Joint estimation of causal effects from observational and intervention gene expression data StatSeq @ Paris

Andrea Rau, Florence Jaffrézic, Grégory Nuel

March 29, 2013

andrea.rau@jouy.inra.fr

Joint estimation of causal effects

GRN

Introduction: Gene regulatory networks (GRN)

Effect of an intervention on a graph: Total causal effects

Following an intervention $do(X_i = x_i)$, consider the expected value of each gene via do-calculus (Pearl, 2000):

$$\mathbb{E}(X_j | \mathsf{do}(X_i = x_i)) = \begin{cases} \mathbb{E}(X_j) & \text{if } X_j \in \mathsf{pa}(X_i) \\ \int \mathbb{E}(X_j | x_i, \mathsf{pa}(X_i)) \mathbb{P}(\mathsf{pa}(X_i)) d\mathsf{pa}(X_i) & \text{if } X_j \notin \mathsf{pa}(X_i) \end{cases}$$

Note: $\mathbb{P}(Y|\operatorname{do}(X=x)) \neq \mathbb{P}(Y|X=x)$

Definition: Total causal effects

$$\beta_{ij} = \frac{\partial}{\partial x} \mathbb{E}(X_j | \operatorname{do}(X_i = x_i))$$

• Equal to 0 if X_i is not an ancestor of X_j

Markov equivalence in DAGs

• Markov equivalence: two different network structures can yield the same joint distribution and observational data alone generally cannot orient edges

Markov equivalence in DAGs

• Markov equivalence: two different network structures can yield the same joint distribution and observational data alone generally cannot orient edges

Estimating causal effects from intervention data

Idea: if gene X_1 is regulated by gene X_2 , its expression level after knock-out of X_2 should differ considerably compared to its wild type (steady-state) expression

Pinna *et al.* (2010):

- Data: one wild-type (X_j^{wt} for gene j), and one knock-out experiment for each gene (X_i^i for gene j under knock-out of gene i)
- Four different deviation matrices calculated, feed-forward edges down-ranked, and causal links ranked in order of absolute value

Note: winner of the DREAM4 challenge

Estimating causal effects from observational data

Some causal information can be recovered from observational data alone...

Intervention-calculus when the DAG is Absent (Maathuis et al., 2009)

- Estimate the equivalence class of the DAG via the PC-algorithm (Kalisch and Bühlmann, 2007)
- Ose intervention calculus to estimate bounds for causal effects across equivalence classes, and rank causal effects
 - Shown to be better able to predict strong causal effects using observational data alone (Maathuis *al.*, 2010) than Lasso and elastic-net

Notation

- X_j is the expression of gene j
- Gaussian Bayesian network (GBN):

$$X_j = m_j + \sum_{i \in \mathsf{pa}(j)} w_{ij} X_i + arepsilon_j$$
 with $arepsilon_j \sim \mathcal{N}(0, \sigma_j^2)$

for $j = 1, \ldots, p$

- $w_{ij} \neq 0$ if and only if $i \in pa(j)$
- Directed acyclic graph (DAG), and nodes have been ordered so that $i \in pa(j) \Rightarrow i < j$ (i.e., $\mathbf{W} = (w_{ij})$ is upper triangular)
- Model parameters are $\theta = (\mathbf{W}, m, \sigma)$
- Total causal effects are $\beta = (I \mathbf{W})^{-1} = I + W + \ldots + W^{p-1}$

Joint log-likelihood (1)

Consider experiment k with intervention on \mathcal{J}_k ($\mathcal{J}_k = \emptyset$ means no intervention), where $\mathcal{K}_j = \{k, j \notin \mathcal{J}_k\}$ and $N_j = |\mathcal{K}_j|$.

The log-likelihood of the model can be written as:

$$\ell(m,\sigma,w) = \mathsf{Cst} - \sum_{j} N_j \log(\sigma_j) - \frac{1}{2} \sum_{k} \sum_{j \notin \mathcal{J}_k} \frac{1}{\sigma_j^2} (x_j^k - x^k \mathbf{W} e_j^T - m_j)^2$$

Then

$$m_j = \frac{1}{N_j} \sum_{k \in \mathcal{K}_j} (x_j^k - x^k \mathbf{W} e_j^T)$$

Joint log-likelihood (2)

Consider experiment k with intervention on \mathcal{J}_k ($\mathcal{J}_k = \emptyset$ means no intervention), where $\mathcal{K}_j = \{k, j \notin \mathcal{J}_k\}$ and $N_j = |\mathcal{K}_j|$.

The log-likelihood of the model can now be written as:

$$\ell(\sigma, w) = \mathsf{Cst} - \sum_{j} N_{j} \log(\sigma_{j}) - \frac{1}{2} \sum_{k} \sum_{j \notin \mathcal{J}_{k}} \frac{1}{\sigma_{j}^{2}} (y_{j}^{k,j} - y^{k,j} \mathbf{W} e_{j}^{\mathsf{T}})^{2}$$

where for (k,j) such that $j \notin \mathcal{J}_k$: $y^{k,j} = x^k - 1/N_j \sum_{k' \in \mathcal{K}_j} x^{k'}$

Then w can be estimated by solving the following linear system:

$$\sum_{i',(i',j)\in\mathcal{E}} w_{i',j} \sum_{k\in\mathcal{K}_j} y_i^{k,j} y_{i'}^{k,j} = \sum_{k\in\mathcal{K}_j} y_i^{k,j} y_j^{k,j} \quad \text{for all } (i,j)\in\mathcal{E}$$

and

$$\sigma_j^2 = \frac{1}{N_j} \sum_{k \in \mathcal{K}_j} (y_j^{k,j} - y^{k,j} \mathbf{W} e_j^T)^2$$

i

Identifying the best ordering of nodes

Some possibilities:

- **1** Deterministic quick-sort algorithm to determine optimal node ordering
- Explore the posterior distribution of the DAG structure space and estimated causal effects via an MCMC algorithm
 - Fixed number of edges, graph structure proposal via edge deletion/addition

Simulation study: DAG structure

Simulated data following a GBN (p = 10 genes), with 10 wt and 1 KO for each gene:

• Non-zero $w_{ij} \in (-1, -.25) \cup (.25, 1)$

•
$$m_j = 0.5$$
 and $s_j = 0.1$ for all genes j

Figure 5 from Kalisch and Bühlmann (2007)

Simulation study: DAG structure

Simulated data following a GBN (p = 10 genes), with 10 wt and 1 KO for each gene:

- Non-zero $w_{ij} \in (-1, -.25) \cup (.25, 1)$
- $m_j = 0.5$ and $s_j = 0.1$ for all genes j
- Also consider multiple KO: $\{1,2\}$, $\{1,3\}$, $\{3,8\}$, $\{4,5\}$, and $\{5,6\}$

Figure 5 from Kalisch and Bühlmann (2007)

GBN estimation of causal effects: Structure known

(Note: 2000 simulated datasets)

GBN estimation of causal effects: Quick-sort algorithm

(Note: 2000 simulated datasets)

Simulation results: Only observational data

Table: TP and FP out of top 21, results averaged over 100 datasets (sd).

	GBN^1	Pinna	PCalg min	PCalg max
TP	11.06 (1.78)		10.19 (1.89)	11.89 (1.54)
FP	9.94 (1.78)		10.81 (1.89)	9.11 (1.54)
Spearman	0.37 (0.09)		0.24 (0.12)	0.42 (0.09)

¹ GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations

Simulation results: Observational + intervention data

Table: TP and FP out of top 21, results averaged over 100 datasets (sd).

	GBN^1	GBN^1			
	(multiple KO)	(single KO)	Pinna	PCalg min	PCalg max
TP	18.74 (1.3)	17.8 (1.5)	14.13 (1.55)	10.2 (1.94)	11.05 (1.53)
FP	2.26 (1.3)	3.2 (1.5)	6.87 (1.55)	10.8 (1.94)	9.95 (1.53)
Spearman	0.72 (0.04)	0.69 (0.05)	0.5 (0.07)	0.28 (0.11)	0.37 (0.09)

¹ GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations

Discussion

GBN for a mixture of steady-state and knock-out (and multiple knock-out!) data to enable calculation of total causal effects:

- MCMC algorithm / Quick-sort node ordering
- Initial results very encouraging and suggest the benefit in jointly analyzing steady-state and intervention data

• Future work: Experimental design to plan future (multiple) knock-out experiments...

Thanks to Rémi Bancal (M2 intern)

References:

- Kalisch and B
 ühlmann (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. Journal of Machine Learning Research 8, 613-636.
- Maathuis et al. (2009) Estimating high-dimensional intervention effects from observational data. Annals of Statistics 37:6A, 3133-3164.
- Maathuis et al. (2010) Predicting causal effects in large-scale systems from observational data. Nature Methods 7:4, 247-248.
- Pearl (2000) Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge.
- Pinna et al. (2007) From knockouts to networks: Establishing direct cause-effect relationships through graph analysis. PLoS One 5:10.
- Stolovitzky et al (2007) Dialogue on reverse-engineering assessment and methods. Ann NY Acad Sci 1115, 1-22.