Bayesian estimation of sparse sequences

Ismaël Castillo (CNRS, Paris)

joint work with Aad van der Vaart (VU Amsterdam \rightarrow Leiden)

INRA Toulouse, September 14th 2012

I. Castillo (LPMA, Paris)

Bayes for sparse sequences

INRA Toulouse, 14.09.2012 1 / 36

Introduction

Sparse sequences

Example (Sparse sequences)

$$X_i = \theta_i + \varepsilon_i, \qquad i = 1, \dots, n$$

•
$$\theta = (\theta_1, \ldots, \theta_n) \in \mathbb{R}^n$$

• ε_i i.i.d. Gaussian $\mathcal{N}(0,1)$

< D > < A

Examp	le (Sparse	sequences)	
-------	------	--------	------------	--

$$X_i = \theta_i + \varepsilon_i, \qquad i = 1, \ldots, n$$

• $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$ • ε_i i.i.d. Gaussian $\mathcal{N}(0, 1)$ Example (High-dim. linear model) $Y = X\theta + \varepsilon$ • $\theta \in \mathbb{R}^{M}, X \in \mathbb{R}^{n \times M}, M \gg n$ • $\varepsilon \sim \mathcal{N}(0, I_n)$

A = A = A = A
 A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sparsity assumption. Assume the vector θ is sparse in that

"only a small number of coordinates of θ are significant"

For instance, only at most p_n coefficients of θ are nonzero.

Objective. Estimate θ under sparsity assumption.

Example of data n = 100

Example of data n = 100, Thresholding

Example of data n = 100, Oracle thresholding

Example of data n = 100, Original data $(p_n = 19)$

Bayes framework

Observations. $X^{(n)} = (X_1, ..., X_n)$ independent (but non i.d.) Parameter space $\Theta = \mathbb{R}^n$, law $dP_{\theta}^{(n)} = p_{\theta}^{(n)}(X^{(n)})d\mathscr{L}^{(n)}$ with, here,

$$p_{\theta}^{(n)}(x_1,\ldots,x_n) = \prod_{i=1}^n \phi(x-\theta_i)$$

Bayesian framework. Prior Π on $\theta \in \mathbb{R}^n$. This measure is updated with the data $X^{(n)}$.

The *posterior* given $X^{(n)}$ is the conditional distribution $\Pi(\cdot|X^{(n)})$.

Bayes formula. For any measurable B,

$$\Pi(B|X^{(n)}) = \frac{\int_{B} p_{\theta}^{(n)}(X^{(n)}) d\pi(\theta)}{\int p_{\theta}^{(n)}(X^{(n)}) d\pi(\theta)}.$$

Posterior converges at rate (at least) $\varepsilon_n \rightarrow 0$ for distance d if

$$P_{n,\eta_0}\Pi(\eta:d(\eta,\eta_0)>\varepsilon_n|X^{(n)})\underset{n\to+\infty}{\longrightarrow} 0.$$

I. Castillo (LPMA, Paris)

Object of interest the posterior distribution $\Pi[\cdot | X^{(n)}]$

Simulation Sampling from the posterior ! (e.g. via a MCMC method, or any method) Repeated sampling from the posterior gives an idea of "spread" Can suggest Credible regions

Aspects of the posterior $\Pi[\cdot | X^{(n)}]$

- Posterior mean $\int \theta d\Pi(\theta | X^{(n)})$
- Posterior (coordinatewise)-median
- Posterior mode, etc.

Remark Posterior and aspects of it might behave differently *especially* in high-dimensional problems

4 D b 4 A

Objectives

- Define a prior distribution Π on $\theta \in \mathbb{R}^n$ which would
 - be adapted to estimation of sparse vectors
 - automatically adapts to the unknown sparsity level p_n
- Find necessary and sufficient conditions on the prior so that the preceding holds.
- One would also like to simulate from the posterior distribution ...

Succint Bibliography

- Thresholding methods [Donoho & Johnstone] (90's), ...
- Penalization methods [Birgé & Massart] (90's), [Golubev] (2000), ...
- False Discovery Rate (FDR) [Abramovich et al.] (2006)
- Empirical Bayes method [Johnstone & Silverman] (2004)
 - Prior distribution

$$\bigotimes_{i=1}^{n} (1-\alpha_n) \delta_0 + \alpha_n \gamma,$$

for some continuous distribution γ .

- Leads to some posterior depending on \(\alpha_n\)
- Estimate α_n from the data : $\hat{\alpha}_n$
- ▶ Plug-in $\hat{\alpha}_n$ into the expression of posterior expectation
- Bayesian t-estimation [Abramovich et al.] (2007)
- NP Empirical Bayes [W. Jiang & C.-H. Zhang] (2009)

Succint Bibliography

- Thresholding methods [Donoho & Johnstone] (90's), ...
- Penalization methods [Birgé & Massart] (90's), [Golubev] (2000), ...
- False Discovery Rate (FDR) [Abramovich et al.] (2006)
- Empirical Bayes method [Johnstone & Silverman] (2004)
 - Prior distribution

$$\bigotimes_{i=1}^{n} (1-\alpha_n) \delta_0 + \alpha_n \gamma,$$

for some continuous distribution γ .

- Leads to some posterior depending on α_n
- Estimate α_n from the data : $\hat{\alpha}_n$
- ▶ Plug-in $\hat{\alpha}_n$ into the expression of posterior expectation
- Bayesian t-estimation [Abramovich et al.] (2007)
- NP Empirical Bayes [W. Jiang & C.-H. Zhang] (2009)

What about a fully Bayes method ?

I. Castillo (LPMA, Paris)

Prior and assumptions

Definition

- Pick an integer k under $\pi_n(\cdot)$ law on $\{0, \ldots, n\}$
- Given k pick uniformly at random S ⊂ {1,..., n} of cardinality k for |S| = k, Π_n(S|k) = 1/ ⁿ_k
- Siven S, define $\theta_S = (\theta_i)_{i \in S}$ and $\theta_{S^c} = (\theta_i)_{i \notin S}$ by

 $\theta_s \sim g_s \text{ density on } \mathbb{R}^s$ $\theta_{s^c} = 0$

The resulting prior Π on $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$ is completely determined by

- the law of the size k of the picked subset $S \sim \pi_n(\cdot)$
- the collection of densities $\{g_S\}_{S \subset \{1,...,n\}}$

4 D b 4 A

Example (α_n -Coin-flipping prior)

Problem How does one choose α_n ??

"Bayesian Thresholding" at level α_n

I. Castillo (LPMA, Paris)

Bayes for sparse sequences

Example (α_n -Coin-flipping prior) $k \sim \mathscr{B}(n, \alpha_n)$ $gs = g^{\otimes |S|}$ \uparrow

$$\boldsymbol{\Pi} \sim \bigotimes_{i=1}^{n} (1 - \alpha_n) \delta_0 + \alpha_n \boldsymbol{g}$$

Problem How does one choose α_n ??

Example (Bayes Coin-flipping)

$$\alpha \sim \text{Beta}(1, n)$$

$$k \mid \alpha \sim \mathscr{B}(n, \alpha)$$

$$gs = g^{\otimes |S|}$$

$$\widehat{}$$

$$\alpha \sim \text{Beta}(1, n)$$

$$\Pi \mid \alpha \sim \bigotimes_{i=1}^{n} (1 - \alpha) \delta_{0} + \alpha g$$

"Bayesian Thresholding" at level α_n

"Bayesian Thresholding" with automatic threshold choice

イロト 不得下 イヨト イヨト

I. Castillo (LPMA, Paris)

Bayes for sparse sequences

Sparse prior Π , examples

Remark "Bayesian Thresholding" induces a Beta-Binomial prior on dimension which behaves like $\pi_n(k = p) \approx e^{-p}$

∃ ▶ ∢

Sparse prior Π , examples

Remark "Bayesian Thresholding" induces a Beta-Binomial prior on dimension which behaves like $\pi_n(k = p) \approx e^{-p}$

Example (Many other possibilities !)

• For the law $\pi_n(\cdot)$

•
$$\pi_n(k=p) \propto e^{-p \log p}$$

•
$$\pi_n(k=p) \propto e^{-p \log n/p}$$
.

• For the continuous density g_S , a possibility is $g = \otimes_S g_S$, with

- $g(x) \propto e^{-x^2}$ (Gaussian)
- $g(x) \propto e^{-|x|}$ (Laplace)
- $g(x) \propto (1 + x^2)^{-1}$ (Cauchy) ...
- Another possibility for g_S is mixing densities (i.e. g_S is not a coordinatewise product)

Which ones of all these priors work ?

I. Castillo (LPMA, Paris)

12 / 36

A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Convergence rates

< D > < A

2

Classes of sparse signals

Definition

Nearly-black class of vectors

$$\ell_0[p_n] = \{ \theta \in \mathbb{R}^n, \ \#(1 \le i \le n : \theta_i \ne 0) \le p_n \}.$$

Sparsity coefficient $\eta_n = p_n/n$

Distance on \mathbb{R}^n : euclidian norm $\|\cdot\|_2 = \|\cdot\|$

$$\|\theta - \psi\|^2 = \sum_{i=1}^n (\theta_i - \psi_i)^2.$$

Minimax rate in $\ell_0[p_n]$ for squared $\|\cdot\|_2$ -norm, as $n \to +\infty$

$$\inf_{\hat{\theta}} \sup_{\theta \in \ell_0[p_n]} P_{n,\theta} \| \hat{\theta} - \theta \|_2^2 = 2p_n \log(n/p_n)(1+o(1)).$$

 ℓ_q -type distances 0 < q < 2 can also be considered

$$d_q(\theta,\psi) = \sum_{i=1}^n |\theta_i - \psi_i|^q.$$

I. Castillo (LPMA, Paris)

Strong and weak ℓ_r -balls $r \in (0, 2)$. Let $\theta_{(1)} \ge \theta_{(2)} \ge \cdots \ge \theta_{(n)}$

$$\ell_r[p_n] = \left\{ \theta \in \mathbb{R}^n, \sum_{i=1}^n |\theta_i|^r \le n \left(\frac{p_n}{n}\right)^r \right\}$$
$$m_r[p_n] = \left\{ \theta \in \mathbb{R}^n, |\theta_{(i)}|^r \le \frac{n}{i} \left(\frac{p_n}{n}\right)^r, \quad i = 1, \dots, n \right\}.$$

Minimax rates for 0 < r < 2 for $\|\cdot\|_2\text{-norm, with }\eta_n = p_n/n$

- for $\ell_r[\eta_n]$ minimax rate is $\sim n\eta_n^r(\sqrt{2\log\eta_n^{-r}})^{2-r}$ $(n \to +\infty)$
- for $m_r[\eta_n]$ minimax rate is $\sim \frac{2}{2-r}R_n(\ell_r[\eta_n])$ $(n \to +\infty)$

Assumptions (P) on the prior Π

Our prior Π is defined by specifying

- The discrete law $\pi_n(k = \cdot)$ of k = number of coefficients chosen
- The continuous law g_S on the chosen subspace \mathbb{R}^S

Assumption (P)

We assume that g_S is positive, $g_S(\theta) = e^{-h_S(\theta)}$ and

• does not have too light tails in that

$$\log g_{\mathcal{S}}(\theta) - \log g_{\mathcal{S}}(\theta') \lesssim |\mathcal{S}| + \sqrt{|\mathcal{S}|} \|\theta - \theta'\|, \qquad \forall \mathcal{S}, \forall \theta, \theta' \in \mathbb{R}^{\mathcal{S}},$$

has some approximate subspace compatibility in the sense

$$\begin{aligned} \left|\log g_{S}(\theta) - \log g_{S'}(\pi_{S'}\theta)\right| \lesssim |S| + \sqrt{|S|} \|\pi_{S-S'}\theta\|, \qquad \forall S' \subset S, \forall \theta \in \mathbb{R}^{S}, \\ \ln \pi_{S}\theta = \theta_{S} = (\theta_{i} : i \in S). \end{aligned}$$

wit

4 D b 4 A

Assume the prior satisfies (P) then for any $n \ge 1$ and any r > 1,

 $\sup_{\theta_{0} \in \ell_{0}[p_{n}]} P_{n,\theta_{0}} \Pi_{n} \big(\theta : \|\theta - \theta_{0}\| > 10r | X^{(n)} \big) \le e^{-r^{2}/9} \big(C_{n}(r,\pi_{n},p_{n}) + 1 \big).$

$$C_n(r; \pi_n, p_n) = \kappa e^{cp_n} \frac{\sum_{p=1}^n \left(\pi_n(p) \binom{n}{p} (1 \vee r^2/p)^{p/2}\right)^{1/2}}{\left(\sum_{p=p_n}^n \frac{\binom{n-p_n}{p-p_n}}{\binom{n}{p}} \pi_n(p) (dr^2/p)^{p/2}\right)^{1/2}},$$

I. Castillo (LPMA, Paris)

INRA Toulouse, 14.09.2012 17 / 36

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Denote
$$r_n^{*2} = p_n \log(n/p_n)$$

Corollary

Assume $\{g_S\}_S$ satisfies (P) and π_n satisfies

$$\sum_{p=1}^{n} \sqrt{\pi_n(p) \binom{n}{p} C_1^p} \leq e^{C_2 r_n^{*2}}$$
$$\pi_n(p_n) \geq e^{-C_3 r_n^{*2}}$$

Then for M large enough, as $n \to +\infty$.

$$\sup_{\theta_{0}\in\ell_{0}[p_{n}]}P_{n,\theta_{0}}\Pi(\|\theta-\theta_{0}\|>Mr_{n}^{*}|X^{(n)})\rightarrow0$$

.∃ ▶ . ∢

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The following choices lead to the optimal rate on $\ell_0[p_n]$

• For the prior $\pi_n(k = \cdot)$ a natural choice is

•
$$\pi_n(k=p) = {n \choose p}^{-1}$$

• or $\pi_n(k=p) = e^{-p \log(nc/p)}$ for some $c > 0$

• For the continuous part g_S , product priors $g^{\otimes S}$ with $g = e^{-h}$ and

►
$$|h(x) - h(y)| \lesssim 1 + |x - y|$$
 $\forall x, y \in \mathbb{R}$

For instance, as soon as

the tails of g are at least as heavy as Laplace

then conditions (P) holds.

Example

few mixing

$$g_{|S|}(heta) = a_{|S|} rac{e^{-\| heta_S\|_1}}{1+\| heta_S\|_2^2} \qquad ext{satisfies (P)}$$

ortationally symmetric priors Set p = |S|. Let r_p a density on R

$$g_{p}(\theta) = \frac{r_{p}(\|\theta\|)}{pv_{p}\|\theta\|^{p-1}},$$

The Gamma(p, 1)-density r_p leads to

$$g_{p}(heta) = rac{e^{-\| heta\|} \Gamma(p/2+1)}{\pi^{p/2} \Gamma(p+1)}, \hspace{1em} ext{satisfies (P) with extra } \log p$$

I. Castillo (LPMA, Paris)

•
$$\hat{\theta}^{PM} = \int \theta d\Pi_n(\theta | X^{(n)})$$
 posterior mean

• $m(X^{(n)})$ posterior coordinatewise median

Corollary

Assume $\{g_s\}_s$ satisfies (P) and π_n satisfies $\pi_n(p) \lesssim e^{-ap \log(bn/p)}$ for large constants a, b. Then it holds, as $n \to +\infty$, with $r_n^* = p_n \log(n/p_n)$,

$$\sup_{\substack{\theta_{0} \in \ell_{0}[p_{n}]}} P_{n,\theta_{0}} \left\| \hat{\theta}^{PM} - \theta_{0} \right\|^{2} \leq r_{n}^{*2}$$
$$\sup_{\theta_{0} \in \ell_{0}[p_{n}]} P_{n,\theta_{0}} \left\| m(X^{(n)}) - \theta_{0} \right\|^{2} \leq r_{n}^{*2}$$

I. Castillo (LPMA, Paris)

Can we go beyond
$$\pi_n(k) = \exp(-k \log(n/k))$$
?

2

(ロ) (四) (三) (三)

Can we go beyond $\pi_n(k) = \exp(-k \log(n/k))$?

Yes if slightly more stringent conditions on the mixing of g_S ...

Case of product $g_S = g \otimes \ldots \otimes g$

Definition

•
$$S_{\theta} = \{i, \ \theta_i \neq 0\}$$
 support of $\theta \in \ell_0[p_n]$. Denote $S_0 = S_{\theta_0}$

$$\{1,\ldots,n\}=S_0\cup S_0^c$$

• $\pi_{n,k}$ prior on dimensions induced on S_0^c , given that $|S_{\theta} \cap S_0| = k$

$$\nu_k := \sum_{p=0}^{n-k} p \pi_{n,k}(p)$$

I. Castillo (LPMA, Paris)

Condition (M)

Assume π_n is such that for some d < 1, for any $p > Cp_n$ (C > 1),

$$\pi_n(p) \leq d\pi_n(p-1)$$

("exponentially decreasing")

Lemma (Dimension reduction)

Assume condition (M). Then for large enough C, as $n \to +\infty$,

$$P_{n, heta_0} \Pi_n(heta: |S_{ heta}| \geq Cp_n|X) \to 0.$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assume the prior satisfies (P)+(M) and that $g_s = \bigotimes_{sg}$. Set $r_n^* = p_n \log(n/p_n)$. Then for M large enough, as $n \to +\infty$,

$$\sup_{\theta_0 \in \ell_0[\boldsymbol{p}_n]} P_{n,\theta_0} \Pi_n(\theta : \|\theta - \theta_0\| > Mr_n^* | X) \to 0.$$

Idea of the proof

- Small k's : argue as in Theorem 1
- Large k : use Lemma 1 to get $\prod_n (k > Cp_n | X) \rightarrow 0$

Remark. Can be extended to mixing priors up to extra condition on marginals of g_S .

Assume the prior satisfies (P)+(M) and that $g_S = \bigotimes_S g$. Set $r_n^* = p_n \log(n/p_n)$. Then for M large enough, as $n \to +\infty$,

$$\sup_{\theta_{\mathbf{0}}\in\ell_{\mathbf{0}}[p_{n}]}P_{n,\theta_{\mathbf{0}}}\Pi_{n}(\theta:\|\theta-\theta_{\mathbf{0}}\|>Mr_{n}^{*}|X)\rightarrow 0.$$

Corollary

Bayesian Hard Theresholding defined by

$$lpha \sim \textit{Beta}(1, n)$$
 and $\Pi | lpha \sim \bigotimes_{i=1}^{n} (1 - lpha) \delta_0 + lpha g$

with g the Laplace density (for instance) is rate optimal

Indeed, the induced π_n verifies $\pi_n(p) \propto \binom{2n-p}{n}$ and $\binom{2n-p}{n} \approx e^{-p/2}$. Satisfies (M)

(日) (四) (日) (日) (日)

Take
$$g_{S} = g^{\otimes S}$$
 with $g(y) \propto e^{-|y|^{\alpha}}$ and $\pi_{n}(p_{n}) \geq e^{-cp_{n}\log(n/p_{n})}$.

• if $\alpha \geq 2$ and $\|\theta_0^n\| \to \infty$ fast enough, then for small universal $\eta > 0$,

$$P_{n,\theta_0^n} \Pi_n \big(\theta : \|\theta - \theta_0^n\| \le \eta \|\theta_0^n\| \,|\, X^n \big) \to 0.$$

• if
$$1 < \alpha < 2$$
 set $\rho_{0,\alpha}^n = \left(\frac{\|\theta_0^n\|_{\alpha}^n}{\|\theta_0^n\|_{2}^2} \wedge 1\right) \|\theta_0^n\|_{\alpha} p_n^{\frac{1}{2} - \frac{1}{\alpha}}$. If $\rho_{0,\alpha}^n \to \infty$ fast enough $P_{n,\theta_0^n} \prod_n (\theta : \|\theta - \theta_0^n\| \le \eta \rho_{0,\alpha}^n | X^n) \to 0$,

for $\eta > 0$ small enough

Consequence Tails of g should be as least as heavy as Laplace.

Example

Taking $g = \varphi$ standard Gaussian is suboptimal. Tails are too light.

Consider estimation of $\theta \in \ell_0[p_n]$ for the d_q -distance, for some 0 < q < 2.

$$d_q(\theta,\psi) = \sum_{i=1}^n |\theta_i - \psi_i|^q.$$

 $\text{Minimax risk } r_{n,q}^* := \inf_{\hat{\theta}} \sup_{\theta \in \ell_0[p_n]} P_{n,\theta} d_q(\hat{\theta}, \theta) = O(p_n \log^{q/2}(n/p_n))$

Johnstone-Silverman (04) show that

- Their posterior median plug-in $\hat{\theta}^{med}(\hat{\alpha}_n)$ converges at rate $r^*_{n,q}$, any 0 < q < 2
- Their posterior mean plug-in $\hat{\theta}^{mean}(\hat{\alpha}_n)$ has suboptimal rate if q < 1.

Even taking the "oracle" level $\alpha_n = \alpha_n^{oracle} = p_n/n$, one can check that

• $\hat{ heta}^{mean}(lpha_n^{oracle})$ converges at suboptimal rate for any q < 1

Under the conditions of Rate Theorem II, the posterior measure does converge at optimal rate $r_{n,q}^*$, any 0 < q < 2

$$P_{n,\theta_0^n}\Pi(\theta: d_q(\theta,\theta_0) > Mr_{n,q}^*|X) \to 0$$

In particular, applying the result for instance to the oracle estimator $\hat{\theta}^{mean}(\alpha_n^{oracle})$,

- Its posterior measure converges at optimal rate $r_{n,q}^*$ over $\ell_0[p_n]$. $\leq p_n \log^{q/2}(n/p_n)$
- Its posterior mean converges at suboptimal rate, any q < 1 $\geq n(p_n/n)^q$

Posterior measure and posterior mean have fairly different behaviors in this case

Algorithm

INRA Toulouse, 14.09.2012 28 / 36

2

(ロ) (四) (三) (三)

The posterior probability $\prod_n(B|X^{(n)})$ of a Borel set B is

$$\frac{\sum_{p=0}^{n} \pi_{n}(p) \binom{n}{p}^{-1} \sum_{|S|=p} \prod_{i \notin S} \phi(X_{i}) \int_{(\theta_{S},0) \in B} \prod_{i \in S} \phi(X_{i} - \theta_{i}) g_{S}(\theta_{S}) \prod_{i \in S} d\theta_{i}}{\sum_{p=0}^{n} \pi_{n}(p) \binom{n}{p}^{-1} \sum_{|S|=p} \prod_{i \notin S} \phi(X_{i}) \int \prod_{i \in S} \phi(X_{i} - \theta_{i}) g_{S}(\theta_{S}) \prod_{i \in S} d\theta_{i}}}.$$

The posterior mean is the vector

$$\hat{\theta}^{PM} = \left(\int \theta_1 d\Pi_n(\theta | X^{(n)}), \dots, \int \theta_n d\Pi_n(\theta | X^{(n)})\right)$$

At first sight, the number of computations is of the order of $2^n \dots$

Assume g_S is of the product form $g^{\otimes S}$. Then

$$\hat{\theta}_{1}^{PM} = \frac{\sum_{p=0}^{n} \pi_{n}(S_{p})\zeta(X_{1}) \sum_{|S|=p, 1 \in S} \prod_{i \notin S, i \neq 1} \phi(X_{i}) \prod_{i \in S, i \neq 1} \psi(X_{i})}{\sum_{p=0}^{n} \pi_{n}(S_{p}) \sum_{|S|=p} \prod_{i \notin S} \phi(X_{i}) \prod_{i \in S} \psi(X_{i})},$$

with

•
$$\pi_n(S_p) = \pi_n(p) {n \choose p}^{-1}$$
 prior mass of any model of size p

•
$$\psi(X_i) = \int \phi(X_i - \theta_i) g(\theta_i) d\theta_i$$

•
$$\zeta(X_1) = \int \theta_1 \phi(X_1 - \theta_1) g(\theta_1) d\theta_1$$

I. Castillo (LPMA, Paris)

2

(ロ) (四) (三) (三)

Remark that

is nothing but the coefficient in front of Z^p in the polynomial

$$\prod_{i=1}^{n} (\phi(X_i) + \psi(X_i)Z)$$

and, similarly,

$$\sum_{|S|=p, 1\in S} \prod_{i\notin S, i\neq 1} \phi(X_i) \prod_{i\in S, i\neq 1} \psi(X_i)$$

is the coefficient in front of Z^p in the polynomial

$$\prod_{i=2}^{n} (\phi(X_i) + \psi(X_i)Z)$$

I. Castillo (LPMA, Paris)

It is thus possible to

- Compute explicitly the posterior (mean)
- by just computing the product of polynomials

$$\prod_{i=1}^{n} (\phi(X_i) + \psi(X_i)Z)$$

• assuming that g_S is of product form (and $\pi_n(S)$ only depend on |S|) Remark The posterior is not of product form in general.

Simulation results For not too large n's, (n \lesssim 800), one can easily implement the method. The resulting estimator $\hat{\theta}^{PM}$

- is significantly better than Hard Thresholding
- is competitive with EBayesThresh algorithm from J-S 04 using Empirical Bayes

Posterior mean $n = 250, p_n = 40, A = 3$

1:n

INRA Toulouse, 14.09.2012 33 / 36

・ロト ・回ト ・ヨト

Posterior coordinatewise-median $n = 250, p_n = 40, A = 3$

INRA Toulouse, 14.09.2012 34 / 36

[Work in progress with Johannes Schmidt-Hieber & Aad van der Vaart]

Let $\theta \in R^M$, $X \in \mathbb{R}^{n \times M}$, $M \gg n$

 $Y = X\theta + \varepsilon$, with $\varepsilon \sim \mathcal{N}(0, I_n)$

Sparsity Suppose θ has at most $s_n \ll n$ nonzero coefficients *Prior*

- $\pi_M(k) = e^{-ak \log(M/k)}$ complexity-type prior on dimension
- $g_S = \otimes g$, with g Laplace, otherwise Dirac mass at 0

Concentration for θ under compatibility condition on X

$$\sup_{\theta_0 \in \ell_0[s_n]} P_{n,\theta_0} \Pi(\|\theta - \theta_0\|^2 > Ms_n \log(M/s_n)|Y) \to 0.$$

Prediction result without compatibility with mild growth condition on θ

I. Castillo (LPMA, Paris)

We propose a general Bayes method for the study of sparse sequences

We have identified

- some sufficient conditions for optimal convergence (upper bounds)
- some necessary conditions for optimality (lower bounds)

The method

- is flexible : lot of priors are optimal or nearly optimal
- allows non-independent priors
- can be implemented for some functionals of the posterior measure (more work needed for very large *n*'s ...)