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Introduction
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Sparse sequences

Example (Sparse sequences)

Xi = θi + εi , i = 1, . . . , n

θ = (θ1, . . . , θn) ∈ Rn

εi i.i.d. Gaussian N (0, 1)

Example (High-dim. linear model)

Y = Xθ + ε

θ ∈ RM , X ∈ Rn×M , M � n

ε ∼ N (0, In)

Sparsity assumption. Assume the vector θ is sparse in that

"only a small number of coordinates of θ are significant"

For instance, only at most pn coefficients of θ are nonzero.

Objective. Estimate θ under sparsity assumption.
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Example of data n = 100
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Example of data n = 100, Thresholding
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Example of data n = 100, Oracle thresholding
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Example of data n = 100, Original data (pn = 19)
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Bayes framework

Observations. X (n) = (X1, . . . ,Xn) independent (but non i.d.)
Parameter space Θ = Rn, law dP(n)

θ = p(n)
θ (X (n))dL (n) with, here,

p(n)
θ (x1, . . . , xn) =

nY
i=1

φ(x − θi )

Bayesian framework. Prior Π on θ ∈ Rn.
This measure is updated with the data X (n).

The posterior given X (n) is the conditional distribution Π(·|X (n)).

Bayes formula. For any measurable B,

Π(B|X (n)) =

R
B p(n)

θ (X (n))dπ(θ)R
p(n)
θ (X (n))dπ(θ)

.

Posterior converges at rate (at least) εn → 0 for distance d if

Pn,η0Π(η : d(η, η0) > εn|X (n)) −→
n→+∞

0.
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Posterior distribution and aspects of it

Object of interest the posterior distribution Π[ · |X (n)]

Simulation Sampling from the posterior ! (e.g. via a MCMC method, or any method)
Repeated sampling from the posterior gives an idea of "spread"
Can suggest Credible regions

Aspects of the posterior Π[ · |X (n)]

Posterior mean
R
θdΠ(θ|X (n))

Posterior (coordinatewise)-median

Posterior mode, etc.

Remark Posterior and aspects of it might behave differently
especially in high-dimensional problems
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Bayesian method in sparsity context ?

Objectives

Define a prior distribution Π on θ ∈ Rn which would
I be adapted to estimation of sparse vectors
I automatically adapts to the unknown sparsity level pn

Find necessary and sufficient conditions on the prior so that the preceding holds.

One would also like to simulate from the posterior distribution ...
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Succint Bibliography

Thresholding methods [Donoho & Johnstone] (90’s), ...

Penalization methods [Birgé & Massart] (90’s), [Golubev] (2000), ...

False Discovery Rate (FDR) [Abramovich et al.] (2006)

Empirical Bayes method [Johnstone & Silverman] (2004)
I Prior distribution

nO
i=1

(1− αn)δ0 + αnγ,

for some continuous distribution γ.
I Leads to some posterior depending on αn
I Estimate αn from the data : α̂n
I Plug-in α̂n into the expression of posterior expectation

Bayesian t-estimation [Abramovich et al.] (2007)

NP Empirical Bayes [W. Jiang & C.-H. Zhang] (2009)

What about a fully Bayes method ?

I. Castillo (LPMA, Paris) Bayes for sparse sequences INRA Toulouse, 14.09.2012 8 / 36



Succint Bibliography

Thresholding methods [Donoho & Johnstone] (90’s), ...

Penalization methods [Birgé & Massart] (90’s), [Golubev] (2000), ...

False Discovery Rate (FDR) [Abramovich et al.] (2006)

Empirical Bayes method [Johnstone & Silverman] (2004)
I Prior distribution

nO
i=1

(1− αn)δ0 + αnγ,

for some continuous distribution γ.
I Leads to some posterior depending on αn
I Estimate αn from the data : α̂n
I Plug-in α̂n into the expression of posterior expectation

Bayesian t-estimation [Abramovich et al.] (2007)

NP Empirical Bayes [W. Jiang & C.-H. Zhang] (2009)

What about a fully Bayes method ?

I. Castillo (LPMA, Paris) Bayes for sparse sequences INRA Toulouse, 14.09.2012 8 / 36



Prior and assumptions
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A class of sparse priors Π

Definition
1 Pick an integer k under πn(·) law on {0, . . . , n}
2 Given k pick uniformly at random S ⊂ {1, . . . , n} of cardinality k

for |S | = k, Πn(S | k) = 1/
`n
k

´
3 Given S , define θS = (θi )i∈S and θSc = (θi )i /∈S by

θS ∼ gS density on RS

θSc = 0

The resulting prior Π on θ = (θ1, . . . , θn) ∈ Rn is completely determined by

the law of the size k of the picked subset S ∼ πn(·)
the collection of densities {gS}S⊂{1,...,n}
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Sparse prior Π, examples

Example (αn-Coin-flipping prior)

k ∼ B(n, αn)

gS = g⊗|S|

m

Π ∼
nO

i=1

(1− αn)δ0 + αng

Problem How does one choose αn ??

"Bayesian Thresholding"
at level αn

Example (Bayes Coin-flipping)

α ∼ Beta(1, n)

k | α ∼ B(n, α)

gS = g⊗|S|

m

α ∼ Beta(1, n)

Π|α ∼
nO

i=1

(1− α)δ0 + αg

"Bayesian Thresholding"
with automatic threshold choice
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Sparse prior Π, examples
Remark "Bayesian Thresholding" induces a Beta-Binomial prior on dimension

which behaves like πn(k = p) ≈ e−p

Example (Many other possibilities !)

For the law πn(·)
I πn(k = p) ∝ e−p log p

I πn(k = p) ∝ e−p log n/p ...

For the continuous density gS , a possibility is g = ⊗SgS , with

I g(x) ∝ e−x2
(Gaussian)

I g(x) ∝ e−|x| (Laplace)
I g(x) ∝ (1 + x2)−1 (Cauchy) ...

Another possibility for gS is mixing densities
(i.e. gS is not a coordinatewise product)

Which ones of all these priors work ?
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Convergence rates
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Classes of sparse signals

Definition
Nearly-black class of vectors

`0[pn] = {θ ∈ Rn, #(1 ≤ i ≤ n : θi 6= 0) ≤ pn}.

Sparsity coefficient ηn = pn/n

Distance on Rn: euclidian norm ‖ · ‖2 = ‖ · ‖

‖θ − ψ‖2 =
nX

i=1

(θi − ψi )
2.

Minimax rate in `0[pn] for squared ‖ · ‖2-norm, as n→ +∞

inf
θ̂

sup
θ∈`0[pn ]

Pn,θ‖θ̂ − θ‖22 = 2pn log(n/pn)(1 + o(1)).

`q-type distances 0 < q < 2 can also be considered

dq(θ, ψ) =
nX

i=1

|θi − ψi |q.
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Classes of sparse signals

Strong and weak `r -balls r ∈ (0, 2). Let θ(1) ≥ θ(2) ≥ · · · ≥ θ(n)

`r [pn] =
n
θ ∈ Rn,

nX
i=1

|θi |r ≤ n
“pn

n

”ro
mr [pn] =

n
θ ∈ Rn, |θ(i)|r ≤

n
i

“pn

n

”r
, i = 1, . . . , n

o
.

Minimax rates for 0 < r < 2 for ‖ · ‖2-norm, with ηn = pn/n

for `r [ηn] minimax rate is ∼ nηr
n(
p

2 log η−r
n )2−r (n→ +∞)

for mr [ηn] minimax rate is ∼ 2
2−r Rn(`r [ηn]) (n→ +∞)
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Assumptions (P) on the prior Π

Our prior Π is defined by specifying

The discrete law πn(k = ·) of k = number of coefficients chosen

The continuous law gS on the chosen subspace RS

Assumption (P)
We assume that gS is positive, gS(θ) = e−hS (θ) and

does not have too light tails in that

log gS(θ)− log gS(θ′) . |S |+
p
|S |‖θ − θ′‖, ∀S , ∀θ, θ′ ∈ RS ,

has some approximate subspace compatibility in the sense˛̨
log gS(θ)− log gS′(πS′θ)

˛̨
. |S |+

p
|S |‖πS−S′θ‖, ∀S ′ ⊂ S ,∀θ ∈ RS ,

with πSθ = θS = (θi : i ∈ S).
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Rate theorem I

Theorem
Assume the prior satisfies (P) then for any n ≥ 1 and any r > 1,

sup
θ0∈`0[pn ]

Pn,θ0Πn
`
θ : ‖θ − θ0‖ > 10r |X (n)´ ≤ e−r2/9`Cn(r , πn, pn) + 1

´
.

Cn(r ;πn, pn) = κecpn

Pn
p=1

“
πn(p)

`n
p

´`
1 ∨ r2/p

´p/2”1/2

„Pn
p=pn

(n−pn
p−pn)
(n
p)

πn(p)(dr2/p)p/2

«1/2 ,
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Rate theorem I, asymptotics

Denote r∗n
2 = pn log(n/pn)

Corollary
Assume {gS}S satisfies (P) and πn satisfies

nX
p=1

vuutπn(p)

 
n
p

!
Cp

1 ≤ eC2r∗n
2

πn(pn) ≥ e−C3r∗n
2

Then for M large enough, as n→ +∞.

sup
θ0∈`0[pn ]

Pn,θ0Π(‖θ − θ0‖ > Mr∗n |X (n))→ 0
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Examples of application

The following choices lead to the optimal rate on `0[pn]

For the prior πn(k = ·) a natural choice is

I πn(k = p) =
`n
p

´−1

I or πn(k = p) = e−p log(nc/p) for some c > 0.

For the continuous part gS , product priors g⊗S with g = e−h and
I |h(x)− h(y)| . 1 + |x − y | ∀x , y ∈ R

For instance, as soon as
I the tails of g are at least as heavy as Laplace

then conditions (P) holds.
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Mixing priors

Example
1 few mixing

g|S|(θ) = a|S|
e−‖θS‖1

1 + ‖θS‖22
satisfies (P)

2 rotationally symmetric priors
Set p = |S |. Let rp a density on R

gp(θ) =
rp
`
‖θ‖
´

pvp‖θ‖p−1 ,

The Gamma(p, 1)-density rp leads to

gp(θ) =
e−‖θ‖Γ(p/2 + 1)

πp/2Γ(p + 1)
, satisfies (P) with extra log p
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Aspects of posterior under complexity prior

θ̂PM =
R
θdΠn(θ|X (n)) posterior mean

m(X (n)) posterior coordinatewise median

Corollary
Assume {gS}S satisfies (P) and πn satisfies πn(p) . e−ap log(bn/p) for large constants a, b.
Then it holds, as n→ +∞, with r∗n = pn log(n/pn),

sup
θ0∈`0[pn ]

Pn,θ0

‚‚‚θ̂PM − θ0
‚‚‚2

. r∗n
2

sup
θ0∈`0[pn ]

Pn,θ0

‚‚‚m(X (n))− θ0
‚‚‚2

. r∗n
2
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Rate Theorem II

Can we go beyond πn(k) = exp(−k log(n/k)) ?

Yes if slightly more stringent conditions on the mixing of gS ...

Case of product gS = g ⊗ . . .⊗ g

Definition
Sθ = {i , θi 6= 0} support of θ ∈ `0[pn]. Denote S0 = Sθ0

{1, . . . , n} = S0 ∪ Sc
0

πn,k prior on dimensions induced on Sc
0 , given that |Sθ ∩ S0| = k

νk :=
n−kX
p=0

pπn,k(p)
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Rate Theorem II

Condition (M)
Assume πn is such that for some d < 1, for any p > Cpn (C > 1),

πn(p) ≤ dπn(p − 1)

("exponentially decreasing")

Lemma (Dimension reduction)
Assume condition (M). Then for large enough C, as n→ +∞,

Pn,θ0Πn(θ : |Sθ| ≥ Cpn|X )→ 0.
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Rate Theorem II

Theorem
Assume the prior satisfies (P)+(M) and that gS = ⊗Sg. Set r∗n = pn log(n/pn). Then
for M large enough, as n→ +∞,

sup
θ0∈`0[pn ]

Pn,θ0Πn(θ : ‖θ − θ0‖ > Mr∗n |X )→ 0.

Idea of the proof

Small k’s : argue as in Theorem 1

Large k : use Lemma 1 to get Πn(k > Cpn|X )→ 0

Remark. Can be extended to mixing priors up to extra condition on marginals of gS .
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Rate Theorem II

Theorem
Assume the prior satisfies (P)+(M) and that gS = ⊗Sg. Set r∗n = pn log(n/pn). Then
for M large enough, as n→ +∞,

sup
θ0∈`0[pn ]

Pn,θ0Πn(θ : ‖θ − θ0‖ > Mr∗n |X )→ 0.

Corollary
Bayesian Hard Theresholding defined by

α ∼ Beta(1, n) and Π|α ∼
nO

i=1

(1− α)δ0 + αg

with g the Laplace density (for instance) is rate optimal

Indeed, the induced πn verifies πn(p) ∝
`2n−p

n

´
and

`2n−p
n

´
≈ e−p/2. Satisfies (M)
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Lower bounds

Theorem
Take gS = g⊗S with g(y) ∝ e−|y|

α

and πn(pn) ≥ e−cpn log(n/pn).

if α ≥ 2 and ‖θn
0‖ → ∞ fast enough, then for small universal η > 0,

Pn,θn0 Πn
`
θ : ‖θ − θn

0‖ ≤ η‖θn
0‖ |X n)→ 0.

if 1 < α < 2 set ρn
0,α =

“
‖θn0‖

α
α

‖θn0‖
2
2
∧ 1
”
‖θn

0‖αp
1
2−

1
α

n . If ρn
0,α →∞ fast enough

Pn,θn0 Πn
`
θ : ‖θ − θn

0‖ ≤ ηρn
0,α|X n)→ 0,

for η > 0 small enough

Consequence Tails of g should be as least as heavy as Laplace.

Example
Taking g = ϕ standard Gaussian is suboptimal. Tails are too light.
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The mean/median phenomenon, a surprise ?

Consider estimation of θ ∈ `0[pn] for the dq-distance, for some 0 < q < 2.

dq(θ, ψ) =
nX

i=1

|θi − ψi |q.

Minimax risk r∗n,q := inf θ̂ supθ∈`0[pn ] Pn,θdq(θ̂, θ) = O(pn logq/2(n/pn))

Johnstone-Silverman (04) show that

Their posterior median plug-in θ̂med (α̂n) converges at rate r∗n,q, any 0 < q < 2

Their posterior mean plug-in θ̂mean(α̂n) has suboptimal rate if q < 1.

Even taking the “oracle" level αn = αoracle
n = pn/n, one can check that

θ̂mean(αoracle
n ) converges at suboptimal rate for any q < 1
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The mean/median phenomenon, a surprise ?

Theorem
Under the conditions of Rate Theorem II, the posterior measure does converge at
optimal rate r∗n,q, any 0 < q < 2

Pn,θn0 Π(θ : dq(θ, θ0) > Mr∗n,q|X )→ 0

In particular, applying the result for instance to the oracle estimator θ̂mean(αoracle
n ),

Its posterior measure converges at optimal rate r∗n,q over `0[pn]. ≤ pn logq/2(n/pn)

Its posterior mean converges at suboptimal rate, any q < 1 ≥ n(pn/n)q

Posterior measure and posterior mean
have fairly different behaviors in this case

I. Castillo (LPMA, Paris) Bayes for sparse sequences INRA Toulouse, 14.09.2012 27 / 36



Algorithm
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Algorithm

The posterior probability Πn(B|X (n)) of a Borel set B is

nX
p=0

πn(p)

 
n
p

!−1 X
|S|=p

Y
i /∈S

φ(Xi )

Z
(θS ,0)∈B

Y
i∈S

φ(Xi − θi ) gS(θS)
Y
i∈S

dθi

nX
p=0

πn(p)

 
n
p

!−1 X
|S|=p

Y
i /∈S

φ(Xi )

Z Y
i∈S

φ(Xi − θi ) gS(θS)
Y
i∈S

dθi

.

The posterior mean is the vector

θ̂PM =

„Z
θ1dΠn(θ|X (n)), . . . ,

Z
θndΠn(θ|X (n))

«
At first sight, the number of computations is of the order of 2n ...
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Algorithm

Assume gS is of the product form g⊗S . Then

θ̂PM
1 =

nX
p=0

πn(Sp)ζ(X1)
X

|S|=p, 1∈S

Y
i /∈S, i 6=1

φ(Xi )
Y

i∈S, i 6=1

ψ(Xi )

nX
p=0

πn(Sp)
X
|S|=p

Y
i /∈S

φ(Xi )
Y
i∈S

ψ(Xi )

,

with

πn(Sp) = πn(p)
`n
p

´−1 prior mass of any model of size p

ψ(Xi ) =
R
φ(Xi − θi ) g(θi ) dθi

ζ(X1) =
R
θ1φ(X1 − θ1)g(θ1)dθ1
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Algorithm

Remark that X
|S|=p

Y
i /∈S

φ(Xi )
Y
i∈S

ψ(Xi )

is nothing but the coefficient in front of Zp in the polynomial

nY
i=1

(φ(Xi ) + ψ(Xi )Z)

and, similarly, X
|S|=p, 1∈S

Y
i /∈S, i 6=1

φ(Xi )
Y

i∈S, i 6=1

ψ(Xi )

is the coefficient in front of Zp in the polynomial

nY
i=2

(φ(Xi ) + ψ(Xi )Z)
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Simulations

It is thus possible to

Compute explicitly the posterior (mean)

by just computing the product of polynomials

nY
i=1

(φ(Xi ) + ψ(Xi )Z)

assuming that gS is of product form (and πn(S) only depend on |S |)
Remark The posterior is not of product form in general.

Simulation results For not too large n’s, (n . 800), one can easily implement the
method. The resulting estimator θ̂PM

is significantly better than Hard Thresholding

is competitive with EBayesThresh algorithm
from J-S 04 using Empirical Bayes
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Posterior mean n = 250, pn = 40, A = 3
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Posterior coordinatewise-median n = 250, pn = 40, A = 3
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High dimensional linear model

[Work in progress with Johannes Schmidt-Hieber & Aad van der Vaart]

Let θ ∈ RM , X ∈ Rn×M , M � n

Y = Xθ + ε, with ε ∼ N (0, In)

Sparsity Suppose θ has at most sn � n nonzero coefficients

Prior

πM(k) = e−ak log(M/k) complexity-type prior on dimension

gS = ⊗g , with g Laplace, otherwise Dirac mass at 0

Concentration for θ under compatibility condition on X

sup
θ0∈`0[sn ]

Pn,θ0Π(‖θ − θ0‖2 > Msn log(M/sn)|Y )→ 0.

Prediction result without compatibility with mild growth condition on θ
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Conclusion

We propose a general Bayes method for the study of sparse sequences

We have identified

some sufficient conditions for optimal convergence (upper bounds)

some necessary conditions for optimality (lower bounds)

The method

is flexible : lot of priors are optimal or nearly optimal

allows non-independent priors

can be implemented for some functionals of the posterior measure (more work
needed for very large n’s ...)
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