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Context
• The whole root matters.

But...

• Meristems rule plant
architecture.

Key to understand the

optimal access to available
resources (water, nutrients)
and adaptation to the
environment (sensing). Hence
modelling is of paramount
importance to decipher
spatial and temporal patterns
in plant development.

• To overcome computational limitations, we developed a
continuous model for meristem distribution and solved it in a
semi-Lagrangian framework.

• Application to a simple case of density dependent growth in a
coordinated population of plants.
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Models for meristem development in soil

Features Limitations

Root
depth/distribution
models (Hackett and
Rose, Aust. J. biol.
Sci. 1972)

Number of root tips is a function of
branching rate, root length is a func-
tion of number of root tips and link
to increase in root depth

Spatial resolu-
tion

Density models of root
systems dynamics (Ger-
witz and Page, J. appl.
Ecol. 1974)

Root systems as density distribution,
conservation law, simulation algo-
rithm (root fluxes)

Biological in-
terpretation of
parameters

Structural functional
plant models (Lynden-
mayer, J. of Theoretical
Biology 1968)

Independent virtual meristems, em-
pirical developmental processes and
source-sink relationships regulate
growth

Difficult to pa-
rameterize

Developmental models
(Korn, J. Theor. Biol.
1969)

Mechanics of growth, gene regula-
tion, transport and signalling

Even more dif-
ficult to set pa-
rameters
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Qualitative biological interpretation

An application to individual-based population modelling
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Summary and perspectives
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Model-based analysis of root meristems dynamics

• Assumption: densities to describe root system: ρa (meristem),
ρn (length) and ρb (branching); ”phase space” to account for
root morphology.

• Relationship between meristem and root length distribution:

∂ρn

∂t
= ρae and

∂ρb

∂t
= b

• Continuity equation

Conservation of meristem quantity in elementary volume:

∂ρa

∂t
+∇∗.(ρag) +∇.(ρaeu) = b

Hyperbolic PDE → Propagation of travelling waves.
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Deformable domains for plant modelling

• We propose an alternative to classical
Eulerian framework (densities defined on
nodes of a fixed grid).

• Semi-deformable mesh in radial direction
(fluxes in azymuth): densities are
computed for a fixed proportion of
material (meristems).

• Each meristem distorts its neighbourhood
within a domain because of growth. Close
meristems have close trajectories. →
Sounds adapted to plant roots. Another
advantage: few elements to consider.
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Numerical analysis

(a-b) Numerical semi-Lagrangian simulations (N=16, solid line)
compared with 1D explicit solution (dotted line) at different times.
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Applying the model to plant systems biology

Experiment

Imaging in plastic tubes going through
concrete bins with sown Barley in rows of at
different depths → Plots of root length
distribution → Characterization of meristem
activity.

• Superposition of waves for two different root
orders (coupled PDEs).

• Heterogeneity can be modelled via non-fixed
coefficients.

• Architectural features encoded in source term
(e.g. b = b0ρa(u ± π/2)/2).
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Simulating biology ?

From biology to models and back

Is meristem location/activity (and more generally developmental
mechanisms) obtained from experiments somehow related to the
equations shown before ??

Simulations...
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Analysis of meristem trajectories

Observations vs. predictions from the model.
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Biological interpretation of the model

Modelling [I .] branching (source term) [II .] heterogeneity in the soil
and [III .] different root behaviour depending on model parameters.
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Deformable domains allow us to simulate competition in a
population of plants

1. Start from each meristem
that has a domain distorting
trajectory.

2. Several independent (similar
self-avoiding) domains to
model a plant.

3. Allocated resources depend
on relative densities.
Dynamics models simplistic
competition.
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Wrap up

• Development of the plant can be viewed as (overlapping)
waves of meristems; root architecture = footprint of these
waves.

• Simple models with quick computation allows us to obtain
interpretation in terms of root developmental mechanisms.

• Deformable domains (Lagrangian solver) for the simulation of
ensemble of plants complementary to static mesh approach
(Eulerian solver). Application in ecology ?
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Future Work

• Models in early stage of development so produce useable
package (+ stochasticity, plant/environment feedbacks . . . ).

• More experiments to characterize wave morphology, influence
of genotype, developmental processes, etc.

• Link this kind of study to genome. In a population with
different genotypes, a mapping (stat. link) is not enough.
Dynamic (not only accouting for final skeleton) model where
traits (QTL context) would be developmental precesses.
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