
Joint estimation of causal effects from observational and
intervention gene expression data

StatSeq @ Paris

Andrea Rau, Florence Jaffrézic, Grégory Nuel
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Introduction GRN

Introduction: Gene regulatory networks (GRN)

Groups of coordinated genes that interact indirectly with one another
through transcription factors
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Introduction Causal effects

Effect of an intervention on a graph: Total causal effects

Following an intervention do(Xi = xi), consider the expected value of each
gene via do-calculus (Pearl, 2000):

E(Xj |do(Xi = xi)) =

{
E(Xj) if Xj ∈ pa(Xi)∫
E(Xj |xi , pa(Xi))P(pa(Xi))dpa(Xi) if Xj /∈ pa(Xi)

Note: P(Y |do(X = x)) 6= P(Y |X = x)

Definition: Total causal effects

βij =
∂

∂x E(Xj |do(Xi = xi))

Equal to 0 if Xi is not an ancestor of Xj
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Introduction Causal effects

Markov equivalence in DAGs

Markov equivalence: two different network structures can yield the
same joint distribution and observational data alone generally cannot
orient edges
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Introduction Causal effects

Estimating causal effects from intervention data

Idea: if gene X1 is regulated by gene X2, its expression level after
knock-out of X2 should differ considerably compared to its wild type
(steady-state) expression

Pinna et al. (2010):
Data: one wild-type (Xwt

j for gene j), and one knock-out experiment
for each gene (X i

j for gene j under knock-out of gene i)
Four different deviation matrices calculated, feed-forward edges
down-ranked, and causal links ranked in order of absolute value

Note: winner of the DREAM4 challenge
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Introduction Causal effects

Estimating causal effects from observational data

Some causal information can be recovered from observational data alone...

Intervention-calculus when the DAG is Absent (Maathuis et al., 2009)
1 Estimate the equivalence class of the DAG via the PC-algorithm

(Kalisch and Bühlmann, 2007)
2 Use intervention calculus to estimate bounds for causal effects across

equivalence classes, and rank causal effects

Shown to be better able to predict strong causal effects using
observational data alone (Maathuis al., 2010) than Lasso and
elastic-net
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Joint estimation of causal effects

Notation

Xj is the expression of gene j
Gaussian Bayesian network (GBN):

Xj = mj +
∑

i∈pa(j)
wijXi + εj with εj ∼ N (0, σ2

j )

for j = 1, . . . , p
wij 6= 0 if and only if i ∈ pa(j)
Directed acyclic graph (DAG), and nodes have been ordered so that
i ∈ pa(j)⇒ i < j (i.e., W = (wij) is upper triangular)
Model parameters are θ = (W,m, σ)

Total causal effects are β = (I−W)−1 = I + W + . . .+ W p−1

andrea.rau@jouy.inra.fr Joint estimation of causal effects StatSeq @ Paris 7 / 17



Joint estimation of causal effects Likelihood and parameter estimation

Joint log-likelihood (1)

Consider experiment k with intervention on Jk (Jk = ∅ means no
intervention), where Kj = {k, j /∈ Jk} and Nj = |Kj |.

The log-likelihood of the model can be written as:

`(m, σ,w) = Cst−
∑

j
Nj log(σj)−

1
2

∑
k

∑
j /∈Jk

1
σ2

j
(xk

j − xkWeT
j −mj)

2

Then
mj =

1
Nj

∑
k∈Kj

(xk
j − xkWeT

j )
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Joint estimation of causal effects Likelihood and parameter estimation

Joint log-likelihood (2)
Consider experiment k with intervention on Jk (Jk = ∅ means no
intervention), where Kj = {k, j /∈ Jk} and Nj = |Kj |.

The log-likelihood of the model can now be written as:

`(σ,w) = Cst−
∑

j
Nj log(σj)−

1
2

∑
k

∑
j /∈Jk

1
σ2

j
(yk,j

j − yk,jWeT
j )2

where for (k, j) such that j /∈ Jk : yk,j = xk − 1/Nj
∑

k′∈Kj xk′

Then w can be estimated by solving the following linear system:∑
i ′,(i ′,j)∈E

wi ′,j
∑

k∈Kj

yk,j
i yk,j

i ′ =
∑

k∈Kj

yk,j
i yk,j

j for all (i , j) ∈ E

and
σ2

j =
1
Nj

∑
k∈Kj

(yk,j
j − yk,jWeT

j )2
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Joint estimation of causal effects Graph structure

Identifying the best ordering of nodes

Some possibilities:
1 Deterministic quick-sort algorithm to determine optimal node ordering

2 Explore the posterior distribution of the DAG structure space and
estimated causal effects via an MCMC algorithm

Fixed number of edges, graph structure proposal via edge
deletion/addition
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Results Simulations

Simulation study: DAG structure

Simulated data following a GBN (p = 10
genes), with 10 wt and 1 KO for each gene:

Non-zero wij ∈ (−1,−.25) ∪ (.25, 1)
mj = 0.5 and sj = 0.1 for all genes j

Also consider multiple KO: {1, 2},
{1, 3}, {3, 8}, {4, 5}, and {5, 6}

Figure 5 from Kalisch and
Bühlmann (2007)
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Results Simulations

GBN estimation of causal effects: Structure known
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Results Simulations

GBN estimation of causal effects: Quick-sort algorithm
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Results Simulations

Simulation results: Only observational data

Table: TP and FP out of top 21, results averaged over 100 datasets (sd).

GBN1 Pinna PCalg min PCalg max
TP 11.06 (1.78) — 10.19 (1.89) 11.89 (1.54)
FP 9.94 (1.78) — 10.81 (1.89) 9.11 (1.54)

Spearman 0.37 (0.09) — 0.24 (0.12) 0.42 (0.09)

1 GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations
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Results Simulations

Simulation results: Observational + intervention data

Table: TP and FP out of top 21, results averaged over 100 datasets (sd).

GBN1 GBN1

(multiple KO) (single KO) Pinna PCalg min PCalg max
TP 18.74 (1.3) 17.8 (1.5) 14.13 (1.55) 10.2 (1.94) 11.05 (1.53)
FP 2.26 (1.3) 3.2 (1.5) 6.87 (1.55) 10.8 (1.94) 9.95 (1.53)

Spearman 0.72 (0.04) 0.69 (0.05) 0.5 (0.07) 0.28 (0.11) 0.37 (0.09)

1 GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations
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Discussion

Discussion

GBN for a mixture of steady-state and knock-out (and multiple
knock-out!) data to enable calculation of total causal effects:

MCMC algorithm / Quick-sort node ordering
Initial results very encouraging and suggest the benefit in jointly
analyzing steady-state and intervention data

Future work: Experimental design to plan future (multiple) knock-out
experiments...
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Thanks to Rémi Bancal (M2 intern)
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