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Introduction
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Sparse sequences

Example (Sparse sequences)

Xi =6 +e¢i, i=1,...,n

© 6=(01,...,00) ER"
@ ¢; i.i.d. Gaussian N(0,1)
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Sparse sequences

Example (Sparse sequences) Example (High—dim. linear model)
Xi =6 +e¢i, i=1,...,n Y =X0+¢
@ 0= (01,...,0,) ER" @0ecRY XeR™M M>n
@ ¢; i.i.d. Gaussian N(0,1) @ &~ N(0,/n)

Sparsity assumption. Assume the vector 6 is sparse in that
"only a small number of coordinates of 0 are significant"

For instance, only at most p, coefficients of 6 are nonzero.

Objective. Estimate 6 under sparsity assumption.
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Example of data n = 100
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Example of data n = 100,

Thresholding
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Example of data n = 100,

Oracle thresholding
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Example of data n = 100,

Original data

(pn =19)
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Bayes framework

Observations. X" = (Xu,...,X,) independent (but non i.d.)
Parameter space © = R, law dP{" = p{" (X(M)d.Z(" with, here,

n
Py (s xn) = [ [ 6(x = )
i-1
Bayesian framework. Prior I on 6 € R".
This measure is updated with the data X",
The posterior given X" is the conditional distribution (-] X(™).
Bayes formula. For any measurable B,

_ [P (X\")dn(0)

(n)
e I PP (X)dr(0)

Posterior converges at rate (at least) £, — 0 for distance d if

Ponol(n : d(n,70) > €al X)) — 0.

n—+oo
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Posterior distribution and aspects of it

Object of interest the posterior distribution M[- | X("]

Simulation Sampling from the posterior | (e.g. via a MCMC method, or any method)
Repeated sampling from the posterior gives an idea of "spread"
Can suggest Credible regions
Aspects of the posterior [ |X(")]
@ Posterior mean [ 0dT(0] X))
@ Posterior (coordinatewise)-median

@ Posterior mode, etc.

Remark Posterior and aspects of it might behave differently
especially in high-dimensional problems
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Bayesian method in sparsity context ?

Objectives
@ Define a prior distribution N on 8 € R" which would

» be adapted to estimation of sparse vectors
» automatically adapts to the unknown sparsity level p,

@ Find necessary and sufficient conditions on the prior so that the preceding holds.

@ One would also like to simulate from the posterior distribution ...
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Succint Bibliography

@ Thresholding methods [Donoho & Johnstone] (90's), ...

@ Penalization methods [Birgé & Massart] (90's), [Golubev] (2000), ...
@ False Discovery Rate (FDR) [Abramovich et al.] (2006)

@ Empirical Bayes method [Johnstone & Silverman] (2004)

» Prior distribution
n

®(1 - a")(so + Xn7,

i=1
for some continuous distribution ~.
» Leads to some posterior depending on «p
> Estimate an from the data :  &n
> Plug-in &, into the expression of posterior expectation

@ Bayesian t-estimation [Abramovich et al.] (2007)
@ NP Empirical Bayes [W. Jiang & C.-H. Zhang] (2009)
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Succint Bibliography

@ Thresholding methods [Donoho & Johnstone] (90's), ...

@ Penalization methods [Birgé & Massart] (90's), [Golubev] (2000), ...
@ False Discovery Rate (FDR) [Abramovich et al.] (2006)

@ Empirical Bayes method [Johnstone & Silverman] (2004)

» Prior distribution
n

®(1 - a")(so + Xn7,

i=1
for some continuous distribution ~.
» Leads to some posterior depending on «p
> Estimate an from the data :  &n
> Plug-in &, into the expression of posterior expectation

@ Bayesian t-estimation [Abramovich et al.] (2007)
@ NP Empirical Bayes [W. Jiang & C.-H. Zhang] (2009)

What about a fully Bayes method ? J
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Prior and assumptions
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A class of sparse priors [1

© Pick an integer k under 7,(:) law on {0, ..., n}

@ Given k pick uniformly at random S C {1,..., n} of cardinality k
for |S| = k, Ma(S|k)=1/(})

© Given S, define s = (0;)ics and Ose = (6;)i¢s by

0s ~ gs density on R®
fsec = 0

The resulting prior M on 6 = (04,...,0,) € R" is completely determined by
@ the law of the size k of the picked subset S ~ m,(+)

@ the collection of densities {gs}scq1,...,n}
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Sparse prior 1, examples

Exam ple (a,,—Coin—fIipping prior)

k ~ 2B(n,on)

S
gs = g°°

)

M~ ®(1 — an)do + ang

i=1

Problem How does one choose «, 77
v

"Bayesian Thresholding"
at level ap,
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Sparse prior 1, examples

Example ((;x,,—Coin—fIipping prior) Example (Bayes Coin-flipping)

a ~ Beta(1,n)
s~ o) kKla ~ B(na)
_ els|
gs g gs = goS
@ i
M~ ®(1 — an)do + ang

= o ~ Beta(l,n)

Mo ~ ®(1—a)6o—|—ag
i=1

Problem How does one choose o, 7?7
v

"Bayesian Thresholding"

"Bayesian Thresholding"
at level ap,

with automatic threshold choice
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Sparse prior 1, examples

Remark "Bayesian Thresholding" induces a Beta-Binomial prior on dimension
which behaves like mn(k = p) = e~ *
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Sparse prior 1, examples

"Bayesian Thresholding" induces a Beta-Binomial prior on dimension
which behaves like mn(k = p) = e~ *

Example (Many other possibilities !)

@ For the law 7p(+)
» ma(k = p) oc e PloEP
> mn(k =p) oc e7Plogn/P
@ For the continuous density gs, a possibility is g = ®sgs, with

> g(x) x e (Gaussian)
> g(x) < e I (Laplace)
» g(x) o< (1 +x?)~! (Cauchy) ...

@ Another possibility for gs is mixing densities
(i.e. gs is not a coordinatewise product)

Which ones of all these priors work ?J
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Convergence rates
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Classes of sparse signals

Definition

Nearly-black class of vectors

lo[pn] = {0 €R", #(1 < i< n:0; #0) < pn}.

Sparsity coefficient n = pn/n

Distance on R": euclidian norm || - |2 = - ||
16 —w* =D (6 — i)™
i=1
Minimax rate in £o[ps] for squared || - ||2-norm, as n — 400
inf sup Pall0— 013 = 2pa log(n/p)(1 + o(1)).
0 0€lo[pn]

L4-type distances 0 < g < 2 can also be considered
da(0,%) = > 10; — il .
i=1
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Classes of sparse signals

Strong and weak {,-balls r € (0,2). Let (1) > 02y > --- > 0

o) = {oer Sl <a(?))
i=1

mlpal = {0€R" ool <2 (B), i=1.n}
i\n
Minimax rates for 0 < r < 2 for || - ||2-norm, with n, = pn/n
@ for £,[n,] minimax rate is  ~ nni(v/2logn, ")* " (n — 400)
@ for m,[n,] minimax rate is ~ 22rR,,(€,[I],,]) (n — +00)
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Assumptions (P) on the prior I

Our prior I is defined by specifying
@ The discrete law mn(k = -) of k = number of coefficients chosen

@ The continuous law gs on the chosen subspace R®

Assumption (P)
We assume that gs is positive, gs(#) = e "s() and

@ does not have too light tails in that
log g5(0) — log gs(6') < 1S +/ISII0 — ¢/l ¥S5,v0,0' € R,
@ has some approximate subspace compatibility in the sense
|log gs(0) — log g5/ (ms:0)| < |S| + V/|S|lI7s—s0l, VS’ C S,¥0 € R®,

with 750 = 0s = (0,‘ i E S)
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Rate theorem |

Assume the prior satisfies (P) then for any n > 1 and any r > 1,

sup  PagoMa(6: 16 — 90||>1or|x">)<e-' /9(Ca(ry mny pn) +1).

0o €Lo[pn]

Spa (mele) (1 v 29)") "
T”(p)(drz/p)p,,g) 1/2
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Rate theorem |, asymptotics

Denote ri* = p, log(n/pn)

Corollary

Assume {gs}s satisfies (P) and 7, satisfies

%2
Corp,

IA
o

; 7Tn(p)<p>C{°
mn(pn) > e

*2
—GCsry

Then for M large enough, as n — +oo.

sup  Pno,N(]|0 — Oo|| > Mr,;| X(")) — 0
00€Lo[pn]
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Examples of application

The following choices lead to the optimal rate on £o[pn]
@ For the prior 7,(k = -) a natural choice is

-1
> or ma(k = p) = e P1°8("</P) for some ¢ > 0.

@ For the continuous part gs, product priors g®° with g = e~ and
> [h(x) = h(y)| S1+|x—y[ Vx,y €R
For instance, as soon as
» the tails of g are at least as heavy as Laplace
then conditions (P) holds.
INRA Toulouse, 14.09.2012 19 / 36
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Mixing priors

@ few mixing

e~ 10sllx .
8is|(8) = ajs) m satisfies (P)

@ rotationally symmetric priors
Set p =|S|. Let rp a density on R

o (I161])

9) = Pi’
&) = ol
The Gamma(p, 1)-density r, leads to

e 19T (p/2 + 1)

gn(0) = T (pt 1) satisfies (P) with extra logp
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Aspects of posterior under complexity prior

e 6PM — f&dl’l,,(@\X(")) posterior mean

e m(X™) posterior coordinatewise median

Corollary

Assume {gs}s satisfies (P) and 7, satisfies 7n(p) < e 2P'°€(b"/P) for |arge constants a, b.
Then it holds, as n — +oo, with r;y = pnlog(n/pn),

~ 2
T )
0o €Lo[pn]
2
sup  Pngo||m(X™) — QOH < r?
0o € Lo [pn]
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Rate Theorem Il

Can we go beyond 7,(k) = exp(—k log(n/k)) ? J
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Rate Theorem Il

Can we go beyond 7,(k) = exp(—k log(n/k)) ? J

Yes if slightly more stringent conditions on the mixing of gs ...

Case of product gs =g ®...® g

@ Sop = {i, 0; # 0} support of 6 € lo[pn]. Denote Sp = Sy,

{1,...,!1}:50U56:

@ 7,k prior on dimensions induced on Sg, given that |Sp N So| = k

n—k
vic =Y _ pak(p)
p=0
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Rate Theorem Il

Condition (M)

Assume T, is such that for some d < 1, for any p > Cp, (C > 1),

mn(p) < dma(p — 1)

("exponentially decreasing")

Lemma (Dimension reduction)

Assume condition (M). Then for large enough C, as n — o0,

PadoMa(6: Ss] > Cpn| X) = 0.
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Rate Theorem Il

Assume the prior satisfies (P)+(M) and that gs = ®sg. Set r; = pnlog(n/pn). Then
for M large enough, as n — +oo,

sup  PnooMn(0: ||0 — 60| > Mr;| X) — 0.
QOEZO[PH]

Idea of the proof
@ Small k's : argue as in Theorem 1
@ Large k : use Lemma 1 to get My(k > Cpy| X) — 0

Remark. Can be extended to mixing priors up to extra condition on marginals of gs.
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Rate Theorem Il

Assume the prior satisfies (P)+(M) and that gs = ®sg. Set r;y = pnlog(n/pn). Then
for M large enough, as n — +oo,

sup  PnooMn(0: |0 — 60| > Mr;| X) — 0.

0o €Lo[pn]

Bayesian Hard Theresholding defined by

a ~ Beta(l,n) and Mja~ ®(1 —a)do + ag

i=1

with g the Laplace density (for instance) is rate optimal

Indeed, the induced 7, verifies m,(p) o< (2”;”) and (2”;") ~ e"P/2. Satisfies (M)
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Lower bounds

Take gs = g®° with g(y) o< e 1" and 7,(p,) > e Pnoeln/pn).

° and ||0g|| — oo fast enough, then for small universal n > 0,
ProgMn (0 : 110 — 06| < nll6g|| | X") — o.
RE 11
° set /—)’07.(3{ - ( “{:)?1““; A 1) HQSH'IPF? *. /fpg,a — faSt enough
0ll2

ProgMa(0: 110 — 65| < npg.a| X") — O,
for n > 0 small enough

Consequence Tails of g should be as least as heavy as Laplace.

Taking g = ¢ standard Gaussian is suboptimal. Tails are too light.
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The mean/median phenomenon, a surprise 7

Consider estimation of 6 € £o[pn] for the dg-distance, for some 0 < g < 2.
da(0,9) = > 10 — vil”.
i-1

Minimax risk ry ¢ := infg supge g o] Pr.odq(6,60) = O(pnlog??(n/ps))
Johnstone-Silverman (04) show that
@ Their posterior median plug-in 6™ n) converges at rate r, 5, any 0 < g < 2

(4
@ Their posterior mean plug-in émea"(&n) has suboptimal rate if g < 1.

Even taking the “oracle" level o, = agoracle — pn/n, one can check that

° 9mea"(az'ac’e) converges at suboptimal rate for any g < 1

I. Castillo (LPMA, Paris) Bayes for sparse sequences INRA Toulouse, 14.09.2012
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edian phenomenon, a surprise ?

Under the conditions of Rate Theorem I, the posterior measure does converge at
optimal rate r, ;, any 0 < q < 2

PronT(0 = dg(6,600) > Mr, 4| X) — 0

In particular, applying the result for instance to the oracle estimator émea"(az’ade),

@ lts posterior measure converges at optimal rate r; , over fo[pn]. < p» log?/2(n/pn)
@ Its posterior mean converges at suboptimal rate, any g < 1 > n(pn/n)?
Posterior measure and posterior mean
have fairly different behaviors in this case
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Algorithm
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The posterior probability M,(B| X(™) of a Borel set B is

S role) (p) > TTewo | - ) gs(0) [ o0

p=0 \5\ pigs (0s.00€ ies
- n
7n(p) <P> Z Hd) /H() ) gs(0s) Hd()
p=0 |S|=pi¢S

The posterior mean is the vector

gFM — </91d|'|,,(9\X(”)),...,/9,,d|'|,,(0|X("))>

At first sight, the number of computations is of the order of 2" ...
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Assume gs is of the product form g®°. Then

n

Sr(saca) Y TT 600 [T w00
éPM p=0 |S|=p,1€Si¢S, i#1 i€S,i#1
1 n )

o) 2 TTex] Lo

IS|=pi¢s

»I

T
I
o

with
° ﬁ,,(Sp) = mn(p) (2)71 prior mass of any model of size p
— [ 6(X — 0;) g(6:) dos
e (( X1 = [01(X1 — 01)g(61)d06:

I. Castillo (LPMA, Paris) Bayes for sparse sequences INRA Toulouse, 14.09.2012 ECWAED



Remark that

S TTeoa] [ eex

|S|=pi¢S ies
is nothing but the coefficient in front of Z” in the polynomial

H(¢ ) + (X)) Z)

and, similarly,

S I ¢x) H p(Xi)

|S|=p,1€S i¢S,i#1 €S,i#1

is the coefficient in front of Z” in the polynomial

[T(e(x) + (X)) 2)

i=2
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Simulations

It is thus possible to
@ Compute explicitly the posterior (mean)
@ by just computing the product of polynomials

n

[T(e(x) +w(x1)2)
i=1
@ assuming that gs is of product form (and 7,(S) only depend on |S|)

Remark The posterior is not of product form in general.

Simulation results For not too large n's, (n < 800), one can easily implement the
method. The resulting estimator 67V

@ is significantly better than Hard Thresholding

@ is competitive with EBayesThresh algorithm
from J-S 04 using Empirical Bayes
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Posterior mean n = 250, p, =40, A=3

1in
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I
w

Posterior coordinatewise-median n = 250, p, = 40, A

c(theta)

c(1:n)

I. Castillo (LPMA, Paris) Bayes for sparse sequences INRA Toulouse, 14.09.2012 34 / 36



High dimensional linear model

[Work in progress with Johannes Schmidt-Hieber & Aad van der Vaart]

Letd € RY, X eR™M, M>n

Y =X0+¢, withe~N(0,)
Sparsity Suppose 6 has at most s, < n nonzero coefficients
Prior

o my(k) =e" log(M/k) complexity-type prior on dimension

@ gs = ®g, with g Laplace, otherwise Dirac mass at 0
Concentration for 6 under compatibility condition on X

sup  PnooM(||0 — 60| > Ms, log(M/s,)| Y) — 0.
00 €E€Lo[sn]

Prediction result without compatibility with mild growth condition on 6
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Conclusion

We propose a general Bayes method for the study of sparse sequences

We have identified
@ some sufficient conditions for optimal convergence (upper bounds)
@ some necessary conditions for optimality (lower bounds)
The method
@ is flexible : lot of priors are optimal or nearly optimal
@ allows non-independent priors

@ can be implemented for some functionals of the posterior measure (more work
needed for very large n's ...)
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