splitting every component ¢ in which a variable in D U O
is involved: such a component ¢ is transformed into |¢| components containing
only one variable; all these |¢| components become parents of the child components
of ¢; for a component {zo} included in one of these |¢| components, if o € D,
then {z¢} is a decision component; otherwise, {z(} is an environment component,
and one creates a plausibility function P;, equal to a constant po(xg) such that
Dpic(1,|dom(x))) P0(@0) = 1p, and such that Fact({zo}) = {po(zo)}; P contains first
the constants defined above, and second the factors expressing P |pq., (c) in the
chain graph for the components ¢ satisfying ¢ N (D U O) = 0; last, U contains
the factors expressing Fe|pq., () in the chain graph for the components ¢ such
that ¢cN (D UO) # 0, and a constant factor pi(xg) satisfying pi(zo) ®p po(zo) =
1, for each component {zo} created in the splitting process described above, and
hard constraints representing dp; with this PFU network, the local normalization
conditions are satisfied, and the combination of the local functions equals Py ®,00;

e PFU query: the query is simply Q = (N, (max, D).(&,,V — D)).

An optimal decision rule for D can be recorded during the computation of Ans(Q).

(b) (Plausibility distribution computation task) Given a plausibility distribution Py ex-
pressed as a combination of plausibility functions as in chain graphs, the goal is to
compute the plausibility distribution Pg over a set S C V. The basic formula Pg =
@py,_g Pv proves that the query defined below actually computes Pg. This query shows
the usefulness of free variables.

e the plausibility structure is (E,, @, ®,), the utility structure is (E,, ®,) = (Ep, ®p),
and the expected utility structure is (E,, Ey, ®u, @pu) = (Ep, Ep, ©p, @p);

e PFU network: N = (V,G, P,0,U), with Vg =V — S, Vp = S, and with the DAG
G and the sets P, U obtained similarly as for the MAP case;

e PFU query: Q = (N, (@, V —5))

11. (Hybrid networks [36])
A hybrid network is a triple (G, P, F'), where G is a DAG on a set of variables V' partitioned

212 APPENDIX B. PROOFS

into R and D, P is a set of probability distributions expressing P, | yq(r) for all 7 € R, and
F is a set of functions f,q () for all d € D (variables in D are deterministic, in the sense
that their value is completely determined by the assignment of their parents). The most
general task on hybrid networks is the task of belief assessment conditioned on a formula
¢ in conjunctive normal form. It consists of computing the probability distribution of a
variable x given a complex evidence ¢ (complex because it may involve several variables).
Ignoring a normalizing constant, it requires to compute, for all assignments (z,a) of x,
Do Acdom(V—{z}) | (A (.a))=t PV (A(x,0)). If C = {C1,...,Cp} denotes the set of clauses of
¢, it also equals (EV—{m} (ILrer Pripac)) % Uliep fraca) x (e ec Ci))((@,a)).

The query corresponding to this computation uses the probabilistic expected satisfaction
structure (row 2 in Table 3.1), and the PFU network ' = (V, G, P,0,U), with Vg =V, Vp =
{2}, P ={Pr|pac(r) |7 € R—{x}} U{fpag(a) | d € D—{x}}, and either U = CU{P; | pag(a)}
if € Ror U=CU{fpas()} if z € D. The query is Q@ = (N, (+,V — {z})).

B.4 Proofs of Chapter 6

Proof of Proposition 6.1 (page 92). First, for all f1, fo € {¢, f} and for all u € E,, (f1 A f2) xu =
fix(foxu): indeed, if f1 = for fo = f, then (fiAfo)xu and fix(foxu) both equal ¢, and otherwise
(f1 =t and fo =t), they both equal u. This enables us to write op,(F x P @, U) = op,((F~* A
FT) % PRy U) = op (F "% (FT*xP®p,U)). Then, op, (FxP®,,U) = F~“%op, (Ft*xP®,,U),

because for all assignment A of V' — {x},

o If F~*(A) = f, then, FF~*(A) % (op,(F™ x P®,, U))(A) = O. Moreover, for all a € dom(x),
(F~*%(FT*%xP®,,U))(A.(x,a)) = O, which implies that (op, (F~*x(FT**P®,,U)))(A) = O

too.

e Otherwise, FF~*(A) = t. In this case, (op, (F " * (F1t* x P ®,, U)))(A) = (0p,(F™ % P @py,
U))(A) = F=7(A) x (op, (FT % P @pu U))(A).

Next, op, (FT*x PRy, U) = P™% @py 0p, (F 1% Pt ®,,, U), because for all A € dom(V —{z}),

o If FT¥(A.(z,a)) = f for all a € dom(x), then (op,(Ft* * P ®p, U))(A) = 0 = (P™% Qpu
(0p, (F7 % PT* @y U)))(A).

e Otherwise, one can write

0py (F* % P @y, U)(A)
OPacdom(z),F++(A.(w,a)#f (F Opu U)(A(2,a))

= OPacdom(a),F++(A.(v,0)£f (P77 (A) Opu (PTH(A(2,0)) @pu U(A.(2,0a))))

= P 7%(A) @pu Wacdom(z), F+e(A.(z,a)) PT(A(2,0)) @py U(A.(2,0)))
by right monotonicity of ®p, for op € {min, max} and by distributivity
of ®py over &, when op = @,

= (P7% @pu 0po (FT" x PT* @y, U))(A)

In the end, this proves that op, (F*P®p,U) = F~*xP~*®p,, 0p, (F % PT*®,, U). Moreover,
if P™ = () and op € {min, max}, then, for all assignment A of V — {x},

B.4. PROOFS OF CHAPTER 6 213

o If FT*(A.(z,a)) = f for all a € dom(x), then
(0p, (FT* % U))(A) = 0 = (U™ @u (op, (FT*xUTT)))(A).
e Otherwise,
op, (F** x U)(A)
OPacdom(x), F+e(A.(,a)) s U(A(2,a))
= Opaedom(m),F+I(A.(m,a));éf(U_m (A) @y ute (A(:E7 (L)))
= U "(A) @u WPacdom(a),F+=(A.(x,a))2 U7 (A.(2,a)) (by monotonicity of @)
= (U7 @y (op, (F*xUT™)))(A)

O

Proof of Proposition 6.2 (page 92). A decision variable z appears in the scope of a plausibility
function P; iff = is a parent of one environment component having P; as a factor. If a rightmost
eliminated variable x is in Vp, then no plausibility function can involve z in its scope: otherwise,
should be a parent of an environment component, and the variables of this component should then

appear at the right of = in Sov by definition of queries. The case x € Vg is proved similarly. O

Proof of Proposition 6.3 (page 93). (Ey,®,) and (E,, ®,) are commutative monoids by definition
of an utility structure and of an expected utility structure. Then, for all v € E,, 0, ®, u =
(0p @pu Lu) @yt = 0p @py (14 @y u) = 0,, (the next to last equality holds because p ®p,, (w1 @y u2) =
(p @pu u1) @y u2). Last, @, distributes over @,. O

Proof of Proposition 6.4 (page 93). If AzT holds, then:

= ®um((P+z Dpu U+z) Qu Uﬁm) (since D Qpu (u1 Qu u2) = (p Qpu Ul) Qu UZ)
= (Bue(P™ ®py UT)) ®, U™" (since ®, distributes over &)

If Az°C holds, then:

Duz(PT @puU) = Bua(PT° @pu (U™ ©, UTT))
= Bu(PH @p (U @, UT?))
= @ua (P ®pu Du (PT @pu UTT))
= (Bua(PT® ®pu) Bu (Dug (P @py UH))
= (®p,PT) ®pu U") By (Bua (P @pu UT®))

U—)
U—?)

O

Proof of Theorem 6.5 (page 94). Theorem 6.5(a) holds because if Az holds, then first, ®,, dis-
tributed over &, since ®,, distributed over @, and second, p ®p,, (U1 @y u2) = P py (U1 Qpy U2) =
(P ®pu u1) ®pu u2 = (P @pu u1) @y Us.

As for Theorem 6.5(b), let us assume that Az> holds.

e Proposition 6.3 entails that (E,,®,, ®,) is a commutative semiring. Moreover, E = E,, is
equipped with a total order <,. If 0, =<, 1., let us take <==<,, and if 1, <, 0., let us

214 APPENDIX B. PROOFS

take < defined by (u1 =< ug) < (uz <, u1). In all cases, 0, < 1, holds. As ®, and @, are
monotonic with respect to <, they are also monotonic with respect to <. Using 0, < 1,,
one can infer that, for all u € E,, 0, ® u < 1, ® u, i.e. 0, < u (we have 0, ® u = 0,, since
(Ey, ®u, ®y) is a commutative semiring). This implies that 0, = min(F). Consequently,
(E,®,®) is a plausibility structure. Next, (F,®) is a utility structure because (E,, ®,) is
one. Last, (E,E,®,®) is a totally ordered expected utility structure with (E,®,®) as a
plausibility structure and (F,®) as a utility structure, since it easily satisfies all properties
of Definition 3.3 page 53: indeed, (E,®) is a commutative monoid, ® distributes over @,
e1® (e2®e3) = (61 ®er) ®es, 0, e =0,, and 1, @ e = e.

e Let N = (V,G,P,F,U) be a PFU network on S. Let N' = (V,G,{¢(P,) | P, € P}, F,U).
In order to prove that N’ is a PFU network on S’, it suffices to prove that for every en-
vironment component ¢, @c(®p,epact(c) ?(F;)) = 1p. This holds because on one hand,
#(1p) = 1, Qpu 1y, = 1, = 1g, and on the other hand, for every environment component
¢, (1) = ¢(@Pc(®PPiEFact(c)B))) = @c(®p,cract(c) ?(Pi)). The last equality holds be-
cause ¢(p1 Gp p2) = (P1 Bp P2) Opu lu = (P1 Opu 1u) Bu (P2 Opu 1u) = G(p1) Bu ¢(p2), and
d(p1 ®pp2) = (P1 ®pP2) Opu Lu = P1 Opu (P2 Opu Lu) = P1 @pu @(P2) = P1 Opu (Lu u G(p2)) =
(P1 ®pu Lu) @u G(p2) = G(P1) @u B(p2).

o Let Q = (Sov,N) be a query on a PFU network A defined on S. Let Q' = (Sov, #(N)).
First, Q' is a query on ¢(N) by definition of a query and because @ is a query. Then, as
POputt = p@pu (Llu @y u) = (p@pulu) ®uu = ¢(p) @u, and as ¢(p1 @pp2) = ¢(p1) @ P(p2), one
can write (Ap,er F3)*(®pp,c p i) Opu(®uv,ev Ui) = (Arer Fi)x(@pep ¢(F))®(®u,ev Us).
This implies that Ans(Q) = Ans(Q’) and that the set of optimal policies are the same with
Q and Q'.

O

Proof of Proposition 6.7 (page 95). On one hand, if (E,, E,, ®y, ®p,) is a totally ordered ex-
pected utility structure satisfying AxSE (the underlying plausibility and utility structures being
(Ep, ®p, ®p) and (E,, ®y,)), then (E,®,®) = (E,, Dy, ®,) is a commutative semiring by Propo-
sition 6.3. It is equipped with a total order <,, and ® and @& are monotonic with respect to <,.
Hence, (E,®,®) is a totally ordered MCS. On the other hand, assume that (F,®,®) is a totally
ordered MCS. There is no difficulty in checking that all the properties of a plausibility structure
are satisfied by (F, @, ®), that all the properties of a utility structure are satisfied by (F,®), and
that all the properties of an expected utility structure are satisfied by (E, E, ®, ®). O

Proof of Proposition 6.8 (page 95). First, @ and ® remain commutative and associative on E U
{0}. @ has ¢ as an identity and ¢ is an annihilator for ®. ® has 1g has an identity (notably using
1p ® 0 = 1g). Last, ® distributes over @& on E U {{Q}, because first, ® distributes over ¢ on FE,
second, u1 @ (QOBuz) = u1®@uz = (u1@Q)® (u1®uz), and third, 0@ (usduz) = O = (ORua)B(ORug).
Therefore, (EU {0}, ®,®) is a commutative semiring.

Let us show that (E U {0}, max, ®) is a commutative semiring too. max is commutative and
associative, and as max considered as an elimination operator satisfies max(u, {) = u for allu € E,,,

one can infer that ¢ is an identity for max. Last, ® distributes over max, i.e. u; ® max(us,us) =

B.4. PROOFS OF CHAPTER 6 215

max(u; ® uz,u; ® ug). Indeed, this holds if (uy,us,u3) € E?, because ® is monotonic on E, this

holds if us or us equals ¢, and this holds if u; = (. Therefore, (FU{{}, max, ®) is a commutative

semiring. The proof for (F U {0}, min, ®) is similar. O
Proof of Corollary 6.9 (page 95). Entailed by Proposition 6.8. O
Proof of Proposition 6.10 (page 95). Entailed by Corollary 6.9. O

Proof of Proposition 6.12 (page 96). Let N' = (V,G, P, F,U) be a PFU network. Assume that a
component ¢ € Cg(G) is not connected. Let ¢; and ¢o be two disjoint subsets forming a partition
of ¢ such that there is no plausibility function in Fact(c) involving both one variable in ¢; and one

variable in c¢o. This entails that the normalization condition on ¢ can be written as

(@p(Qp PZ))
c¢1 PjeFact(c),sc(P;)Ncy1#D

®p(®p(®p F;))
¢c2 PjeFact(c),sc(P;)Nca#l

®p(Qp P)
P;eFact(c),sc(P;)Cpac(c)

If one updates the DAG G of the PFU network A in order to get the DAG G’ such that

e every component ¢ in G except from ¢ is in G’ too, and has parents such that pag:(¢’) =

pag(c);

e component ¢ in G is replaced in G’ by the two components ¢; and ¢z, which both get pag(c)

as a set of parents. Moreover, we take

— Fact Cl) = {,PZ S Fact(P) | SC(H)mcl 7é Q}U{@Pcz (®PPZ'EFact(c),sc(Pi)ﬁ@?&@ Pl)}U{Pl €
Fact(c), se(P;) C pag(c)};

(

(

— Fact(cg) = {P; € Fact(P)|sc(P;)Necay # (Z)}U{Echl(®ppieFact(c)7sc(Pi)mclﬂ P)}U{P €
Fact(c), se(P;) C pag(c)}.

With such settings, the normalization conditions on ¢; and ¢y are satisfied and (1) for every
P; € Fact(cy), sc(P;) C ¢1 Upag(cr); (2) for every P; € Fact(cg), sc(P;) C ca Upag(c2); (3)

the global expressed plausibility function ®y,p, . p P; does not vary.

This mechanism can be recursively applied until every environment component is connected.

The same “non-connected component splitting technique” can be used for decision component
because the feasibility structure is a particular case of plausibility structure. However, in the case
of decision components, the updating is easier, since if ¢; and ¢y are two disjoint subsets forming a
partition of a decision component ¢ such that there is no feasibility function in Fact(c) involving

both one variable in ¢; and one variable in ¢y, then one can write

(v(A E-)) A (v(A Fi)) A (v E) =t
¢1 FyeFact(c),sc(F;)Ney #0 c2 FyeFact(c),sc(F;)Nca#D F;e€Fact(c),sc(F;)Cpac(c)

216 APPENDIX B. PROOFS

hence

Vey (AR eFact(e),se(F)nei20 Fi) = t,

Ve (AR e Fact(e),se(Fi)nes0 Fi)) = 1,

V Fi€Fact(c),sc(Fi) Cpaa(c) Fi) =1

The modification of the PFU network finally simply looks like Fact(¢1) = {P; € Fact(P) | sc(P;)N

c1 # 0} and Fact(c2) = {P; € Fact(P)|sc(P;) Neca # 0}, Moreover, the feasibility functions
F, € Fact(c) such that sc(F;) C pag(c) can be removed. This does not modify the global feasibil-
ity degree. O

Proof of Proposition 6.13 (page 97). Tt is not hard to show that X and B are commutative and
associative. As @, = ®, holds, 0, = 1, holds too. This entails that for every plausibility functions
P, Py, (P1,1,) K (P2, 1y,) = (P1 ®p P, (P1 @py 1u) Qu (Pe Qpu 1)) = (P1 @p Pa, (P1 Qpy 0y) @y
(P2 ®py 04)) = (P1 ®p P2,0,) = (P1 ®p P, 1,). This implies that Xp,ep(P;, 1) = (®pPi€P P, 1,).

In another direction, for every utility functions Ui, Us, one can write (1,,U1) X (1,,Us) =
(1,, U1 ®, Uz), which entails that My, e (1, Us) = (1, Quy, ev Ui)-

Therefore, (Xp,ep (P, 1u)) X (My,ev (15, Ui)) = (®ppiep P, (®ppiep P;) ®pu (®uUieU(1pv Ui)))
(namely using 0, = 1,). This implies that (Kpepr Fi) X (Kpecp(Pi,1,)) ¥ (Ky,ev(1,,U;)) =
(Mper Fi) K (®pPieP B, (®PPieP Pi) Opu (®uUieU Ui)).

Let S be the rightmost set of decision variables in Sov, let x € S, and let S’ be the union of the
sets of environment variables appearing at the right of S in Sov. We assume that = in quantified

with max. The elimination of the environment variables in S’ gives

(X Fi)&EES’(®p P; (®p Pi)®pﬂ(®u Uz))

Fer pPeP P,eP UicU
= (F%FFz) X (@p(Rp Pi)v@u((Qp Pi) Qpu (@y Uz)))
i S’ PeP 5" pep U, eU

e If x is not the parent of any environment variable, then for all P, € P, = ¢ sc(F;), and a
fortiori @ & sc(Sp g/ (®pp,cp Fi))-
This implies that maxy Hﬂs/ ((&FIEF Fi)&(@)ppiep B, (®PPi€P R)@pu (®uUiEU UZ))) is defined
and it can be shown to equal (max, (Mper 15))X(Dpg (@pp, c p F5), maxy Dug (AFer) x
(®pp.ep Pi) @pu (®uv,ev Ui))). The max, (Xper F;) factor is a trick ensuring that if no

assignment of x is feasible, then the answer is ¢ and not (1,, Q).

e Otherwise, x is the parent of at least one environment component c. c¢ is included in S’
by definition of a query. Hence @y (®pp, cp Pi) = pgr_(cudese(e) Prevdese(e)(@ppep Fi) =
Dpsr— (cudese(c) (®ppi€P1Pi¢Uc/ccudesc<c) Fact(e) Fi) (Dy recursively using the normalization con-

ditions on ¢ and its descendants desc(c)).
Doing so, every environment component whose x is a parent can be considered, in order to ob-

tain Gpg/(@ppep Fi) = Opsr—u,epg o (cUdesc(©) (BPPEPPEULpage) Uorccvesecer Pact(e)) T)
As the only environment components ¢ having plausibility functions involving x can be the
ones such that = € pag(c), we obtain that for all a,a’ € dom(z), (Dpg (®pp, cp Pi))((2,0)) =
(@p5/(®ppiep P))((z,a")),

This implies that max, Bg (Kp,cp F;) K (®ppiep P, (®ppiep Py) ®pu (Ruv,ev Us)) is de-
fined and equals (max, Xp,er F;)X(Dp g, (®PP1»€P P), max, ®yug (Ap,cr Fi)*(®pPi€P P;)®pu

B.4. PROOFS OF CHAPTER 6 217

(®uv,cv Ui)))-

This mechanism can be applied recursively when eliminating variables in the order given by
Sov. In the end, we get (maxv,—v,, Mper F;) X (Dpy, (®pp cp Pi), Ans(Q)), Le. a function v
such that

o Y(A) = (1,,Ans(Q)(A4)) if Ans(Q)(A) # O, because Ans(Q)(A) # ¢ implies that there exists
an assignment A’ of V' — Vy,. s.t. Apecr Fj(A.A") =t and therefore maxy,, v, (Nper F;) =
Ig = (1p, 1,).

o Y(A) = ¢ if Ans(Q)(A) = O, because Ans(Q)(A) = O implies that for all assignments A’ of
V- Vfr, NF,eF FZ(AA/) = f and therefore maxv, — vy, ('ZEGF E) = 9.

O

Proof of Lemma 6.14 (page 97). Let us first show that X distributes over 8 on (E, x E,) U {0}.
Let (p1,u1), (p2,u2), and (ps, us) be elements of E, x E,. Then,

(p1,u1) ® ((p2, u2) B (p3, u3))

= (p1,w1) X (p2 ®p p3, u2 Bu uz)

= (p1 ®p (P2 Bp p3), (11 Dpu (u2 Bu uz)) @u (P2 Sp P3) Opu u1))

= ((p1 ®p p2) Dp (P1 @ P3), (P1 ®pu u2) Bu (P1 Bpu U3) Bu (P2 Opu 1) Bu (P3 Bpu 1))

= (1 @p P2, (P1 Opu U2) Du (P2 Opu u1)) B (p1 @p p3, (P1 Opu u3) Bu (P3 Opu 1))

= ((p1,u1) B (p2, uz)) B ((p1, u1) X (ps, usz))

Next, (p1,u1) X (O B (p3,us)) = (p1,u1) W (ps, uz) = ((pr,u1) W O) B ((p1,u1) ¥ (p3, us)) and
OX((p2, u2)B(ps, uz)) = ¢ = (OX(p2, u2))B(OX(p3, uz)). All these results prove that X distributes
over B on (E, x E,)U{0}. Hence for every set of potentials II, B, (II) = II~* X B, (IIT*).

Let us show that X also satisfies a kind of restricted distributivity over max.

max((p1,u1) @ (p, uz), (p1,u1) @ (p, us))

= max((p1 ®p P, (P1 Bpu U2) Ry (p Opu 1)), (P1 ®p P, (P1 Opu u3) Ou (P Dpu w1)))
= (p1 ®p p, max((p1 Opu u2) @y (P Opu 1), (P1 Opu U3) Du (P Opu 1))

= (p1 ®p py max(p1 Dpu U2, P1 Dpu U3) Qu (P Opu 1))

= (P1 @p P, (P1 @pu max(uz, u)) Qu (p Opu u1))

= (p1,u1) X (p, max(ug, u3))
Moreover, when max is used as an elimination operator, max((p1,u1) X O, (p1,u1) X (p,us)) =

(plvul) & (p7 ’LL3) - (pl;ul) X maX((}, (p,’ll,g)), and maX(O X (p,UQ),O X (p,’ng)) = <> = <> X
(p, max(uz2,us)). All these results prove that X distributes over max when the plausibility part
does not vary, and therefore if z ¢ sc(Py) for all (P, Up) € II, then max, (II) exists and max, (II) =

II~* X min, (IT**). The proof for min is similar. O

Proof of Proposition 6.15 (page 97). Let us show that at each step i, property (H;) is satisfied:
(H;) : “Mrem,,, 7 is defined and equals op(zi),, ...op(z1), (Mrem m)".
If H; holds for all i € {0,|Sov|}, then, using Proposition 6.13, we directly obtain the required
result.
First, it is straightforward that Hp holds. Let k = max{j € {0, ..., [Sov|} | {x1,....2,;} C Vg}.
According to Lemma 6.14, H; also holds for all i € {1,...,k}.
If k = |Sov|, then the result is obtained. Otherwise, k < [Sov|. According to Lemma 6.14 again,

Hjy 1 holds iff op(s1)a,, , 1L 5

op gy 1s defined. By definition of queries, all environment components

218 APPENDIX B. PROOFS

in desc(c(z)) areincluded in {x1, ..., zx}. As we work on refined PFU networks, there is exactly one
potential in IIy41 whose plausibility part can be written @, g(®pp, o Fi), With desc(c(z)) C S and
Uercdese(e(z)) 1 Fact(c')} € ®. Therefore, by using the normalization conditions, the plausibility
PPE®—Upr gsnioter (Fact(e)} P;). This entails that the
plausibility part does not depend on z. A similar reasoning can be made for the other decision
variables, which proves that H; holds for all 7 € {1,...,|Sov|}. O

part can also be written ®p57desc(c(m))(®

Proof of Proposition 6.16 (page 98). Directly entailed by Proposition 6.15. O

Proof of Proposition 6.18 (page 99). First, @} is an operator on E;, since if ui,us € E;", then
up @F ug = uyp @y uz = uyp Oy ug = 0y ®y 0, = 0,. Similarly, & = @ is closed on E, and if
(p,u) € Ey x Ef, then p ®@f, u = p ®py t = p @py 0y, = 0, by right monotonicity of @p,.

As ®, = @, is associative, commutative, and monotonic, ®; and @} are associative, com-
mutative, and monotonic too. Moreover, as 0, = 1, € E}}, @ and &} both have an identity
in Ef. Tt is not hard to check that all the axioms of expected utility structures are satisfied by
(Ep, EF, ®F, @)

The proof for (Ey, E,,®, ,®,,) is similar. O

Proof of Proposition 6.19 (page 99). We prove only the first item, when (HT) holds, since the
proof for (H ™) is similar.
N7 is a PFU network because the transformation from A to N only changes the value taken

by utility functions. It is also straightforward that Q7 is a query. Last,
Ans(Q) = Sov(F * P Qpy (Quu,ev Ui))
Sov(F % P @py (Quy, ey translate(U;) @, U;"))
= Sov((F % P ®py (@uy,cp translate™ (U;))) @y (F x P ®@pu (@uy,cv U;))
= Sov((F* P ®pu (Quu,ev translate™ (U;))) @u (®uvev U;)
(thanks to the normalization conditions)
= Ans(Q") @y (®uv,ev U)
The formula obtained also shows that the set of optimal policies for QT is included in the set of

optimal policies for Q. O

Proof of Proposition 6.20 (page 100). Tt is first straightforward that Proposition 6.20a) is satisfied.
Assume now that S satisfies Az°¢ and that all conditions of Proposition 6.20b) hold. Then,

o ¢(1,) is an identity for ® since for all u € E, ¢(1,) @ u = 1, @py u = u. Also, for all u € F,
#(0,)®@u = 0, ®u = 0, hence we have first ¢(0,) = ¢(0,) @15 = 0,, and second 0, @u = 0,,

hence ® has 0,, = ¢(0,) as a neutral element.

Given the other conditions required on ® and given that ® = @, (F,®,®) is a monotonic
commutative semiring. Moreover, given that the expected utility structure is non bipolar, we
can assume 0,, = min(E,), i.e. 0 = min(E) (either it is already satisfied, or we can inverse
=u). This proves that (EF,®,®) is a plausibility structure. All conditions are satisfied for
(E, @) to be a utility structure, and last all conditions are satisfied for (F, E, ®,®) to be an

expected utility structure satisfying Az5¢.

B.4. PROOFS OF CHAPTER 6 219

e In order to show that N’ is a PFU network, it suffices to show that for every environment
component ¢, ®e(®p,cract(c) P(Pi)) = 1. This holds because ¢(p1 ©p p2) = ¢(p1) © G(p2)
and ¢(p1 ®p p2) = ¢(p1) @ ¢(p2) for all p1,p2 € E,, and because ¢(1,) = 1.

o Ans(Q) = Ans(Q') simply because p ®,, u = ¢(p) ® u. The set of optimal policies does not

vary since the global combined plausibility-feasibility-utility function does not vary either.
O

Proof of Proposition 6.21 (page 100). If (E,®,®) is a plausibility structure, then (F,®,®) is a
MCS. Conversely, if (F,®,®) is a MCS, then it is not hard to check that (F,®) is a utility
structure, that (F,®,®) is a plausibility structure, and that (E, F,®,®) is an expected utility

structure (it suffices to check each axiom successively). O

Proof of Proposition 6.30 (page 104). Let 0o* be an elimination order such that wg(=<sey) = wg(0*).
Let us eliminate variables in the order given by o*. When a variable x is eliminated, nbv <
1 4+ wg(0*) variables are considered. For each of the d"*V assignments of these variables, one must
combine the value given by r scoped functions. In the end, the time complexity of a variable
elimination step is O(d"*" -r) < O(d**™®9(®) .r). Summing on all the elimination steps gives a time

complexity O(|®| - d*+%9(°)). Similarly, the space complexity is O(|®| - d*+9(?)) too. O

Proof of Proposition 6.31 (page 105). If <5 is weaker than <1, then lin(=<1) C lin(=2) and there-
fore
MiNyerin (<) wg (o) < Milyesin(<,) wg (0).
O

Proof of Proposition 6.32 (page 107). If ® = ©, then ®, (p1 ® 2) = (®; p1) ® (R, Y2) by com-
mutativity and associativity of ®.

Conversely, assume that for all scoped functions 1, @2, ®, (91 © Y2) = (B2 1) © (®, ©2). The
identity of ® in F is denoted 1g and the identity of ® in E' is denoted 1. Let us consider a boolean
variable x and two scoped functions @1, 2 of scope z, s.t. ¢1((x,t)) = a, v1((z, f)) = w2((z,t)) =
1o, w2((x, f)) = b. Then, the initial assumption implies that (a®15)® (1o 0b) = (a®15) (1o ®b),
ie.a®b=(a®1g) O (1p ®b). Taking a =b = 1g gives 1g = 15. Consequently, for all a,b € E,
a®b=(a®1p) O (lo®b)=(@®1e) O (leg ®b) =a®b, i.e. ® = . O

Proof of Proposition 6.33 (page 107). Let @1, @2 be scoped functions such that (¢1(4) = ¢) <
(p2(A) = ¢). Let A be an assignment of (sc(¢1) U sc(p2)) — {z}. If p1(A.(x,a)) = O for all
a € dom(x), then ®; (p1 @ p2)(A) =0 =000 = (®; 1)(A) © (®; v2)(A). Otherwise, if ® = ©,
then
®z (P1 © P2)(A) = Bacdom(a),e1(A.(x,0)£0 (P1 O p2)(A)
(®acdom(z),p1(A.(z,0) %0 P1(A)) © (Bacdom(x),p1(A.(z,0))20 P2(A))
= (®acdom(a),p1(A.(2,0)£0 P1(A)) © (®acdom(z),ps(A.(x,a))20 P2(A))
(®2 01(A)) © (®2 p2(A))

Proof of Proposition 6.34 (page 107). For all A € dom(S;U...US,,), computing
®g (G2,9,(A) ® ... ® ¢ 5,,(A))

220 APPENDIX B. PROOFS

requires |dom(x)|(m — 1) operations to compute the function ¢, s, (A)®...® ¢s.s, (A) ((m —1)
operations for each assignment of) and (|[dom(z)| — 1) operations to perform ®,. Therefore, the
raw computation of ®, (¢w7sl ®...® ¢y 5,) requires
= |dom(S1 U...USp)|(m|dom(x)| — 1) operations.
For each assignment A € dom(S;), the raw computation of ®, ¢, s, (A) requires |dom(z)| — 1
operations. It entails that the raw computation of ¢; = ®, ¢, s, requires |dom(S;)|(|dom(x)| — 1)
operations and that the raw computation of m quantities in the set {®,

= 2 1<i<m |dom(Si)|(|dom(x)| — 1) operations.
Then, for each assignment A € dom(S; U...US,,), the raw computation of ¢1(A) ®...® ¢, (A)

.11 <14 <m} requires

requires (m — 1) operations. In the end, the raw computation of (®; ¢y 5,)®...® (®y ¢s.s,,)
requires
n3 = nz + |[dom(S1 U...U Sp)|(m — 1) operations.
n1—ng equals (|dom(x)|—1)(m|dom(S1U...USpn)|=> 1 <;<m |dom(S;)|, which is always positive.
Consequently, the raw computation of ®,(¢z.s, ® ... ®(;;z;m) always requires more operations
than the raw computation of (®z ¢z,5,) ®...® (>, dz.s,.)-

Furthermore, ny = O(m - d"t1519-YSml) and ny = O(m - d*H0@xicn,m [8il), O

B.5 Proofs of Chapter 7

Proof of Proposition 7.5 (page 114). SR cannot be applied an infinite number of times because
each computation node involves a finite number of variables.

If n uses an operator different from &, then SR cannot be applied on n, hence ny = ny = n.
Otherwise, n equals (&g, N). Let cl(-l) be the i-th component eliminated in order to get n, and let
c§2) be the j-th component eliminated in order to get ny. Let ne(™) be the number of components
eliminated from n to ny and let ne® be the number of components eliminated from n to ny. Let
us prove by recurrence that if 0 < k < nc(V), then for all i € [1, k], there exists j € [1,nc(®] which

satisfies c(l) (-2) :

e The property obviously holds for £ = 0.

e Assume that the property holds for k < ne(t). Is it satisfied at step k + 17

Due to the recurrence hypothesis, there exists a step jmaz € [1,nc®)] such that
{cgl), .. ,c,(cl)} C {652), P }

» Yimax

— If cliZl € {0(2) ey Jmax} then the property holds at step k + 1.
— Otherwise, ckJrl ¢ {0(2) ce]mam} Assume that c L ¢ {cﬁiaw, cee 5126)(2)} Then,

as c,(clll has been removed from n;, one can infer that Fact(c,(clll) C N, c,(clll c S,

cl(cl+1 € Cg(G), and c,(clll N se(N — Ur<i<k Fact(cl()) = 0. This implies that c,(chl N

se(N —Ui<i<pe@ Fact(cl(2))) = (), which leads to a contradiction with the fact that SR

1) (2)

cannot be applied anymore on ny. Hence, ¢,/ € {c]mam, ceey € iy)

In both cases, there exists a step j € [1,n¢?)] such that Cl(cl-i?l = c§.2). Therefore, the property
holds at step k + 1.

B.5. PROOFS OF CHAPTER 7 221

For k = ncM, this implies that for all i € [1,nc(V)], there exists j € [1,n¢c?)] satisfying

cl(-l) — @ In other words, {cgl), ce cfllc)(l)} C {cgz), ceey cfc)(z)}. Similarly, it is possible to prove
2 2 1 1 2 2 1 1

that {cg), - 7057,0)(2)} C {cg), ceey cfw)(l)}, hence {cg), ... 70510)(2)} = {cg), . ,cgw)(l) }. As the same

set of components are removed from n to n1 and from n to no, one can infer that n; = no. |

Proof of Lemma 7.7 (page 116). In the following, we denote (N~%)"% by N~*~% (N~*)T¥ by
N=#+y (N+#)=Y by NTe=y (N+)+¥ by N+e+y, and N=#+v U N+e—y U N+e+y by N+{zu},

Assume first that op # ®. Then, rewrite(CNT) = (sov - op,, N"¥ U {n}), where n =
(0P gy3uv. (N +1op])s N TV [m0p] U Sons(N[op])).

o If Nt**t¥ = () then Nt¥ = N~**¥ and z ¢ sc(n). In this case, the expression obtained after
the second rewriting step is rewrite?(CNT) = (sov, N=*=¥ U {n,n’}), with
{ n = (0P{y)LV, (v-+s(op)» N~ [20p] U Sons(N~"+¥[op]))
n' = (0p{zyuv. (N+e-u(op]), N T*7¥[m0p] U Sons(NT*7¥[op]))
The expression obtained for rewrite?(CNT) being symmetric in x/y, one can infer that
rewrite?(CNT) = rewrite?(CNT").

e Otherwise, NT2T¥ #£ (). In this case, z € sc(n), and rewrite?(CNT) = (sov, N~*"Y U {n'}),
where 7' = (0p{zyuv, (N+e-v[op))uVe (n), N T ¥ [7op] U Sons(NT*~¥[op]) U Sons(n)).
Given that first,
{z} UVe(NT"7¥[op]) U Ve(n)
— (e} UVL(N**Vop) U {y} UV (N*V[op])
= {z,y} U Ve(NF*=¥[op] U N*¥[op])
= {z,y} UV (N 100 op))
and second,
NF2=Y[=0p] U Sons(NT*~¥[op]) U Sons(n)
= N1t*=¥[=0p] U Sons(NT*"¥[op]) U N*T¥[-op] U Sons(N¥[op])
= NH=} [=op] U Sons(NT2~¥[op] U N*T¥[op])
= NH@ ¥ —op] U Sons(NH1=v}Hop])
the expression of n’ is symmetric in z/y. This implies that rewrite?(CNT) = rewrite?(CNT").

3

In the case op = ®, rewrite(CNT) = (sov-op,, N~V U{(op(yjuv, (n), Sons(n)),n € N*¥[op]} U
{(op(yy, {n}),n € N*¥[-op]}).

The second rewriting step gives:

N-=v
U{(opayuv. (m)> Sons(n)),n € N**~¥[op]}
U{(op(ay, {n}),n € N**=¥[-op]}

rewrite’(CNT) = | sov, U{(0pgsy10v.(n): Sons(n)),n € N+to+9[op]}

U{(opiayy, {n}),n € NT=H¥[-op]}
U{(opgyyuv.(n), Sons(n)),n € N=""¥[op]}

U{(opgyy, {n}),n € N~ [op]}
As this expression is symmetric in z/y, one can infer that rewrite?(CNT) = rewrite?(CNT").

O

Proof of Lemma 7.8 (page 116). Let o, 0" be two elimination orders on a set of variables S (without

constraints on the elimination order). Then, one can obtain o by successive permutations of

222 APPENDIX B. PROOFS

eliminations in o. Indeed, this obviously holds if |S| = 0. Assume that the property holds for any
elimination order on a set of variables of cardinal k. Does it hold at step k + 1?7 Let o, o’ be two
elimination orders on S with |S| = k + 1. Let z be the first variable eliminated in o’ (z = 0/(1)).
By successive permutations, o can be transformed into an elimination order ¢(o) such that ¢(o) and
o' eliminate the same first variable. Then, the recurrence assumption allows us to transform, by
successive permutations, the elimination order t(o) restricted over S — {z} into o’ restricted over
S — {z} Therefore, the property holds for |S| = k + 1, hence the proof by recurrence.

Assume that Sov = (op1,S51) - (0p2,S2) - - (0pg, Sq). Let 0,0 be two elimination orders in
lin(=Xsov). 0 can be transformed into o’ by using the previous recurrence for each set of variable
Si. O

Proof of Theorem 7.9 (page 116). Lemma 7.8 allows us to recursively apply Lemma 7.7 and to
obtain CNT(Q,0) = CNT(Q, ') (also by using the fact the simplification rule is applied at the
end of each block of variables eliminated using the same operator, hence the step where SR* is

applied does not vary between o and o', which are both in lin(=<gey)). O

Proof of Lemma 7.10 (page 116). Because of the MCS structure of (E,®,®), ® distributes over
every op € {min, max, ®}. Then,
val((sov-op,, N)) = sov-op, (Qnenval(n))
(eql)
= 50v(Qnen-=val(n)) @ op,(@nen+sval(n)))
e If op = ®, Proposition 6.32 implies that
0Py (Gnen+=val(n)) = Qnen+e (0p, val(n))

= val({(op,. {n}) |n € N**})
Therefore, using (eql),

val ((sov - op,,, N)) = val ((sov, N~* U {(op,,n)|n € NT*})).

e Otherwise (op # ®), one can just write
0P, (Dnen+=val(n)) = val ((op,, N*))
This means that (eql) can be written as
val ((sov - op,, N)) = val ((sov, N~ U {(op,, NT*)}))

O

Proof of Lemma 7.11 (page 116). Given that ® distributes over op and S’ N s¢(N1) = 0, one can

write
val((ops, N1 U {(opg:, N2)})) = opg ((®@nenval(n)) ® opg: (dnen,val(n)))

= ops-ops ((®nenval(n)) ® (nen,val(n)))
As Ny NNy = () and SN S = 0, the latter quantity also equals opg g (Rnen,un,val(n)), ie.

val((opgug s N1 U Na)). O

Proof of Lemma 7.12 (page 116). Tt suffices to recursively apply Lemma 7.11 to get the required
result. O

Proof of Lemma 7.13 (page 117). The property holds for k = 0 since CNTy(Q, 0) = (Sov, PUU)
and V,(n) = 0 for alln € PUU. If it holds at step k, then it holds at k+1 because if the elimination
operator used is different from ®, then DR splits the nodes with x in their scopes and those without

z in their scopes. Moreover, it is straightforward that variables whose elimination has not been

B.5. PROOFS OF CHAPTER 7 223

considered yet (variables in V. (CNTy(Q,0))) are not eliminated in an internal node of the tree of
computation nodes, i.e. for all (sov, N) in CNT(Q,0), Vo.(CNT,(Q,0)) N Vo(N) = 0. O

Proof of Lemma 7.14 (page 117). Assume that ¢ € Cg(G) and ¢N (S U sc(N)) = 0. Then,

val((®sue, N U Fact(c))) ®suc((@nenval(n)) ® (Vpepact(e)?))

= &5 (Bc((®nenval(n)) @ (Qperpact(c)®))) (since cNS =0)
®s((®nenval(n)) ® (®e (®pecraci(e)p))) (since cNsc(N) =0)

= @s((®nenval(n)) ® 1)
(

= wal((®s, N))

O

Proof of Lemma 7.15 (page 117). Let k € {0,...,|Sov] — 1}. CNTi11(Q,0) is obtained from
CNTi(Q,0) by using rewriting rules DR, RR, and SR only.
Thanks to Lemma 7.13 and the fact that all computation nodes are distinct, the hypotheses of
Lemma 7.12 hold when RR is applied.
As DR and SR are sound too (cf Lemmas 7.10 and 7.14),
val(CNTy41(Q,0)) = val(CNTE(Q,0))
O

Proof of Theorem 7.16 (page 117). Follows from Lemma 7.15 and from val(CNTy(Q, 0)) = Ans(Q)
for all o € lin(=gov). O

Proof of Proposition 7.17 (page 118). At each rewriting step and for each son n’ of the root node,

”

tests like “x € sc(n’)” and operations like “sc(n) « sc(n) U sc(n’)” or “se(n’) « sc(n') — {z}”
are O(|V|), since a scope is represented as a table of size |V|. Operations like “Sons(root) «—
Sons(root) — {n'}”, “Sons(root) «— Sons(root) U{n}’, “V.(n) «— V.(n) UVe(n')" (with V.(n)N
Ve(n') = 0), or “Ve(n) « Ve(n) U{z}” are O(1), since V. and Sons are represented as lists.
Therefore, the operations performed for each rewriting step and for each son of the root are O(|V]).
As at each step, |Sons(root)| < |PUU]|, and as there are |V| rewriting steps, the algorithm is time
O([V[?-|PuU).

As for the space complexity, given that only the scopes of the root sons are used, we need a
space O(|V| - |P UU]|) for the scopes. As it can be shown that the number of nodes in the tree
of computation nodes is always O(|V| + |P U U|), recording op(n) and Sons(n) for all nodes n is
O(JV]+ |PUU]|) too. Last, recording V(n) for all nodes n is O(|V| - |P U U|) because the sum of
the number of variables eliminated in all nodes is lesser than |V| - |P U U] (the worst case occurs

when all variables are duplicated). Hence, the overall space complexity is O(|V| - |[P UU|). O

Proof of Proposition 7.20 (page 120). The result obviously holds if the cluster-tree decomposition
contains one cluster ¢, since in this case, V(cy) =V, ®(¢g) = @, and Sons(cy) = 0.

Assume that the property holds if there are k clusters in the cluster-tree decomposition. Let
us consider a cluster-tree decomposition of a graphical model (V, ®) given S, such that this de-
composition contains k + 1 clusters. Let ¢ be a leaf cluster in this tree-decomposition. Then, for
all o & ®(c), sc(p) N (V(c) = V(pa(c)) = 0. Indeed, if ¢ ¢ ®(c), then there exists a cluster ¢’ such

224 APPENDIX B. PROOFS

that ¢ € ®(¢’), and hence sc(p) C V(¢). The running intersection property allows us to infer that
Vo € V(e) — V(pa(c)),x ¢ V(') (otherwise, as pa(c) is necessarily on the path from ¢ to ¢/, we
should have (V(¢) — V(pa(c))) NV (pa(c)) 75 ()). This entails that V(') N (V(e) = V(pa(c)) = 0,
and therefore sc(y)) N (V(c) — V(pa(c)) =
For all p & ®(c), sc(p) N (V(c) — V(pa(c)) = (), one can write:
Ov-5(®per ®) = DV-5)—(V(e)=V(pa(e))) DV (e)=V (pa(c)) (Dped ¥)
DV -5)=(V(e)-V(pa()) (Rpga(c)) @ (Bv(e)—v (pa(e)) (Rpea(c) ¥)))

DV-5)-(V(e)-V(pa(e) (Bpga(c)) ® val(c))
The result is then obtained by using the recurrence hypothesis on the graphical model (V —(V (¢)—

V(pa(e))), (® — (c)) U {val(c)}). .

Proof of Theorem 7.24 (page 122). Entailed by the soundness of the macrostructuration process
(Theorem 7.16 page 117), and by Proposition 7.20 (page 120) concerning cluster-tree decomposi-
tions. As for the policies, the macrostructuration process guarantees the result concerning policies,
because if x ¢ sc(pg), then
argmax, C argmax, (¢o ® ¢)

(and such a form is the only decomposition used for non-duplicated decision variables). As
for duplicated decision variables, we know for example that if max = ® and 1, @2 are two
scoped functions, then ((argmax,p1) U (argmax,p2)) N argmax, (o1 ® w2) # 0. Indeed, let A €
dom(sc(p1 ® p2) — {z}). Let a1 € argmax,pi(A) and ay € argmax,@2(A). Then, for all
= ¢1(a.A) and @a(az.A) = pa2(a.A). Therefore, for all a € dom(z),
max(¢i1(a1.A), p2(az.A)) = max(p1(a.A4), p2(a.A)), which implies that either (¢1 ® p2)(a1.4) =
(01 ® p2)(a.A), or (1 @ p2)(az.A) = (1 @ p2)(a.A). As aresult, a1 € argmax,(¢1 ® ¢2)(A) or
as € argmax, (p1 ® p2)(A). O

a € dom(z), ¢1(a1.4)

Proof of Proposition 7.26 (page 123). Let ¢ be a cluster of a MCTree. According to the definition
of wal(c), computing the value of ¢ given the values of its sons is time O(d**t¥enT@) . (|®(c)| +
|Sons(c)|—1)). Hence, computing the value of all clusters ¢ € C of a MCTree is time O(d! T*enT(@).
Ycec(|®(e)] + [Sons(c)| - 1)).

It can be shown that Y _~(|®(c)| + |Sons(c)|—1)) <2-|[PUU|:

ceC

e First, > . |®(c)| < |[PUUL

e Second, given a tree having nl leaves, it can easily be shown (by recurrence) that the sum
of the number of sons of each node minus 1 equals nl — 1. Therefore, as the MCTree has at
most |P U U| leaves, one can infer that) .~ (|Sons(c)| —1) < |[PUU|-1< |[PUU],

Therefore, the time complexity is O(2 - |[PUU| - d*Twent@) = O(|[PUU| - d*Twent@).
The space complexity is also O(|P U U| - d*TwenT@)) because the functions which must be

manipulated always have a scope of size lesser than 1 + wenr(@)- O

Proof of Theorem 7.27 (page 123). Let o* be an elimination order s.t. wg(=<gev) = wg(0*). The
idea is to apply the rewriting rules on CNTy(Q, 0*). Let Gy = G and, if G, = (Vi, Hy) and z = o*(k)
is eliminated, then Gy11 = (Vy — {z}, (Hy — H") U {hg11}), where hjq = Unem=h— {z} is the
hyperedge created from step k to k + 1. It can be proved that for all k € {0,...,|Sov| — 1}, if
CNTi(Q,0%) = (sov - op,, N), then for all n € N, there exists h € Hy s.t. sc(n) C sc(h). Indeed,

B.5. PROOFS OF CHAPTER 7 225

this property easily holds at step 0, and if it holds at step k, then sc((op,, N*t*)) C sc(hgt1)-
Moreover, if duplication is used, then for all n € N**, sc((op,,{n})) C sc(hxt+1). Rewriting rules
RR and SR can be shown to be always advantageous in terms of induced-width. This entails the

required result. |

Proof of Lemma 7.29 (page 129). Let us start from CNDAG(Q, o).

Case op =@ As the elimination at the left of @, is a @-elimination too, we have
CNDAGR11(Q,0) = (sov- @y, ®, {rewrite((®y,®,N)), N € N}

= (s0v- &,®,{(0,®, NV U{RR((&y,®, N™¥))}), N € N})
If the elimination at the left of @, is a @ elimination, we get:

CNDAG2(Q,0) = (sov,®, {rewrite((®s, ®, N Y U{RR((Dy,®,NT¥))})), N € N}).
As (Bz, @, NV U{RR((Dy, ®, NT¥))}) = rewrite((Dy By, ®, N)), one can write:
CNDAG+2(Q,0) = (sov, ®, {rewrite’((®, &y, ®,N)), N € N}).
Similarly,
CNDAG:+2(Q,0) = (sov, ®, {rewrite?((®y ., @, N)), N € N}).
Lemma 7.7 enables us to conclude that CNDAG12(Q,0) = CNDAG1+2(Q,0"). If the elimi-
nation at the left of @, is not a @ elimination, then we get:
CNDAG+2(Q, 0) = (sov, ®, {simplify(rewrite*((©, ®y, ®, N))), N € N}).
and similarly, we have CNDAG12(Q,0) = CNDAGk2(Q,0").

Case op = max (when max # @) In this case,
CNDAG(Q,0) = (sov - max, - max,, &, {(0,®, N), N € N})

First, if 917TY = (), then the result obtained for CNDAG.2(Q,0) is symmetric in xz/y.
Indeed, when max, is considered, structural modifications are made on the part depending on y
only, i.e. on the nodes associated with M1T¥ = 91~*T¥ and when max, is considered, structural
modifications are made on the part depending on z only, i.e. on the nodes associated with Q1% Y.
This implies that CNDAG12(Q,0) = CNDAG12(Q,0).

Otherwise, we have Y1T**¥ =£ (). The application of DRyax on CNDAG(Q,0) gives

(sov. max,, ®,{(0,®,N),N e MY} U{(0,®, N1 U {(max,,d, N2)})})
where N1 = Nyegq+v N7Y and Ny = {(0,®, N — N1), N € ™Y},

N; does not involve any max node, because when max # @, the definition of DRy, and
RR,ax implies that variables eliminated with max appear exactly once in the structure. Therefore,
(N — Nj)[max] = N[max].

Using this result, the application of RRyax transforms (max,,®, N2) into: (maxg,,®, Ng),

where
Sa = {y}UVe(Unem+v(N — N1)[max])
N, = {(@,@,N—Nl),(NE‘.TI”)/\(N[IH&X] =0)}

U{(?,®, ((N — N1) — N[max]) UN"),
(N € MHY) A (N[max] # 0) A ((0,®, N') € Sons(N|max]))}
Therefore, we get
CNDAG11(Q,0) = (sov.max,, ®,{(0,®,N),N e MY} U{(0,®, N1 U {(maxg,,®, No)})})
After these steps, the elimination of x is considered. After the application of DRy, .y, we obtain
(sov,®, {(0,®,N),N e n=*" ¥} U{(0, ®, N{ U {(max,, ®, Nj)}})

226 APPENDIX B. PROOFS

where

e Ni = (Nyegte—y N77) N (N1 U {(maxg,, B, Ng)}) " As y is eliminated exactly once in
the structure, (Nyegp+s—y N™%) N {(maxg,,d, N,)} = 0. This allows us to write N| =
(mNeerm—y N—w) n Nfz Therefore, N{ = (mNem+z—y N—w) n (mNem+y N—y)—;ﬂ

= (Nyen+s—v N7"7¥) N (Nnewrs N707Y)

- mN€m+{"’va} N—*Y
Hence, the expression of Nj is symmetric in z/y.

o N;={(0,® N —Nj),Nent* v} U{(0,®, (N1 — N{) U{(maxg,,®, No)})}.

After the application of RRpax, (max,,®, Nj) is transformed into (maxg,, ®, Np), where (we
use the fact that Nj[max] = N{[max] = (}):

o Sp = {2}V (Unemee—y N [max])U{y}UVe (Uy ety N [max]) = {z, y}UVe (U eoree.01 N max]).

This shows that the expression of S}, is symmetric in x/y.

e Ny = {(0,® N—Nj),(NeNt™ ¥ A(Nmax] =0)}

U{(0,®,((N — N{) — N[max]) UN"),

(N € Mt*~¥) A (N[max] # 0) A ((0,®, N') € Sons(N[max]))}
(N7 — ND U (N = Ny)) (N € 09) A (Nfmax] = 0)}
(N = N})U((N — Ny) — Nmax)) UN").

(N € MtY) A (N[max] # 0) A ((0,®, N') € Sons(N[max]))}

= {(0,® N —N{),(N e nt=vh) A (N[max] = 0)}
UL, ®, (N — N{) — N[max)) U NY),
(N € Mtk A (Nmax] # 0) A (0, @, N') € Sons(N[max]))}

This expression is symmetric in z/y.

Uu{(0,®
U{0,®

)

As a result,
CNDAG12(Q,0) = (sov,®,{(0,®,N),N e n~*=¥} U {(0, ®, N U {(maxs,,®, Np)})})
As the expressions of Ni, Sy, and N}, are symmetric in 2:/y. this entails that CNDAG2(Q,0) =
CNDAGL1+2(Q,0).

Case op = min (when min # @) This case is dealt with exactly as the case op = max. O

Proof of Theorem 7.30 (page 129). Lemma 7.8 established in the semiring case allows us to recur-
sively apply Lemma 7.29 and to obtain CNDAG(Q,0) = CNDAG(Q,0"). O

Proof of Lemma 7.31 (page 129).

val((sov.®,,®,{(0,®,N),N eN})) = sov.? Negm (ng@le(n)))

Eare)

val((sov, &, {(0, ®,{(®.,®,N)}),N € 9M}))

B.5. PROOFS OF CHAPTER 7 227

Proof of Lemma 7.32 (page 129). The property holds for k = 0, because
CNDAGy(Q,0) = (Sov,®,{(0,®,N), N € 0N}) with N ={PU{U;},U; € U},
and therefore, (1) for all N € N, for all n € N, Vo(n) = 0 and Sons(n) =0, and (2) for all N € N,
N[max]| = 0.
Assume that the property holds for k < |Sov|—1 and that CNDAG(Q, 0) = (sov,®,{(0,®,N),N €
M}). This recurrence assumption is denoted (RA). Does the property hold at step k + 17

Case sov = sov’.@, After the application of DRg and rewrite, we obtain CNDAG11(Q,0) =
(sov', @, {(0,®,N), N € W}), with W = {N"* U{RR((®,,®, N**))}, N € N}.

Let N’ € W, ie. N' = N~% U{RR((®,®, N*%))} for some N € M. Let (n1,ns) € N> such
that ny # na.

o If (n1,n2) € (N~%)%, then (n1,n2) € N2: (RA) directly implies that V,(n1)NVe(ng) = 0 and
Ve(n1) N se(ng) = 0. Similarly, if (n1,n2) € (N~*[®])?, then (n1,ns) € (N[®])?, hence (RA)
implies that Sons(ni) N Sons(ng) = 0.

e If n; € N°% and ny = RR((P4, ®, NT%))

Then, as Ve(n2) C {z} U (Upen+= Ve(n)), as & ¢ Ve(n1) (because = had not been considered
before step k), and as V.(n1) N Ve(n) = 0 for every n € N** (thanks to (RA)), this entails
that Vo (n1) N Ve(ng) = 0.

Similarly, as sc(n2) C Upen+= sc(n), (RA) enables us to infer that V.(n1) N sc(ng) = 0.

Next, assume that (n1,m2) € N’[@®]. This means that ny € N~%[@®] C N[®]. We have
Sons(ng) = NT*[-®] U (Uyen+e[@] Sons(n)). According to (RA), we have, for all n €
N+t (@], Sons(ni)NSons(n) = 0 and Sons(ny)NNT*[-d] = 0 (since Sons(ny)N [~¢] = 0).
This enables us to infer that Sons(ni) N Sons(ng) = 0.

e If ny = RR((®s,®, NT™)) and np € N™*

Then, it has already been shown (previous item) that Vi(ni) N Ve(nz) = 0 and that if
(n1,n2) € N'[@], (n1 # na) — (Sons(ni) N Sons(ng) = 0).

As Vo(ny) C {2} U (Upen+s Ve(n)), as © ¢ sc(nz) (because ny € N~%), and as Ve(n) N
sc(ng) = 0 for every n € N1 (due to the recurrence assumption), it is possible to infer that
Ve(ni) N se(ng) = 0.

Let n € N'[@]. If n € N™*[®], then (RA) directly implies that Sons(n) N N~*[-¢] = 0,
and therefore that Sons(n) N N'[-®] = 0. Otherwise, n = RR((®,,®, N**)). In this case,
Sons(n) = NT*[=®] U (U en+og) Sons(n')). First, N**[~®] N N~*[~®] = (). Second, for every
n’ € NT[@], Sons(n)NN[-®] = () thanks to (RA), and hence Sons(n’)NN~*[=®] = (). Therefore,
Sons(n) N N~™*[-®] = 0, i.e. Sons(n) N N'[-d] = 0.

As N' = N"* U{RR((&,,®, NT*))}, we can write N'[max] = N~ *[max] C N|[max], hence
|N'[max]| < 1. Let (0, ®, Ng) € Sons(N'[max]). Then, (§,®, Ny) € Sons(N[max]). From this, the
recurrence assumption entails that NN N[-max] = (), and consequently that N;NN ~*[-~max] = ().
Moreover, it is straightforward that RR((®,, ®, NT*)) ¢ N,. Hence, N, N N[~ max] = ().

Let (N{, N}) € 9 such that N{ # Nj. This entails that N| = N; * U{RR((®,,®, N;"*))} and
Ny = Ny* U{RR((®,,®, N, ™))} for some (N1, No) € M? such that N1 # Ny. Then, Nj[max] =

228 APPENDIX B. PROOFS

Ny ¥[max] C Njmax| and Nj[max] = N, “[max| C Nz[max]. The recurrence assumption then
directly entails that V(N{[max]) N V. (Nj[max]) = (). Moreover, as sc¢(N3) = sc(Na2) — {z}, this
also entails that V,(Nj[max]) N se(N5) = 0.

All these results show that the property holds at step k& + 1. The property still holds if simpli-
fication rule SR is applied, since SR can only reduce the set of eliminated variables, the scopes of

nodes, and the sets of sons.

Case sov = sov’.max, (when max # @) If M = (), then the structure is unchanged at step
k + 1, hence the property is still satisfied.
Otherwise, the application of D Ryax and RRypyax gives (sov’, @, {(0, ®, N), N € 9'}), with 0’ =
MN~2U{ N, U {RRmax((max,, ®, Np))}}, where Ny, = Nyeq+= N2 and N, = {(0,®, N — N,), N € N},
Let N € 9.

e Either N € 917*. In this case, (RA) directly implies that for all (ny,n2) € N’ such that
ny # na, Ve(n1) NVe(ng) = 0 and Ve(n1) Nsc(ng) = 0, that for all (nq,n2) € N'[®] such that
ny # na, Sons(ni) N Sons(nz) = 0, and that for all n € N'[@], Sons(n) N N[-®] = (.

e Or N = N, U{RRmax (max,,®, Ny)}.

Let (n1,n2) € N’ such that ny # na.

— If (n1,n2) € N2, then there exists N € 9™ such that (n1,n2) € N2. In this case, the
recurrence assumption directly implies that V. (n1)NV.(n2) = 0 and V. (n1)Nse(ng) = 0,
and that if (n1,n2) € N'[®], then Sons(ni) N Sons(ng) = 0.

— If ny € N, and ny = RRpax((max,, &, Np)).

We have Ve(n2) C {z} U (Uyeg+eVe(N[max])). Given that x ¢ V.(n1) and for all
N € M, for all n € N[max], Ve(n) N Ve(ny) = 0 (because ny € N and n # ny), we
obtain V,(n1) N V.(ng2) = 0.

Next, sc(n2) C Upen, s¢(n) = Uyem+e s¢(N — N,). We know that for all N € ™" for
all n € N — N,, n # ny and consequently, as ny € N, Vp(n1) N se(n) = (. This entails
that Vo(n1) N se(ng) = 0.

Moreover, na ¢ N'[@] (because max # @).

— If n; = RR((max,, ®, Np)) and ny € N,.

It has already been shown (see previous item), that Vi(ni) N V.(n2) = 0. Moreover,
Ve(ni) = {2} U (Uyem+s Ve(N[max])). We know that x ¢ sc(nz) (since ng € Ng),
and, thanks to (RA), that for all N € M™* if N[max] # 0, then N[max| = {n;} and
Ve(N1) N se(ng) = 0. Hence, Vi (n1) N sc(n2) = 0.

Let n € N'[@®]. We then have n € N,[®]. Together with (RA), this implies that Sons(n) N
Ny[-¢] = 0. Moreover, it is straightforward that RRpax (max,,®, Ny) ¢ Sons(n). Therefore,
Sons(n) N N'[-&] = 0.

Let (N1, N2) € (W)? such that Ny # No.

o If (N1, N2) € (:7%)2, then (N1, Na) € 9%, and (RA) implies that V(N7 [max])NV, (Nz[max]) =
) and V. (N1[max]) N sc(N2) = 0.

B.5. PROOFS OF CHAPTER 7 229

e If Ny € 917% and Ny = N, U {RRmax((max,, ®, Np))}

We know that V. (Na[max]) = {} U (Uyem+= Ve(N[max])). Due to (RA), one can write that
for all N € M, V,(Ny[max]) N Vo(N[max]) = 0. Furthermore, z ¢ V.(Ni[max]). This
entails that V. (N1[max]) N V. (Nz[max]) = 0.
Similarly, s¢(N2) C Uyem+= s¢(N[max]). (RA) implies that for every N € M, V, (N7 [max])N
s¢(N) = (). Hence, V,(Ny[max]| N sc(Na) = 0.

o If Ny = N, U{RRpax((maxs, ®, Ny))} and Ny € 9007
It has already been shown (previous item) that V,(N;[max]) N V. (Nz[max]) = 0.

Ve(N1[max]) = {2} U(Uyeqnte Ve(N[max])). Due to (RA), one can write, for every N € 97,
Ve(N[max]) N sc¢(Na) = 0. Moreover, x ¢ sc(Nz2). Thus, V. (N1[max]) N sc(Na) = 0.

Let N' ¢ M.

o If N/ € M~ * then N’ € M and consequently, thanks to (RA), |N'[max]| < 1 and for all
(0, ®, Ny) € Sons(N'[max]), Ny N N'[~max] = 0.

e Otherwise, N' = N, U {RRmax((max,, ®, Np))}.
In this case, N'[max| = { RRmax((max,, ®, Np))}. This implies that |N'[max]| = 1.
Let (0, ®, Ns) € Sons(N'[max]), i.e. (0,®,N;) € Sons(RRmax((max,,®, Np))).

We know that Sons(RRmax((max,, ®, Ny)) = {(0,®, N — N,),(N € Nt*) A (N[max] =
0)}U{(0, ®, (N[~max]—Ng)UN"), (N € NT*)A(N[max] = 0)A (D, ®, N”) € Sons(N|[max])}.

We know that for every N € **, (N — N,) N N, = (). Therefore, if (0, ®, N,) € {(0,®, N —
N,), (N € M) A (N[max] = 0)}, then Ny N N, =0, i.e. Ny N N'[~max] = 0.

Otherwise, there exists N € 9™ such that N[max]| # 0 and (0, ®, Ns) = (0, ®, (N[-~max] —
No)UN") with (0, ®, N") € Sons(N|[max]). This means that Ny = (N[-max] — N,) UN"
with (0, ®, N”) € Sons(N[max]). Then, Ny N N'[-max] = Ny N N, = ((N[~max] — N,) U
N"YN N, = ((N[-max] — N,) N N,) U (N" N N,) = N"N N,. We have (§,®,N") €
Sons(N[max]) and N, € N[-max]. (RA) enables us to infer that N” N N, = 0, and
consequently Ny N N'[-max] = ().

All these results show that the property also holds at step k + 1 if sov = sov’. max,.

Case sov = sov’. min, (when min # @) Similar to the case sov = sov’. max,. O

Proof of Lemma 7.33 (page 130). The result follows from Lemmas 7.31 and 7.32.
Indeed, if simplification is not applied, then we have
CNDAGk11(Q,0) = (sov, ®, {rewrite((®y,®,N)), N € N})
As function rewrite gives a sound result (thanks to Proposition 7.10, Proposition 7.12, and Lemma 7.32),

this implies that
val(CNDAGk4+1(Q,0)) = wal((sov,®, {rewrite((®, ®, N)), N € N}))

= wal((sov,®,{(Pz,®,N),N € N})
The result is still valid if simplify is applied, because simplification rule SR is sound.

230 APPENDIX B. PROOFS

As DRy is sound (thanks to Lemma 7.31), this also entails that
val(CNDAGk41(Q,0)) = val((sov.@,, D, {(0,®,N),N € 9M}) = val(CNDAGL(Q, 0))

Proof of Lemma 7.3/ (page 130).

val((sov.max,, ®, {(,®, N),N € N})) = sovmax(@ (® val(n)))

z NeMN \neN

If M+ = (), then one can infer:

sov (Neeam (ngf val (n)))

= wal((sov,®,{(0,®,N),N € M}))

val((sov.max,, ®,{(0,®,N),N € N}))

Otherwise, 917 # (). In this case, the monotonicity of & enables us to write:
val((sov.max,, ®, {(0,®,N),N € N}))

- oo (. () oo (5 (2 0))

Furthermore, if Ny = Nyecqp+=N "% and Ny = {(0,®, N — N1), N € N}, then

max (o (g, mim))
- (NEEEW <<n§N1 val(n)) ? (nefgg—Nl val(n)>) >

max((® val(n))® ® (® val(n)))
z neNy Nemte \neN—-N;

= (® Uul(n)) ® max ((val(n)) (since ® is monotonic and = ¢ sc¢(Ny))
Ned+s \neN—N;
1)

neNy €T
= wal((0,®, N1 U {(max,, ®, Na)}

Consequently, if 91F £ (),

val((sov.max,, @, {(§,®,N), N € N}))
s0v ((® (® UGZ(n))) ®val((0,®, Ny U {(maxm,@,Ng)}))>

Neg—= \neN
val((sov, @, {((Z), ®,N),N € ‘ﬁ_””} U{(®,®, N1 U{(max,, &, Ng)})}))

Proof of Lemma 7.35 (page 130). Assume that S’ N (SUsc(N1)Usc(N2)) =0 and VN3 € 91, NoN

B.5. PROOFS OF CHAPTER 7 231

N3 = @ Then,

=

val((maxg, ®, N1 U {(0,®, No U {(maxg,®, {(0,®, N3), N3 € M})})})

= Inax<< @ val(n))@(® val(n’))@max< @ < ® wal(n"))>
S nENy n’€N> S \N3eM \n"€N3

)

)
- <<n€N1 val(n > max <<n s vaZ(n’)) ® .8 <n”<§>N3 val(n”)>)>

)

(since ® is monotonic and S’ N sc(Ny) =)

= max ((val(n) @ max @ ((® val(n’)) ® (®@ wal(n")))
neN; 5" Nzem n’€N> n’’€N3

= max ((val(n) ® max @ (® Uul(n')))
neN; 5" NzeM \n'€N2UN3

smce VNg S (ﬁ N2 n N3 = @)

= Inaxrnax<< D val(n))@ & (® wal(n) >
s 5 neN; NzeM \n’€N2UN3

(since @ is monotonic and S’ N sc(Ny) = 0)

= max ((@ val(n)) & @ (® Ual(n')))
Sus’ neNy N3eNM \n"€N2UN3
(since SN S =10)

= wal((maxgyus:, ®, N1 U {(@, ®, N2 U N3), N3 € M}))

Proof of Lemma 7.36 (page 130). If max = @, then the result is implied by Lemma 7.33. Other-
wise , max # @. The result is straightforward if 917 = (). Otherwise, M £ (.

According to Lemma 7.34 which states that DRy, is sound, one can write
val(CNDAGL(Q,0)) = val((sov, &, {(0,®, N),N e M~ *} U{(D, ®, N, U {(max,,®, Ny)}1}))
where N, = Nyegqr+= N~ and N, = {(0,®, N — N,), N € M+*}
Let us denote by n the node n = (max,, ®, Np). In order to prove that val(CNDAG+1(Q,0)) =
val(CNDAGKL(Q, 0)), it suffices to prove that val(n) = val(RRmax(n)).

Let us denote by Ny the set of sets of nodes Ny = {N — N,, N € ‘J’(*z}. n can then be written
as n = (max,, ®, {(0,®, N),N € Ny}).
Let 9 = {Ny,..., N, }. Let us define, for all i € {0,...,r},
ng = (maX{I}UVe(UNE{Nl ,,,,,
{(0,®,N), (N € {N1,...,Ni}) A (N[max] = 0)}
U{(0, @, N[=max] U N'), (N € {N1,..., Ni}) A (Nmax] # 0) A (8, ®, N') € Sons(N[max]))}
U{(@, ®, N), N e {Ni+1, A ,NT}})
Let us show that for all ¢ € {0,...,7}, val(n) = val(n;).

N,y Nlmax]), Ds

The property holds for ¢ = 0, because ng = n. Assume that the property holds for ¢ < r. Let
us show that it holds at step ¢ + 1.

If N;+1[max] = 0, then the result is obvious because in this case, Ve (N;11[max]) = 0.

Otherwise, N;y1|max| # (. This means that N,;y; can be written as N,;1 = N,;;1[-max| U

{(maxy, (., [max])> ®, Sons(N;y1[max]))}. Hence, n; can be written as:

232 APPENDIX B. PROOFS

ni = (MAXSUV, (Unen, ..., x;) Nimax])» D
{(0,2,N),(N € {Ny,...,N;}) A (N[max] = 0)}
U{(0,®, N[-max] UN"), (N € {Ny,...,N;}) A (N[max] # 0) A ((0,®, N") € Sons(N[max]))}
U{(0,®,N),N € {N;42,...,N,;}}

U{(0, ®, N;11[~max] U {(maxy, (v, , [max]); ®, Sons(N;i1[max]))})
According to Lemma 7.35, in order to show that val(n;) = val(ni41), it suffices to prove that:

L Ve(Nig1[max]) N (S U Ve(Unegn,.....n 3 N [max])) = 0,
2. for every N € {Ny, ..., N;} such that N[max] = 0, V. (N,41[max]) N sc((0,®,N)) =0,

3. for every N € {Ny, ..., N;} such that N[max]| # (), and for every (), ®, N') € Sons(N|[max]),
Ve(Nit1[max]) N sc((0, @, N[-max] UN")) = 0,

4. for all N € {Njy2,..., Ny}, Ve(Niy1[max]) Nsc((0,®,N)) =0,
5. Ve(Niy1|max]) N se(N;y1[-max]) = 0,
6. if (0, ®, N{’.;) € Sons(N;y1[max]), then N;i[~max] NN/, = 0.

In order to show these properties, we use Lemma 7.32. We know that there exists N/, ; € N
such that N1 = Nj | — N,.

1. Point 1 holds because thanks to Lemma 7.32. Indeed, let j € {1,...,i}. We have N; =
N} — N, for one N; € M. Moreover, as Ny[max] = (), Nj[max| = N}[max]. Lemma 7.32
enables us to write V. (N} [max]) N V. (N/[max]) = 0, i.e. Ve(N;[max]) NV, (N;y1[max]) = 0.
Therefore, V.(Njy1[max]) N Ve(Uneqny,...,n,3 NV [max]) = 0. Moreover, z ¢ V(N;y1[max])
(because x had not been considered yet). Thus, point 1 holds.

2. For point 2, let N € {Ny,...,N;} such that N[max] =). We have N = N’ — N, for one
N' € M. Lemma 7.32 enables us to write V. (N/, | [max])Nsc(N') = 0, hence V(N1 [max])N
sc((0,®, N)) = (). As this holds for every N € {Ny,..., N;}, point 2 is satisfied.

3. For point 3, let N € {Ny,..., N;} such that N[max] # 0, and let (§, ®, N') € Sons(N[max]).
We have N = N"” — N, for one N € 9. Lemma 7.32 enables us to write V(NN/,[max]) N
sc(N") = 0 and Vg (N/, ;[max]) N V. (N"[max]) = (. Therefore, Vo (N/, [max]) N (sc(N") U
V. (N"[max])) = (. This entails that V. (N;11[max])N(sc(N[-max])Usc(N[max])UV, (N [max])) =
0, i.e. Ve(Nip1[max]) N (se(N[-max])Usc(Sons(N[max]))) = (), and hence, V. (N, 1[max]) N
sc((0, @, N[mmax]UN')) = 0. As this holds for every N € {Ny,..., N;}, point 3 is satisfied.

4. Point 4 directly holds thanks to the Lemma 7.32. Indeed, for every N € {N;ia,...,N;},
N = N'—N, for one N' € M, and this lemma enables us to write Ve (N/, ;[max])Nsc(N') = 0,
which implies that V,(N;y1[max]) N se((0,®, N) = 0 too.

5. For point 5, we use the following property, given by Lemma 7.32, that for all (ns,n,) € N{,
(ng # ny) — (Ve(ng) N se(ny,) = 0). For ny such that {n;} = N;;1[max], this leads to: for
all n, € N{ | — {n¢}, Ve(ny) Nsc(ny) =0, ie. Vo(Niy1[max]) N sc(N/,, [-max]) = 0, which
implies that Ve (N;11[max]) N sc¢(N;y1[—max]) = 0.

B.5. PROOFS OF CHAPTER 7 233

6. Finally, point 6 is also entailed by Lemma 7.32. Indeed, Lemma 7.32 says that for all
(0,®,Ns) € Sons(Nj,[max]), Ny N N/ [-max] = 0. As N/, [max] = N;;;[max] and

Nijpi[-max] C Nj [~ max], this implies that for all (), ®, N,) € Sons(N;y1[max]), Ny N
Ni+1[_‘ max] = @

As a result, Lemma 7.35 allows us to transform n; into the following computation node, while
ensuring that the node value is preserved
(1flf130<5uve(uNe{N1 _____ ;3 N[max])UV (Ni41[max])s D
{(0,®,N),(N € {Ny,...,N;}) A (N[max| = 0)}
U{(0,®, N[-max] UN'), (N € {Ny,...,N;}) A (N[max] # 0) A ((0,®, N') € Sons(N|[max]))}
U{(0,®,N),N € {Ni}2,...,N,}}
U{(0, ®, Nit1[~max] UN’'), N’ € Sons(N;+1[max])})
i.e. it enables us to transform n; into n;+1 while ensuring that val(n;) = val(n;y1). As val(n;) =

val(n) thanks to the recurrence hypothesis, we get val(n;11) = val(n), i.e. the property holds at
step 7 + 1.

Consequently, the property holds for every i € {0,...,r}. For i = r, it provides us with
val(RRmax(n)) = val(n).

The case of a min-elimination is similar. O
Proof of Lemma 7.37 (page 130). Follows directly from Lemmas 7.33 and 7.36. O

Proof of Theorem 7.38 (page 130). Follows from Lemma 7.37 and from val(CNDAGy(Q,0)) =
Ans(Q) for all o € lin(=sow)- O

Proof of Proposition 7.39 (page 130). The macrostructure of a query is obtained by using algo-
rithm MacroStruct(sov, V, P,U), which calls auxiliary functions. We detail the time and space
complexities of each of these functions. All elements are recorded as lists, except for the scope
of each computation node, which is recorded as a table of |V| booleans. Moreover, in order to
explicitly handle a DAG of computation nodes, the sons of a computation node are represented
by pointers to computation nodes instead of computation nodes. Given a node n, &n denotes
the memory address where n is stored. The instruction newNode(op, V., ®, Sons, sc) creates a

computation node (opy,,®, Sons) and set its scope to sc.

begin
(root, PT RP) « initialize()
while (sov = sov’ - op,) do
sov «— sov’
if op = @ then (root, PTRP) « structure_®()
else root < structure_nd|()
return (root)

end

Figure B.1: MacroStruct(sov,V, P,U).

We can assume that V| # 0, since if |V| = 0, then the time and space complexities are directly

234 APPENDIX B. PROOFS

Initialize()
begin
root < newNode((), 0, ®, 0, ()
PTRP «— 0
scp «— 0
foreach ¢ € P do
PTRP «— PTRP U {&y)}
L scp +— sep U {sc(p)}
foreach ¢ € U do
n «— newNode(D,), ®, PTRP U {&p}, scp U sc(p))
L Sons(root) «— Sons(root) U {&n}

return ((root, PT'RP))

end

Figure B.2: Function which builds CNDAG(@Q, o).

Complexity of the initialization As adding an element to a list is O(1), as computing the union

of two scopes is O(|V]), and as the instruction newNode(...) is O(|P| + 1 + |V]), the initialization

is time [P|- (O(1) + O([V])) + U] - (O(|P| + 1+ [V]) + O(1)) = O((|P[+ [U]) - V[+ [U| - | P]).
The space complexity is O(|P| - [V|+ |U]| - (1 + |P| + |V])).

Complexity of structure_® The two first instructions are O(1).

Each iteration of the first foreach loop is time O(|V|), since the only operations performed are
(1) union of scopes or tests to know whether a variable is in the scope; these operations are O(|V|);
(2) removal of an element of a list or concatenation of two lists; these operations are O(1). As it
is applied at most | P| times, the first foreach loop is time O(|P| - |V])

Let us now analyze the second foreach loop. Let us consider one iteration of this second foreach
loop. As each son of the root has itself at most 1 + |P| sons, the internal foreach loop is time
O(|V]- (1 + |P|)). Then, the test “PT Ry, = PTRP,” is O(1 + |P|), mainly because the list of
pointers can be handled so that all pointers appear in the same order in all nodes. The instructions
performed after this test can be shown to be O(|V]- (1 + |P|)). Last, the updating of sc(xptr) is
O(|V]). Hence, each iteration of the second foreach loop is time O(|V|- (1 +|P|)+ |V|- (14 |P]) +
[V]) = O(|V] - (1 4+ |P])). As the second foreach loop is performed at most |U| times, the time
complexity of function structure-® is O(|P| - |V|+|U|- V|- (1 +|P|)) = O(|U]| - |V| - (1 + |P])).

The space complexity of the creation of np is O(|V|) because the space required to record a
scope as a table of |V| booleans is O(|V'|). Then, the instruction of the first foreach loop are O(1),
because they just correspond to concatenation of already existing lists. Hence, the first foreach loop
is space O(|P]) . In the second foreach loop, the instructions requiring a space not O(1) are the
creation of n (space complexity O(]V])), and the instruction Sons(n) « Sons(n) U {ptr’'}, which
is O(1) but which may be performed at most 1+ |P| times. This implies that the space complexity
of the second foreach loop, which is performed lesser than |U| times, is O(|U| - (V| + 1+ |P])).

Complexity of structure_.n® The first foreach loop is time O(|U]| - |V|), since the root has at
most |U| sons, the test “z € sc(xptr)” is O(|V]), and the other operations are O(1). Its space
complexity is 0.

The computation of commonPTR is time O(|P] - |U|) (we assume that the lists of pointers

B.5. PROOFS OF CHAPTER 7 235

structure_®()

begin

np < newNode(®, {z}, ®,0,0)

PTRP, — 0

foreach ptrp € PI'RP do

if x € sc(xptrp) then
PTRP «— PTRP — {ptrp}
PTRP, «— PTRP, U {ptrp}
Ve(np) — Ve(np) U Ve (+ptrp)
Sons(np) «— Sons(np) U Sons(xptrp)
sc(np) « sc(np) U sc(*ptrp)

PTRP «— PTRP U {&np}
foreach ptr € Sons(root) do
PTRimp — 0
foreach ptr’ € Sons(xptr) do
if x € sc(xptr’) then
Sons(xptr) < Sons(xptr) — {ptr'}
L PTRimp «— PTRimp U {ptr'}

if PT Rymp = PI'RP, then
| Sons(xptr) « Sons(xptr) U {&np}
else
n «— newNode(®, {z}, ®,0,0)
foreach ptr’ € PT Ry do
if op(xptr’) = @ then
Sons(n) < Sons(n) U Sons(xptr’)
Ve(n) < Ve(n) U Ve (xptr’)
else
| Sons(n) < Sons(n) U {ptr'}
sc(n) < sc(n) U sc(xptr')
| Sons(xptr) «— Sons(xptr) U {&n}

| sc(xptr) < sc(*ptr) — {x}
return ((root, PT'RP))

end

Figure B.3: Function implementing the rewriting for an elimination &,..

are ordered), and the computation of newsc is time O((1 + |P|) - |U| - |V]). The initialization of
newopnode is O(|V'|) and the initialization of newrootson is O(|P|+1+|V]). The space complexity
of all these operations can be shown to be O(|P| + |V]).

Hence, the instructions from the beginning to the second foreach loop are time O((1 4 |P]) -
|U| - |V|) and space O(|P| + |V]).

Let us consider an iteration of the second foreach loop. The first instruction is time O(1+ |P|).
The time complexity to test whether there is a node performing an elimination with op is O(1+|P]).
If the answer is no, the operation performed is time O(1). Otherwise, the time complexity to get
ptrop and PT Rnop is O(1 + |P|). The concatenation of the variables to eliminate is O(1). Then,
there are at most 1+ |P| elements in Sons(xptrop), and for each of these elements, the operations
performed are time O(1+|P|)+0O(1) = O(1+|P|), hence a time complexity O((1+|P|)?). Therefore,
one iteration of the second foreach loop is O((1 +|P])?). As this second foreach loop is performed
at most |U| times, the time complexity is O(|U| - (1 + |P|)?). The space complexity can also be

shown to be O(|U|-(1+|P|)?) (the instruction which requires the more space is n < newNode(...);

236 APPENDIX B. PROOFS

structure_n®()
begin
foreach ptr € Sons(root) do
if x € sc(xptr) then
Sons(root) «— Sons(root) — {ptr}
L PTRimp — PT Rimp U {ptr}

if PT Rtmp # 0 then
commonPT R < Opire PT Ry, SOns(xptr)
newsc = Uptre PT Ry, SC(*ptr)
newopnode — newNode(op, {z}, P, D, newsc — {x})
newrootson «— newNode((,), ®, commonPT R U {&newopnode}, newsc)
Sons(root) «— Sons(root) U {&newrootson}
foreach ptr € PT Rty do
Sons(xptr) < Sons(xptr) — commonPTR
if Sons(xptr)[op] = 0 then
| Sons(newopnode) «— Sons(newopnode) U {ptr}

else
{ptrop} «— Sons(xptr)[op]
PTRnop < Sons(xptr)[—op]
Ve(newopnode) «— Ve (newopdnode) U Ve (xptrop)
foreach ptropson € Sons(xptrop) do
n «— newNode(D,), ®, PT Rnop U {ptropson}, d)
L Sons(newopnode) < Sons(newopnode) U {&n}

return (root)

end

Figure B.4: Function implementing the rewriting for an elimination with an operator distinct
from @.

each of such instructions is O(|P|+1), and it can be performed |PT Ryy,p| - |Sons(*ptrpop)| times,
which is lesser than |U| - (1 4 |P])).

As a result, the time and space complexities of function structure_n® are O((1+|P|)-|U|-|V]+
|U| - (14 |P))?) and O(|P| + |V| + |U] - (1 + |P|)?) respectively, i.e. O((1 + |P|)-|U|- (|P| + |V]))
and O(|V| + |U|- (1 + |P|)?).

Global complexities It suffices to sum the complexities obtained to have the global time and

space complexities:

e Time complexity: O((|P[+ |U]) - [V[+[U] - [P]) + [V[- U] - [V]- (1 +[P]) + [V]- (1 + |P]) -
[UL- (1Pl + V) = O(U| - V- (1P| + [V]) - (1 + [P]));

e Space complexity:
O(IPI-|V[+[U]- A+ [P|+ V) + [VI-|U|- (VI + 1+ [P) + V] (V[+ U] - (1 +|P])?)) =
O(U[- [V]- (V] + |PP)).
O

Proof of Proposition 7.44 (page 133). Let o be an elimination order in lin(=gey), where Sov is the
sequence of eliminations used by the query.

The property holds in CNDAG,(Q,0). Indeed, CNDAG(Q,0) = (Sov(o),®, {(,®,N),N €
MN}) with N = {PU{U,;},U; € U}. Therefore, for every N € N, there exists a unique n such that

B.5. PROOFS OF CHAPTER 7 237

t(n) = u. If max # @, then one can infer that S N sc(P) =), hence for all N € N, none of the
variables eliminated in Sov are in sc(P(N)). Moreover, if N, N’ € M, then P(N) = P(N') = P,
hence ((n € N) A (t(n) =p)) — (n € N'). obviously hold.

Assume that the property holds in CNDAG(Q,0), for k € {0, ...,|Sov| — 1}. Does it hold at
step k + 17

If the sequence of remaining eliminations in CN DAG(Q, o) is of the form sov.®,, then no new
max computation node is created and the existing max computation nodes are unchanged, because
rules DRg, DR, RR, and SR, which can be applied for the elimination of x, do not modify the
max computation nodes.

If the sequence of remaining eliminations in CNDAG(Q, o) is of the form sov. min,, then the
same conclusion can be derived.

The only case which requires more work is the case where the sequence of remaining eliminations
in CNDAG(Q, o) is of the form sov. max,. The new max node created is R Ry ax((max,, ®, { (0, ®, N—
N1), N € NT%})), where N1 = Nyeq+=N"*. Let us denote by N, the set of sets of computation
nodes N, = {N—N;, N € N*t%}. Hence, the max node created is RRpax((max,, ®, {(0, ®, N,), N, €
Na})). Does it satisfy the required property?

Let N, € M,. Then, there exists N € 9 such that N, = N — Ny. If w(N) € Ny, then
this means that 917* = {N} (because if M contains another element N’ | then (N # N’) —
(u(N) # u(N"))). This implies that = ¢ sc(u(N)). As x ¢ sc(P(N)), thanks to the recurrence
assumption, this implies that 2 ¢ sc(N), which is a contradiction because N € 917*. Therefore,
the initial hypothesis u(N) € Nj is false, i.e. u(N) € N — N;. This proves that there exists a
unique computation node of type u in N,.

Do we have SN sc(P(N)) = (?

Let CNDAGE(Q,0) = (sov.max,,®,{(0,®, N),N € N}). If max # ¢, then for all N € N,
for all n € N, (t(n) = p) — (z ¢ sc(n))

Indeed, assume that t(n) = p and = € sc¢(n). Then, by connectivity of the components and
thanks to the updating of the definition of N** we know that n = (®g,®, N), where S contains
at least one environment component ¢y in the descendants of ¢(z) and that N contains Fact(cp).
Moreover, ¢y can be chosen the deeper as possible, so that for all n € N — Fact(cg), coNsc(n) = 0.
This leads to a contradiction because ¢y should have been eliminated. Therefore, (t(n) = p) —
(x ¢ sc(n)).

Let us show that for all computation nodes (0, ®, N) in CNDAG(Q,0), there exists a unique
computation node n in N such that ¢(n) = u.

The property holds for k¥ = 0 since the (0, ®, N) nodes involved in the initial DAG of com-
putation nodes are of the form (), ®, P U {U;}) with U; € U, hence the only node of type u is
U;.

Assume that the property holds at step k. We must show that the (), ®, N) nodes created from
CNDAGL(Q,0) to CNDAG11(Q, 0) satisfy the required property.

o If CNDAGL(Q,0) = (s00.&,,®,{(,®, N),N € 9N}), then, if no simplification is used,
CNDAGr+1(Q,0) = (sov,®,{(0,2, N~* U {RR((®,®, NT*))}),N € 9M}). The unique
computation nodes of the form (§), ®, N') which differ from CNDAG(Q,0) to CNDAG+1(Q,0)
are the nodes of the form (0, ®, N~ U {RR((®,.®, N*t*))}) for N € N.

238 APPENDIX B. PROOFS

Given N € M, let N’ = N~ U{RR((®s,®, NT))}. Tt it is straightforward that either
u(N) € N=* and hence u(N') = u(N), or u(N) € N*t* and hence u(N') = RR((®s, ®, NT7)).

If function simplify is used, then the result still holds because this function does neither

modify the type of a node, nor remove nodes of type u.

Hence, the property holds at step k£ + 1.

e If max # @ and CNDAGE(Q,0) = (sov. max,, ®, {(0,®, N), N € N}), then, either N* =
and the property is directly satisfied at step k+1, or CNDAGL(Q, 0) = (s0v.®,, &, {(0,®, N),N €
N HU{(0, ®, N1U{RRmax((max,, &, {((0, ®, N=Ny), N € W= }))})}, with Ny = Nyeqre N7
In this case, we know that for each n € Ny, t(n) = p. As t((0,®, N)) = u, this implies that
t((0,®, N — Ny)) = u. As MT* # @, this implies that t(RRmax((max,,®, {((0,®, N —
N1), N € t**}))) = u, and therefore the node created from step k to step k + 1, which is
(0, ®, NyU{RRmax((max,, &, {((0,®, N—Ny), N € N**}))}), satisfies the required property.

But some nodes are updated, due to the recomposition rule RRyax, which transforms
(max,, ®, {((0,®, N — N1), N € M"*}) into another node (maxg, &, {(0,®, N'), N' € N'}).
We must show that for every N’ € 9V, (), ®, N') satisfies the required property.

Let N’ € 9. Then, N’ can be of the form N”[-max] U Ns; with N” = N — N; for some
N e Nt and (0, ®, Ny) € Sons(N|[max]). Due to the recurrence assumption, we know that
there exists a unique n € N, such that ¢(n) = w. This implies that ¢(N”[max]) = u, and
therefore, by unicity, for all n € N”[-max], t(n) = p. This entails that there exists a unique
n € N”[=max] U N, such that t(n) = u.

But N” can also be of the form (0, ®, N — Ny) with N € ™. As t(n) = p for every n € Ny,
this implies that the unique node of type v which was is N is now in N — Ny, and it is still

unique.

Consequently, the property holds at step k + 1.

e Idem for an elimination min, when @ # min.

Hence the proof by recurrence that if (opg, @, {(0,®, N), N € 91}) is in CNDAG(Q), then for
all N € M, there exists a unique n € N such that ¢(n) = u.

Given that all max computation nodes are of the form (maxg,®,{(0,®,N),N € N}), this
implies that, at each step k, all max-nodes in CNDAG(Q, o) are of type u, and therefore given
a computation node (0, ®, N), if N[max] #), then N[max] = {u(N)}.

Let us show an invariant for the sons of the root: let us show that if CNDAG(Q,0) =
(sov,®,{(0,®,N), N € 9}), then the following properties hold: for all Ny, No € N,

(C1) If Ni[max] = Na[max] = (), then
[(n € N1) A (E(n) = p)] = [(n € N2) V (sc(n) C sc(u(N2)))]

(C2) If Ni[max] = @) and Na[max] # 0, then, for all (0, ®, Ns2) € Sons(Nz[max]),
[(n € Ny) A (t(n) = p)] — [(n € Na[max] U Nya) v (sc(n) C se(u(Na)))

(C3) If Ni[max] # 0 and Na[max] = 0, then, for all (0, ®, Ng1) € Sons(Ni[max]),
[(n € Ni[mmax] U Ng1) A (((n) = p)] — [(n € Na) V (sc(n) C sc(u(N2)))]

B.5. PROOFS OF CHAPTER 7 239

(C4) If Nimax] # 0 and Na[max] # 0, then, for all (0, ®, Ns1) € Sons(Ni[max]), for all
(0, ®, Ns2) € Sons(Nz[max]),
[(n € N1[mmax] U Ng1) A (t(n) = p)] — [(n € Na[-max] U Ny2) V (sc(n) C se(u(Nz)))]

The property holds at step k& = 0, because if Ni, Ny € M, then Ny = P U {U;} and Ny =
P U {Us}, with Uy,Us € U, and therefore we have first, N;[max] = Na[max] =), and second
(n € N1) A (t(n) = p) implies that n € P, and therefore n € N».

Assume that the property holds at step k. Let us show that it holds at step k + 1.

Let CNDAGE(Q,0) = (sov.opz, ®,{(0,®,N),N € Ni}). We study several cases depending

on op.

e Case op, = &,

Assume that function simplify is not used. In this case, we have
CNDAGk11 = (s0v,®,{(0,®,N),N € Ny11})
with
N1 = {N " U{RR((®2,®, NT7))}, N € Ny}

Let N1, Ny € My 1. There exist N, N’ € M, such that
N1 = N""U{RR((®:,®, N**))}
No = N2 U{RR((Dz,®, N'T%))}

We analyze the four cases corresponding to (C1), (C2), (C3), and (C4).

1. If N[max] = N’'[max] = J, then Nj[max| = Na[max| = (.
Let n € N7 such that ¢(n) = p.

— Either n € N7%.
This means that n € N and « ¢ sc(n). As n € N, the recurrence assumption
implies that (a) either n € N’, and hence n € N’~", which implies that n € Ny;
(b) or sc(n) C sc(u(N')), and in this case, it is not hard to see that sc(u(N')) C
sc(u(Nz)) U {z}, which implies that sc(n) C sc(u(Nz2)) U {z}, and, as x ¢ sc(n),
that sc(n) C sc(u(Na)).

— Orn = RR((®,,®, NT%)).
In this case, as t(n) = p, we know that for all n, € NT* t(n,) = p, and hence for
all n, € N*t* we have (n, € N'") V (sc(ny) C sc(u(N'))). This notably implies
that sc(NT*) C sc(N'*7)
If there exists n, € N** such that sc(n,) C sc(u(N')), then we can infer that
t(RR((®z, ®, N't*))) = u. Moreover, as sc(NT®) C sc(N'T*), this implies that
se(n) C se(u(Nz))
Otherwise, for all n, € N*t%, we have n, € N’T®. This implies that NT% c N'T%,
In another direction, if n, € N't* then we can write (n, € NT%) V (sc(ny) C
sc(u(N))). As z € sc(ny) and x ¢ sc(u(N)) (otherwise n would not be of type p),
this implies that n, € NT%. Therefore, N't* C N*¢ also holds, which implies that
N+* = N'*%_and consequently n = RR((®,, ®, Nt*) = RR((®,,®, N'T%)) € Na.

Hence, we have (n € Ny) V (sc(n) C sc(u(Nz)))

240

APPENDIX B. PROOFS

2. If N[max| = () and N’'[max] # (.
Then, we have Nj[max]| = (). Let n € Ny such that ¢(n) = p.
Let us first analyze the case Na[max] = (). In this case, we have u(N') € N'** (because

the max node, which is necessarily of type u, has disappeared in N3). Then,

— Either n € N7,
In this case, we know that for all (), ®, N7) € Sons(N'[max]),
(n € N'[-max] UN/) V (sc(n) C sc(u(N")))
If n € N'[-max], then, as x ¢ sc(n), we have n € N'~* hence n € Nj.
Otherwise, if n € N/, then sc(n) C sc(u(N') U V. (N'[max])). As t(n) = p, one can
infer that s¢(n)NV.(N'[max]) = (. Therefore, sc(n) C sc(u(N')). Asu(N’) € N'**,
we can infer that sc(n) C sc(N'T*). As z ¢ sc(n), this entails that sc(n) C
s¢(RR((®4,®, N't%))), i.e. sc(n) C sc(u(Nz)).
— Or n = RR((®,®, Nt%)).
The recurrence assumption implies that for all n, € NT*, for all (0,®,N]) €
Sons(N'[max]),
(ng € N'[mmax] U N/!) V (sc(ng) C sc(u(N")))
In both cases, as © € sc(ng,), we can infer that sc(ng) C se(N'1*). Consequently,
sc(N*1*) C s¢(N'**). This implies that sc(n) C sc(u(Na)).
Otherwise, Na[max] # (. In this case, we have Na[max] = {u(N2)} = N'[max| = u(N').
— Either n € N7%.
Let (0, ®, Ng2) € Sons(Na[max]). Then, (0, ®, Ng2) € Sons(N'[max]), which im-
plies, as n € N, that (n € N'[-max] U Ny2) V (sc(n) C sc(u(Ns2))). Given that
N'[=max] = (Na[-max]—{RR((®., ®, N'T*))})UN'*[=max] and that = ¢ sc(n),
this entails that n € Np[-max]. Therefore, (n € Nz[-max] U Ng2) V (sc(n) C
se(u(Naa).
— Or n = RR((®,®, NtY)).
Let (0, ®, Ng2) € Sons(Na[max]). Then, (§,®, Ny2) € Sons(N'[max]), which im-
plies that for all n, € N**, (n, € N'[~max] U Ns2) V (sc(ng) C sc(u(Ng2))).
As x € sc(ng) and z ¢ sc(u(Ns2)) (because Nao[max| # ()), we can infer that
ne € N'[-max], and therefore n, € N'"*[-max|, and therefore n, € N'**. This
entails that N*t% C N'*7,
Moreover, if n, € N7 then n, € N'7®[-max]. The recurrence assumption implies
that n, € N or sc(ny) C sc(u(N)). As x € sc(ny) and x ¢ sc(u(N)) (because
t(RR((®4, ®, NT¥))) = p), this entails that n, € NT%, hence N'** c N**.
Therefore, N = N~=% which entails that n € Ns.
This proves the required result for the case N[max| = () and N'[max] # (.
3. If N[max| # () and N'[max]| = ()
In this case, No[max] = (). We analyze two cases, depending on whether N;[max] = ()
or not.
First, if Ni[max] = 0, then, as N[max] # (), we have N[max] C N** or equivalently
x € sc(u(N)). Let n € Ny such that ¢(n) = p. We must show that (n € Na) V (sc(n) C
se(u(N2).

B.5. PROOFS OF CHAPTER 7 241

— Eithern e N™*
In this case, we know that n € N[-max] (because # € N[max]). The recurrence
assumption therefore implies that (n € N')V (sc(n) C sc(u(N'))), i.e. (n € N'=%)V
(se(n) C sc(u(N'))), which entails that (n € Na) V (sc(n) C sc(u(N'))). As z ¢
sc(n), it is not hard to infer that sc(n) C sc(u(N2)). As aresult, (n € No)V(se(n) C
se(u(N2).

— Orn = RR((&,,®, NT%))

This node cannot be of type p, otherwise we would not have Nj[max] = (.

Second, let us assume that Nj[max] # . Then, Ni[max] = Nmax] = {u(N)} =
{u(N1)}, and z ¢ sc(u(N)).

Let (0, ®, Ng1) € Sons(Ni[max]). Then, (0, ®, Ns1) € Sons(N|[max]). This implies that
if n € N[-max] U Ny and t(n) = p, then (n € N') V (se(n) C sc(u(N'))).

— If n € N™*[-max| U Ny, then x ¢ sc(n), and therefore (n € N'**) V (sc(n) C
sc(u(Nz))), which implies that (n € Na) V (sc(n) C sc(u(Nz))).

— Otherwise, if n € (Ny[-7max]UN,;)— (N ~*[~max]UNjg), then this means that n €
Ni[-max] — N~*[~max], i.e. n € (N3 — N~ %)[-max], i.e. n = RR((®,,®, NT7)).
Does (n € Na) V (sc(n) C sc(u(N2))) hold? Given that Nq[max] #), we know that
NT?[=max] = NT*. Due to the recurrence assumption, this enables us to infer
that for all n, € Nt*, (n, € N'T®)V (sc(ng) C sc(u(N"))).

« If x € sc(u(N’)), then one can directly infer that se(n) C sc(u(nz)).

* Otherwise, ¢ sc(u(N')). In this case, for all n, € N** (n, € N't%),
which means that N+t C N'**. Conversely, let n, € N’**. The recur-
rence assumption enables us to infer that given (), ®, Ny) € Sons(N[max]), i.e.
given (0, ®, Ns) € Sons(N1[max]), we have (n, € N[-max] U Ng) V (sc(np) C
sc(u(N))). As z € sc(ny) and x ¢ sc(u(N)) (because otherwise, we would have
Ni[max| = 0), we have n, € N[-max]|, and therefore n, € N™%[—max], hence
ny € NT%. As a result, N't% = N ¢,

As NT¢ = N2 we obtain n € Ns.

This shows that the property hold at step k + 1 when N[max] # () and N'[max] = {).
4. If N[max| # () and N'[max]| # ()

In this case, we can have Nj[max] = () or not and N2[max]| =) or not: we must analyze
four cases.
(a) Case 1: Nj[max] = Na[max] = ()
In this case, we know that « € sc(u(N)) and = € sc(u(N)).
Let n € Ny such that t(n) = p.
— Either n e N™*
In this case, n € N[-max]. The recurrence assumption implies that given
(0,®,N!) € Sons(N'[max]), we have (n € N'[-max]UN})V(sc(n) C sc(u(N.))).
As z € sc(N[max]) and Nmax] = {u(N)}, this allows us to write, if n ¢
N'[~max], that sc(n) C sc(u(Nz)). Otherwise, if n € N'[-max], then we can

write n € N'~*[=max], which implies that n € Nj.

242

(b)

APPENDIX B. PROOFS

As a result, (n € Na) V (sc(n) C sc(u(N2))).
— Orn = RR(®;,®, NT%)

This case is impossible because as Nj[max] = (), we have N[max] € N*% and

hence t(n) = u.

Case 2: Nj[max] = () and Na[max] # ()

In this case, z € sc(u(N)) and Na[max] = N'[max] = {u(N)} = {u(N2)} and
x ¢ sc(u(N)).

Let n € Ny such that t(n) = p and let (0, ®, Ns2) € Sons(N2[max]) (we also have
(0, ®, Ng2) € Sons(N'[max])). Does (n € No[~max] U Ng2) V (sc(n) C sc(u(Ns2)))
hold?

As Nimax] = () and N[max]| # (), one can infer that ¢{(RR((®,,®, NT%))) = u,
hence if n € Ny and ¢(n) = p, then n € N=*, and therefore n € N~*[-max]. The
recurrence assumption implies that (n € N'[-max] U Ng2) V (sc¢(n) C sc(u(Ns2))).
As ¢ sc(n), this entails that (n € N'~?[-max]U Nsa) V (s¢(n) C sc(u(Ns2))), and
therefore (n € N~ U Ny2) V (sc(n) C sc(u(Ns2))), and therefore (n € No U Ngo) V
(sc(n) C sc(u(Ns2))). Hence the required result.

Case 3: Nj[max] # () and Na[max| =0

In this case, € sc(u(N')), Ni[max] = N[max] = {u(N1)} = {u(N2)}, and = ¢
sc(u(N)).

Let (0,®, Ng1) € Sons(Ni[max]) and let n € Ni[~max] U Ny such that t(n) = p.
Does (n € Na) V (se(n) C sc(u(Nz))) holds?

- IfneN""
In this case, we have (),®,Ns) € Sons(N[max]) and n € N~ ?[-max] U
Ng1 € N[-max] U Ng;. Due to the recurrence assumption, this implies that
given (), ®, N!) € Sons(N'[max]), we have (n € N’'[~max] U N/) V (sc(n) C
sc(u(N)))), i.e. (n € N'[-max]) V (n € N.)V (sc(n) C sc(u(N)))).
If n € N'[-max], then n € N'~*[-max]|, and therefore n € N,. Other-
wise, (n € N.)V (sc(n) C sc(u(N.))). Hence, sc(n) C sc(N)). As u(Nz) =
RR((®z,®, N'T*)) and N'[max] C N7, this allows us to infer that sc(n) C
sc(u(N2)).
As a result, (n € N2) V (sc¢(n) C sc(u(Nz))).

— Otherwise, n € (N1[-max] U Ng1) — N™% = (Ny[-max] — N™*) U Ny =
{RR((®4,®, NT*))} U N1
As Nij[max] # 0, this means that for every n, € N™%, we have n, € N|[-max]
and t(n,) = p. Due to the recurrence assumption, this entails that given
(0,®,N!) € Sons(N'max]), we have (n, € N'[-max] U N]) V (sc(n,) C
sc(u(N2))). As x € sc(ng), we can have neither n, € N/, nor sc(n,) C
sc(u(N])) (since otherwise, we would have N’'[max] = (}). Therefore, n, €
N’'[~max], and also n, € N'"*[-max]|. This implies that NT% C N'**.
Let np € N'**. Then, as N'[max] # (), we can write n, € N'*%[-max]. The
recurrence assumption entails that given (0, ®, Ny) € Sons(N[max]), we have
(np € N[=max] U Ng) V (sc(np) C sc(u(Ns))).

B.5. PROOFS OF CHAPTER 7 243

If there exists n, € N'** such that n, € Ny or sc(ny,) C sc(u(Ng)), then we can
directly infer that sc(n) C sc(u(Nz)) (because u(N2) = RR((®z, ®, N'T*)) and
sc(Ng) C se(N'1)).

Otherwise, we obtain that for all n, € N'** n, € N[-max], and therefore
ny € NT¥[=max], and therefore n, € NT®. In this case, Nt = N'T% which
entails that n € Ns.

Hence, (n € Na) V (sc(n) C sc(u(N2))) is always satisfied.

(d) Case 4: Ni|max] # () and Na[max] #)

In this case, ¢ sc(u(N)) and x ¢ sc(u(N')).

Let (0, ®,Ns1) € Sons(Ni[max]) and let (0, ®, Ns3) € Sons(Nz[max]). Let n €

N;[—max] U Ng; such that t(n) = p.

—IfneN""

Then, n € N[-max|]UNg and ¢(n) = p. As N1[max] = N[max]| and No[max| =
N'[max], the recurrence assumption enables us to infer that if n € N[—max] U
N1 and t(n) = p, then (n € N'[-max] U Ng2) V (sc(n) C sc(u(Ns2))), which
implies that (n € N'”?[=max] U Ny2) V (sc(n) C sc(u(Ns2))), and therefore
(n € No U Ng2) V (se(n) C sc(u(Ns2))).
Otherwise, n = RR((®,, ®, NT%))
Ifn, € Nt thenn, € N[-max] (because otherwise, we would have N [max] =
()). The recurrence assumption entails that (n, € N'[-max] U Ns2) V (sc(n,) C
sc(u(Ns2))). As x € sc(ng), neither n, € Nj,, nor sc(n,) C sc(u(Ns2)) can
be satisfied (otherwise, we should have Na[max] =)). Hence, n, € N'[-max].
This implies that n, € N'T[-max], and therefore n, € N'7*. As a result,
N*t# C N+,
Similarly, it is possible to prove that for all n, € N’*% we have n, € N*%, and
hence N1t = N'*%_ This entails that n € Ns.

As a result, (n € No[-max] U Ny2) V (se(n) C sc(u(Ns2))).

If function simplify is used, then the result still holds because as soon as a simplification occurs
in a computation node of type u, then the same simplification can be done in computation

nodes of type p.
e Case op, = max,, with max # @

If 91T = (), then the property is obviously satisfied at the next step.

Otherwise, we have CNDAG 11 = (sov, ®, {(0,®, N), N € MNy11}) with
‘J‘(,Hl = m;:z U {NO U {RRmax((maxm, D, {((Z), ®,N — NQ), N e ‘ﬁ”}))}}

where No = Nyem+= N7,

Let N1, Ny € ‘J‘(k+1.

— If N1, No € 91,7, then the property is directly satisfied.

— If Ny € 0;® and Ny = Ny U { R Runax((max,, @, {(0,®, N — Np), N € 0+}))}.
In this case, No[max] # 0.

244

APPENDIX B. PROOFS

* If Nj[max] =0
Let n € Ny such that ¢(n) = p. Let (0, ®, Ny2) € Sons(Na[max]).
- Either Ny = N — Ny with N € 9%, and (N — No)[max] = (. Then, we have

N[max] = 0. According to the recurrence assumption, this implies that (n €
N)V (sc(n) C sc(u(N))). Therefore, (n € NoU (N — Np)) V (sc(n) C sc(u(N))).
As Ny = N[max] and N—Ny = N2, we have (n € Na[—max]UN2)V(sc(n) C
sc(u(N))).

As sc(u(N)) = sc(u(N — No)) = sc(u(Ns2)), this entails that (n € Na[-max] U
Ng2) V (se(n) C sc(u(Ns2))).

- Or Ngo = (N—Np)[~max]UN, with N[max] #) and (), ®, Ny) € Sons(N|[max]).

The recurrence assumption implies that (n € N[-max]UN;)V(sc(n) C sc(u(Ns))).
First, we have u(Ng2) = u((N — Np)[-max] U Ng) = u(Ng). Second, we
have N[-max] U Ny = Ng U Ng = Ny[-max] U Ng. This implies that
(n € Na[~max]| U Ng2) V (sc(n) C se(u(Ns2))).

Therefore, in both cases, (n € Na[-max]| U Ng2) V (sc(n) C sc(u(Ns2))).
* Otherwise, N1[max| # ()
Let (0,®,Ns1) € Sons(Nimax]) and (0, ®, Ns2) € Sons(Nzmax]). Let n €
Np[-~max] U Ng.
Does (n € Na[-max] U Ng2) V (sc(n) C sc(u(Ns2))) hold?
- Either Nyo = N — Ny with N € N/ with (N — Np)[max] = () Then, we

have N[max| = (). According to the recurrence assumption, this implies that
(n € N)V (sc(n) C sc(u(N))). As N = Ny U Ngz = Ny[-max] U Ng and
u(N) = u(Ns2), this entails the required result.

- Or Ngo = (N—Np)[~max]UN, with N[max]| #) and (), ®, Ny) € Sons(N|[max]).

The recurrence assumption implies that (n € N[—max|UN,)V(sc(n) C sc(u(Ny))).
In this case, as Ng3 = (N — Np)[~max] U Ny = (N[-max] U N,) — Ny, we have
N[—max] U Ny = Ny U Ny = Ngo U Na[-max]. Moreover, as in the previous

case, it can be shown that u(Ns) = u(Ns2), which implies the required result.

~ If Ny = No U {RRpax((max,, &, {(0,®,N — No), N € 9**}))} and N; € 90, *. The

result is proved in a similar way as the previous case.

e Case op, = min,, with min # @

Same proof as in the case op, = max,.

As a result, we have prove the invariant for the root. Thanks to this invariant, it is possible

to infer that for the internal max node (maxg,®, {(0,®, N), N € 9N}) (which are recomposed, i.e.
which satisfy N[max] =), case (C1) holds, i.e. for all Ny, Na € M, [(n € N)A(t(n) =p)] — [(n €
N')V (sc(n) C sc(u(N")))]. O

Proof of Theorem 7.39 (page 130). The only nodes for which a justification is needed are the max

computation nodes (if max # @) and the min computation nodes (if min # @). We prove the

result for max computation nodes only.

Let n = (maxg, ®, {(0,®, N), N € N}) be a max computation node.

B.5. PROOFS OF CHAPTER 7 245

Let us consider the graphical model M = (sc(n)U{S}, {val(u(N)), N € 91}). Let (T, V(.), ®(.))
be a cluster-tree decomposition of M given sc(n) — S. Let r be the root of this decomposition.
We have val(r) = maxs(®nyem val(u(N))). Let N € M and let n € N such that t(n) = p. We
know that S N sc(n) = (. Therefore, if we add levels in the cluster-tree decomposition where
each val(u(N)) is combined with val(N — {u(N)}), the value of the new root ' is val(r') =
maxs(Onen((@nenN—{un)} val(n))@val(u(N))) = maxs(Snen(@nen val(n')) = val(n). Then,
moving some weights is the structure does not change the result.

Concerning optimal decision rules, the argument is still that argmax, UT* = argmax, (U ™% @
U+®). O

Proof of Proposition 7.48 (page 135). Let C denote the set of clusters of the MCDAG. Each cluster
¢ of the MCDAG must perform |Sons(c)| + |®(c)| — 1 combination operations for each assignment
of its variables. Therefore, the computations performed by one cluster ¢ are time O((|®(c)| +
|Sons(c)| — 1) - dttwenpac) Summing on all clusters of the MCDAG gives a time complexity
O((Xeec(12(c)] + [Sons(c)| — 1)) - diFwenpas),

Let us show that > .~ (|®(c)| + |[Sons(c)| = 1) <2- (1 + |P|)- (1 + |U]):

e First, the number of scoped function in the MCDAG is lesser than |P|- |U| + |U|, because
each utility functions appears exactly once in the MCDAG and each plausibility function can
be duplicated |U| times. Hence) . [®(c)| < |P|-|U|+ |U].

e Second, let C,, and C,, denote the sets of clusters of type p and u respectively (a cluster of
type p involves only plausibility functions, whereas a cluster c is of type u involves a utility
function either in ®(c) or in its descendants). Given a cluster ¢, let us denote Sons,(c) and

Sons,(c) the sets of sons of ¢ which are of type p and u respectively. Then,

> cec(|Sons(c)| - 1)
=D cec, ([Sons(c)| = 1) + X cc, (|Sons(c)| — 1)
= Zcecp(|80nsp(c)| —-1)+ Zcecu(Sons(c)| — 1)
(because the sons of clusters of type p are of type p)
< (1Pl =1)+ Xeec, (|Sons(c)| = 1)
(because the structure obtained when keeping only clusters of type p is a forest
which has at most | P| leafs)
(1P = 1)+ > ecc, (ISonsu(c)| = 1) + 3 cc, [Sonsp(c)|
(1P =1+ (U] = 1) + X eeq, [Sonsy(c)|
(because the structure obtained when keeping only clusters of type u is a tree
which has at most |U| leafs)
<(PI-D+(U[-1)+|P]|U]

<
<

The last inequality holds for several reasons. First, if one keeps only the clusters in C),, then
one obtains a forest with at most |P| trees (because there are at most |P| leaves). Second,
each of the tree in this forest is connected at most once with each branch of the tree obtained
by keeping only clusters in C,, (because a plausibility cluster cannot weight twice the same
branch). As the tree obtained by keeping only clusters in C,, has at most |U| different branches
(because it has at most |U| leaves), the number of connections between one cluster in C), and
one cluster in C,, is lesser than [P| - [U], which means that)., [Sons,(c)| < |P[-|U].

246 APPENDIX B. PROOFS

As aresult, 3 o (|2(c)] + [Sons(c)| — 1) < |P|-[U| +|U[+ (IP| = 1) + (|U| = 1) + |P| - U],
which implies that

Y (I(e)] +[Sons(e)| =1) <2+ (L+|P|) - (L +[U]) = O((L + | P|) - (L + |U]))
ceC
Thus, the time complexity is O((1 + |P|) - (1 + |U]) - d'Twenpac),
The space complexity is O((|P U U|) - d+*cnpac) hecause the scope functions manipulated

have a scope of size lesser than 1 + wonpaa. |

Proof of Theorem 7.49 (page 135). Let o € lin(<se,). We denote by IIx(0) the set of potentials
obtained at step k with the elimination order o. More precisely, IIo(o) = {(P;,1,)|P; € P} U
{(1,,U;)|U; € U} and if z = o(k) is the kth variable eliminated in o, ITy11(0) = (IIx(0) — I (0) t*)U
{m};1(0)}, where 7} ; (0) is the potential created from step k to step k+ 1 and equal to 7§, (0) =
op(@) (Mrery (o)+=).

Let us show that for all k € {0,...,[Sov|}, for all (), ®, N) € Sons(CNDAG(Q,0)), and for
all n € N, there exists m € II;(0) such that sc(n) C sc(r).

The property holds for £ = 0. Indeed, let (0, x, N) € Sons(CNDAG(Q,0)) and let n € N.
Then, either n = P, € P or n = U; € U. In the first case, sc(n) C sc((P;,1,)). In the second case,
se(n) C se((1p,Uy)).

Assume that the property holds at step k. Let CNDAG(Q,0) = (sov.op,,®, {(,®,N),N €

We analyze several cases, depending on the elimination performed at step k:

e Case op, = &,

Let N € M. If no simplification is used, the computation node created from N is (§, ®, N~*U
{RR((®z, @, N*))}).

Let us show that for all n € N™* U{RR((®s, ®, NT7))}, there exists m € II;41(0) such that
se(n) C se(m).

— Let n € N=®. Then, 3r € II(0), sc(n) C sc(m) (because the property holds at step
k). Given that x ¢ sc(n), (1) either x ¢ se(m): in this case, 7 € IIy11(0), (2) or
x € sc(m): in this case, 7 is combined with other potentials to give 7j ; (0) € IIx11(0),
and (sc(m) — {z}) C sc(mf1(0)); as se(n) C sc(mw) and z ¢ sc(n), it follows that
sc(n) C sc(mi 1 (0))-

In both cases, 37 € i41(0), se(n) C se(m).

— Let n = RR((®s,®, NT%)). For all n’ € NT* there exists m(n’) € IIx(0) such that
se(n’) C se(m(n')) (and namely x € sc(m(n’))). The potential created at step k + 1
looks like 7§ 1 (0) = By (Mrem, (o)+=7). As {m(n’),n’ € N*7} C IIx(0)"", this entails
that (sc(NT*) — {x}) C sc(nf,(0)), i.e. sc(n) C sc(mf,(0)). If the simplification rule
is used, then the property still holds because function simplify can only remove variables

from a scope.

e Case op, = max,

B.6. PROOFS OF CHAPTER 8 247

Let us first analyze the sons of the root of CNDAG(Q, 0) non impacted by D Ryax, which
look like (0, ®, N) with # ¢ sc(N). Let n € N. Then, Ir € II4(0), sc(n) C sc(r). In
g 11(0), either is still here or it has been combined with other potentials to give 7j_ (o).
In both cases, there exists " € Ijy1(0) such that se(n) C se(n’).

Next, we analyze the node which may be created to eliminate x, which looks like ((}, x, Ny U
{RRpax((max,, ®, {(0,®, N — N1), N € T*})}).

— If n € Ny, then a reasoning similar to the previous one enables to prove that there exists
7 € Ii41(0) such that sc(n) C se(n).

— If n = RRpax((max,, +,{(0, x, N = N1),N € NF7})).
We know that sc(n) = sc({u(N —N1), N € MT*}) —{z} = sc({u(N), N € N+*}) —{x},
thanks to Proposition 7.44. For each N € M, there exists m € IIx(0) such that
sc(u(N)) C sc(m), thanks to the recurrence assumption. Moreover, € sc(u(N)),
since otherwise, as z ¢ sc(P(N)), this would contradict N € 917*. This implies that
sc({u(N), N € t*}) C se(Ilx(0)™), hence sc(n) C se(mg,,(0)).

Therefore, the property holds at step k + 1.

Then, let 0* € lin(=g0y) be an elimination order such that wg(=<sew) = wg(o*). If the cluster-
tree decompositions transforming CNDAG(Q) = CNDAG(Q,0*) into a MCDAG use the elimi-
nation order given by o* (which is always possible), then, according to the previous result, we now
that the width w of this MCDAG satisfies w < maxyeqo,...,|Sov|—1} [5¢(T 41 (0%))|, and therefore
that w < wg(=s0v). As WenpaG(@) < w, this entails that wenpac) < we(Zsov)- O

B.6 Proofs of Chapter 8

Proof of Proposition 8.5 (page 144). Ttem (a) holds because by definition of val(c, A, V, @), we have
val(r,0,V(r), ®(r)) = val(r) = Ans(Q).
Let x € V. Then,

val(e, A, V, D)
= &% ((®°%ea ¢(4)) ®° (¥°ses0ns(c) val(s)(A)))
= &% DV (2} ((gaE‘P SD(A)) (s€Sons(c) val(s)(A)))
= 8% ((®°peca, 9(A) @ (B°V_{a} (& pca—a, P(A)) @ (@ scsons(c) val(s)(A)))))

= 69Caedovn(w) ((pEDg @(A()))) ®° ’UCLZ(C, A(Iv CL), V- {ZC}, o — (I)O))
Therefore, item (b) holds. Last, item (c) holds because by definition of wval(s)(A), we have

val(s)(A) = val(s, A,V (s) — V(c), ®(s)). O
Proof of Proposition 8.6 (page 145). Directly entailed by Proposition 8.5. O

Proof of Proposition 8.7 (page 145). Each cluster ¢ is considered at most u - d®c times, where p
is the number of paths from the root to ¢ and «. is the maximum number of variables appearing
in such paths. The variables in ¢ can be assigned with dlV(9) assignments. For each of these

assignments, |®(c)| + |Sons(c)| — 1 combination operations must be performed.

248 APPENDIX B. PROOFS

Therefore, the global time complexity is O(3 o (p-d% - dIVOl- (|@(c)| + [Sons(c)| — 1))). As
a + |V(c)| is lesser than the height h of the MCDAG, this time complexity can also be written
O(Xcec(u-d" - (|2(c)] + [Sons(c)] —1))).

As shown in the proofs of Propositions 7.26 and 7.48, 3~ _~(|®(c)|+|Sons(c)|—1)) < 2-|[PUU|
cec(|®(c)| + [Sons(c)| = 1) <2- (14 |P|)- (14 |U]) in the semigroup

case, hence the argued time complexity.

in the semiring case and

The linear space complexity result is straightforward. Indeed, as the MCDAG is of height h,
we need to record the current domain of at most h variables simultaneously. Hence, recording the
stack of current domains is O(h - d). Recording V — {z} or V(s) — V(c¢) for each recursive call
of TS-medag is also O(h), and recording ® — ® or ®(s) for each recursive call of TS-medag is
O(h - m). Recording the current assignment is also O(h). As it can be shown that a given cluster
has less than m sons, recording the set of unexplored sons of a cluster is O(h - m). In the end, the

space complexity of TS-mcdag is O(h - (d + m)). O

Proof of Proposition 8.8 (page 147). Directly entailed by Proposition 8.5, and by the fact that
given a cluster ¢ and a cluster s € Sons(c), val(s)(A) = val(s)(A’) for all assignments A, A" of ¢
and its ascendants such that AleNs = A7+eNs, O

Proof of Proposition 8.9 (page 147). Thanks to caching, the value of each cluster ¢ is computed
only once per assignment of its variables. There are at most d“t! assignments of its variables.
For each of these assignments, the cluster must perform |®(c)| 4 |Sons(c)| — 1 combination oper-
ations. Therefore, the time complexity is O((3 .c(|®(c)| + |Sons(c)| — 1)) - d“*'). The factor
> ecc(|®(c)| + |Sons(c)| — 1) can be bounded as in the proof of Propositions 7.26 and 7.48, which
provides the given time complexity.

The space complexity is given by the space required for caching. For each separator, at most d*
elements are recorded. Each of these elements takes a space s+1 (in order to record the assignment
and its value). Finally, if the MCDAG contains N nodes, then there are N —1 separators. Therefore,
the space complexity is O(N - s - d*). O

Proof of Lemma 8.12 (page 154). Let us assume that function bound is sound and complete, and
that function ewvalSons is sound and complete for all clusters ¢ of depth h. Let us assume that
evalClusterMaz (¢, A, V, ®, B) is called, where ¢ is a cluster of height h. Does it returns an evaluation
of val(c, A, V, ®) bounded by B?

The answer is yes if |V| = 0, because if there are no more variables to assign in the current
cluster (test V = (), then evalClusterMaz returns evalSons(c, A, (), ®, B), which is an evaluation of
val(c, A, D, ®) bounded by B according to our initial hypothesis.

Assume that the answer is yes for all sets of variables of size k. Let us consider a set of variables
V of size k + 1. In this case, the set V' of unassigned variables is not empty. Let x € V and let
Dy = {p € D,s¢(p) N (V —{z}) = 0} be the set of scoped functions in ® whose scope will be
assigned when x will be assigned. We can use the following formulas, which hold directly from
Definition 8.4:

val(e, A, V,®) = max wal(c,A.(z,a),V — {2z}, P)

acdom(x)

B.6. PROOFS OF CHAPTER 8 249
and, for all a € dom(x),

val(e, A.(x,a).V —{z},®) = (wéégo (A, (z, a))) ®@%wval(c, A.(x,a),V — {a}, ® — Pg)

In order to compute an evaluation of max,egom () val(c, A.(x,a).V — {z}, ®) bounded by B,
values in dom(x) are considered stepwise. At each iteration of the while loop, d is the set of values
of x which have not been considered yet.

Let us consider the following set of properties, denoted PW (properties at the beginning of each

iteration of the while loop):
e (Ib,ub) is an evaluation of max, cgom(z)—aval(c, A.(x,a'),V — {x}, ®) bounded by B
o (LB = LBYA((LB' = LB)V (LB = lbg @ 1b & lbs))

PW holds before entering the while block, since at that point, we have LB’ = LB and Ib =
ub =1=max, cgval(c, A.(z,a),V — {a}, ®).

Assume that PW holds at the beginning of one iteration of the while loop. Let us prove that
it holds at the end of the iteration of the while loop, i.e. that

o first, (max(lb, valo®@°Ib"), max(ub, valo@°ub’)) is an evaluation of Max,egom (x)—(dufa}) val(c,
A.(z,ad"), V —{a}, ®) bounded by B, where a is the value in d chosen during the iteration of
the while loop;

e and second, LB’ = LB and either LB’ = LB, or LB’ = lbg ® max(lb,valy @€ V') & lbg.

It is straightforward that the second condition holds at the end of the while loop iteration,
because the unique instruction updating LB’ is “LB’ «— max(LB’,lbg ® Ib® lbg)”, and it appears
just after the instruction “Ib < max(lb,valy ®° 10’)”. Therefore, we only have to check whether
the first condition is satisfied.

During the iteration of the while loop, valy = ®,eca, (A, (z,a)) is computed. A lower bound
It and an upper bound ub’ on val(e, A.(z,a).V — {z}, ® — ®y) are computed thanks to function
bound, and they can be updated by the call to evalClusterMaz (c, A.(x,a), V —{z}, 2—P(). As func-
tion bound is sound and complete and as |V — {z}| = k, one can infer that IV’ < val(c, A.(x,a).V —
{z},® — Dp) < wb'. Aswal(e, A.(x,a),V —{z}, ®) = valy ®° val(c, A.(x,a).V — {z}, & — Dy), this
implies that valy ®° 10 and valp ®° ub’ are lower and upper bounds for val(c, A.(z,a),V —{z}, ®).

Moreover, Ib = maXqedom(a)—dval(c, A, (z,a),V — {z}, ®) = ub because of PW. This makes
it possible to infer that max(lb, valy @° Ib") < mMaXyredom(z)—(d—{a}) val(c, A, (z,a’),V — {z}, @) =<
max(ub, valy ®°1b’"). The main conclusion of this is that in order to prove that PW is satisfied at
the end of the iteration of the while loop, it suffices to show that one of the following conditions
hold:

(BE1) max(lb,valy ®° V') = max(ub,valy @°1b);
(BE2) Ibg ® max(lb,valy @°1b') & lbg = ubgy ® max(ub, valy @° ub") @ ubg;
(BE3) LB * ubg ® max(ub,valy @° ub") & ubg;

(BE4) UB = lbgy @ max(lb, valyg @°1b") @ lbg.

250 APPENDIX B. PROOFS

Let us analyze more finely an iteration of the while loop. The algorithm achieves some tests

and may perform further computations concerning value a. Just after the “if” block, we have:

(a) if the conditions of the “if” block have not been satisfied, then this means that one of the
following conditions holds:
e valy ®° I = valy ®° ub’;
o lbgy ® (valy @ 1V) @ lbg, = ubg ® (valp @ ub’) ® ubg;
o LB ubg ® (valp @° ub’) @ ubg
e UB < lbg ® (valp @°1V') & lbe;
(b) if the conditions of the “if” block have been satisfied, then (Ib',ub’) is an evaluation of
val(c, A.(z,a),V —{z},® — ®y) bounded by B’, because |V — {z}| = k.
If @ = ®, then B’ = (LB, UB,valy ® lbg,valy ® ubg, lbg, ubg), and therefore one of the
following conditions holds:
o [V =ul;

o (valp ® lbg) @ I @ lbg = (valy ® ubg) @ ub’ B ubg, ie. lbg ® (valy ®° ') & lbg =
ubg ® (valy @° ub") ® ubg;

o LB = (valyg @ ubg) @ ub' ® ubg, i.e. LB = ubg @ (valy ®°ub’) ® ubg;

e UB = (valp ® lbg) @ I & lbg, i.e. UB = lbg ® (valy ®° V') & lbg.
If @ = @, then B’ = (LB',UB, lbg, ubg, lbg @ lbg ® valy, ubg ® ubg ® valy), and therefore
one of the following conditions holds:

o b =ub;

o lbg RV @ lbg @ lbg ® valy = ubg @ ub’ B ubg ® ubg @ valp, which can also be written
lbg ® (valy @°10') @ lbg, = ubg & (valy @ ub') ® ubg;

e LB » ubg @ ub' & ubg & ubgy ® valy, i.e. LB’ = ubgy ® (valy @° ub’) & ubg;
e UB = lb@ ® w ©® lb@ ©® lb@ ® ’Ualo, i.e. UB = lb@ ® (’Ualo ®° lb/) &) lb@

Thus, in both cases (®° = ® and ®° = @), one of the following conditions holds:

o [V =ul, and hence valy ®° b’ = valy @° ub’;

o lbg @ (valy R IV) @ lbg = ubg @ (valy ¢ ub’) G ubg;
e LB = ubg ® (valy @° ub") & ubg;

e UB < lbg ® (valp @° V') & lbe.

A synthesis of cases (a) and (b) shows that at the end of the “if” block, we have:

(valp @1V = valp @ ub')

V(lbg @ (valg @ 1V) @ lbg = ubg @ (valg @ ub’) O ubg)
V(LB' = ubg ® (valy @° ub") & ubg;)

V(UB =< lbg @ (valy @° Ib') @ lbg)

B.6. PROOFS OF CHAPTER 8 251

As said previously, we also have:
valo @1V < wval(c, A.(x,a),V — {z}, ®) < valy @° ub’ (B.2)

Moreover, as PW holds at the beginning of the while loop iteration, we have, before the update
of Ib and ub:

(1b = ubd)

V(lbg @ 1b® lbgy = ubg @ ub ® ubg)
V(LB = ubg @ ub ® ubg)

V(UB < lbg @ 1b® lbg)

(B.3)

and

b= max wal(c,A.(x,ad"),V —{x}, ®) < ub (B.4)

a’edom(x)—d

and
(LB" = LB)A((LB"= LB)V (LB' = lbg ® 1b® lbg)) (B.5)

In order to show that PW holds at the beginning of the next iteration of the while loop, let us
prove that the conjunction of Equations B.1 to B.5 implies BE1V BE2V BE3V BE4. We analyze
different cases (we analyze the different cases provided by Equation B.1, and then subcases are

analyzed by following Equation B.3):

1. Case valg ®° IV = valy ®° ub’:

Using Equation B.2, this implies that valy @10 = val(c, A.(x,a),V — {z}, ®) = valy @ ub'.
We analyze the different cases given by Equation B.3:

(a) If b = ub

Then, max(lb, valy ®° 1b") = max(ub, valy ®° ub’), and hence BE1 holds.
(b) If Ibg © b @ lbg = ubg ® ub @ ubg

We analyze two cases:

o If valg @°ub’ < ub
Then, one can write lbg ® lb® lbg, = ubg ® max(ub, valy ®° ub') & ubg This implies
that lbg ® max(lb,valg @°10') ® lbg = ubg ® max(ub, valy @° ub’") @ ubg.
In another direction, as b < ub, lbg = ubg, lbg = ubg, and Ib' < ub’, one can write
Ibgy ® max(lb, valy ®° 1) & lbg = ubg ® max(ub, valy @° ub") & ubg.
Hence, lbg ® max(lb, valy @ Ib') @ lbg = ubgy ® max(ub, valy ®° ub’) & ubg, which
shows that BE2 holds.

e Otherwise, valy @° ub’ = ub
Then, max(ub, valy ®° ub’) = valy ®° ub’. Moreover, we also have max(lb, valy ®°
') = wvaly ®° 1V, because valy ®° IV = valy ®° ub’ > ub = [b. This implies
that max(lb, valy @° ") = valy @ ub’ too. In other words, max(lb, valy @€ V') =
max(ub, valy ®° ub’), i.e. BE1 holds.

252 APPENDIX B. PROOFS

(c) EUB < lbg ® Ib @ lby,
Then, UB = lbg ® max(lb,valy @€ 1b") @ lbg, hence BE4 holds.
(d) If LB = ubg @ ub @ ubg

o If valyg ®°ub’ < ub
Then, LB = ubg ® max(ub, valy ®@° ub') & ubg, and therefore BE3 holds.

e Otherwise, valy @° ub’ = ub
Then, max(ub, valy ®° ub’) = valy ®° ub’. Moreover, as valy ®° ub’ = valy ®° IV,
one can write valg ®° 10" > ub = Ib, hence max(lb,valy ®° V') = valy ®° 1V’ and
max(lb, valy ®° 1b') = max(ub,valp ®° ub’). This implies that BE1 holds.

2. Case lbg ® (valp @°1V') & lbg = ubg @ (valy ®° ub’) G ubg.

(a) If Ib = ub

o If valy @° ub’ < ub
Then max(ub, valy ®° ub’) = ub. Moreover, as valy ®° ' = valy ®° ub’ < ub =
b, one can infer that max(lb,valyp ®° ub’) = 1b. As lb = ub, this implies that
max(lb, valy ®° ub’) = max(ub, valy ®° ub’), hence BE1 holds.

e Otherwise, valy @° ub’ = ub
Then, max(ub, valy ®° ub’") = valy ®° ub’, and therefore lbgy ® (valy ®° V') & lbg
ubg @max(ub, valy @°ub’) & ubg. This implies that lbg @ max(lb, valo@°1V) B lbg =
ubg ® max(ub, valy ®°ub") ® ubg.
As lb < ub, I < ub, lbgy < ubg, and lbg =< ubg, the inverse inequality also holds.
Thus, lbg ® max(lb, valy ®° V') & lbg = ubg ® max(ub, valy @ ub’) G ubg, i.e. BE2
holds.

(b) If lbg ® Ib @ lbg, = ubg ® ub & lbg

Then, BE2 holds because
Ibgy ® max(lb, valy @ 10') & lbg

max(lbg ® b @ lbg, lbg @ (valy @° 1) & lbg)
= max(ubg ® ub @ ubg, ubgy ® (valy @° ub") & ubg)
ubg ® max(ub, valy ®° ub") ® ubg

(¢c) HUB < lbg ®1b® lbg
Then, UB = lbg ® max(lb, valy ®°1b") @ lbg, hence BE4 holds.
(d) If LB = ubg ® ub @ ubg
o If valy @° ub’ < ub
Then, LB * ubg ® max(ub, valy @ ub’) ® ubg, i.e. BE3 holds.
e Otherwise, valy @° ub’ = ub
In this case, we have lbg ® (valyp ®° V') @ lbgy = ubg @ max(ub, valy @° ub’) G ubg.
This entails that lbg @ max(lb, valy @°1V) & lbg, = ubg ® max(ub, valy @° ub") B ubg.
As argued is some of the previous cases, the inverse inequality holds. Therefore,
Ibg @max(lb, valy @°1V') B lbgy = ubgy ® max(ub, valo @°ub’) ® ubg,, hence BE2 holds.

3. Case UB = lbg ® (valy @° V') & lbg
In this case, UB < lbg ® max(lb, valy ®°1b") ® lbg, i.e. BE4 holds.

B.6. PROOFS OF CHAPTER 8 253

4. Case LB’ > ubg ® (valp ®° ub’) & ubg

Note that in this case, if LB = LB’ and valy ®° ub’ = ub, then we have LB = ubg ®
max(ub, valy ®° ub’) & ubg, hence BE3 holds.

(a) If Ib = ub

e If LB=LDB'
If valy ®° ub’ = ub, we have already proved that BE3 holds. Otherwise, valy ®¢
ub’ < wb. In this case, one can write first max(ub, valy ®° ub’) = ub, and second
max(lb, valg @° Ib') = b, because b = ub = valy ®° ub’ = valy ®°1b'. As lb = ub,
this entails that max(ub, valy ®° ub’) = max(lb, valy ®° [b"), hence BE1 holds.

e Otherwise, LB’ = lbg, ® lb® lbg,
Then, as LB’ = ubg ® (valy ®° ub’) & ubg,, we have ubg ® (valyg @ ub’) ® ubg <
Ibe © Ib @ lbe, < lbg ® max(lb, valy @ Ib') @ lb,.
If valp @ ub' »= ub, then we get ubgy ® max(ub,valy @° ub’) ® ubgy < lbg ®
max(lb, valg ®° V') & lbg. As argued in some previous cases, the inverse inequality
is also satisfied. Therefore, ubg ® max(ub, valy @°ub") D ubg = lbg @ max(lb, valy ®°
Ib') @ lbg, which prove that BE2 holds.
Otherwise, valy ®° ub’ < wb. In this case, max(ub,valy ®° ub’) = ub. Moreover,
Ib = ub = valyp @° ub’ » valy ®°1b'. Thus, max(lb, valy @° 1b") = 1b. As lb = ub, we
get max(ub, valyp ®° ub’") = max(lb, valy ®° 1b’), which means that BE1 is satisfied.

(b) If Ibgy ® b ® lbg = ubg ® ub @® ube

e If LB=LB
If valg @°ub’ = ub, we have already proved that BE3 holds. Otherwise, valo @“ub’ <
ub. In this latter case, one can write max(ub, valy ®°ub") = ub, and therefore lbg ®
b 1lbg = ubgy ® max(ub, valy @ ub’) & ubg. This implies that lbg ® max(lb, valy ®°
W) @ lbe = ubgy ® max(ub,valy @ ub’) @ ubg. As previously, this enables us to
conclude that BE2 holds.

e Otherwise, LB’ = lbg @ lb & ubg
Then, as LB’ »= ubg ® (valy @° ub’) @ ubg,, we have ubg @ (valyp @ ub’) ® ubg <
by @ Ib @ lbg. Together with lbg ® Ib ® lbgy = ubg ® ub @ ubg, this enables
us to write: max(ubg ® (valy @° ub’) & ubg, ubgy @ ub @ ubg) = lbg @ Ib @ lbg, i.e.
ubg @max(ub, valg@°ub") Bubg =< lbg @IbPlbg, and therefore ubg @max(ub, valy®®
ub)Bubg = lbg@max(lb, valy@°lb')®lbg. As previously, this enables us to conclude
that BE2 holds.

(¢) fUB < lby ® Ib @ lbg
Then, UB = lbg ® max(lb,valy @ 1b") @ lbg, hence BE4 holds.
(d) If LB = ubg ® ub @ ubg

e If LB’ = LB, then we have both LB = ubg ® (valy @° ub’) & ubg and LB =
ubg @ ub @ ubg, and therefore LB = ubg ® max(ub, valy @°ub’) @ ubg. This implies
that BE3 holds.

254 APPENDIX B. PROOFS

e Otherwise, LB’ = lbg, @ lb ® lbg. Then, we get lbg @ Ib P lbg = ubg Q (valy ®°
ub’) & ubg,. Moreover, as LB’ = LB, we also have lbg ® Ib® lbg > ubg @ ub® ubg.
Therefore, lbg ® b @ lbg = ubg ® max(ub,valy ®° ub’) G ubg. As previously, this
enables us to conclude that BE2 holds.

We have proved that PW holds at the end of the while loop iteration. As there is a finite
number of iterations of the while loop (because each variable has a finite domain), we obtain that
the stopping conditions are satisfied at one iteration (after |dom(z)| iterations, the test d # 0 is
false).

To conclude, let us prove that if one of the stopping conditions of the while loop is satisfied,

then the algorithm returns an evaluation of val(c, A.(x,a), V — {z}, ®) bounded by B:

e If LB’ » UB, then LB’ # LB (because LB < UB). Hence LB’ = lbg ® Ib & lbg,, which
implies that UB = lbg ® Ib & [bg. Given that
Ib = maX,edom(z)—qval(c, A(z,a),V — {z}, @)
= MaXgedom(x) val(c, A(z,a),V — {x}, ®) = val(c, A, V,)
it suffices to return b as a lower bound (case 4 of the definition of a bounded evaluation).
Moreover, if d = (), then, as PW holds, maxacdom () val(c, A.(x,a),V — {z},®) < ub, ie.
val(e, A, V, @) < ub. In this case, the pair (Ib, ub) returned by the algorithm is an evaluation
of val(c, A, V,®) bounded by B. Otherwise, if d # (), the algorithm returns (Ib, T), which is
also an evaluation of val(c, A, V, ®) bounded by B.

e If (b =TT, then, as [b < ub, one can infer that [b = ub = T. Moreover, as
Ib = maXyecdom(z)—dval(c, A, (v,a),V —{z},®)
= MaXgedom(x)—aval(c, A, (z,a),V — {z}, @)
this also implies that T < wval(c, 4,V, ®). As a result, we have b = ub = val(c, A, V,®) =T,
hence the pair (Ib, ub) returned by the algorithm is a bounded evaluation of val(c, A, V, ®)

with B as a bound (case 1 in the definition of a bounded evaluation).

o If d = (), then the algorithm returns (Ib,ub), which is an evaluation of max,egom () val(c,
A.(z,a), V —{z}, ®) bounded by B because PW holds.

As a result, evalClusterMaz(c, A, V, ®, B) returns an evaluation of val(c, A, V, ®) bounded by B
if |V| = k+1. By recurrence, this proves that whatever the size of V' is, evalClusterMaz(c, A, V, ®, B)
returns an evaluation of val(c, A, V, ®) bounded by B. O

Proof of Lemma 8.13 (page 154). The proof is the similar to the proof concerning evalCluster Mazx.
O

Proof of Lemma 8.14 (page 154). Let us assume that function bound is sound and complete, and
that function evalSons is sound and complete for all clusters ¢ of depth h, Let us assume that
evalClusterPlus(c, A, V, ®, B) is called, where ¢ is a cluster of depth h. Does it return an evaluation
of val(c, A, V, ®) bounded by B?

The answer is yes if |V| = 0, because if there are no more variables to assign in the current
cluster (test V = (), then evalClusterPlus returns evalSons(c, A, (), ®, B), which is an evaluation of
val(c, A, D, ®) bounded by B according to our initial hypothesis.

B.6. PROOFS OF CHAPTER 8 255

Assume that the answer is yes for all sets of variables of size k. Let us consider a set of variables
V of size k + 1. In this case, the set V' of unassigned variables is not empty. Let x € V and let
Dy = {p € D,s¢(p) N (V —{z}) = 0} be the set of scoped functions in ® whose scope will be
assigned when x will be assigned. We can use the following formulas, which hold directly from
Definition 8.4:

val(c, A, V,®) = Dacdomyval(c,A.(z,a).V —{z}, @)
and, for all a € dom(x),

val(e, A(z,a),V — {z},®) = ((pé@% o(A, (z, a))> ®@wval(c, A.(x,a).V — {z}, P — Dy)

In order to compute an evaluation of ©qecgom(z)val(c, A.(z,a).V — {z}, ®) bounded by B, values

in dom(x) are considered stepwise. At each iteration of the while loop, d is the set of values of x

which have not been considered yet.

Using function bound, the algorithm first computes, for each a € dom(x), lower and upper
bounds tablb[a] and tabubla] such that tablbla] < val(c, A.(z,a).V — {z}, ®) < tabubla]. Then, it
computes the subset dy of values a in dom(z) such that tablbla] = tabubla]. For each a € dy, we then
have tablbla] = tabubla] = val(c, A.(x,a).V — {z}, ®), hence val(c, A.(z,a).V — {z}, ®) is known.
The other values are gathered in d = dom(z)—dy. After these steps, the algorithm initializes res by
res = @aedom(x)—aval(c, A(z,a).V — {x},®), Ib by Ib = res © (Baeatablbla]) = Baedom(x)tablbla]
and ub by ub = res © (Daeatabubla]) = Saedom(z)tabublal. It is straightforward that Ib and ub are

respectively lower and upper bounds on val(c, A, V, ®).

If d = () before the whole while block is processed, then it is straightforward that b = ub =
val(e, A, V, ®@). In this case, the while loop is not processed and the pair (Ib,ub) returned is a
bounded evaluation of val(c, A, V, ®).

Otherwise, there is at least one value in d before processing the whole while loop. Let us show

that at each iteration of the while loop,

((1b, ub) is an evaluation of val(c, A, V, ®) bounded by B)
\/(TGS = 69u/Edom(w)—dva’l(ca A(xv CL/), Va (I))) (BG)

This property is denoted PW.
PW holds before entering the while block, because res = ©4/cdom(z)—aval(c, A.(z,a’),V, ®).

Assume that PW holds at the beginning of an iteration of the while loop. As an iteration
of the while loop is performed, none of its stopping conditions is satisfied. This exactly means
that (Ib, ub) is not an evaluation of val(c, A, V, ®) bounded by B. As PW holds, this means that
res = Oy edom(x)—aval(c, A.(z,a’),V — {z}, @) at the beginning of this iteration.

At each iteration of the while loop, d is the set of values in dom(z) which have not been
considered yet. Let a be a value in d. As V — {a} contains k variables, (Ib,, ub,) is an evaluation of
val(c, A.(z,a),V—{z}, ®) bounded by B’. This means that first, lb, < val(c, A.(z,a),V—{z}, ®) <

ub,, and second,

256 APPENDIX B. PROOFS

(Ibg = uby)
V(lbg @ valy ® lbg @ lbg @ lbg & lb_, = ubg ® valy ® uby, O ubg & ubg @ ub-g)
V(UB < Ibg ® valy Iby @ lbe @ lbg @ lb-y)
V(LB = ubg ® valy @ ub, @ ubg ® ubg @ ub_g)
that is to say
(Iba = ubs)
V(lbg & (valp @ lbg @ lb-g) @ lbe = ubg @ (valy ® ub, ® ub-,) ® ubg)
V(UB = Ibg @ (valy ® lbg & Ib-g) & lbg)

V(LB = ubg @ (valy @ ubg & ub-q) H ubg)
The algorithm uses instructions which enable us to write: valy ® lb, ® lb-, < val(c, A, V,P) <

valg ® lb, B lb—,. Therefore, at the end of each iteration of the while loop, we have, after the
update of b and ub, b < val(c, A, V, ®) < ub.

We then analyze four cases:

1. Case (b, = ub,

In this case, we have lb, = ub, = val(c, A.(x,a),V —{z}, & — Dg), and therefore valy @ lb, =
val(c, A.(z,a),V — {z}, ®). Hence, we have
res ®valg @by = (Daredom(z)—aval(c, A.(z,a’),V,®)) ®wal(c, A.(z,a),V — {z}, ®)

= @a,edom(m),(d,{a})val(c, A(!E, CL/), ‘/, (I))
Thanks to the instruction “res « res @ valy ® lb,”, this implies that PW holds at the end

of the iteration of the while loop.

2. Case lbg ® (valy ® lb, ® lb-,) @ lbg = ubg @ (valy @ ub, ® ub-,) ® ubg

In this case, (Ib,udb) = (valp ® lbg ® lb-q,valy @ ub, @ ub-,) is directly an evaluation of
val(e, A, V, ®) bounded by B.

3. Case UB = lbg ® (valy @ lby @ 1b-y) & lbg

In this case, (Ib,udb) = (valp ® lbg @ lb-q,valy @ ub, @ ub-,) is directly an evaluation of
val(e, A, V, ®) bounded by B.

4. Case LB = ubg @ (valy @ ub, & ub-q) & ubg

In this case, (Ib,ub) = (valp ® lbg ® lb-q,valy @ ub, @ ub-,) is directly an evaluation of
val(e, A, V, ®) bounded by B.

Therefore, PW holds at the end of the iteration of the while loop.

If one of the stopping conditions of the while loop is satisfied, then this exactly means that
(1b,ub) is an evaluation of val(c, A, V, ®) bounded by B.

Otherwise, assume that none of the stopping conditions is satisfied before the last value a
in d is eliminated. As none of the stopping conditions is satisfied before this iteration, (Ib,ub)
is not an evaluation of val(c, A, V,®) bounded by B. As PW holds, this means that res =
Da’edom(z)—{ayval(c, A.(x,a),V — {x}, ®) at the beginning of this iteration. Then, we get

(lb—q, ubg)
= (res,res)
= (Do cdom(z)—fayval(c, A.(z,a"),V = {z}, ®), Barcdom(z)—{ayval(c, A.(z,a’), V — {z}, D))

B.6. PROOFS OF CHAPTER 8 257

o If b, = wub,, then wvaly ® lb, = wvaly @ ub, = wval(e, A(z,a),V — {z},®). We there-
fore get (1b, ub) = (lb-o ® valy @ lbg, ub-q ® valy @ ubs) = (Daredom(zyval(c, A.(x,a’),V —
{z}, @), Darcdom(zyval(c, A.(z,a’),V — {x},®)). This implies that after the treatment of the

last value in d, we have [b = ub, hence the while loop is stopped at the next iteration.

e In the other cases, the previous part of the proof shows that the while loop is stopped at the

next iteration.

This proves that there is a finite number of iterations of the while loop (even if we do not have a
test like d #), and therefore the algorithm is complete. It is also sound because as previously said,
once one of the conditions of the while loop is not satisfied, (b, ud) is an evaluation of val(c, A, V, @)
bounded by B. O

Proof of Lemma 8.15 (page 155). Let ¢ be a cluster of maximal depth. Then, Sons(c) = 0, and
the initializations of S and Sy give Sy = S = (). This implies that [b and ub are initialized with
(Ib,ub) = (®°pea p(A), ®pea p(4)).

As b = ub, the while loop is not traversed. Moreover, by definition of val(c, A,), @), one can
write val(c, A, 0, ®) = @°,ea @(A). Therefore Ib = ub = val(c, A, 0, @), which proves that (b, ub)
is a bounded evaluation of val(c, 4, 0, ®). O

Proof of Lemma 8.16 (page 155). Let us assume that function bound is sound and complete and
that evalClusterMin, evalClusterMazx, evalClusterPlus, and bound are sound and complete for all
clusters ¢ of depth h. Let ¢ be a cluster of depth A — 1.

We can use the following formula:

val(c, A,0,®) = (®c go(A)) ®° (®° Ual(s)(A)) (B.7)
0ED s€Sons(c)

Clusters in Sons(s) are considered stepwise. The algorithm first computes the set of son
clusters Sy such that for each s € Sp, val(s)(A) is known and equals LB(s, A'). The other
son clusters are gathered in S = Sons(c) — Sp. This entails that res is actually initialized by
res = (9 pea p(A)) B° (@%es, val(s)(A)).

Moreover, thanks to Eq. B.7, Ib = res®°(®°scs LB(s, A'*)) and ub = res®°(®@¢gcs UB(s, AL®))
are respectively lower and upper bounds on val(c, 4, 0, D).

If S = () before the whole while block is processed, then it is straightforward that (b = ub =
val(c, A, 0, ®). In this case, the while loop is not processed and the pair (b, ub) returned is a
bounded evaluation of val(c, A, 0, D).

Otherwise, there is at least one son cluster in S before processing the whole while loop. Let us

show that at each iteration of the while loop,

((Ib, ub) is an evaluation of val(c, 4,), ®) bounded by B)
V(res = <®C w(A)) ®*° (®° val(s’)(A))) (B.8)

ped s’eSons(c)—S

This property is denoted PW.
PW holds before entering the while block, since res = (2°pea ¢(A))@°(@° yre sons(c)—s val(s)(A)).

258 APPENDIX B. PROOFS

Assume that PW holds at the beginning of an iteration of the while loop. As an iteration
of the while loop is performed, none of its stopping conditions is satisfied. This exactly means
that (Ib, ub) is not an evaluation of val(e, A, (), ®) bounded by B. As PW holds, this means that
res = (@°%ea P(A)) @ (s esons(s)—s val(s')(A)) at the beginning of this iteration. At each
iteration of the while loop, S is the set of son clusters of ¢ which have not been considered yet.
Let s be a son cluster in S.

As evalClusterMin, evalClusterMazx, evalClusterPlus, and bound are assumed to be sound
and complete for clusters of depth h, (Ibs,ubs) is an evaluation of val(s, A,V (s) — V(c), ®(s))
bounded by B’ i.e. (Ibs,ubs) is an evaluation of val(s)(A) bounded by B’. This means that first,
Ibs < wal(s)(A) =< ubs, and second,

o If ®° =®,
(Ibs = uby)
V(lbos ® lbg @ Ibs @ lbgy, = ub-s @ ubg @ ubs ® ubg)
V(UB < 1b-s ® lbg & lbs @ lbg)
V(LB = ub_s ® ubg ® ubs ® ubg)
that is to say
(1bs = uby)
V(lbg & (Ib-s @° 1bs) ® lbg = ubg & (ub-s @ ubs) ® ubg)
V(UB =< lbg ® (Ib—s ®° lbs) @ lbg)
V(LB * ubg ® (ub-s ®° ubs) ® ubg)
o If =,
(Ibs = uby)
V(lbg @ lbs & lbg @ lbg & lb-s = ubgy @ ubs & ubg ® ubg @ ub-s)
V(UB < lbg ® lbs @ lbgy © lbg @ 1b-s)
V(LB = ubg @ ubs ® ubg ® ubg @ ub-s)
that is to say
(Ibs = uby)
V(lbg @ (Ib-s ®° 1bs) @ lbg = ubg ® (ub-s @° ubs) ® ubg)
V(UB =< lbg ® (Ib—s ®° lbs) @ lbg)
V(LB * ubg ® (ub-s @ ubs) ® ubg)
Therefore, in both cases, we have
(Ibs = uby)
V(lbg @ (lb—s @ lbs) @ lbg, = ubg ® (ub-s @° ubs) @ ubg)
V(UB = lbg & (lb-s @€ 1bs) @ lbg)

V(LB = ubg ® (ub—s @ ubs) & ubg)
After the computation of (Ibs, ubs), evalSons uses instructions which enable us to write:

max(lbs, LB(s, A¥*)) @° lb_s < val(c, A, (), ®) < min(ubs, UB(s, A'*)) @ ub_,,

Therefore, at the end of each iteration of the while loop, we have, after the update of b and ub,
Ib < val(c, A, 0, ®) < ub. Moreover, the update of LB(s, A') and UB(s, A'®) is sound because it
preserves the property that LB(s, A**) and UB(s, A'*) are lower and upper bounds for val(s)(A).

We then analyze four cases:

B.6. PROOFS OF CHAPTER 8 259

1. Case lbgy = ub,

In this case, we have by = ubs = wval(s)(A). Moreover, as LB(s, A%) =< wal(s)(A),
max(lbs, LB(s, A'®)) = lbs = val(s)(A). Hence, one can write
res ®° max(lbs, LB(s, AY)) = (®°peca ¢(A)) @ (¥ sesons(s)—s val(s')(4)) @ val(s)(A)
= (®°%ea 9(A)) @ (@°yesons(e)—(s—{s}) val(s')(A))
This implies that PW holds at the end of the iteration of the while loop.
2. Case lbg ® (Ib—s @ lbs) @ lbg, = ubg ® (ub-s ®° ubs) O ubg

o If uby < UB(s, A%), then this implies that lbg ® (Ib—s ®° 1bs) @ lbe = ubg @ (ub—s ®°
min(ubs, UB(s, A'%))) @ ubg, and therefore lbg ® (Ib—s ®@° max(lbs, LB(s, A'*)) @ lbg =
ubg @ (ub-s ®° min(ubs, UB(s, A'*))) @ ubg. This inverse inequality being straightfor-
wardly satisfied, we get lbg ® (Ib—s ®° max(lbs, LB(s, A'*)) @ lbg = ubgy @ (ub-s ®°
min(ubs, UB(s, A))) @ ubg.

Hence, (b, ub) = (Ib-, ®°max(lbs, LB(s, A'®)), ub—s @° min(ubs, UB(s, A'*)) is an eval-
uation of val(c, A, (), ®) bounded by 5.

e Otherwise, ubs = UB(s, A®).

Then, one can infer that ubg ® (ub—s @°ubs) Dubg = ubg @ (ub—s @°U B(s, A*)) Dubg =
ubg @ (ub—s @° val(s)(A)) ® ubg = lbg @ (lb-s R lbs) & lbg.

As lbg @ (Ib-s @°1bs) ® lbgy = ubg @ (ub-s @° ubs) ® ubg, this implies that lbg ® (1b-s ®°
Ibs) @ lbg = ubg ® (ub—s @ min(ubs, UB(s, A'®))) ® ubg

Also, this enables us to infer that lbg ® (Ib—s ®° max(lbs, LB(s, A'*))) ® lbg = ubg @
(ub—s ®° min(ubs, UB(s, A1%))) @ ubg. The inverse inequality being easily satisfied, we
obtain lbg®(Ib-s@°max(lbs, LB(s, AY)))®lbg = ubg®(ub-s@°min(ubs, UB(s, AY)))®
ubg, and therefore (1b, ub) = (Ib-, @°“max(lb,, LB(s, A'*)), ub_, @°min(ubs, UB(s, A'*))
is an evaluation of val(c, A, (), ®) bounded by B.

3. Case UB = lbg ® (Ib- ®° Ib,) @ Ibg

In this case, (1b, ub) = (Ib-s ®° max(lbs, LB(s, A*)), ub— @° min(ubs, UB(s, A')) is directly
an evaluation of val(c, A, (), ®) bounded by B.

4. Case LB = ubg ® (ub-s @° ubs) @ ubg

In this case, (1b, ub) = (Ib—s ®° max(lbs, LB(s, A'®)), ub_s ®° min(ubs, UB(s, Al®)) is directly
an evaluation of val(c, A, V, ®) bounded by B.

Therefore, PW holds at the end of the iteration of the while loop.

If one of the stopping conditions of the while loop is satisfied, then this exactly means that
(1b,ub) is an evaluation of val(c, A, (), ®) bounded by B.

Otherwise, assume that none of the stopping conditions is satisfied before the last son s € S is
considered. As none of the stopping conditions is satisfied before this iteration, (Ib,ub) is not an
evaluation of val(c, A, 0, ®) bounded by B. As PW holds, this means that res = (®°,cao p(A)) ®°
(®csr€50ns(c),{s} val(s')(A)) at the beginning of this iteration.

After the instruction S «— S — {s}, we get (lb-s,ub-s) = (res,res) = ((@°ca p(4)) ®F°
(©° s esons(e)— (s} val(s')(A)) , (D pea 9(A)) @ (g esons(c)—{s} val(s)(A))).

260 APPENDIX B. PROOFS

o If[bs = ubs, then lbs = ubs = val(s)(A). We therefore get (Ib, ub) = (1b-s®°1bs, ub-s@°ubs) =
((®C<P€‘I’ QP(A)) ®° (®CS’€SonS(C) val(s')(A))) (®C¢E‘I’ SD(A)) ®° (®cs’650ns(c) 'Ual(sl)(A)))'

This implies that after the treatment of the last son in Sons(c), we have b = ub

e In the other cases, the previous part of the proof shows that one of the stopping conditions

of the while is necessarily fulfilled.

This proves that there is a finite number of iterations of the while loop (even if we do not have a
test like d #), and therefore the algorithm is complete. It is also sound because as previously said,
once one of the conditions of the while loop is not satisfied, (b, ud) is an evaluation of val(c, A, V, @)
bounded by B. O

Proof of Lemma 8.17 (page 155). Let us assume that function bound is sound and complete. Thanks
to Lemma 8.15, the result holds for clusters of maximal depth.

If evalSons is sound and complete for all clusters of depth h, then, using Lemmas 8.12, 8.13,
and 8.14, one can infer that evalClusterMin, evalClusterMaz, and evalClusterPlus are sound and
complete for all clusters ¢ of depth h. Thanks to Lemma 8.16, evalSons is sound and complete for
all clusters of depth h — 1. By recurrence, this proves that evalSons is sound and complete as soon

as function bound is sound and complete, . O

Proof of Theorem 8.18 (page 155). Let us assume that function bound is sound and complete.
Let 7 be the root of the MCDAG. Thanks to Lemma 8.17, the algorithm returns an evaluation
of val(r,0,V(r),®(r)) = Ans(Q) bounded by (L, T, 1g,15,0g,0g)), i.e. it returns a pair
(Ib,ub) € E? such that b < Ans(Q) < ub and (lb=ub)V (1 @b ® 0 =1g@ub® 0g) V (L™=
1gRub®0g)V(TT X1p®Ib®0g), i.e. such that (Ib=ub) V (Ib =ub) V (L™= ub) Vv (TT =< 1b),
i.e., as (Ib,ub) € E?, such that (b = ub. Therefore, the algorithm returns Ib = Ans(Q). O

Proof of Proposition 8.19 (page 155). Basically, compared to algorithm TS-mcdag, using bounds
does not change the worst case time complexity, because the values recorded are not the exact values
of a cluster, hence a cluster can be revisited several times. As for the space complexity, BTD-mcdag
uses twice as much space as RecTS-mcdag (because lower and upper bounds are recorded instead
of exact values). But the complexity is still O(N - s - d®), where N is the number of clusters and s

is the maximum size of the separators. O
Proof of Theorem 8.21 (page 158). Similar to the proof of Theorem 8.18. O

Proof of Proposition 8.22 (page 161). These results are quite straightforward.

First, for all A” € dom(S’), maxacgom(s) P(A-A") = Maxsciom(s) Mina caom(s) ©(A.A"),
hence min 47 ¢ gom(s/) MaXacdom(s) P(A-A") = MaXAcdom(s) MiN’edom(s) P(A.A"). In other words,
one can write ming maxg/ ¢ >~ maxg maxg: ¢.

Second, for all A” € dom(S), D arcdom(s)P(A”.A") 2 ©arcdom(s) MAX Acdom(s) P(A.A’), hence
HlaXAnedom(S) @A’Edom(S’)@(A”'A/) j @A/edom(s/) maerdom(s) QO(AA/) IIl other WOI‘dS, one can
write maxg @g¢ = Bgr maxg .

The proof for g ming ¢ < ming Ggp is similar. O

B.6. PROOFS OF CHAPTER 8 261

Proof of Proposition 8.23 (page 162). As ¢ < max. ¢ and as ® is monotonic, it is possible to write
@c((®Pi€Fact(c) P) @) 2 ®c((®p,eFact(c) Pi) ® (max. ¢)). By distributivity of ® over @, this
implies that ©c((® p,cFact(c) Pi) ® 9) = (Bc @p,eract(c) Pi) @ (max, @) = 1p ® (max,) = max. ¢.

Similarly, as min. ¢ < ¢, one can infer that min. ¢ < ©c((®p,cract(c) Pi) @ @) O

Proof of Proposition 8.24 (page 163). First, as ® is monotonic and as ¢ < maxg @2, one can write
©1 ® 2 = 1 ® maxg ¢o. Maximizing over S leads to maxg(p1 ® v2) < (maxg ¢1) @ (maxg p2).
The proofs for maxgs(p1 & 2), ming(p; ® @2), and ming(p1 B p2) are similar.
Finally, as 0 = min(E), it is possible to write ¢2 < ®sps. By monotonicity of ®, this implies
that p1 ® w2 < 1 @ (Bsps). Summing over S leads to the required result. O

Appendix C

Concrete problem example:
deployment and maintenance of a

constellation of satellites

So forth, the PFU framework has been illustrated by toy examples only. We give here the PFU for-
mulation of a concrete real-life planning problem involving plausibilities, feasibilities, and utilities.

The description of this problem as well as Figures C.1 and C.2 are directly taken from [61].

Problem description Whatever its mission is (telecommunication, navigation, or observation),
a constellation of satellites is made up of a specified number of spatially distributed satellites. All
the satellites or at least a subset of them must be operational for the mission to be filled. If too
few satellites are operational, the mission objectives will be only partially met. In general, several
launches using various launcher types are necessary to deploy the constellation of satellites. These
launches must be organized over time. Failures may also occur at any stage of the deployment,
of the maintenance, and of the operational life of the constellation. So, the management of its
deployment and of its maintenance must be able to anticipate these possible failures, as well as to
react to them when they occur.

Globally speaking, managing the deployment and the maintenance of a constellation consists in
organizing the launches and the orbital transfers in order to deploy it as soon as possible and to
maintain it as best as possible in its operational state.

More precisely, the constellations we consider are organized along several orbital planes (see
Figure C.1). A specified number of operational satellites is necessary on each orbital plane. On each
orbital plane, satellites may be either on an operational orbit, or on a spare orbit. Satellites that are
on a spare orbit are drifting in a month from an orbital plane to the following one. Launchers are
able to put a specified number of satellites on one of the orbital planes (all the launched satellites on
the same orbital plane). These satellites can be either immediately transferred from the spare orbit
to the operational one on this orbital plane, or left on the spare orbit to drift from orbital plane
to orbital plane. In the later case, when their orbital plane coincides with an operational orbital

plane, that is once per month, they may be transferred from the spare orbit to the operational one

263

264 APPENDIX C. CONCRETE PROBLEM EXAMPLE

operational
orbit

spare
satellite

) spare orbi
operational

satellite

drifting of
spare orbits

Figure C.2: On an orbital plane, launch of a satellite and transfer of a spare satellite from the
spare orbit to the operational one.

on this orbital plane (see Figure C.2).

Launches are not possible at any time. We consider that no more than one launch is possible
each month and that there exists a minimum time between two launches of the same type. Moreover,
the management of the launch sites imposes that launches must be decided a specified time in
advance.

Two types of costs must be considered: first, the cost of the production of launchers and satellites
and of the launches; second the cost which may result from a partial or complete unavailability of
the constellation.

Failures may occur at any stage and at any time: launcher failure, spare satellite running
failure, spare satellite orbital transfer failure, operational satellite running failure, failure of either
a spare or an operational satellite.

The global objective of the management is finally to minimize over a given temporal horizon the

sum of the production and of the unavailability costs.

At each step i (each month), three types of decisions are successively made:

265

1. sub-step k = 1: the orbital plane of the launch at i is chosen;

2. sub-step k = 2: the number of satellites that are transferred from spare to operational on each

orbital plane is chosen;

3. sub-step k = 3: the type of the launch at i + DH is planned (launches must be planned in

advance).

PFU formulation In the following, we use the following notations:

e Cardinalities:

NOS = Number of Operational Satellites necessary on an orbital plane,
— MNSS = Maximum Number of Satellites on a Spare orbit,

— NOP = Number of Orbital Plane,

— NTL = Number of Types of Launchers,

— NLS[tl] = Number of Launchable Satellite for launchers of type ¢,

— MTL[tl]] = Minimum Time between two Launches of type tl,

— DH = Decision Horizon (number of time steps necessary to plan a launch in advance).
e Probabilities of failure:

— PFLJtl] = Probability of Failure of a Launch of type ¢,

— PFRSS = Probability of Failure when launching a satellite and Running it as a Spare
Satellite,

— PFROS = Probability of Failure when transferring a satellite from a spare orbit to an

operational one and Running it as an Operational Satellite,
— PFSS = Probability of Failure of a Spare Satellite in a month,

— PFOS = Probability of Failure of an Operational Satellite in a month.
e Costs:

— CLJtl] = Cost of a Launcher of type tl,
— (CS = Cost of a Satellite,

— CU = Cost of a partial Unavailability of the constellation (a complete availability is

assumed to be required at any moment).

Algebraic structure This problem uses probabilities, additive costs, and probabilistic expected

utility. Therefore, we use:
e S, = (RT,+, x) as a plausibility structure,
e S, = (R*,+) as a utility structure (an utility v = « stands for a cost of),

o Sy = (Ep, By, +, X) as an expected utility structure.

266 APPENDIX C. CONCRETE PROBLEM EXAMPLE

Variables We introduce environment variables which describe the state of the constellation and

decision variables which correspond to the decisions made at each step.

e Environment variables:

1. nosli, k,op] = number of operational satellites on orbital plane op, at step i, before the

decision made at sub-step k;
dom(nosli, k,op]) = {0,..., NOS}.

2. mssli, k, op] = number of spare satellites on orbital plane op, at step i, before the decision

made at sub-step k;
dom(nssli, k,op]) = {0,..., MNSS}.

e Decision variables

1. lop[i] = orbital plane of the launch at step i;
dom(lopli]) = {0,..., NOP} (lop[i] = 0 applies when no launch has been planned).

2. nts[i,op] = number of spare satellites transferred at step i for orbital plane op;
dom(ntsli,op]) = {0,..., NOS}.

3. ptl[i] = type of launch planned at step i
dom(ptl[i]) = {0,..., NTL} (ptl[i] = 0 means that no launch is planned at step).

Feasibility functions The constraints on the decisions can be modeled using feasibility functions

1. Vi: (ptl[i] = 0) — (lop[i] = 0) (this function associates no orbital plane with a null type of

launch),

2. Vi,Yop: ntsli,op] < nssli,2,0p] (on each orbital plane, it is not possible to transfer more

satellites than the number of satellites available on the spare orbit),

3. Vi, Yop: ntsli,op] + nos[i,2,0p] < NOS (on each orbital plane, it is not possible to transfer

more satellites than necessary),

4. Vi j: (i < j<i+MTL[ptl[i]) — (ptl[i] # ptl[j]) (constraints on the minimum time between

two launches of the same type).

Plausibility (probability) functions The initial state is described by unary plausibility func-
tions over each variable nos[1, 1, 0p] and over each variable nss[1,1, op]. Typically, nos|[1,1,o0p] =
nss[l, 1, op] = 0 if we start from an empty constellation of satellites. The evolution of the constella-
tion from step to step and from sub-step to sub-step is described by the following set of plausibility

functions:

1. Vi,Vop: nosli, 2, o0p] = nos[i, 1, 0p] (we could merge the two variables)

2. ¥i,Vop: (lopli] # op) — (nss[i, 1, op] = nssli, 2, op])

267

3. Vi, Vop: let op = opli], pr = PFL|ptl[i]], po = PFRSS, n = NLS[ptl[i]]. Then,

p1+py - (1—p1) ifk=0
P(nss[i, 2, 0p] = nssli, 1,op] + k) = { (L—p1)-CE-py™*-(1-pa)f f0<k<n
0 otherwise

4. Vi,Yop: nssli, 3, op] = nss[i, 2, op] — nts|i, op)

5. Vi,Vop: let p= PFROS and n = nts|i,op]. Then,
{ Crk.pn=k. (1—pk 0<k<n

P(nosli, 3, op] = nosli, 2,0p] + k) = othorwise

6. Vi,Vop: let p= PFSS, n =nss[i,3,0p], and op’ = (op mod NOP) + 1. Then,
Ck.pn=k.(1—pk f0<k<n

P(nssfi+1,1,0p | = k) =
(nss] v) {O otherwise

7. Vi,Vop: let p = PFOS and n = nos[i, 3, op]. Then,
Ck.pn=k.(1—-p* f0<k<n

P(nos|t +1,1,0p] = k) =
([d) {O otherwise

Utility (cost) functions In order to model the cost of the launches and of the satellites, and the
cost which may result from a partial or complete unavailability of the constellation, we introduce

several utility functions:

1. Vi: cl[i] = CL[ptl[i + DH]] + CS - NLS[ptl[i + DH]] (cost of the planned launch)

2. Vi,Yop: culi,op] = (NOS — nosi, 1,0p]) - CU (the cost of unavailability of the satellites is

proportional to the number of missing satellites)

As we consider a finite horizon T', we need an evaluation of the final state of the constellation at
T. Several formulations can be considered, one of them being simply to consider that utility of the
state of the constellation at T is proportional to the number of operational satellites unavailable
at T

The PFU network graphical representation for a given step ¢ is provided in Figures C.3 and C.4.

Query In order to deploy or maintain the constellation of satellites, the sequence of variable

eliminations to consider is:

E min E min
lopli] {ntsli.op),1<op<NOP}
{nosli, 1,0p],1 < op < NOP} {nosli,2,0p],1 < op < NOP}
U{nssli, 1,0p],1 < op < NOP} U{nssli, 2,0p],1 < op < NOP}
E min E
ptl[i+DH)
{nosli, 3,0p],1 < op < NOP} {nos[i +1,1,0p],1 < op < NOP}

U{nssli, 3,0p],1 < op < NOP} U{nss[i+1,1,0p],1 < op < NOP}

nosli, 2,1] nosli, 3, 1]

(nosli, 1,1
6< [i,1,1]

nssli, 1,1] nssfi+1,1,1

nssli, 3, 1]

nosli + 1,1, QD

(nos[i, 1,2
o

nosli + 1,1, BD

nosli, 3, 3]

(nosli, 1,3
6< [i,1,3]

nssli, 1, 3]

nosli, 3,4]

nosli + 1,1, 4D

nssli+1,1,4

f \

pilli + DA}
V4

ptlli + DH —1)| [ptl]i + DH —2]]

Figure C.3: Network of scoped functions.

nos[i +1,1,1

o0,

nss[i+1,1,1

i,2,1]
i,2,2] nosli + 1,1,2)

nosli, 3, 2]

nss[i+1,1,2

\

© ‘717
Fo{aiz)
i,1,3

nosli +1,1,3)

[/ wosi8.9

nssli, 1,3 nssli, 2,3 nssli+1,1,3
'

nosli, 1,4] ,' nosli, 2, 4] nosli, 3, 4] nosli+ 1,1, 4D

nssli, 1,4] s[i, 2,4] nssli, 3, 4] nss[i +1,1,4

,” tl[i + DH]
pli]

lptlli + DH —1]| [pti[i + DH — 2]

Figure C.4: DAG representing normalization conditions.

Appendix D

DTD of the XML format

<!ELEMENT query (name?,author?,date?,description?,pfunet,sov)>
<!ATTLIST query PFUnet (#PCDATA) #REQUIRED

nbStages (#PCDATA) #REQUIRED

nbRecords (#PCDATA) #REQUIRED>

<!ELEMENT name (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT date (#PCDATA)>

<!ELEMENT pfunet EMPTY>
<IATTLIST pfunet file (#PCDATA) #REQUIRED>

<!ELEMENT sov (op_vars_pair)>
<!ATTLIST sov nbstages (#PCDATA) #REQUIRED>

<!ELEMENT op_vars_pair EMPTY>

<!ATTLIST op_vars_pair op (MIN|MAX|PLUS) #REQUIRED
vars (#PCDATA) #REQUIRED
record (#PCDATA) #IMPLIED>

Figure D.1: DTD (Document Type Definition) for the XML representation of queries.

269

270 APPENDIX D. DTD OF THE XML FORMAT

<!ELEMENT pfunet (name?,author?,date?,domains,plausfunctions?,feasfunctions?,utilfunctions?
variables,plausibilities?,feasibilities?,utilities?,components)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT domains (domain+)>
<!ATTLIST domains nbDom (#PCDATA) #REQUIRED >
<!ELEMENT domain EMPTY>
<!ATTLIST domain id ID #REQUIRED
type (stringlint|float|double|bool) #REQUIRED
description (extension|intension) #REQUIRED
values (#PCDATA) #REQUIRED>
<!ELEMENT plausfunctions (plausfunction+)>
<!ATTLIST plausfunctions nbPlausFunctions (#PCDATA) #REQUIRED>
<!ELEMENT plausfunction (instancex)>
<!ATTLIST plausfunction id ID #REQUIRED
domains (#PCDATA) #REQUIRED
default_degree (#PCDATA) #REQUIRED
nbInst (#PCDATA) #REQUIRED>
<!ELEMENT feasfunctions (feasfunction+)>
<IATTLIST feasfunctions nbFeasFunctions (#PCDATA) #REQUIRED>
<!ELEMENT feasfunction (instancex*)>
<VATTLIST feasfunction id ID #REQUIRED
domains (#PCDATA) #REQUIRED
default_degree (#PCDATA) #REQUIRED
nbInst (#PCDATA) #REQUIRED>
<!ELEMENT utilfunctions (utilfunction+)>
<IATTLIST utilfunctions nbUtilFunctions (#PCDATA) #REQUIRED>
<!ELEMENT utilfunction (instancex*)>
<IPATTLIST utilfunction id ID #REQUIRED
domains (#PCDATA) #REQUIRED
default_degree (#PCDATA) #REQUIRED
nbInst (#PCDATA) #REQUIRED>
<!ELEMENT instance>
<!ATTLIST instance assignment (#PCDATA) #REQUIRED
degree (#PCDATA) #REQUIRED>
<IELEMENT variables (variable+)>
<IATTLIST variables nbVar (#PCDATA) #REQUIRED>
<!ELEMENT variable EMPTY>
<IATTLIST variable id ID #REQUIRED
nature (decision|environment) #REQUIRED
domain IDREF #REQUIRED
description (#PCDATA) #IMPLIED>
<!ELEMENT plausibilities (plausibility+)>
<!ATTLIST plausibilities nbPlaus (#PCDATA) #REQUIRED>
<!ELEMENT plausibility EMPTY>
<IATTLIST plausibility id ID #REQUIRED
scope IDREFS #REQUIRED
function IDREFS #REQUIRED>
<!ELEMENT feasibilities (feasibility+)>
<IATTLIST feasibilities nbFeas (#PCDATA) #REQUIRED>
<!ELEMENT feasibility EMPTY>
<!ATTLIST feasibility id ID #REQUIRED
scope IDREFS #REQUIRED
function IDREFS #REQUIRED>
<!ELEMENT utilities (utility+)>
<IATTLIST utilities nbUtil (#PCDATA) #REQUIRED>
<!ELEMENT utility EMPTY>
<VATTLIST utility id ID #REQUIRED
scope IDREFS #REQUIRED
function IDREFS #REQUIRED>
<!ELEMENT components (component+)>
<!ATTLIST components nbComp (#PCDATA) #REQUIRED>
<!ELEMENT component EMPTY>
<IATTLIST component id (#PCDATA) #REQUIRED
nature (decision|environment) #REQUIRED
vars IDREFS #REQUIRED
scoped_f IDREFS #REQUIRED
parents IDREFS #REQUIRED>

Figure D.2: DTD (Document Type Definition) for the XML representation of PFU networks.

