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What's happening in Biological Data Analysis?
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Challenges for those of us working from the ground
up

v

Heterogeneity.

v

Heteroscedasticity.

v

Structured high-dimensionality.

v

Graph or Tree integration.

v

Validations, all tests significant.

v

Reproducibility.
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Heterogeneity of Data

Status : response/ explanatory.
Hidden (latent)/measured.
Types :

» Continuous
Binary, categorical
Graphs/ Trees
Images
Maps/ Spatial Information
Rankings

vV vy vy VvVYyy

Amounts of dependency: independent/time series/spatial.

Different technologies used (454, phyloseq, Illuminag,
MassSpec, RNA-seq).



Microbiome and other useful “ome'words
Joshua Lederberg:*the ecological community of commensal,
symbiotic, and pathogenic microorganisms that literally share
our body space and have been all but ignored as
determinants of health and disease’

Microbiome Complete collection of genes contained in the
genomes of microbes living in a given
environment.

Numbers Humans shelter 100 trillion microbes (10'), (we
are made of 10 x10'2 cells)
It is estimated that there are more than 1000
“species' of bacteria living in the human gut.

Metagenome Composition of all genes present in an
environment (soil, gut, seawater), regardless of
species.

Transciptome These are the mRNA transcripts in the cell, it
reflects the genes that are being actively
expressed at any given time.



Bacteria etc... and Us

The human microbiome or human microbiota is the
assemblage of microorganisms that reside on the surface and
in deep layers of skin, in the saliva and oral mucosa, in the
conjunctiva, and in the gastrointestinal tracts.

» They include bacteria, fungi, and archaea.

» Some of these organisms perform tasks that are useful
for the human host. (live in symbiosis)

» Majority have no known beneficial or harmful effect.
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Human Microbiome: What are the data?

DNA The Genomic material present (16sRNA-gene
especially).

RNA What genes are being turned on (gene
expression), transcriptomics.

Mass Spec Specific signatures of chemical compounds
present.

Clinical Multivariate information about patients' clinical
status, medication, weight.

Environmental Location, nutrition, time.

Domain Knowledge Metabolic networks, phylogenetic trees,
gene ontologies.



Heterogeneous Data Objects

Input and data manipulation with phyloseq
(McMurdie and Holmes, 2013, Plos ONE)
As always in R: object oriented data:

( matrix > ( data.frame > ( matrix >
i Sample Variables i

sampleData
OTU Abundance slots: .Data,
class: otuTable names,
slots: .Data,

Phylogenetic Tree
class: phylo
slots: see ape

Taxonomy Table
taxonomyTable

Component data objects:

phyloseq
slots:
otuTable
sampleData
taxTab

tre

Experiment-level data object:




Questions from many Disciplines

Biomedical sciences Clinical variables, immune history.
Genetics Host and bacterial genomes and transcriptomes.
Bioinformatics Databases and formats.

Biochemistry Compounds, Metabolic pathways involved.
Ecology Ordination, diversity, environmental influences.

Statistics Decompositions of variability, spatio-temperal
analyses, normalizations.

Systematic Biology Phylogenetic Trees, dynamics of evolution.

Network science Microbial communities, gene interactions,
metabolic pathways,...

Visualization Dimension reduction, rich representations.

Mathematics Metric Geometry, multilinear algebra,
probability, topology.



S

Extract DNA
Measure sample properties

sequencer

Parallel sequencing
mixture of barcoded DNA
Barcoded PCR or (amplicon or shotgun)

O ligate barcode to DNA fragments

variables

import

inference

samples
OTUs

validation
graphics

phyloseqBase

sample data
phyloseq

samples

DPOCFGS

oTuU
table

Cluster OTUs

mothur
QIIME
pyrotagger
RDP Pipeline
phylOTU
CLoVR-16S
Galaxy
Genboree
MG-RAST

Taxonomy Phylogenetic

table

Tree

local /
machi
image

cloud
SaaS

2



Useful first order representation: Many Matrices

-

» Time series of abundance matrices.

v

Different types of data on same samples (taxa counts,
clinical variates, spatial location).

v

Networks and trees over time.

v

Explanatory (environmental) variables, Response variables.
Holmes (2005), Duality Diagrams.



Getting Started: Data from giime

Rectangular data + Side Information.

» with a number of taxa or species (often as rows of the
table).

» with a certain number of samples/patients recorded as
columns of the tfable.

» Phylogenetic/family relationships between the rows of
the table.

» Extra clinical/environmental information about the
samples.



Import

Input

OTU cluster output

Preprocessing

filter_taxa N\
filterfun_sample
genefilter_ sample
prune_taxa
prune_samples
subset_taxa
subset_samples
transform sample_counts /

import_biom
import_mothur
import_pyrotagger
import_giime
import_ RDP

—

Summary / Exploratory
Graphics

plot_heatmap

plot_network

phyloseq

raw

phyloseq

processed

o) — oo ) —

plot_ordination

Direct Plots

plot_richness_estimates

plot_tree

plot_taxa bar

\ Inference, Testing

bootstrap
permutation tests
regression
discriminant analysis

multiple testing
gap statistic
clustering

procrustes @
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How to deal with different numbers of reads?

rarefaction curves

Sanders 1968
non-parametric richness
estimate coverage
Normalize?

Speces

Sanders, H. L. (1968). Marine
benthic diversity: a comparative 0 % 100 1% 200
study. American Naturalist Sample Sze



Current Method: Rarefying

Ad hoc library size normalization by random subsampling
without replacement.

1. Select a minimum library size, N min. This has also been
called the rarefaction level though we will not use the
term here.

2. Discard libraries (microbiome samples) that have fewer
reads than Ni min.

3. Subsample the remaining libraries without replacement
such that they all have size Ni_ min.

Often N min is chosen to be equal fo the size of the smallest
library that is not considered defective, and the process of
identifying defective samples comes with a risk of
subjectivity and bias. In many cases researchers have also
failed to repeat the random subsampling step (3) or record
the pseudorandom number generation seed/process --- both
of which are essential for reproducibility.



Aim of the studies: Differential Abundance

Like differentially expressed genes, a species/OTU is
considered differentially abundant if its mean proportion is
significantly different between two or more sample classes in
the experimental design.



Rarefaction is Inadmissible

Unfortunately, rarefying biological count data is unjustified
despite its current ubiquity in microbiome analyses.

The following is a minimal example to explain why rarefying is
statistically inadmissible, especially with regards to variance
stabilization.

Suppose we want to compare two different samples, called A
and B, comprised of 100 and 1000 reads, respectively. In
these hypothetical communities only two types of microbes
have been observed, OTUl and OTU2



According to Table 1, Left.

Table : A minimal example of the effect of rarefying on power.

Original Abundance

Rarefied Abundance

A B

A B

OTuUl 62 500
oTuZz 38 500

OTuUl 62 50
OoTuUZ 38 50

Total 100 1000

100 100

Standard Tests for Difference

P-value %

Prop  Fisher

Original 0.0290
Rarefied  0.1171

0.0290 0.0272
0.1171  0.1169

Hypothetical abundance data in its original (Top-Left) and rarefied
(Top-Right) form, with corresponding formal test results for differentiation

(Bottom).



Formally comparing the two proportions according to a
standard test is done either using a x? test (equivalent to a
two sample proportion test here) or a Fisher exact test. By
rarefying (Table 1, top-right) so that both samples have the
same number of counts, we are no longer able to
differentiate between them.

This loss of power is completely attributable fo reducing the
size of B by a factor of 10, which also increases the
confidence intervals corresponding to each proportion such
that they are no longer distinguishable from those in A, even
though they are distinguishable in the original data.

The variance of the proportion's estimate p is multiplied by 10
when the fotal count is divided by 10.



Equalization of variances

In this binomial example the variance of the proportion
estimate is Var(X) = B = 3g(X), a function of the mean.
This is a common occurrence and one that is traditionally
dealt with in statistics by applying variance-stabilizing
transformations.

However, in order to find the right transformation, we need a

good model for the error.



Two parameterizations of the negative binomial

In classical probability, the negative binomial is often
introduced as the distribution of the number of successes in
a sequence of Bernoulli trials with probability of success p
before the number r failures occur. Thus with the two
parameters r and p, the probability distribution for the
negative binomial is given as

X ~ NB(r; p)

P(X=k) = (k+;_1)<1—p>rpk
_ I(k+r) r
= WU‘P) p*

The mean of the distribution is m = 1"% and the variance

r
Var(X) = (lf;)g.




Sometimes the distribution is given a different
parameterization which we use here. This takes as the two
parameters: the mean m and r = %m, then the probability
mass distribution is rewritten:

X ~ NB(m; 1)

PX=k) = (k+;_1> (rim)r<rr’“)k
r k
- e (Y ()

m(m+r)

The variance is Var(X) = =~ =m + mTQ, we will also use
o= % and call this the overdispersion parameter, giving
Var(X) = m+ ¢m%. When ¢ = 0 the distribution of X will be
Poisson(m). This is the (mean=m,overdispersion=¢)
parametrization we will use from now on.



Negative Binomial as a hierarchical mixture for read

counts

To address this, we take the means of the Poisson variables
to be random variables themselves having a Gamma
distribution with (hyper)parameters shape r and scale

p/(1 —p). We first generate a random mean, A, for the
Poisson from the Gamma, and then a random variable, k, from
the Poisson(\). The marginal distribution is:

i1-p
00 )\k )\r—le—)\T
P(X=k) = / Po,(k ><fy p ydA = / Z e M x I~ d)
ST WS E T
_ (d-p)r / rrk—1g-A/p
~ prkIT(r) A dA
_ (1 — p)r r+k
= oki(r ) I(r+k)
r+k)

= e P “(1—p)



Variance Stabilization

Prefer to deal with errors across samples which are
independent and identically distributed.

In particular homoscedasticity (equal variances) across all the
noise levels.

This is not the case when we have unequal sample sizes and
variations in the accuracy across instruments.

A standard way of dealing with heteroscedastic noise is to
try to decompose the sources of heterogeneity and apply
transformations that make the noise variance almost constant.
These are called variance stabilizing transformations.



Take for instance different Poisson variables with mean ;.
Their variances are all different if the y; are different.
However, if the square root transformation is applied fo each
of the variables, then the transformed variables will have
approximately constant variance. Actually if we take the

transformation x — 2,/x we obtain a variance approximately
equal fo 1.



The additive-multiplicative error

model
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Trey Ideker et al.: JCB (2000)

David Rocke and Blythe Durbin: JCB (2001), Bicinformatics (2002)

For robust affine regression normalisation: W. Huber et al. Bioinformatics (2002)
For background correction in RMA: R. Irizarry et al., Biostatistics (2003)



variance

Two component
error models

1048 =

1046

10M

1042

-2 .0 =
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1000  10M 1042 103 10

mean

Microarrays

var(u) = b + cp?

b: background

c: asymptotic coefficient of
variation

Sequencing counts
early edgeR:

var(y) = p + a-p?

M: from Poisson

a: dispersion

DESeq

var(y) = p + a(u)-p?
DESeq parametric option
a(p) = ai/p + ao &

var(y) = Y + a1y + ao-p?
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Modeling read counfts

If technical replicates have same number of reads: s;,
Poisson variation with mean ;1 = sju;.

Taxa i incidence proportion u;.

Number of reads for the sample j and taxa i would be

KiJ' ~ Poisson (sjui)



Modeling Counts

For biological replicates within the same group -- such as
treatment or control groups or the same environments -- the
proportions u; will be variable between samples.

Call the two parameters rj and % .

So that Uj; the proportion of taxa i in sample j is distributed
according to Gamma(r;, lf—‘Pi).

Kij have a Poisson-Gamma mixture of different Poisson
variables.

This gives the Negative Binomial with parameters (m = u;s;)

and ¢; as a satisfactory model of the variability.



Different Conditions

Samples belong to different conditions such as treatment and
control or different environments.

Estimate the values of the parameters separately for each of
the different biological replicate conditions/classes.

Use the index c for the different conditions, we then have
the counts for the taxa i and sample j in condition ¢ having a
Negative Binomial distribution with m¢ = u;cs; and ¢ic so that
the variance is written

UicSj + PicS] Ui 1)
Estimate the parameters uj. and ¢ic from the data for each
OTU and sample condition.
The end result provides a variance stabilizing transformation
of the data that allows a statistically efficient comparisons
between conditions.
This application of a hierarchical mixture model is very
similar to the random effects models used in the context of
analysis of variance.



Using RNA-seq implementation : DESeq2

McMurdie and Holmes (2014) “Waste Not, Want Not: Why
rarefying microbiome data is inadmissible”, to appear PLOS
Computational Biology, Methods.

Examples of Overdispersion in Microbiome Data.
Common-Scale Variance versus Mean for Microbiome Data.
Each point in each panel represents a different OTU's
mean/variance estimate for a biological replicate and study.
The data in this figure come from the Global Patterns
surveyand the Long-Term Dietary Patterns study(Right)
Variance versus mean abundance for rarefied counts. (Left)
Common-scale variances and common-scale means, estimated
according to the DESeq package. The dashed gray line
denotes the o2 = 11 case (Poisson; ¢ = 0). The cyan curve
denotes the fitted variance estimate using DESeq, with
method="pooled', sharingMode="fit-only',
fitType="local'.
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Improvement in Power and FDR

Performance of differential abundance detection with and
without rarefying summarized by “Area Under the Curve”
(AUC) metric of a Receiver Operator Curve (ROC) (vertical
axis).

Briefly, the AUC value varies from 0.5 (random) to 1.0
(perfect).

The horizontal axis indicates the effect size, shown as the
factor applied to OTU counts to simulate a differential
abundance.

Each curve traces the respective normalization methods
mean performance of that panel, with a vertical bar
indicating a standard deviation in performance across all
replicates and microbiome templates.



The right-hand side of the panel rows indicates the median
library size, N, while the darkness of line shading indicates
the number of samples per simulated experiment.

Color shade and shape indicate the normalization method.
Detection among multiple tests was defined using a False
Discovery Rate (Benjamini-Hochberg) significance threshold
of 0.05.



Number Samples per Class:

DESeq2 - nbinomWaldTest

—3—5—10

DESeq - nbinomTest

Normalization Method:

edgeR - exactTest
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Prinicipal Component Analysis: Dimension Reduction

PCA seeks to replace the original (centered) matrix X by a
matrix of lower rank, this can be solved using the singular
value decomposition of X:

X = USV', with UDU =1, and V'QV = I, and Sdiagonal

XX = US2U’, with UDU =1, and S = A

PCA is a linear nonparametric multivariate method for
dimension reduction. D and Q are the relevant metrics on the
dual row and column spaces of n samples and p variables.



Ordination for Ecology built from Distances
The Boomlake plant data:

CA Axis 2

s
o
2, 0%

S, .
°
®

20 CA Axis | 80,

Biplot representing both species and locations
Blue circles with letters are species scores
Sampling locations are green circles with numbers.
Sample 1 is actually in the lake, and sample 12 is far away.
Species are located closely to the samples they occur in. If
you looked carefully into the data matrix, you would find that
species R and Q are strictly aquatic, while species F is_a



Multidimensional Scaling (MDS) also called PCoA

Simple classical multidimensional scaling.
» Square D elementwise D(?) = Ds.
> Compute S'HDyH = B.
Diagonalize B to find the principal coordinates SV’.

v

v

Choose a number of dimensions by inspecting the
eigenvalue's screeplot.

Examples using Phyloseq: Wiki Ordinate


http://joey711.github.io/phyloseq/plot_ordination-examples.html

Part 1V

Combine and Compare 7rees,
Graphs and Contingent Data



Unifrac Distance (Lozupone and Knight, 2005)

is a distance between groups of organisms that are related to
each other by a tree.

Suppose we have the OTUs present in sample 1 (blue) and in
sample 2(red).

Question: Do the two samples differ phylogenetically?

It is defined as the ratio of the sum of the lengths of the
branches leading to members of group A or members of
group B but not both to the total branch length of the tree.

A.ldentical sequence sets:all seqs | B.Related sequence sets:seqs in red | C. Unrelated sequence sets: seqs in
in red + blue set. 100% branch have relatives in blue. ~50% red have no close relatives in blue,
length shared (purple). branch length shared. 0% branch length shared.
UniFrac score = 0. UniFrac score = 0.5, UniFrac score=1.
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Weighted Unifrac distance A modification of UniFrac,
weighted UniFrac is defined in (Lozupone et al., 2007) as

Zb

Br
1
» n = number of branches in the | 2
> b; = length of the ith branch s
» A; = number of descendants of 2
ith branch in group A —0
mOO
» At = total number of sequences 2 o)
in group A 80
o
o

(8]
or can be seen as by probabilists as the Wasserstein distance
(earth movers) [6].
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Rao's Distance

We start with a distance between individuals.

The heterogeneity of a population (H; ) is the average
distance between members of that population.

The heterogeneity between two populations (H;;) is the
average distance between a member of population i and a
member of population j.

The distance between two populations is

1
Dij = Hij — 5 (Hi + H))



Group 1 = Julia, David, John

' | Group 2 = Justin, Rachelle

Hy=0-1/3+2.2/3=4/3

!
S ©§ § § B
& 5 3 = g H2:0'1/2+2'1f2:1
& Hia=4-1
- - - 1
Julia David John Justin D]_Q — le _ _(Hl + H2J

David 2 2
John 2 2 1.4
Rachele 4 y p 2 =4- 5(5 +1)~28




Decomposition of Diversity

If we have populations 1,...,k with frequencies 71, ..., 7,
then the diversity of all the populations together is

k
Hy = ZmHi + ZZM?TJ'DU = H(w) +D(b)
i=1 i J



Double Principal Coordinate Analysis
Pavoine et al. 2004 developed a method known as DPCoA [15]
implemented in ade4 [4].
Suppose we have n species in p locations and a (euclidean)
matrix A giving the squares of the pairwise distances
between the species. Then we can

» Use the distances between species to find an embedding
in n — 1 -dimensional space such that the euclidean
distances between the species is the same as the
distances between the species defined in A.

> Place each of the p locations at the barycenter of its
species profile. The euclidean distances between the
locations will be the same as the square root of the Rao
dissimilarity between them.

» Use PCA to find a lower-dimensional representation of
the locations.

Give the species and communities coordinates such that the
inertia decomposes the same way the diversity does.



Fukuyama and Holmes, 2012.

Original description New formula Properties

square root of Rao's distance [>Zi bi(A /AT — B;/BT)z]l/2 Most sensitive to outliers, least

based on the square root of the sensitive to noise, upweights

patristic distances deep differences, gives OTU
locations

> bi |Ai /AT — B;/Br| >7i bi |Ai/AT — B;/Br]| Less sensitive to outliers/more

sensitive fo noise than DPCoA

A/AT—Bi/Br 1}

fraction of branches leading o >~; bil{m
1 1

exactly one group

Summary of the methods under consideration. “Outliers"
refers to highly abundant OTUs, and noise refers to noise in
detecting low-abundance OTUs (see the text for more detail).

Sensitive to noise, upweights
shallow differences on the tree



Antibiotic Time Course Data

Measurements of about 2500 different bacterial OTUs from
stool samples of three patients (D, E, F)

Each patient sampled ~ 50 times during the course of
treatment with ciprofloxacin (an antibiotic).

Times categorized as Pre Cp, 1st Cp, 1st WPC (week post
cipro), Interim, 2nd Cp, 2nd WPC, and Post Cp.



UniFrac
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(a) MDS of OTUs
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(b) DPCoA community plot
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(c) DPCoA OTU plot
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Verrucomicrobia

(a)

PCoA/MDS of the OTUs based on the patristic distance, (b)
community and (c) species points for DPCoA after removing

two outlying species.



Antibiotic Stress

We next want to visualize the effect of the antibiotic.
Ordinations of the communities due to DPCoA and UniFrac
with information about the whether the community was
stressed or not stressed (pre cipro, interim, and post cipro
were considered “not stressed”, while first cipro, first week
post cipro, second cipro, and second week post cipro were
considered “‘stressed").

We see that for UniFrac, the first axis seems to separate the
stressed communities from the not stressed communities.
DPCoA also seems to separate the out the stressed
communities along the first axis (in the direction associated
with Bacteroidetes), although only for subjects D and E.



Antibiotic stress
« 1:not stressed
A 2:stressed

Subject

- D

—-— E

-0.1- ~— F
_0.2_

| | | | | | |
-0.2 -01 00 01 02 03 04

Axisl

PCoA/MDS with unweighted UniFrac. The labels represent
subject plus antibiotic condition.



|
-1.0 -05 0.0 0.5
Axisl

Community points as represented by DPCoA. The labels
represent subject plus antibiotic condition.



Conclusions for Antibiotic Stress

Since UniFrac emphasizes shallow differences on the tree and
since PCoA/MDS with UniFrac seems to separate the subjects
from each other better than the other two methods, we can
conclude that the differences between subjects are mainly
shallow ones. However, DPCoA also separates the subjects
and the stressed versus non-stressed communities, and
examining the community and OTU ordinations can tell us
about the differences in the compositions of these
communities.



Community Networks: Mouse experiment

In work with David Relman and Yana Hoy, we have 6 mice
measured first during a stable “reference pre-infection' time
period and then over about 25 time points each and we
examine the bacteria in their gut using the 16sRNA gene as
an otu marker:

» Software pipeline incorporating the phylogenetic tree of
relations between the species, the abundance table and
the taxonomic ranks of the otus as well as the sample
information.

» Measure more than just the diversity or abundances of
the bacteria.

» Seek to characterize the dynamics of the bacterial
communities in the gut.



Bacterial communities

» Data are normalized counts in a species x samples
matrix.
» Two dual networks are possible:
» Connect two species if the co-occur in more than 70% of
the samples (using a Jaccard index).

» Connect two samples if they share more than 70% of the
bacterial species.



Example: Co-occurrence graph network.
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Mouse Community Data

The data are filtered and combined, for the time course data
we had:

phyloseg-class experiment-level object

otu_table() OTU Table: [410 taxa and 146 samples]
sample data()Sample Data: [146 samples by 9 sample varie
tax table() Taxonomy Table: [410 taxa by 7 taxonomic rank

phy tree() Phylogenetic Tree[410 tips and 409 internal no
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Bacteria “sharing' between mice

Using the Jaccard index that measures the co-incidence or
co-occurrence of species between mice.

Fll

Jaccard S|m|lar|fy = W
01 10 11

for + f10

Jaccard Disimilarity = N S
01 10 11

mousel

000101010000001

mouseé

10000000O0O0OO0OO0OO0OO0O1

vegdist (rbind(mousel,moused) , method="jaccard")
0.8



Bacteria “sharing' between mice as a network

netbaseline=make network(phy pifn glom)

p=plot network(netbaseline,phy pifn glom,
color="mousenames",label="mousenames",point size=7)
+geom_text (aes(label=mousenames),size=7)
ptscale_colour hue(guide="none")
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Does the network relate to “communities'?

Friedman and Rafsky (1979) devised a nonparametric test for
multivariate data using the minimum spanning tree with any
metric.

Then compute the number of “pure' edging connecting labels
from the same groups compared to the mixed edges
connecting labels from different groups, call F, the observed
statistic.

In our example: F, = 82

Keeping the graph fixed, permute the labels and recompute
the number of pure edges.

All 1000 simulated values had Fs < 82 so p < 0.001.



Co-occurrence networks for taxa of the baseline
mice

p=plot network(netbasetaxa,phy pifn glom,color="Family",
type="taxa",label=NULL)
ptgeom text(aes(label=Class),size=3)
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Improvements of Distance based clustering

Clustering accuracy in simulated two-class mixing.
Partitioning around medoids clustering accuracy (vertical
axis) that results following different normalization and
distance methods.

Points denote the mean values of replicates, with a vertical
bar representing one standard deviation above and below.
The horizontal axis is the effect size, which in this context is
the ratio of target to non-target values in the multinomials
that were used to simulate microbiome counts.

Each multinomial is derived from two microbiomes that have
negligible overlapping OTUs (Fecal and Ocean microbiomes in
the Global Patterns dataset ).

Higher values of effect size indicate an easier clustering task.
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Simulation Details Distinguish patterns of relationships
between whole microbiome samples through normalization
followed by the calculation of sample-wise distances.
Standard was to use rarefying then calculating UniFrac
distances.

In some cases, formal testing of sample covariates is also
done using a permutation MANOVA (e.g. vegan::adonis in
R) with the (squared) distances and covariates as response
and linear predictors.

Relative discriminating capability of each combination of
normalization method and distance measure.

We will use clustering results as a quantitative proxy for the
broad spectrum of approaches taken to interpret microbiome
sample distances.



Normalizations in Simulation A

For each simulated experiment we used the following
normalization methods prior to calculating sample-wise
distances.

1. DESeqVS. Variance Stabilization implemented in the
DESeq package.

2. None. Counts not transformed. Differences in total
library size could affect the values of some distance
metrics.

3. Proportion. Counts are divided by total library size.

4. Rarefy. Rarefying is performed as defined in the
introduction, using rarefy_even_depth implemented in
the phyloseq package. with N_ min set to the
15t -percentile of library sizes within each simulated
experiment.

5. UQ-logFC. The Upper-Quartile Log-Fold Change
normalization implemented in the edgeR package, coupled
with the top-MSD distance.



Distances in Simulation A

For each of the previous normalizations we calculated
sample-wise distance/dissimilarity matrices using the
following methods, if applicable.

L.

Bray-Curtis. The Bray-Curtis dissimilarity first defined in
1957 for forest ecology.

. Euclidean. The euclidean distance treating each OTU as

a dimension. \/E. 1(Ki1 —Ki2)2, is the distance between
samples 1 and 2,n the number of distinct OTUs.

. PoissonDist. Our abbreviation of PoissonDistance, a

sample-wise distance implemented in the PoiClaClu
package (Witten,2011).

. top-MSD. The mean squared difference of top OTUs, as

implemented in edgeR.

. UniFrac-u. The Unweighted UniFrac

distance (Lozupone,2005).

. UniFrac-w. The Weighted UniFrac

distance (Lozupone,2007).



In order to consistently evaluate performance in this regard,
we generated microbiome counts by sampling from two
different multinomials that were based on either the Ocean
or Feces microbiomes of the Global Patterns empirical dataset.
An equal number of simulated microbiome samples was
generated from each multinomial. The Ocean and Feces
sample classes have negligible overlapping OTUs.

Mixing them by a defined proportion allows control over the
difficulty of the clustering task from trivial (no mixing) to
impossible (both multinomials evenly mixed).

Clustering was performed independently for each combination
of simulated experiment, normalization method, and distance
measure using partitioning around medoids (PAM).

The accuracy is the fraction of simulated samples correctly
clustered; worst possible accuracy is 50% if all samples are
clustered. (Rarefying procedure omits samples, so its
accuracy can be below 50%)
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Non-reproducibility: Enterotypes Study

Enterotypes Revisited


http://rstudio-pubs-static.s3.amazonaws.com/2574_d1cd758ba04748fba1112a3ebb2b8381.html

Goals

already attained:

Ways of combining heterogeneous data: distances and
multivariate representation.

Data integration phyloseq.

Tree-table methods : unifrac and coinertia analysis.
Modeling mixtures: Variance Stabilizing transformations.
Threshold, sensitivity tests and modeling simulations.

Reproducibility: open source standards, publication of
source code and data. (phyloseq).



Benefitting from the tools and schools of
Statisticians.......

Thanks to the R community: Chessel, Jombart, Dray,
Thioulouse ade4 , Wolfgang Huber, Michael Love for tt
DESeq2 and Emmanuel Paradis for ape.

: David Relman, Alfred Spormann, Les
Dethfelsen, Justin Sonnenburg, Persi Diaconis, Elisabeth
Purdom.

Paul (Joey) McMurdie, Alex Alekseyenko
(NYU), Ben Callahan, Angela Marcobal, Serban Nacu.
: Elizabeth Purdom, Alden Timme, Katie Shelef, Yana
Hoy, John Chakerian, Julia Fukuyama, Kris Sankaran.
Funding from CIMI, Toulouse, NIH/ NIGMS RO1, NSF-VIGRE
and NSF-DMS.



phyloseq

Joey McMurdie (joey711 on github).

Available in Bioconductor.

How can I (my students) learn more?

SAMSI program
http://www-stat.stanford.edu/ susan/


http://www.samsi.info/programs/2014-15-program-beyond-bioinformatics-statistical-and-mathematical-challenges-bioinformatic
http://www-stat.stanford.edu/~{}susan/
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Other mixture models

If instead of modeling the read counts one uses the
proportions as the random variables, with differing variances
due to different library sizes, the Beta-Binomial model is the

standard approach.



Laplace Distribution
Purdom and Holmes (2005)
Error Distribution for Gene Expression Data

Statistical Applications in Genetics and Molecular Biology, Vol. 4 [2005], Iss. 1, Art. 16

B Asym. Laplace
O Normal

Figure 1: Histogram of gene expression of all genes on a single cDNA mi-
croarray from T-Cell Data (described below in Section 4.1). Corresponding
Asymmetric Laplace and Normal distribution overlayed, with parameters es-
timated using maximum likelihood estimates.



Laplace Distribution: mixture

Y can be viewed a continuous mixture of normal random
variables whose scale and mean parameters are dependent
and vary according to an exponential distribution:

Yi[Wi ~ N (6 + pWi, o*Wi)

, Where W, ~ exp(1)



Malaria Data as seen using ape
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Bootstrap of Malaria Data

Malaria Dataset (Distance)
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Eigenvalues of MDS for bootstrapped trees
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Data Analysis: Geometrical Approach

i. The data are p variables measured on n observations.

ii. X with n rows (the observations) and p columns (the
variables).

iii. Dp is an n x n matrix of weights on the “observations",
which is most often diagonal.

iv. Symmetric definite positive matrix Q,often
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Euclidean Spaces

These three matrices form the essential ““triplet" (X,Q,D)
defining a multivariate data analysis.

Q and D define geometries or inner products in RP and R",
respectively, through

x'Qy =< x,y >q X,y € RP
x'Dy =< x,y >p X,y € R".



An Operator Approach (Holmes, 2005)

» Q can be seen as a linear function from RP to
RP* = L(IRP), the space of scalar linear functions on RP.

» D can be seen as a linear function from R" to
R™ = L(R").



Properties of the Diagram

Rank of the diagram: X, X', VQ and WD all have the same
rank.

For Q and D symmetric matrices, VQ and WD are
diagonalisable and have the same eigenvalues.

M>X>A3>...2M>0>--->0.

Eigendecomposition of the diagram: VQ is Q symmetric, thus
we can find Z such that

VQzZ = ZA,Z'QZ = I,, where A =diag(A1, 2. .., Ap).  (2)
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