BLiSS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Discussion

La méthode BLiSS

(Bayesian functional Linear regression with Sparse Stepwise functions)

PAUL-MARIE GROLLEMUND

Christophe Abraham, Meïli Baragatti et Pierre Pudlo

BLISS

P-M Grollemund

Introduction Données

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Discussion

Content

Introduction

Méthode BLiSS

Application

BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Discussion

Content

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

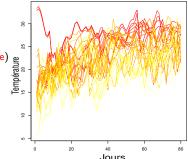
Application

Les données

Observation de n individus :

Une variable réelle $y: (y_1, \ldots, y_n)$ (nombre moyen de grain de ma $\ddot{}$ s par plante)

Une variable fonctionnelle x: $(x_1(.),...,x_n(.))$ (courbe de température)



P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Régression linéaire sur données fonctionnelles

Objectif

Expliquer une quantité réelle à partir d'une quantité fonctionnelle.

BLiSS

P-M Grollemund

Introduction

Données fonctionnelles

> Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Explicable Modèle Inférence Implémentation

Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées
Résultats

Résultats numériques Résultats graphiques

Discussion

Objectif

Expliquer une quantité réelle à partir d'une quantité fonctionnelle.

Modèle

$$y_i = \mu + \int_{\mathcal{T}} x_i(t) \beta(t) dt + \varepsilon_i$$
 for $i = 1, ..., n$

où $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.

Explicable Modèle Inférence Implémentation

Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées

Résultats

numériques Résultats graphiques

Discussion

Objectif

Expliquer une quantité réelle à partir d'une quantité fonctionnelle.

Modèle

$$y_i = \mu + \int_{\mathcal{T}} x_i(t) \beta(t) dt + \varepsilon_i$$
 for $i = 1, ..., n$

où $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.

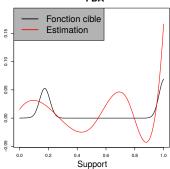
Trois méthodes :

- FDA (Ramsay and Silverman 2005)
- FLiRTI (James et al. 2009)
- Fused Lasso (Tibshirani et al. 2005)

$$y_i = \mu + \int_{\mathcal{T}} x_i(t) \beta(t) dt + \varepsilon_i$$
 for $i = 1, ..., n$

où $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.

FDA



P-M Grollemund

Introduction

Données fonctionnelles

Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

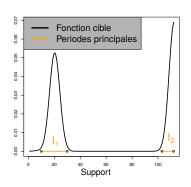
Application

Données simulées

Résultats numériques Résultats graphiques

$$y_i = \mu + \int_{\mathcal{T}} \frac{\mathbf{x}_i(t)}{s} \beta(t) dt + \varepsilon_i$$
 for $i = 1, ..., n$

où $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.



P-M Grollemund

Introduction

Données fonctionnelles

Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable Modèle Inférence Implémentation

Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées

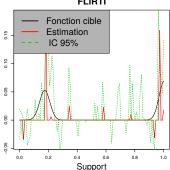
Résultats

numériques Résultats graphiques

$$y_i = \mu + \int_{\mathcal{T}} \frac{\mathbf{x}_i(t)}{s} \beta(t) dt + \varepsilon_i$$
 for $i = 1, ..., n$

où $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.

FLIRTI



BLISS

P-M Grollemund

Introduction

fonctionnelles

Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

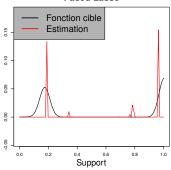
Données simulées

Résultats numériques Résultats graphiques

$$y_i = \mu + \int_{\mathcal{T}} \frac{\mathbf{x}_i(t)}{s} \beta(t) dt + \varepsilon_i$$
 for $i = 1, ..., n$

où $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.

Fused Lasso



BLiSS

P-M Grollemund

Introduction

Données fonctionnelles

Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées
Résultats

numériques Résultats graphiques

Objectif

Construire une méthode

- stable par rapport à ses paramètres de calibration,
- qui permet de comprendre des connaissances a priori,
- qui fournit un indicateur de confiance,
- qui donne des estimations explicables.



P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Résultats numériques Résultats graphiques

BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Discussion

Content

Introduction

Méthode BLiSS

Explicable Modèle Inférence Implémentation

Application

$$y|\mu, \beta, \sigma^2 \sim \mathcal{N}_n \left(\mu \mathbf{1}_n + \int_{\mathcal{T}} x(t) \beta(t) dt , \sigma^2 I_n \right)$$

BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable

Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Objectif
Méthode BLISS

Explicable Modèle Inférence

Interence Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées

Résultats

numériques Résultats graphiques

Discussion

$y|\mu, \beta, \sigma^2 \sim \mathcal{N}_n \left(\mu \mathbf{1}_n + \int_{\mathcal{T}} x(t) \beta(t) dt , \sigma^2 I_n \right)$

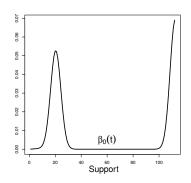
L'ensemble des fonctions explicables &

$$\beta(t) = \sum_{k=1}^{K} \beta_k^* \mathbf{1} \{ t \in \mathcal{I}_k \}$$

$$y|\mu, \beta, \sigma^2 \sim \mathcal{N}_n \left(\mu \mathbf{1}_n + \int_{\mathcal{T}} x(t)\beta(t) dt, \sigma^2 I_n \right)$$

L'ensemble des fonctions explicables $\mathscr E$

$$\beta(t) = \sum_{k=1}^{K} \beta_k^* \mathbf{1} \{ t \in \mathcal{I}_k \}$$



P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable Modèle

Inférence Implémentation Gibbs Sampler Recuit simulé

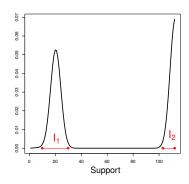
Application Données simulées

Résultats numériques Résultats graphiques

$$y|\mu, \beta, \sigma^2 \sim \mathcal{N}_n \left(\mu \mathbf{1}_n + \int_{\mathcal{T}} x(t) \beta(t) dt, \sigma^2 I_n \right)$$

L'ensemble des fonctions explicables $\mathscr E$

$$\beta(t) = \sum_{k=1}^{K} \beta_k^* \mathbf{1}\{t \in \mathbf{I}_k\}$$



P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable Modèle

Inférence Implémentation Gibbs Sampler Recuit simulé

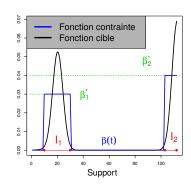
Application Données simulées

Résultats numériques Résultats graphiques

$$y|\mu, \beta, \sigma^2 \sim \mathcal{N}_n \left(\mu \mathbf{1}_n + \int_{\mathcal{T}} x(t)\beta(t) dt, \sigma^2 I_n \right)$$

L'ensemble des fonctions explicables $\mathscr E$

$$\beta(t) = \sum_{k=1}^{K} \beta_k^* \mathbf{1}\{t \in \mathcal{I}_k\}$$



P-M Grollemund

Introduction

Données
fonctionnelles

Régression linéaire
sur données
fonctionnelles

Objectif

Méthode BLiSS

Explicable Modèle

Inférence Implémentation Gibbs Sampler Recuit simulé

Application Données simulées Résultats

numériques Résultats graphiques

Quand $\beta \in \mathcal{E}$, l'intégrale se réécrit

$$\int_{\mathcal{T}} x(t)\beta(t) dt = \sum_{k=1}^{K} \beta_k^* \int_{\mathcal{I}_k} x(t) dt$$
$$= x_{\mathcal{T}}^* \beta^*$$

BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

$$\int_{\mathcal{T}} x(t)\beta(t) dt = \sum_{k=1}^{K} \beta_k^* \int_{\mathcal{I}_k} x(t) dt$$
$$= x_{\mathcal{T}}^* \beta^*$$

Modèle paramétrique

$$y|\mu, \beta^*, \sigma^2, \mathcal{I} \sim \mathcal{N}_n (\mu \mathbf{1}_n + x_{\mathcal{I}}^* \beta^*, \sigma^2 I_n)$$

$$\mu|\sigma^2 \sim \mathcal{N} (\eta_0, v_0 \sigma^2)$$

$$\beta^*|\sigma^2 \sim \mathcal{N}_K (\eta, \sigma^2 V)$$

$$\sigma^2 \sim \mathcal{I}\mathcal{G}(a, b)$$

$$\mathcal{I} \sim \pi_{\mathcal{I}}(.)$$

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler

Recuit simulé
Application

Données simulées Résultats

numériques Résultats graphiques

Quand $\beta \in \mathcal{E}$, l'intégrale se réécrit

$$\int_{\mathcal{T}} x(t)\beta(t) dt = \sum_{k=1}^{K} \beta_k^* \int_{\mathcal{I}_k} x(t) dt$$
$$= x_{\mathcal{T}}^* \beta^*$$

Modèle paramétrique

$$\begin{aligned} y|\mu,\beta^*,\sigma^2,\mathcal{I} &\sim \mathcal{N}_{n} \big(\mu \mathbf{1}_{n} + x_{\mathcal{I}}^*\beta^* \;,\; \sigma^2 I_{n} \big) \\ \mu|\sigma^2 &\sim \quad \mathcal{N} \left(\eta_0,v_0\sigma^2 \right) \\ \beta^*|\sigma^2 &\sim \quad \mathcal{N}_{K} \left(\eta,\sigma^2 V \right) \\ \sigma^2 &\sim \quad \mathcal{I}\mathcal{G}(a,b) \\ \mathcal{I} &\sim \quad \pi_{\mathcal{I}}(.) \end{aligned}$$

- 1. Les intervalles \mathcal{I}_k peuvent se chevaucher
- 2. K assez grand pour détecter toutes les régions importantes
- Les hyperparamètres peuvent être fixés de sorte que la distribution a priori soit faiblement informative

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées Résultats numériques Résultats

graphiques Discussion Quand $\beta \in \mathcal{E}$, l'intégrale se réécrit

$$\int_{\mathcal{T}} x(t)\beta(t)dt = \sum_{k=1}^{K} \beta_k^* \int_{\mathcal{I}_k} x(t)dt$$
$$= x_{\mathcal{T}}^* \beta^*$$

Modèle paramétrique

$$\begin{aligned} y|\mu,\beta^*,\sigma^2,\mathcal{I} &\sim \mathcal{N}_{n} \big(\mu \mathbf{1}_{n} + x_{\mathcal{I}}^*\beta^* \;,\; \sigma^2 I_{n} \big) \\ \mu|\sigma^2 &\sim \quad \mathcal{N} \left(\eta_0,v_0\sigma^2 \right) \\ \beta^*|\sigma^2 &\sim \quad \mathcal{N}_{K} \left(\eta,\sigma^2 V \right) \\ \sigma^2 &\sim \quad \mathcal{I}\mathcal{G}(a,b) \\ \mathcal{I} &\sim \quad \pi_{\mathcal{I}}(.) \end{aligned}$$

- 1. Les intervalles \mathcal{I}_k peuvent se chevaucher
- 2. K assez grand pour détecter toutes les régions importantes
- Les hyperparamètres peuvent être fixés de sorte que la distribution a priori soit faiblement informative
- ⇒ espace paramétrique moins compliqué à explorer

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable

Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Quand $\beta \in \mathcal{E}$, l'intégrale se réécrit

$$\int_{\mathcal{T}} x(t)\beta(t) dt = \sum_{k=1}^{K} \beta_k^* \int_{\mathcal{I}_k} x(t) dt$$
$$= x_{\mathcal{T}}^* \beta^*$$

Modèle paramétrique

$$\begin{aligned} y|\mu, \beta^*, \sigma^2, \mathcal{I} &\sim \mathcal{N}_n \big(\mu \mathbf{1}_n + x_T^* \beta^* \;,\; \sigma^2 I_n \big) \\ \mu|\sigma^2 &\sim \quad \mathcal{N} \left(\eta_0, v_0 \sigma^2 \right) \\ \beta^*|\sigma^2 &\sim \quad \mathcal{N}_K \left(\eta, \sigma^2 V \right) \\ \sigma^2 &\sim \quad \mathcal{I}\mathcal{G}(a, b) \\ \mathcal{I} &\sim \quad \pi_{\mathcal{I}}(.) \end{aligned}$$

- 1. Les intervalles \mathcal{I}_k peuvent se chevaucher
- 2. K assez grand pour détecter toutes les régions importantes
- Les hyperparamètres peuvent être fixés de sorte que la distribution a priori soit faiblement informative
- 2. si K variable, nécessite Reversible Jump (Green 95)

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable

Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Quand $\beta \in \mathcal{E}$, l'intégrale se réécrit

$$\int_{\mathcal{T}} x(t)\beta(t) dt = \sum_{k=1}^{K} \beta_k^* \int_{\mathcal{I}_k} x(t) dt$$
$$= x_{\mathcal{T}}^* \beta^*$$

Modèle paramétrique

$$\begin{aligned} y|\mu, \beta^*, \sigma^2, \mathcal{I} &\sim \mathcal{N}_n \big(\mu \mathbf{1}_n + x_{\mathcal{I}}^* \beta^* \;, \; \sigma^2 I_n \big) \\ \mu|\sigma^2 &\sim \quad \mathcal{N} \left(\eta_0, v_0 \sigma^2 \right) \\ \beta^*|\sigma^2 &\sim \quad \mathcal{N}_K \left(\eta, \sigma^2 V \right) \\ \sigma^2 &\sim \quad \mathcal{I}\mathcal{G}(a, b) \\ \mathcal{I} &\sim \quad \pi_{\mathcal{I}}(.) \end{aligned}$$

- 1. Les intervalles \mathcal{I}_k peuvent se chevaucher
- 2. K assez grand pour détecter toutes les régions importantes
- Les hyperparamètres peuvent être fixés de sorte que la distribution a priori soit faiblement informative
- 1. + 2. Les \mathcal{I}_k vont se rassembler sur les bonnes zones

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable

Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Quand $\beta \in \mathcal{E}$, l'intégrale se réécrit

$$\int_{\mathcal{T}} x(t)\beta(t) dt = \sum_{k=1}^{K} \beta_k^* \int_{\mathcal{I}_k} x(t) dt$$
$$= x_{\mathcal{I}}^* \beta^*$$

Modèle paramétrique

$$\begin{array}{lll} y|\mu,\beta^*,\sigma^2,\mathcal{I}\sim\mathcal{N}_{n}\big(\mu\mathbf{1}_{n}+x_{\mathcal{I}}^*\beta^*~,~\sigma^2\mathit{I}_{n}\big) \\ &\mu|\sigma^2\sim&\mathcal{N}\left(\eta_0,v_0\sigma^2\right) \\ &\beta^*|\sigma^2\sim&\mathcal{N}_{K}\left(\eta,\sigma^2\mathit{V}\right) \\ &\sigma^2\sim&\mathcal{I}\mathcal{G}(a,b) \\ &m\sim&\mathcal{U}(\mathcal{T}^K) \\ &\ell\sim&\mathcal{U}(]0,\ell_{max}]^K) \end{array}$$

Paramétrisation des intervalles par m et ℓ

$$\mathcal{I}_k = [m_k - \ell_k , m_k + \ell_k]$$

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation

Gibbs Sampler Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Estimateur de Dayes

Pour une fonction de perte $\mathcal{L},$ l'estimateur de Bayes de θ sachant les données \mathcal{D} est

$$\hat{\theta} \in \underset{d}{\operatorname{argmin}} \int \mathcal{L} ig(d, heta ig) \ \pi(heta | \mathcal{D}) \ \mathrm{d} heta,$$

et si la fonction de perte est la perte L^2 , alors

$$\hat{\theta} = \int \theta \ \pi(\theta|\mathcal{D}) \ \mathrm{d}\theta.$$

P-M Grollemund

Introduction

Données
fonctionnelles

Régression linéaire
sur données
fonctionnelles

Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées

Résultats numériques Résultats graphiques

 \mathcal{D} est

Pour une fonction de perte \mathcal{L} , l'estimateur de Bayes de θ sachant les données

$$\hat{\theta} \in \underset{d}{\operatorname{argmin}} \int \mathcal{L} ig(d, heta ig) \ \pi(heta | \mathcal{D}) \ \mathrm{d} heta,$$

et si la fonction de perte est la perte L^2 , alors

$$\hat{\theta} = \int \theta \ \pi(\theta|\mathcal{D}) \ d\theta.$$

Estimer β

Pour la fonction de perte L^2 , l'estimateur de Bayes de β est

$$\hat{\beta}(.) = \int \beta(.) \ \pi(\beta^*, \mathcal{I}|y) \ d\beta^* d\mathcal{I}$$

Problème : $\hat{\beta} \notin \mathcal{E}$ (\mathcal{E} n'est pas un ensemble convexe)

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLISS Explicable

Modèle Inférence **Implémentation** Gibbs Sampler Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Inférence

```
Modélisation bayésienne et contraintes (Rubin 1983)  ({\sf estimateur}) \in {\sf argmin} \int \ ({\sf perte}) \ ({\sf vraisemblance}) \ ({\sf prior})
```

BLISS

P-M Grollemund

Introduction Données

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application Données simulées

Donnees simule Résultats numériques Résultats graphiques

Inférence

```
Modélisation bayésienne et contraintes (Rubin 1983) (\text{estimateur}) \in \operatorname{argmin} \int \text{ (perte) (vraisemblance) (prior)}
```

BLISS

P-M Grollemund

Introduction Données

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler

Gibbs Sampler Recuit simulé

Application

Données simulées

Résultats

numériques

numériques Résultats graphiques

Inférence

```
Modélisation bayésienne et contraintes (Rubin 1983)  (\text{estimateur}) \in \operatorname{argmin} \int \underset{(\text{constraintes})}{\text{(perte)}} (\text{vraisemblance}) \underset{(\text{constraintes})}{\text{(prior)}}
```

BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Explicable Modèle Inférence Implémentation

Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées

Résultats numériques Résultats graphiques

Discussion

Modélisation bayésienne et contraintes (Rubin 1983)

$$(\mathsf{estimator}) \in \mathsf{argmin} \int \underbrace{(\mathsf{loss})}_{\substack{\uparrow \\ (\mathsf{constraints})}} \underbrace{(\mathsf{likelihood})}_{\substack{\uparrow \\ (\mathsf{constraints})}} \underbrace{(\mathsf{prior})}_{\substack{\uparrow \\ (\mathsf{constraints})}}$$

Nouvelle fonction de perte

$$\mathcal{L}(\beta,d) = \|\beta - d\|_2^2 \mathbf{1}\{d \in \mathscr{E}\} + \infty \mathbf{1}\{d \notin \mathscr{E}\}$$

où ${\mathscr E}$ est l'ensemble des fonctions explicables.

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler

Recuit simulé
Application

Données simulées

Résultats numériques Résultats graphiques

Discussion

Modélisation bayésienne et contraintes (Rubin 1983)

$$(\mathsf{estimator}) \in \mathsf{argmin} \int \underbrace{(\mathsf{loss})}_{\substack{\text{(constraints)}}} \underbrace{(\mathsf{likelihood})}_{\substack{\text{(constraints)}}} \underbrace{(\mathsf{prior})}_{\substack{\text{(constraints)}}}$$

Nouvelle fonction de perte

$$\mathcal{L}(\beta,d) = \|\beta - d\|_2^2 \mathbf{1}\{d \in \mathscr{E}\} + \infty \mathbf{1}\{d \notin \mathscr{E}\}$$

où & est l'ensemble des fonctions explicables.

Estimateur de β

Sous la fonction de perte $\mathcal{L}(d,\beta) = \|\beta - d\|_2^2 \mathbf{1}\{d \in \mathscr{E}\} + \infty \mathbf{1}\{d \notin \mathscr{E}\}$, l'estimateur de Bayes est

$$\hat{\beta} \in \underset{d}{\operatorname{argmin}} \int \mathcal{L}(d,\beta) \ \pi(\beta^*,\mathcal{I}|y) \ \mathrm{d}\beta^* \mathrm{d}\mathcal{I}$$

$$(\mathsf{estimator}) \in \mathsf{argmin} \int \underbrace{(\mathsf{loss})}_{\substack{\uparrow \\ (\mathsf{constraints})}} \underbrace{(\mathsf{likelihood})}_{\substack{\uparrow \\ (\mathsf{constraints})}} \underbrace{(\mathsf{prior})}_{\substack{\uparrow \\ (\mathsf{constraints})}}$$

Nouvelle fonction de perte

$$\mathcal{L}(\beta,d) = \|\beta - d\|_2^2 \mathbf{1} \{d \in \mathscr{E}\} + \infty \mathbf{1} \{d \notin \mathscr{E}\}$$

où ${\mathscr E}$ est l'ensemble des fonctions explicables.

Estimateur de β

Sous la fonction de perte $\mathcal{L}(d,\beta)=\|\beta-d\|_2^2 \ \mathbf{1}\{d\in\mathscr{E}\} \ + \ \infty \ \mathbf{1}\{d\notin\mathscr{E}\},$ l'estimateur de Bayes est

$$\hat{\beta} \in \underset{d}{\operatorname{argmin}} \int \mathcal{L}(d, \beta) \ \pi(\beta^*, \mathcal{I}|y) \ \mathrm{d}\beta^* \mathrm{d}\mathcal{I}$$

P-M Grollemund

Introduction

fonctionnelles
Régression linéaire
sur données
fonctionnelles
Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Implémentation

- ▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$

 - La distribution a priori de $\mathcal I$ n'est pas conjugé Distribution conditionnelle complète calculable

Gibbs sampler

BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

- ▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$

 - La distribution a priori de $\mathcal I$ n'est pas conjugé Distribution conditionnelle complète calculable

- ▶ Estimateur : minimiser la perte a posteriori intégrée
 - Monte Carlo pour intégrer L contre la distribution a posteriori

$$\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\boldsymbol{d}, \beta_{(i)}) \approx \int \mathcal{L}(\boldsymbol{d}, \beta) \ \pi(\beta^*, \mathcal{I}|\boldsymbol{y}) \ \mathrm{d}\beta^* \mathrm{d}\mathcal{I}$$

Recuit simulé pour optimiser le critère

▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$

Algorithme: Gibbs sampler

- Initialisation : $\mu_{(1)}, \beta_{(1)}^*, \sigma^2_{(1)}, m_{(1)}, \ell_{(1)}$.
- Répéter pour i de 1 à N-1 :

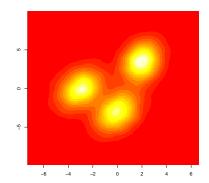
$$\begin{array}{ll} \mu_{(i+1)} \sim & \pi \left(\mu \middle| y, \beta_{(i)}^*, \sigma^2_{(i)}, m_{(i)}, \ell_{(i)} \right) \\ \beta_{(i+1)}^* \sim & \pi \left(\beta^* \middle| y, \mu_{(i+1)}, \sigma^2_{(i)}, m_{(i)}, \ell_{(i)} \right) \\ \sigma^2_{(i+1)} \sim & \pi \left(\sigma^2 \middle| y, \mu_{(i+1)}, \beta_{(i+1)}^*, m_{(i)}, \ell_{(i)} \right) \\ m_{(i+1)} \sim & \pi \left(m \middle| y, \mu_{(i+1)}, \beta_{(i+1)}^*, \sigma^2_{(i+1)}, \ell_{(i)} \right) \\ \ell_{(i+1)} \sim & \pi \left(\ell \middle| y, \mu_{(i+1)}, \beta_{(i+1)}^*, \sigma^2_{(i+1)}, m_{(i+1)} \right) \end{array}$$

• Sortir l'échantillon $(\mu_{(i)}, \beta^*_{(i)}, \sigma^2_{(i)}, m_{(i)}, \ell_{(i)})$ pour $i = 1, \dots, N$.

A chaque itération i, $(\beta_{(i)}^*, m_{(i)}, \ell_{(i)})$ donne une fonction $\beta_{(i)}$.

<u>Estimateur</u>: minimiser la perte a posteriori intégrée

▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$



▶ <u>Estimateur</u> : minimiser la perte *a posteriori* intégrée

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

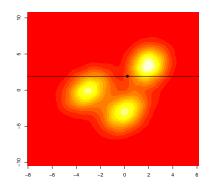
Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application

Résultats numériques Résultats graphiques

▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$



▶ <u>Estimateur</u> : minimiser la perte *a posteriori* intégrée

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler

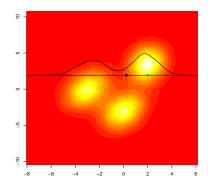
Recuit simulé

Application

Données simulées
Résultats

numériques Résultats graphiques

▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$



▶ <u>Estimateur</u> : minimiser la perte *a posteriori* intégrée

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

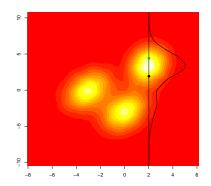
Modèle Inférence Implémentation

Gibbs Sampler Recuit simulé

Application Données simulées Résultats

numériques Résultats graphiques

▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$



▶ <u>Estimateur</u> : minimiser la perte *a posteriori* intégrée

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler

Recuit simulé

Application

Données simulées
Résultats
numériques
Résultats
graphiques

▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$



▶ <u>Estimateur</u> : minimiser la perte *a posteriori* intégrée

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

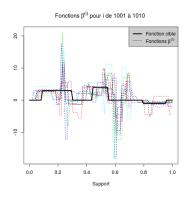
Méthode BLiSS Explicable

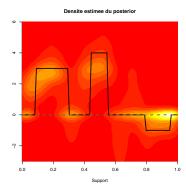
Modèle Inférence Implémentation Gibbs Sampler Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$





On obtient donc un échantillon de courbes β a posteriori : $(\beta_{(i)})_{i=1,...,N}$.

► Estimateur : minimiser la perte a posteriori intégrée

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS Explicable

Modèle Inférence Implémentation Gibbs Sampler

Recuit simulé

Application Données simulées Résultats

numériques Résultats graphiques

▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$

<u>Estimateur</u>: minimiser la perte a posteriori intégrée

Pour minimiser un critère $C(\beta)$ en β .

Algorithme: Recuit simulé

- Se donner une suite positive décroissante $(\tau_i)_{i=1,...,N}$.
- Initialiser β_0 .
- Itérer pour i allant de 1 à N :
 - Proposer une valeur β' .
 - Calculer la probabilité d'acceptabilité

$$\alpha = \min \left\{ 1, \exp \left(\frac{C(\beta') - C(\beta_{i-1})}{\tau_{i-1}} \right) \right\}.$$

- Simuler $u \sim \mathcal{U}([0,1])$.
- Si $u < \alpha$, $\beta_i = \beta'$ (accepter) Sinon, $\beta_i = \beta_{i+1}$ (refuser)
- Sortir β_N .

P-M Grollemund

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

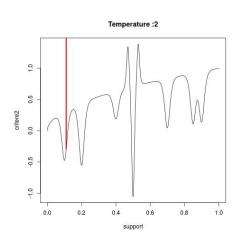
Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées Résultats

numériques Résultats graphiques

Recuit simulé

- ▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$
- ▶ Estimateur : minimiser la perte a posteriori intégrée



P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

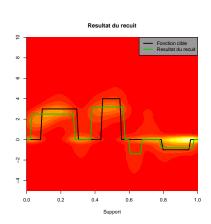
Discussion

- ▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$
- ▶ Estimateur : minimiser la perte a posteriori intégrée
 - Proposition d'une nouvelle fonction β' : proposition d'un vecteur $(K', \beta^{*'}, m', \ell')$

(assure $\beta' \in \mathscr{E}$)

- Possibilité de changer de dimension (car pas nécessaire d'avoir une chaîne réversible)
- Difficulté pour déterminer la bonne température

- ▶ Distribution a posteriori : $\pi(\beta^*, \mathcal{I}|y)$
- ▶ Estimateur : minimiser la perte a posteriori intégrée



P-M Grollemund

Introduction
Données

fonctionnelles
Régression linéaire
sur données
fonctionnelles
Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Discussion

Content

Introduction

Méthode BLiSS

Application

Données simulées

Régression linéaire sur données

Introduction

Données
fonctionnelles

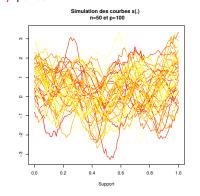
fonctionnelles

Objectif Méthode BLiSS

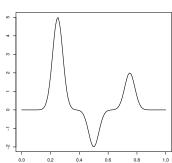
Explicable Modèle Inférence Implémentation

Simulation des données : • • • •

• Pour x(.):
Simuler $n = \overline{50}$ courbes sur une grille de p points



• Pour β :
Choisir une fonction β



- Choisir une fonction β
- Gibbs Sampler Recuit simulé Application

Données simulées Résultats numériques

numérique: Résultats graphiques

- On contrôle l'autocorrélation des courbes par le coefficient ζ
 - Simuler un bruit gaussien ε tel que $\mathbb{V}[y]/\mathbb{V}[\varepsilon] \approx r$ Calculer les y_i à partir du modèle

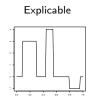
Données simulées

Jeux de données envisagés :

données	Forme	р	r	ζ
1	explicable	100	5	1
2	explicable	200	5	1
3	explicable	500	5	1
4	explicable	100	3	1
5	explicable	100	1	1
6	explicable	100	5	1 3
7	explicable	100	5	1 3 1 5
8	lisse	100	5	ĭ
9	lisse	200	5	1
10	lisse	500	5	1
11	lisse	100	3	1
12	lisse	100	1	1
13	lisse	100	5	1 3
14	lisse	100	5	1 3 1

données	Forme	р	r	ζ
15	sinusoïde	100	5	1
16	sinusoïde	200	5	1
17	sinusoïde	500	5	1
18	sinusoïde	100	3	1
19	sinusoïde	100	1	1
20	sinusoïde	100	5	1/2
21	sinusoïde	100	5	1 1 5
22	ponctuelle	100	5	ĭ
23	ponctuelle	200	5	1
24	ponctuelle	500	5	1
25	ponctuelle	100	3	1
26	ponctuelle	100	1	1
27	ponctuelle	100	5	131
28	ponctuelle	100	5	Ī

Pour les quatres fonctions β :



Sinusoïde

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Résultats numériques

Erreur d'estimation : $Err = \int_{\mathcal{T}} (\beta(t) - \hat{\beta}(t))^2 dt$

données	Forme	р	r	ζ	BLiSS	Fused Lasso	FLIRTI
1	explicable	100	5	1	0.597	0.978	3.848
2	explicable	200	5	1	0.468	0.845	0.554
3	explicable	500	5	1	0.470	0.418	12.606
4	explicable	100	-3-	-1-	- 1.783 -	1.65 9	1.638
5	explicable	100	1	1	2.286	0.990	1.901
6	explicable	100	- 5-		4.795	_{9.373}	4.129
7	explicable	100	5	- <u>1</u> - 3 1 5	12.916	12.639	> 10 ⁶
8	lisse	100	5	1	0.689	0.781	0.980
9	lisse	200	5	1	0.706	26.604	8.474
10	lisse	500	5	1	0.601	1.383	1.613
11	lisse	100	_ 3_	- ₁ -	0.547	0.346	0.461
12	lisse	100	1	1	0.792	1.075	> 10 ⁶
13	lisse	100	5	-1-	1.044	1.175	1.160
14	lisse	100	5	- <u>1</u> - 3 1 5	0.988	1.629	2.088
15	sinusoïde	100	5		0.080	0.060	0.078
16	sinusoïde	200	5	1	0.070	0.044	0.059
17	sinusoïde	500	5	1	0.079	0.035	0.072
18	sinusoïde	100	_ 3_	- ₁ -	0.045	0.049	0.056
19	sinusoïde	100	1	1	0.344	0.154	0.237
20	sinusoïde	100	_ 5_	- <u>1</u> -	0.088	0.073	0.085
21	sinusoïde	100	5	- <u>1</u> - 3 1 5	0.083	46.578	> 10 ²
22	ponctuelle	100	5	ĭ	0.205	0.115	0.083
23	ponctuelle	200	5	1	0.140	0.172	0.480
24	ponctuelle	500	5	1	0.165	0.067	0.076
25	ponctuelle	100	_ 3_	- ₁ -	0.202	0.098	0.152
26	ponctuelle	100	1	1	0.197	0.089	0.035
27	ponctuelle	100	5	- <u>1</u> -	0.277	0.234	0.376
28	ponctuelle	100	5	<u>1</u> 5	0.284	0.235	0.346

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats

graphiques

Discussion

Retrouver le support : support = $\{t \in \mathcal{T} : \beta(t) \neq 0\}$

Pour $t \in \mathcal{T}_G = (t_1, \ldots, t_p)$:

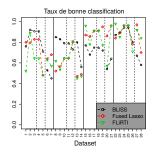
- Vrai positif (VP) : $\beta(t) \neq 0$ et $\hat{\beta}(t) \neq 0$,
- Faux positif (FP) : $\beta(t) \neq 0$ et $\hat{\beta}(t) = 0$,
- Vrai négatif (VN) : $\beta(t) = 0$ et $\hat{\beta}(t) = 0$,
- Faux négatif (FN) : $\beta(t) = 0$ et $\hat{\beta}(t) \neq 0$,

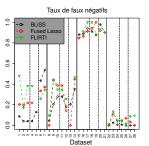
on va utiliser

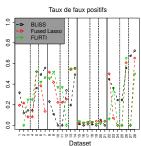
- le taux de bonne classification : $\frac{VP+VN}{VP+FP+VN+FN}$,
- le taux de faux négatifs : $\frac{FN}{FN+TN}$,
- le taux de faux positifs : $\frac{FP}{FP+TP}$.

Résultats numériques

Retrouver le support : support = $\{t \in \mathcal{T} : \beta(t) \neq 0\}$







P-M Grollemund

Introduction Données

fonctionnelles
Régression linéaire
sur données
fonctionnelles
Objectif

Méthode BLiSS

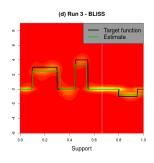
Explicable Modèle Inférence Implémentation Gibbs Sampler

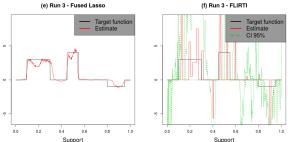
Recuit simulé Application

Données simulées Résultats

numériques Résultats graphiques

Forme explicable:





P-M Grollemund

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

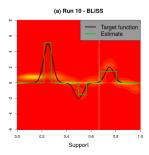
Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

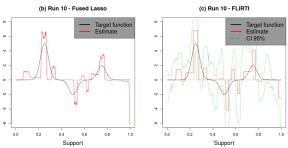
Application

Données simulées Résultats numériques

Résultats graphiques

Forme lisse:





P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

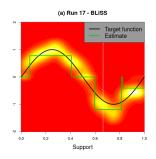
Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

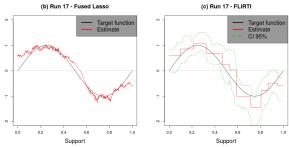
Application

Données simulées Résultats numériques

Résultats graphiques

Forme sinusoïde :





P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

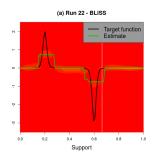
Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

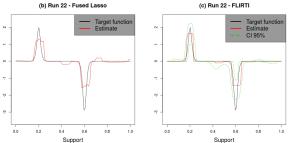
Application

Données simulées Résultats numériques

Résultats graphiques

Forme ponctuelle:





P-M Grollemund

Introduction

Données
fonctionnelles

Régression linéaire
sur données
fonctionnelles

Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques

Résultats graphiques

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

Discussion

Conclusion

- Deux estimateurs possibles (avec évaluation du résultat)
- Donne des estimations avec une forme très simple
- Fournit une représentation parlante de la distribution a posteriori

Perspectives

- Soumettre article
- Inclure des connaissances a priori
- Généraliser le modèle en rajoutant une variable qualitative
- Établir la convergence théorique de l'estimateur

Etude de sensibilité

Combinaisons d'hyperparamètres considérées

Combinaison	n _{iter}	K	η ₀	<i>v</i> ₀	η	V	a et b	ℓ_{max}
1	2000	10	0	100	0	100	0.1	5
2	10000	10	0	100	0	100	0.1	5
3	50000	10	0	100	0	100	0.1	5
4	100000	10	0	100	0	100	0.1	5
5	50000	3	0	100	0	100	0.1	5
6	50000	5	0	100	0	100	0.1	5
7	50000	15	0	100	0	100	0.1	5
8	50000	10	10	100	0	100	0.1	5
9	50000	10	100	100	0	100	0.1	5
10	50000	10	1000	100	0	100	0.1	5
11	50000	10	0	10	0	100	0.1	5
12	50000	10	0	1000	0	100	0.1	5
13	50000	10	0	10000	0	100	0.1	5
14	50000	10	0	100	10	100	0.1	5
15	50000	10	0	100	100	100	0.1	5
16	50000	10	0	100	1000	100	0.1	5
17	50000	10	0	100	0	10	0.1	5
18	50000	10	0	100	0	1000	0.1	5
19	50000	10	0	100	0	10000	0.1	5
20	50000	10	0	100	0	100	1	5
21	50000	10	0	100	0	100	0.01	5
22	50000	10	0	100	0	100	0.0001	5
23	50000	10	0	100	0	100	0.1	1
24	50000	10	0	100	0	100	0.1	2
25	50000	10	0	100	0	100	0.1	8

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable Modèle Inférence Implémentation Gibbs Sampler

Recuit simulé Application

Données simulées Résultats numériques Résultats graphiques

Discussion

Résultats numériques

	Err	TBC	TFN	TFP
N = 2000	1.026	0.810	0.188	0.191
N = 10 000	1.173	0.830	0.222	0.081
N = 50~000	1.270	0.760	0.266	0.200
N = 100 000	1.038	0.730	0.244	0.294
K = 3	1.525	0.750	0.309	0.103
K = 5	1.427	0.770	0.301	0.037
K = 10	1.270	0.760	0.266	0.200
K = 15	1.057	0.760	0.250	0.227
$\eta_{0} = 0$	1.270	0.760	0.266	0.200
$\eta_{f 0}={ t 10}$	1.013	0.850	0.206	0.054
$\eta_{f 0} = 100$	1.084	0.680	0.314	0.326
$\eta_{f 0}=1000$	1.084	0.810	0.054	0.269
$v_0 = 10^1$	1.158	0.840	0.178	0.136
$v_0 = 10^2$	1.270	0.760	0.266	0.200
$v_0 = 10^3$	1.211	0.660	0.312	0.365
$v_0 = 10^4$	1.168	0.630	0.307	0.409

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

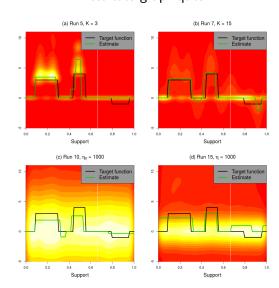
Discussion

Résultats numériques

	Err	TBC	TFN	TFP
$\eta = 0$	1.270	0.760	0.266	0.200
$\eta=$ 10	1.198	0.710	0.317	0.243
$\eta=$ 100	1.514	0.620	0.294	0.424
$\eta=$ 1000	44.864	0.390	0.615	0.606
$v = 10^{1}$	0.689	0.770	0.177	0.272
$v = 10^2$	1.270	0.760	0.266	0.200
$v = 10^3$	2.544	0.740	0.333	0.000
$v = 10^4$	5.661	0.720	0.333	0.142
$a ext{ et } b = 1$	0.885	0.880	0.083	0.153
a et $b = 10^{-1}$	1.270	0.760	0.266	0.200
a et $b = 10^{-2}$	1.098	0.900	0.137	0.047
a et $b = 10^{-4}$	1.453	0.750	0.320	0.040
$\ell_{max} = \mathcal{T} $	0.982	0.830	0.127	0.207
$\ell_{max} = \mathcal{T} /2$	0.655	0.740	0.240	0.280
$\ell_{max} = _{\mathcal{T}} _{/5}$	1.270	0.760	0.266	0.200
$\ell_{max} = \mathcal{T} /8$	0.784	0.700	0.316	0.275

Etude de sensibilité

Résultats graphiques



P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

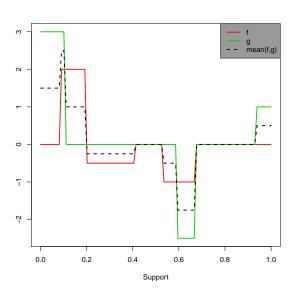
Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

\mathscr{E} n'est pas convexe



P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable Modèle Inférence **Implémentation** Gibbs Sampler Recuit simulé

Application Données simulées

Résultats numériques Résultats graphiques

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

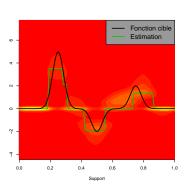
Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

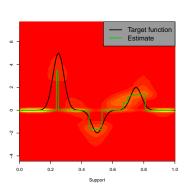
Données simulées Résultats numériques Résultats graphiques

Discussion

Perte \mathcal{L} :



Mode:



P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

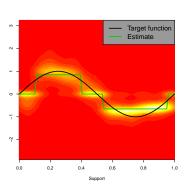
Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

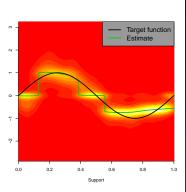
Données simulées Résultats numériques Résultats graphiques

Discussion

Perte \mathcal{L} :

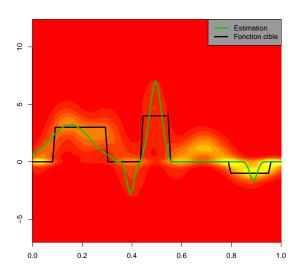


Mode:



Généralisation à d'autres formes

Noyau Gaussien :



BLiSS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

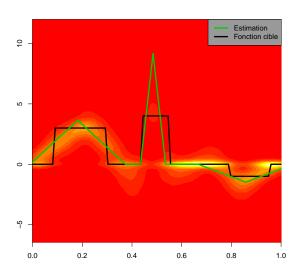
Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Généralisation à d'autres formes

Noyau triangulaire :



BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

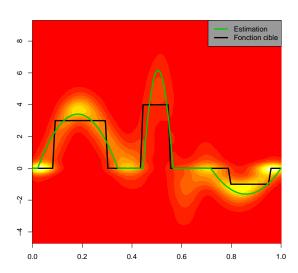
Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Généralisation à d'autres formes

Noyau d'Epanechnikov :



BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Gibbs sampler : distributions conditionnelles complètes

$$\begin{split} &\mu|Y,X,\boldsymbol{\beta}^*,\sigma^2,m,\ell\sim\mathcal{N}\left(\frac{\eta_0\mathbf{v_0^{-1}}+\mathbf{1_n^T}\left(Y-X_{m\ell}^*\boldsymbol{\beta}^*\right)}{n+\mathbf{v_0^{-1}}},\frac{\sigma^2}{n+\mathbf{v_0^{-1}}}\right)\\ &\boldsymbol{\beta}^*|Y,X,\mu,\sigma^2,m,\ell\sim\mathcal{N}\left(X_{m\ell}^*{}^T(Y-\mu\mathbf{1_n})+V^{-1}\boldsymbol{\eta},X_{m\ell}^*{}^TX_{m\ell}^*+V^{-1}\right)\\ &\sigma^2|Y,X,\mu,\boldsymbol{\beta}^*,m,\ell\sim\mathcal{IG}\left(\mathbf{a}+\frac{n+K+1}{2},b_{\sigma^2}\right) \end{split}$$

$$\begin{split} &\pi\left(m_{k}|Y,X,\mu,\beta^{*},\sigma^{2},m_{-k},\ell\right) \propto \exp\left\{-\frac{1}{2\sigma^{2}}\left\|Y-\mu\mathbf{1}_{n}-X_{m\ell}^{*}\beta^{*}\right\|^{2}\right\}\mathbf{1}\left\{m_{k}\in\mathcal{T}\right\} \\ &\pi\left(\ell_{k}|Y,X,\mu,\beta^{*},\sigma^{2},\ell_{-k},m\right) \propto \exp\left\{-\frac{1}{2\sigma^{2}}\left\|Y-\mu\mathbf{1}_{n}-X_{m\ell}^{*}\beta^{*}\right\|^{2}\right\}\mathbf{1}\left\{\ell_{k}\in\left]0,\ell_{max}\right]\right\} \end{split}$$

οù

$$b_{\sigma^2} = b + \frac{1}{2} \|Y - \mu \mathbf{1}_{\mathbf{n}} - X_{\mathbf{m}\ell}^* \beta^* \|^2 + \frac{1}{2v_0} (\mu - \eta_0)^2 + \frac{1}{2} \|\beta^* - \eta\|_{\mathbf{V}^{-1}}^2.$$

P-M Grollemund

Introduction

fonctionnelles
Régression linéaire
sur données
fonctionnelles
Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

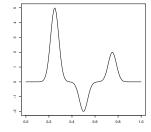
Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques

Discussion



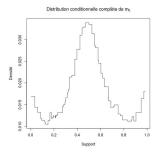
Pour $\beta_k^* = 1$

0.6 0.8

Support

02

Pour $\beta_k^* = -1$



Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler

Recuit simulé
Application

Données simulées Résultats numériques

Résultats graphiques

Discussion

À chaque itération du recuit simulé, pour une proposition β' , on a besoin de calculer

$$\boldsymbol{\mathcal{C}}(\boldsymbol{\beta}') = \int \mathcal{L}(\boldsymbol{\beta}', \boldsymbol{\beta}) \,\, \pi(\boldsymbol{\beta}^*, \mathcal{I}|\boldsymbol{y}) \,\, \mathrm{d}\boldsymbol{\beta}^* \, \mathrm{d}\mathcal{I} = \mathbb{E}^{\pi}(\mathcal{L}(\boldsymbol{\beta}, \boldsymbol{\beta}')),$$

qu'on approche à l'aide de l'échantillon *a posteriori* $(eta_{(\mathbf{1})},\ldots,eta_{(\mathbf{N})})$ par

$$C(eta') pprox rac{1}{N} \sum_{i=1}^{N} \mathcal{L}(eta', eta_{(i)}),$$

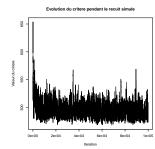
ce qui est très lent.

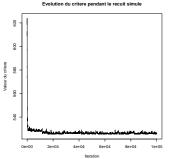
Simplication

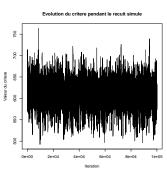
Estimer $\mathbb{E}^{\pi}(\beta)$ et $\mathbb{V}^{\pi}(\beta)$ par Monte Carlo, avant la boucle et utiliser le fait que, pour $\beta' \in \mathcal{E}$,

$$\mathbb{E}^{\pi}(\mathcal{L}(\beta, \beta')) = \left\|\beta' - \mathbb{E}^{\pi}(\beta)\right\|^{2} + \left\|\sqrt{\mathbb{V}^{\pi}(\beta)}\right\|^{2}.$$

Calibration de la température







BLISS

P-M Grollemund

Introduction

Données fonctionnelles Régression linéaire sur données fonctionnelles Objectif

Méthode BLiSS

Explicable
Modèle
Inférence
Implémentation
Gibbs Sampler
Recuit simulé

Application

Données simulées Résultats numériques Résultats graphiques