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Graphical Models

Definition
1 Set X = {X1, · · · , Xn} of variables, with a domain Di containing

values (booleen, interger, real).
2 Set Φ of local functions ϕS involving variables of S ⊂ X (scope).
3 A joint function for a full assignement t :

Φ(t) =
⊕
ϕS∈Φ

ϕS(t[S])

Toy Example
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Markov Random Field

Probability of an assignment
The joint probability of a complete assignment is defined as:

p(t) =
P(t)
Z

=
1

Z

∏
ϕS∈Φ

ϕS(t[S])

Partition Function
The normalizing constant or Partition Function:

Z =
∑
t

P(t) =
∑
t

∏
ϕS∈Φ

ϕS(t[S])
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Partition Function, yes ! But why ?

Constante d’affinité
We can approximate the affinity between two proteins P1 et P2
forming a complex C by:

Ka = e(kBT)
C0

8π2

σP1σP2
σC

Z(T, V, C)
Z(T, V, P1) Z(T, V, P2)

=⇒
Unbound Bound
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Solving by search tree
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Solving by search tree
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Solving by search tree
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Solving by search tree
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Combinatorial Explosion
Computing Z is classified ad #P-complet problem so it is really hard
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Existing approaches for computing Z

Partition Function

Asymptotic guaranteeNo guarantee Probabilistic guarantee Deterministic guarantee

Loopy BP [7] Monte Carlo

Pertubation Gumbel [6]

XOR hashing

WISH [5]

WeightMC [2]

Variable elimination1 vec

Solver SAT2 cachet

Knowledge Compilation34 ace, minic2d

Approximation5 Z∗ε toulbar2

1Rina Dechter. “Bucket Elimination: A Unifying Framework for Reasoning”. In: Artificial Intelligence 113.1–2 (1999), pp. 41–85.
2Tian Sang, Paul Beame, and Henry A Kautz. “Performing Bayesian inference by weighted model counting”. In: AAAI. vol. 5. 2005,

pp. 475–481.
3Mark Chavira and Adnan Darwiche. “On probabilistic inference by weighted model counting”. In: Artificial Intelligence 172.6 (2008),

pp. 772–799.
4Umut Oztok and Adnan Darwiche. “A top-down compiler for sentential decision diagrams”. In: Proceedings of the 24th International

Conference on Artificial Intelligence. AAAI Press. 2015.
5Clément Viricel et al. “Guaranteed weighted counting for affinity computation: Beyond determinism and structure”. In:

International Conference on Principles and Practice of Constraint Programming. Springer. 2016, pp. 733–750.
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How does it work ?

Hybrid Best First Search
We adapt HBFSa search algorithm to compute the partition function

aDavid Allouche et al. “Anytime hybrid best-first search with tree decomposition for weighted CSP”. . In: International Conference on
Principles and Practice of Constraint Programming. Springer. 2015, pp. 12–29.

i

j

k

Open List :=

Ẑ

i LB(i) UB(i)

j LB(j) UB(j)

k LB(k) UB(k)




+
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But, but what can i do ?

Hybrid Best First Search
We adapt HBFSa search algorithm to compute the partition function

aDavid Allouche et al. “Anytime hybrid best-first search with tree decomposition for weighted CSP”. . In: International Conference on
Principles and Practice of Constraint Programming. Springer. 2015, pp. 12–29.

i

j

Open List :=

Ẑ

i LB(i) UB(i)

j LB(j) UB(j)




+
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How does it work ?

Hybrid Best First Search
We adapt HBFSa search algorithm to compute the partition function

aDavid Allouche et al. “Anytime hybrid best-first search with tree decomposition for weighted CSP”. . In: International Conference on
Principles and Practice of Constraint Programming. Springer. 2015, pp. 12–29.

i

j

s

Open List :=

Ẑ

i LB(i) UB(i)

s LB(s) UB(s)




+
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Algorithm HBFS-Counting

Function HBFS-C
Open = [(root, LB(root), UB(root))] ;
while Open ̸= ∅ do

n = pop(Open) ;
restore(n) ;
Ẑ = DFS(n, Ẑ, k) ;

Ẑ +
∑
n∈Open

LB(n) ≤ Z ≤ Ẑ +
∑
n∈Open

UB(n)

We can have an anytime guarantee with:

Ẑ+
∑
n∈Open

UB(n) ≤ (1 + ε)

Ẑ+ ∑
n∈Open

LB(n)


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Mean Field Lower Bound

Original graph
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Q ∝
∏

i∈V qi(xi)

log(Z) ≥
∑
i∈V

∑
xi

[Si(qi)− qi(xi)Ei(xi)]−
∑
(i,j)∈E

∑
xi,xj

qi(xi)qj(xj)Eij(xi, xj)
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Mean Field Algorithm

Function MF-LB(n)
t← 0;
Initialise q(t) ;
while q(t) converge do

for i ∈ X(n) do
q(t+1)
i ← exp

(
−Ei(xi)−

∑
j∈N (i)

∑
xj qj(xj)Eij(xi, xj)

)
;

Zi ←
∑

xi q
t+1
i (xi) ;

q(t+1)
i ← q(t+1)

i
Zi

;
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Upper Bound on Z

Upper Bound by Maximum Spanning Tree
Define a maximum spanning tree T ⊂ Φ and by applying dynamic
programming to T′ = T ∪ {ES ∈ Φ : |S| < 2}, we have an exact ZT′ in
polynomial time.

Z ≤ UbT =

∑
t∈DX

∏
ϕS∈T

ϕS(t)


︸ ︷︷ ︸
programmation dynamique

·

 ∏
ϕS∈Φ\T

max
t∈DS

ϕS(t)


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Perspectives

Extension
Mixing BTD (Backtrack Tree decomposition) with HBFS-C
Integrate Z∗ε pruning to HBFS

Test
Run a battery of tests (HBFS-C; HBFS-C + Z∗ε ; HBFS-C+BTD; HBFS-C +
BTD+ Z∗ε ) to see the dynamic of all the algorithm.

Application
If these are improvement then try to solve large protein instances to
predict affinity.
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Question(s) ?
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