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Abstract. We discuss computational issues surrounding current re-
search that investigates the relevance of graph centrality metrics to
the management of ecological food webs. Ecological food webs can
be viewed as directed acyclic graphs and we use Markov decision
processes to model management. Using dynamic programming we
optimally solve the management of an Alaskan food web through
time so as to maximise the expected number of species surviving. To
generalise our results we investigate policies on generated food webs
of varying size. For large food webs the state and action spaces are
too large for dynamic programming to be computationally feasible
and we use heuristical methods to approximate the optimal policy.

1 INTRODUCTION
Artificial intelligence has been proven to be a useful field for tack-
ling the highly complex and uncertain nature of ecological systems
[4, 20]. Management of such ecological systems, with the aim of pre-
serving the world’s natural resources in all forms, is the concern of
conservation biology.

One area of ecological research in which artificial intelligence
can contribute is in the application of graphical models to ecolog-
ical food webs. In this context, ecological systems are represented
mathematically as directed acyclic graphs. Nodes represent ‘trophic
species’, which may be groups of plant or animal species, macro-
scopic or microscopic, that have a common set of predators and prey
[26]. The term ‘trophic’ relates to the consumption of another species
for energy. We will refer to these nodes of ‘trophic species’ as just
‘species’. The basal species in a graph usually represent a ubiquitous
food source such as zooplankton or kelp. Edges represent the trophic
interactions between species. The terminating node of an edge rep-
resents the predator in the interaction (that is, the terminating node
eats the source node).

In a reasonably general form, it is possible to frame the problem
of managing a food web for conservation purposes as a Markov deci-
sion process (MDP). An MDP is an appealing choice because man-
agement is then explicitly part of the framework and solution algo-
rithms exist [22]. The MDP framework has been used extensively
within ecology and conservation [5, 21]. Solution policies, that pre-
scribe an optimal action given a state and time step for a given reward
structure, are specific to the structure of each food web in question
and, due to the complexity of food webs, may only be solved using
generous assumptions to simplify the system and available actions.
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Even then, solutions are only possible for moderately sized food
webs of less than about 15 species. Such a constraint on finding exact
solutions is considerable given that some documented food webs in
the ecological literature have over 200 species groups (nodes), such
as the Caribbean food web described in Bascompte et al (2005) [2].
It is therefore of interest to investigate heuristical policies that ap-
proximate the exact solution in small food webs so that approximate
policies may be applied to manage larger food webs of more realistic
sizes.

A myriad graph metrics have been applied to study ecological
food webs and these provide a suitable starting point for investigat-
ing heuristic policies. Previous ecological and conservation research
on food webs has mainly focused on measures of how the structure
(trophic interactions between species) of a food web persists through
species extinctions [15]. This ‘stability’ has numerous definitions,
generally (and traditionally) referring to the stability of the character-
istic polynomial from the square, real interaction matrix that defines
the species interactions (as defined below) [9, 18].

Typically, the suggested metrics are calculated for each node and,
thus, a ranking scheme of nodes is implicit. Research has yet to in-
vestigate the use and relevance of said metrics for the purposes of
managing ecological systems [6, 1, 15, 13]. Our research compares
management of a simple model of an ecological system using the op-
timal solution with management that is guided by ranking implied by
graph metrics. If it is possible to identify metrics that provide man-
agement benefits (for a given reward function) that are close to the
optimal solution for small scale food webs then such metrics may
provide use in guiding management of larger networks.

Initial research has investigated the use of Bayesian networks to
model this problem over one time step [19]. Bayesian networks are
probability distributions with a structure defined on them [14, 16].
By ‘structure’, we mean that transition probabilities between differ-
ent states can be factorised into a product of ‘local’ transition proba-
bilities defined by the edges between nodes in a graph (and rewards
may similarly be decomposed into a summation of local rewards).
We extend the previous approach to the multiple time-step case us-
ing a finite-horizon Markov decision process (MDP).

An MDP is not just a Bayesian network that is extrapolated to the
multiple time-step case and that includes modelling of decisions and
rewards; this would usually be called an ‘influence diagram’ [12].
Figure 1 illustrates the relationship between different optimisation
and modelling frameworks and the commonly used names for these
techniques. The arrows indicate axes that add additional components
to the framework: either time, structure or decisions and rewards. For
instance, a Markov chain may be thought of as a one-dimensional
random variable that includes a temporal component, similarly if one
wishes to add a time component to a Bayesian network, the resultant



model is typically called a dynamic Bayesian network, or if one has a
one-dimensional random variable to which they wish to add a frame-
work for decisions and rewards then the resultant framework is gen-
erally called stochastic optimisation. This diagram is only concerned
with finite time horizons and the structure axis is not strictly one-
way, in that, some of those techniques with structure may be mod-
elled using those without formally defined structure (for instance, an
influence diagram may be modelled as a Markov decision process).
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Figure 1. Relationships between modelling techniques with a finite time
horizon

By modelling this decision making problem as an MDP, we risk
facing the curse of dimensionality when trying to find an optimal so-
lution; the state and action spaces can become combinatorially large
as the number of species in the food web increases. Hence, it is
necessary to investigate heuristical approaches to approximate ex-
act solutions if results are to be extrapolated to food webs of realistic
size. The exact solution and the heuristical solutions are compared
via total expected rewards and using statistical analyses to search for
patterns in the optimal policy. This is the first research to investi-
gate the use of graph metrics for conservation management purposes
over multiple time steps. The extension to multiple time steps also
allows comparison of adaptive policies with the myopic policies of
the graph heuristics. This manuscript focuses on the computational
issues in calculating the exact solution algorithm and therefore some
details of the current analysis are omitted.

2 FRAMEWORK & METHODS
We briefly outline the model used and then the computational issues
and suggested work-arounds.

We have a directed acyclic graph, G = 〈V,E〉, representing a
food web (figure 2). V respresents a set of species (vertices) and E
represents a set of trophic interactions (oriented edges) between those
species. There are n species in our food web, | V |= n. Species i
is a prey of (is eaten by) species j if there is an edge from i to j,
(i, j) ∈ E. We denote the adjacency matrix defining the food web
with G, where Gi,j = 1 if (i, j) ∈ E, otherwise 0.

Markov decision process. A Markov decision process (MDP) may
be used to model the decision making problem of managing an eco-
logical food web. An MDP is a common framework for sequential
decision making problems and is composed of a tuple, 〈X ,A, P,R〉,
consisting of the state space, action space, state transition probabil-
ities and rewards, respectively [22]. We model this system for a set
of time steps, t ∈ {1, . . . , T}, where we have a finite time horizon,

T <∞. A superscript of t represents the state or action at time step
t. The state of each species can take one of two values, extant (1) or
extinct (0), xti ∈ {0, 1}, ∀i ∈ V . The set xt then represents the state
of all species in the food web at time t, xt ∈ {0, 1}n. Management
actions that represent a species’ protection status are available for
each species. Simply, a species may or may not be protected, that is,
ati ∈ {0, 1}, ∀i ∈ V , where protection takes the value 1. The term
at then represents the set of actions chosen for all species in the food
web at time t, at ∈ {0, 1}n. To recognise limitations in conservation
funding, we introduce a budget constraint on the choice of actions at
each time step, c(at) =

P
cia

t
i ≤ Bt, for a per-time-step budget

Bt, summation is over i ∈ V , and for a cost of protecting species i
of ci (i ∈ V ).

To incorporate local interactions and dependencies in the food web
we define neighbourhood functions. The assumption of a neighbour-
hood allows the factorisation of state transition probabilities into the
product of species’ local state transitions (and the respective decom-
position of rewards into a sum of local rewards) [23]. We define a
species’ neighbourhood to include all prey species and the species it-
self,N(i) = {j ∈ V | (j, i) ∈ E}∪{i}. The set xtN(i) then denotes
the states of all species in the set N(i) at time t.

The transition probability function is defined as follows:

P t(xt+1 | xt, at) =

nY
i=1

P ti (x
t+1
i | xtN(i), a

t
i). (1)

For simplicity, we assume transition probabilities are the same across
time, P ti (·) = Pi(·) ∀t. We define individual species’ transition
probabilities from one state to the next, for a given action, as some
baseline probability of survival, p0

i , times the ratio of the number of
prey species that are extant (f?,t) to the total number of prey species
(f ),

Pi(x
t+1
i = 1 | xti = 1, xN(i)\i, a

t
i = 0) = p0

i

„
f?,t

f

«
Pi(x

t+1
i = 0 | xti = 1, xN(i)\i, a

t
i = 0) = 1− p0

i

„
f?,t

f

«
Such a probability is subject to the following conditions:

• For basal species, the probability of transitioning from extant to
extinct is solely equal to some baseline probability of survival, p0

i .
• For any species, extinction (death) is an absorbing state,

Pi(x
t+1
i = 0 | xti = 0, ati) = 1,∀ati

• To survive, a species must have at least one prey species extant,

Pi(x
t+1
i = 0 |

X
k∈N(i)

xtk < 2, ati) = 1, ∀ati

• A species’ is guaranteed to survive if it is protected, ati = 1, and
the above conditions hold,

Pi(x
t+1
i = 1 | xti = 1,

X
k∈N(i)

xtk ≥ 2, ati = 1) = 1.

Transition probabilities are simplistic in this research project to avoid
complexity in computation. Species demographics are not directly
taken into account but they may be used in calculations to contribute
to an overall probability of species extinction. Note that although
basal species may be secured indefinitely by protecting them, this



does not guarantee that species further up the food chain will not go
extinct and thus may not lead to the most desirable outcome for a
given choice of reward function.

We denote the array of transition probabilities as P, where Pi,i′,a

is the probability of transitioning from state i to state i′ when action
a is taken.

Our objective is to maximise the number of species surviving at
the end of the project. Rewards are assumed stationary through time
(with the exception of rewards in the final time step). We use a final
time-step reward function of the number of extant species,

RT (xT ) =

nX
i=1

xTi (2)

and per-time-step rewards are zero,Rt(xt) = 0, t < T . Various dif-
ferent reward functions may be investigated, including rewards that
acknowledge the presence of ecologically meaningful structure in the
state of the food web, but for conciseness we only mention one basic
reward function here.
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Figure 2. Example food web based on an Alaskan trophic network with 13
species and 21 trophic edges. The numbers underneath the names of the

species represent the species index, i, which are referred to in the subsequent
tables.

Policies. Let δr = (d1, . . . , dT−1) represent a policy according to
rule r, that designates an action, at = dt(xt), to take at each time
step according to the current state, xt, and decision rule dt(xt). The
total expected reward of any policy, δ, is defined as

υTδ (x1) = E
"
TX
t=1

Rt(xt)

˛̨̨̨
˛ x1, δ

#
(3)

Optimal policy. Solving the above MDP involves finding the opti-
mal policy, δ∗, that provides the highest total expected reward. This

maximum total expected reward is called the ‘value’. For food webs
with 13 species or less, we may solve the above MDP using the back-
wards induction algorithm as follows [22]:

1. Set the current time-step to t = T and the value in the final time-
step to υT∗ (xT ) = RT (xT ) ∀xT ∈ X

2. Set t = t− 1 and calculate υt∗(xt) for each state using

vt∗(x
t) = max

at∈A
Qt(xt, at)

at∗ = arg max
at∈A

Qt(xt, at)

where

Qt(xt, at) = Rt(xt) +
X
xt+1

P (xt+1 | xt, at) υt+1
∗ (xt+1)

3. If t = 1 then stop, otherwise return to step 2.

For our problem, this is initialised by setting the optimal value in the
final time step equal to the final rewards in equation (3) and setting
per-time step rewards to zero.

Graph based policies. We generate policies guided by ranking
schemes that are defined by several graph metrics, outlined below.
Graph metrics map nodes to integer or real values. Policies that are
defined on graph metrics will manage nodes in descending order of
the graph metric. Ties in graph metrics are determined by randomi-
sation and isolated species, for instance if the current state causes the
food web to become disconnected, have metric values of zero (which
means they are managed last).

The total expected rewards of a graph based policy is evaluated
using the following finite horizon metric-policy evaluation algorithm
with inputs δ = (d1, · · · , dT−1) and the interaction matrix, G [22]:

1. Set the current time-step to t = T and the terminal rewards in the
final time-step to υTδ (xT ) = RT (xT ) ∀ xT ∈ X

2. Set t = t− 1 and calculate υtδ(x
t) for each state using

vtδ(x
t) = Qt(xt, d(xt))

where

Qt(xt, d(xt)) = Rt(xt) + (4)X
xt+1

P (xt+1 | xt, dt(xt)) υt+1
δ (xt+1)

3. If t = 1 then stop, otherwise return to step 2.

This algorithm is also initialised by setting final time step rewards
equal to equation (3) and setting per-time step rewards to zero.

Below we define several graph metrics. From the social or math-
ematical sciences we define degree centrality, betweenness central-
ity and closeness centrality. From the ecological literature we define
prey degree, predator degree, keystone index, bottom-up prioritisa-
tion and trophic level. Metric values for each species in the 13 species
Alaskan food web of figure 2 are presented in tables 3 and 4.

Degree centrality

The degree of a species is the number of connections (in any direc-
tion) to a particular species [25]. This can be normalised by the size
of the food web so that degree centrality can be compared between
graphs of different sizes (note that n− 1 is the maximum number of



connections a species can have in any graph). The degree of species i
is the sum of the number of prey and predators that it has, normalised
by the size of the food web,

Di =
D←i +D→i
| V | −1

(5)

where D←i and D→i are respectively the prey degree and preda-
tor degree of species i. More specifically, D←i is the size of the set
V←i = {j ∈ V : (j, i) ∈ E} of all prey of species i, and D→i is the
size of the set V→i = {j ∈ V : (i, j) ∈ E}, the set of all predators
of species i.

Betweenness centrality

The betweenness centrality of a species reflects how central a species
is in the transmission of energy that links other species in the food
web. It is the proportion of shortest paths between any two species
that pass through a particular species, normalised by the size of a
network [25]. Betweenness centrality is calculated as

BCi =

P
j<k

gjk(i)

gjk

(| V | −1)(| V | −2)
, (6)

where gjk denotes the number of shortest paths (geodesics) between
species j and k, and gjk(i) denotes the number of shortest paths
between species j and species k which pass through species i.

Closeness centrality

Closeness centrality is a function of the sum of distances between a
node and all other nodes in the graph [3, 7, 8]. Specifically it is the
ratio of 1) the sum of distances from a particular species to every
other species in the network to 2) the minimum possible value that
this sum may take (which is n− 1 for a network of size n).

The closeness centrality for species k is

CCk =

2664
nP
i=1

d(i, k)

n− 1

3775
−1

(7)

This is a relative measure and can be compared between networks
of different sizes. The distance between two species, d(i, j), is the
smallest number of trophic connections between species i and j
(geodesic). Note that the sum of distances from a species to all other
species will grow with the distance between species (hence the in-
verse is taken) and distances ignore direction of the trophic interac-
tion.

Keystone index

The keystone index is based on the idea of ‘status’ and ‘contrastatus’
of an organisation by Hararay [10, 11, 15]. This measure is only for
directed, acyclic graphs. Using the definitions of V→i and V←i from
the degree centrality description the keystone index may be com-
posed of two sets of two components:

Ki = K↓i +K↑i (8)

K↓i =
X
c∈V←i

1

D←c
(1 +K↓c )

K↑i =
X
e∈V→i

1

D→e
(1 +K↑e )

i Di D←i D→i BCi CCi
1 3 0 3 0 0.48
2 2 0 2 0 0.364
3 1 0 1 0 0.353
4 6 1 5 0.035 0.632
5 3 1 2 0.008 0.462
6 3 1 2 0.01 0.429
7 4 3 1 0.011 0.5
8 2 1 1 0.015 0.444
9 3 2 1 0.008 0.5

10 3 2 1 0.008 0.5
11 5 3 2 0.04 0.6
12 4 4 0 0 0.522
13 3 3 0 0 0.522

Mean 3.231 1.615 1.615 0.01 0.485
SD 1.25 1.273 1.273 0.013 0.076
Min 1 0 0 0 0.353
Max 6 4 5 0.04 0.632

Figure 3. Graph metrics for each species in the full Alaskan food web of
figure 2. Metrics are respectively (L to R in columns 2 to 6) degree, prey
degree, predator degree, betweenness centrality, and closeness centrality.

Index numbers, i, for each species are labelled in figure 2.

where K↓i and K↑i represent the top-down and bottom-up keystone
indices of node i respectively. Alternatively, equation (8) can be rear-
ranged to express the keystone index as a sum of direct and indirect
effects on node i,

Ki = Kdir
i +Kundir

i

Kdir
i =

X
c∈V←i

1

D←c
+
X
e∈V→i

1

D→e

Kundir
i =

X
c∈V←i

K↑c
D←c

+
X
e∈V→i

K↓e
D→e

Bottom-up prioritisation

Bottom-up prioritisation (BUP) ranks species firstly according to
trophic level, Li, which is calculated from the complete food web,
and then secondly by the number of extant predators in the current
state. Let L1 define the set of basal species in a food web with a
trophic level of 1, that is, all those species which do not have prey in
the complete food web,

L1 = {k ∈ V : D←k = 0} (9)

We then define the subgraph food web, Gi = (Vi, Ei), as that which
excludes species in trophic level i and all trophic levels below i,
where

Vi = V \
[
k<i

Lk (10)

and Ei is the corresponding edges between these vertices from the
original graph. All species with trophic level i are then those which
belong to the set

Li =
n
k ∈ Vi : D←,ik = 0

o
(11)



i Ki Kdir
i K indir

i Kbu
i K td

i Li
1 8.5 3 5.5 8.5 0 1
2 1.25 1 0.25 1.25 0 1
3 0.25 0.25 0 0.25 0 1
4 2.889 2.333 0.556 2.556 0.333 2
5 1.306 1 0.306 0.972 0.333 2
6 2.306 1.667 0.639 1.972 0.333 2
7 1.933 1.533 0.4 0.333 1.6 3
8 1.194 0.833 0.361 0.528 0.667 3
9 1.017 0.95 0.067 0.25 0.767 3

10 1.017 0.95 0.067 0.25 0.767 3
11 3.183 2.283 0.9 0.583 2.6 4
12 6.333 3.5 2.833 0 6.333 5
13 4.667 1.7 2.967 0 4.667 5

Mean 2.757 1.615 1.142 1.342 1.415 2.692
SD 2.315 0.902 1.572 2.196 1.904 1.323
Min 0.25 0.25 0 0 0 1
Max 8.5 3.5 5.5 8.5 6.333 5

Figure 4. Graph metrics for each species in the full Alaskan food web of
figure 2. Metrics are respectively (L to R in columns 2 to 7) keystone index,

directed keystone index, indirected keystone index, bottom-up keystone
index, top-down keystone index and trophic level. Index numbers, i, for each

species are drawn in figure 2.

where D←,ik is the prey degree of species k in the food web defined
by Gi. In other words, a species is in trophic level 3, for example, if
it has no prey species present after removing species in trophic levels
1 and 2. The bottom-up prioritisation ranks species first by ascending
trophic level, and then by descending number of predators.

Policies and comparisons. In addition to the policies defined by
graph metrics and the optimal policy, we also include the policy that
manages nothing and a policy that chooses extant species to protect
at random. The total expected reward of policies, calculated from
the metric-policy evaluation algorithm, will be compared with the
optimal value (the maximum total expected reward) from the exact
solution, using the backwards induction algorithm, to find which ap-
proximation methods are the best.

Computational issues and remedies. To utilise the backwards
induction algorithm, transition probabilities must be calculated for
the current problem. The number of probabilities to calculate will
be | S | × | S | × | A |. For a small real food web with 13 species
and a budget with the capacity to protect 4 species at each time step,
we have 213.213.C13

4 = 47, 982, 837, 760 transition probabilities to
calculate (over 40 billion). With 25 species and a budget capacity
to protect 8 species, this is more than 1.2 × 1021 transition prob-
abilities, illustrating the need to use approximations to the optimal
dynamic programming solution when dealing with larger food webs.
Our modelling framework already uses generous assumptions to sim-
plify the model and uses transition probabilities that do not change
through time. Previously studied food webs have included over 150
different groups of organisms [17, 2] which is out of reach for the
optimal solution in the current investigation.

Figure 5 plots the average CPU time over 10 different food
webs for calculating four metrics against the food web size, of up
to 25 species. Computations were performed using Matlab version
7.7.0.471 (Mathworks, 2009). A selection of 10 food webs of each
size were randomly generated using a published method for generat-
ing food webs, the cascade model, and using a ‘connectance’ value,

C = |E|/|V |2, of 0.1 [24, 26]. A cascade model is one which is
constructed by first assigning each species a uniform random number
and secondly setting the probability that a species predates on species
with a random uniform value less than its own to 2.C.n/(n − 1)
[24, 26]. Connectance values in real, observed food webs range be-
tween 0.1 and 0.2 [17, 26]. Calculations were performed under Ma-
cOS 10.6.8 on a 2.53GhZ, mid-2009 Macbook Pro with 4Gb of
1067MHz DDR3 RAM.
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Figure 5. Average CPU time for calculation of four different metrics as a
function of food web size.

A couple of steps can be used to remedy the curse of dimension-
ality. As mentioned, we assumed transition probabilities may be fac-
torised into a product of species’ local transitions. This means it is
only necessary to calculate the probability of all possible local tran-
sitions for any species. Furthermore, various transitions in states can
be set to zero based on the conditions of the transition probabilities.
Concretely, consider the matrix M = SG, where S : X → 2X , is
a 2n × n Boolean matrix that indicates for each possible state which
species is extant (one row for each state, columns index species) and
G is the n×n adjacency matrix of the food web in question. That is,
Gij = 1 if species i is a prey of species j and otherwise 0; cannibal-
ism is not allowed Gii = 0 ∀ i. The elements of the 2n × n matrix
M are then

Mi,j = Number of extant prey of species j when the state is Si,:

where Si,: is the ith row of S. It is not necessary for basal species
to have prey to survive so we set Mi,j = 1 if species j is a basal
species. Further, defining Q = M � S, where � defines element-
wise multiplication (the Hadamard product), we have a matrix that
has elements

Qi,j =

8<:
0 if species j is extinct or has no prey in state i

(and is not a basal species)
{1, 2, · · · } otherwise

and thus Pi,i′,a = 0 if Qi,j = 0 ∀j s.t. Si′,j > 0.



3 Results

Despite the methods described above for speeding up computation
time, the calculation of transition probabilities still takes a consid-
erable amount of time. For illustrative purposes, we present initial
results (table 6) for the Alaskan food web with only 10 species (by
removing the Great whale, star fish and mussels/barnacles from the
13 species food web). It is possible to solve the exact solution to the
10 species web in several minutes on the computer described above.

Policy υδ(x
1)

Optimal 5.92
K↑ 5.52
BUP 5.52
D→ 5.51
K 4.99
K indir 4.97
Kdir 4.76
BC 4.00
D 3.84
CC 3.72
Random 3.66
K↓ 3.49
D← 3.45
None 1.10

Figure 6. Preliminary results for the 10 species Alaskan food web (with
Great whale, star fish and mussels/barnacles removed) over 10 time steps
with p0

i = 0.9, ∀i, and budget of 4 protected species at each time step.
Column 2 is the total expected number of species surviving in the final time
step when using each policy to manage the full 10 species Alaskan food web

for 10 years (higher is better). Rows are arranged in descending order of
their values in column 2.

We present the total expected reward (and respectively the value
in the exact policy) in the first time step for the 10 species food web
for a project of 10 years, with an underlying probability of survival
of p0

i = 0.9, ∀i, and budget capacity to protect 4 species at each time
step. Terminal rewards are the final number of species surviving and
per-time-step rewards are zero. The policies presented are based on
the eleven metrics described above, the random policy, the policy of
protecting no species, and the optimal policy.

Results from the 10 species Alaskan food web suggest that the
heuristic policies that perform well compared to the exact solution
are those which are based on metrics that acknowledge the number
of extant predators that a species has (the bottom-up keystone index,
predator degree, and bottom-up prioritisation). On the other hand,
heuristic policies that prioritise management of species based on the
number of extant prey perform worse than a random strategy (prey
degree, top-down keystone index).

4 Discussion

We have discussed both exact methods for solving a Markov decision
processes with an underlying graphical structure and the potential
of heuristics, based on graph metrics, for guiding decision making
when exact methods are not computationally feasible. Preliminary
results have been presented for a 10 species food web and suggest
that heuristic policies that prioritise species according to the number
of extant predators perform the best. Results suggest management

preference for species of a lower trophic level which may be associ-
ated with the assumption of guaranteed survival for protected basal
species.

Ten species is relatively small for an ecological food web and,
thus, findings should be taken cautiously at this early stage of re-
search. Future research will compare the exact solution with heuris-
tic policies for additional food webs in the ecological literature and
use statistical analyses to search for patterns in the optimal policies
that may be predicted by either graph metrics or local features of the
food web. Heuristic policies that are found to approximate the op-
timal solution consistently will be used to simulate management of
larger food webs. Future research will also investigate the potential
of more sophisticated methods of approximating the exact method
to ecological food-web management, similar to those used in graph-
based MDPs [23].
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