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Problem motivation
Modelling a biological system

I Interests are in industrial (pharmaceutical, agribusiness, genetic
engineering . . . ) and public (health, environment, research on
biological mecanisms and the impact of causal intervention) sectors.

I Computational-aided biological modelling due to the considered
complexity of systems: high-dimension, non-linear dependencies,
mixture of discrete and continuous measures . . .

I Organism (e.g. plant, animal) ∼ complex system comprising many
acting entities (genes, proteins, metabolites), in interation with
each other: passing messages, integrating information and
transforming it. . . The use of a graph or network to represent such a
system seems adequate.

I Issues here: (i) formal adequate modelling framework and (ii)
identification of a network that best represents the system.

I Focus in this presentation on (simulated) ’Systems Genetics’ or
’Genetical Genomics’ data, only looking at the level of genes.
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Quick data description
I 72 data sets, 3 repeats (different networks) for each of the 24

configurations.

I 24 = 8 (configurations) × 3 (network sizes: 100, 1, 000 and 5, 000
genes).

I 8 = 23 configurations: combinations of (i) 2 sample sizes (n = 900 or
300), (ii) 2 gene expression heritability (High vs Low) and (iii) 2
chromosome densities (Dense vs Sparse)

Dataset generation recipe

Choose simulation parameters, choose a network, generate individual
genotypes and then simulate steady-state gene g expression data from:

dGg
d t

= Zcg ·Vg ·θsyng ·
∏
k

(
1 +Ak,g

G
hk,g
k

G
hk,g
k + (Kk,g/Z

t
k)
hk,g

)
−λg ·θdegg ·Gg

from SysGenSIM, [Pinna et al. 2011]
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Listing possible interactions
Cis regulation

dGg
d t

= Zc
g ·Vg ·θsyng ·

∏
k

(
1 +Ak,g

G
hk,g
k

G
hk,g
k + (Kk,g/Z

t
k)
hk,g

)
−λg ·θdegg ·Gg

Ei ∈ R

Mi = 0 or 1M3

E1 E2 E3

M2M1
E1

M1 = 1
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Listing possible interactions
Trans regulation

dGg
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= Zcg ·Vg ·θsyng ·
∏
k

(
1 +Ak,g

G
hk,g
k

G
hk,g
k + (Kk,g/Z

t
k)
hk,g

)
−λg ·θdegg ·Gg

Ei ∈ R

Mi = 0 or 1M3

E1 E2 E3

M2M1

M2 = 1

M3

E3

E∗2

SaAB, MIA-T (StatSeq) GRN reconstruction from SG data 2013 5 / 21



Listing possible interactions
Trans regulation

dGg
d t

= Zcg ·Vg ·θsyng ·
∏
k

(
1 +Ak,g

G
hk,g
k

G
hk,g
k + (Kk,g/Z

t
k)
hk,g

)
−λg ·θdegg ·Gg

Ei ∈ R

Mi = 0 or 1M3

E1 E2 E3

M2M1

M2 = 0

M3

E2

E3

SaAB, MIA-T (StatSeq) GRN reconstruction from SG data 2013 5 / 21



Marker multifactorial effect visualisation
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Models used
to decipher relationships between variables

I Penalised linear regressions (lasso, Dantzig) + data bootstrap

I Bayesian networks (BN) + data bootstrap
I random forests (RF; has integrated bootstrap)

Data bootstrap [Efron 1981]

I strategy used to get confidence on predictions and overcome noise effect.

I implementation: randomly draw (with replacement) Nboot replicate
data-sets of identical sample size as the original data, replicate the
computation (drawback 1) and store the Nboot models to estimate
distribution of the desired statistics (e.g. edge weight).

I did not make use of the offered possibility to study the behaviour of any
(lack of) fitness function (e.g. likelihood, MSE) from out-of-bootstrap
samples (but for RF) since each replicate doesn’t use ∼ 37% of the original
samples (drawback 2 when n is small).
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Penalised linear regressions

Solve individual linear regression for each gene:

Eg =

p∑
j=1

αgjMj +

p∑
j=1
j 6=g

βgjEj + εg

Since n < p, assumption that few (α, β)’s are 0 (makes GRN sparse),
penalised regression methods such as the lasso or the Dantzig selector
were chosen.
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Since n < p, assumption that few (α, β)’s are 0 (makes GRN sparse),
penalised regression methods such as the lasso or the Dantzig selector
were chosen.

lasso penalisation [Tibshirani 1996]

Both shrinks (bias) and selects variables according to:

(α̂, β̂)lasso = argmin
α,β
|| E −Mα− Eβ ||2`2 +λ || (α, β) ||`1

= argmin
α,β
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Dantzig selector [Candès & Tao 2007]

Slightly different constaint (related to gradient of RSS):
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Building weights for edges predictions
Our strategy

I Repeat model fitting for the Nboot bootstraps and for a grid of
(q = 10) penalties.

I Estimate weights wMj→Eg by the ratio of αboot,pengj 6= 0 and wEj→Eg

by
#{βboot,pen

gj 6=0}+#{βboot,pen
jg 6=0}

4qNboot
: post-symetrisation of Eg → Eg′

edges and higher confidence in Mg → Eg′ relationships.

I [Bach 2008] established that under “some conditions” (sparsity, size
effect and unique λn), the bootstrap lasso identifies correct edges
with probability 1 and selects false positives with probability < 1
when n→∞. Our ranking should be related to edge existence !
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Bayesian networks

I Defined by a directed acyclic graph and conditional probabilities
P (V | ParV ) for all nodes V in the graph ([Pearl 1988] and
[Friedman 2000] for use with expression data).

I Natural representation of GRN but for cycles. However, cycles can be
obtained (restarts, bootstraps).

I Algorithm for BN inference are of two kinds: based either on
independence tests or on scores: Bayesian (BD, BDeu. . . ) or
information theoretic (AIC, BIC . . . ).

I NP hard problem (even if indegree ≤ 2 [Chickering 1996]): a simple
greedy search is already very computation demanding: number of
parents limited to 5.
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Bayesian networks
Algorithm

1. Discretise expression into adaptively (2 to 4 states).

2. Select potential parental set for each node if local BDeu score
increased by adding parents separately in comparison to the empty
graph.

3. Select most influencial marker from sliding window.

4. Account for biological knowledge: enforce Mg →Mg+1 along the
chromosome and forbid Eg →Mg′, prior cis-reg. effect tested.

5. Selected DAG with highest BDeu score among 3 restarts a Stochastic
Greedy Search algorithm with extended local move operators (SGS3,
see [Vandel et al. 2012]).

6. Scores are then simply the ratio of edge detection among the
bootstraps.
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Network post-processings

Ultimate goal (in our simulated context): list of directed interactions
between genes, not list of causal eQTLs and gene expression influences

I First proposition gen+mark: wg tog′ = wMg toEg′ + wEg toEg′ .

I Second proposition filt.mark only relying on markers:
wg tog′ = maxh∈{g−5;g+5}wMh toEg′ .

I Third proposition gen+mark.filt: combination of 2nd marker weights
and sum just like in 1st proposition.

Other cleverer post-processings can be built but time was lacking to
thoroughly assess them in the different configurations !
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Results 1: AUPR for 1, 000 gene networks

AUPR with edge orientations AUPR without edge orientations
Methods Methods

Network/configuration/data-set Lasso Dantzig RF BN Lasso Dantzig RF BN
Net4-Conf1-DS25-300SH 11.65 12.02 9.63 14.20 15.76 16.41 11.06 15.90
Net4-Conf2-DS26-900SH 15.88 15.66 17.95 18.30 21.97 21.68 20.05 20.08
Net4-Conf3-DS27-300SL 11.20 11.35 3.88 11.83 16.64 17.18 5.29 15.01
Net4-Conf4-DS28-900SL 21.49 21.78 9.64 27.28 32.46 33.30 11.31 32.95
Net4-Conf5-DS29-300DH 4.89 5.02 7.31 7.13 6.97 7.29 8.41 8.60
Net4-Conf6-DS30-900DH 9.68 10.05 13.82 20.15 13.81 14.53 15.60 22.23
Net4-Conf7-DS31-300DL 8.60 9.57 3.09 13.18 13.07 14.95 4.38 16.59
Net4-Conf8-DS32-900DL 16.20 17.43 7.39 23.24 24.20 26.71 9.12 28.76
Net5-Conf1-DS33-300SH 16.05 15.71 16.16 16.96 21.52 21.27 17.81 18.89
Net5-Conf2-DS34-900SH 22.17 21.71 23.96 30.46 31.08 30.64 26.28 32.25
Net5-Conf3-DS35-300SL 14.55 14.61 5.56 13.28 21.69 22.10 7.42 16.89
Net5-Conf4-DS36-900SL 24.57 24.70 13.53 25.56 37.38 37.85 15.86 31.37
Net5-Conf5-DS37-300DH 6.66 6.74 9.04 8.71 9.34 9.63 10.58 10.27
Net5-Conf6-DS38-900DH 12.80 12.67 21.76 23.74 17.55 17.76 23.73 25.66
Net5-Conf7-DS39-300DL 10.71 11.16 3.60 15.36 17.10 18.19 5.20 18.71
Net5-Conf8-DS40-900DL 17.42 17.92 11.04 25.57 26.33 27.75 12.86 30.71
Net6-Conf1-DS41-300SH 13.07 12.83 13.34 15.75 17.90 17.64 15.05 17.72
Net6-Conf2-DS42-900SH 17.54 17.59 23.63 24.13 24.81 24.80 25.56 26.14
Net6-Conf3-DS43-300SL 12.62 12.72 4.32 13.40 19.00 19.38 5.64 17.02
Net6-Conf4-DS44-900SL 20.72 21.07 10.67 20.14 32.06 32.72 12.69 26.12
Net6-Conf5-DS45-300DH 5.43 5.51 7.41 5.70 7.79 7.98 8.83 6.98
Net6-Conf6-DS46-900DH 8.55 8.43 15.90 12.34 11.91 11.95 17.67 14.13
Net6-Conf7-DS47-300DL 8.70 9.23 2.57 10.07 13.69 14.84 3.98 13.42
Net6-Conf8-DS48-900DL 14.68 15.33 7.82 16.11 22.86 24.41 10.06 21.36
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Results 2: Effects of simulation parameters

I Sample size n: the larger, the better !

I Higher gene expression heritability gives better results.

I Sparse chromosome genetic contents are more easily to unravel.

I BUT this is “in principle”:

gene expression heritability and marker
density are interlocked:

Gene expression heritability

Chromosome density High Low

Dense

Sparse
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Results 3: Effect of bootstraps
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Mitigated good news.
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Results 4: comparison of some inference methods

I lasso ≈ Dantzig; good options if not interested in giving edge
directions.

I Bayesian networks is an asset but needs large n (and memory !).

I slightly disapointed by RF but perhaps not good score (used
reduction in precision error, not variance reduction) and integrated
both markers and expressions at once.

I Potential complementarity of the methods; could have tried a
meta-analysis [Vignes et al 2011] but (i) did not have a p-value-like
score and (ii) this method is now old-fashioned I understand
correlations do better ;-) !

Conclusion here: it depends...
Don’t want to feel to depressed ? [Marbach et al 2012]’s wisdom of
crowds: an infinite number of independent (better than random) inference
methods is consistent !
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Results 4 encore: comparison of some inference methods
Post-processing also matters !
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But this may be the other way round on another configuration !
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Which edges are we NOT able to grab ?

It’s not really an issue of edge direction.
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Which edges are we NOT able to grab ?

It’s not really an issue of edge direction.
But what are we trying to infer: (absolute correlations between gene
expressions)

Same situations for correlations between markers and gene expressions
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Which edges are we NOT able to grab ?

It’s not really an issue of edge direction.

Into details:

E44 M44 E34 M34 E50 M50

E95

−0.430.52 0.14
−0.45

0.12

0.64
0.67

−0.55

E21
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Which edges are we NOT able to grab ?

It’s not really an issue of edge direction.

Into details:

E44 M44 E34 M34 E50 M50

E95

−0.430.52 0.14
−0.45

0.12

0.64
0.67

−0.55

0.86 !!

E21

Logically, we get G21 ↔ G95 as prediction No. 12, G34 → G95 as No. 19,
G44 → G21 as No. 192 (reverse is No. 214), G34 → G21 as No.
252...G50 → G21 is prediction No. 2449, G50 → G95 is No. 6559 . . . and
many more FP inbetween !!
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Building longer/shorter paths ?
Shorter path length comparison
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Conclusions 1
Critical look on our work

I Let’s be honest, I thought methodology was almost ready for a nice
package that would propose state-of-the-art efficient GRN recovery
from Systems Genetics data.

I Lessons from this data set analysis: not there yet ! Was it too
difficult ? Too exotic ? At least it kept us occupied full-time during
summer 2012 !

I Penalised linear regressions, BN, RF . . . are nice models, which
actually capture some important interactions with an acceptable
degree of precision but: room for improvement ??
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Conclusions 2
Future work

I Still some work to be done: try data transform (no magic remedy) ?
Other naive/sophisticated Machine Learning tools (neural networks,
SI algorithms . . . ) ?
Assess the impact of missing information (function, gene) in the
system ? Evaluate the potential to find direct causal relationships on
other data sets ?

I Biologists might have the answer: we want to do computational
biology, not (in fact we do that from time to time) pure mathematics
we stick to biological problems. The more complex the biological
phenomenon to account for, the more granularity in the model ? At
least forward and backward (and vice versa) movement between
modelling and experimental validation ! Compare model and
biological reality it should represent !!

I Many thanks for your attention !
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