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Root systems fulfills important agronomic functions 

 anchorage 

 nutrition 

 synthesis and storage 

 interactions with microorganisms 

Excavated root system of an Eastern Gamagrass plant. Keith Weller, Ag Research 

Magazine, USDA Agricultural Research Service  



3 

Plasticity of root system development 

Lopez-Bucio et al., 2003 

 Integrated regulation by local and systemic signals 

 Regulation of root growth, tropism, and branching 

 Balance between efficient soil exploration, water and ions capture, and carbon 
and energy cost. 
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Plasticity of root system development 

Lopez-Bucio et al., 2003 

 Integrated regulation by local and systemic signals 

 Regulation of root growth, tropism, and branching 

* Primary root growth  

 (root apical meristem) 

* Lateral root development 

 (lateral root primordia) 

* Adventitious root formation 

 (e.g. crown roots in cereals) 

 Modulation of: 

 Balance between efficient soil exploration, water and ions capture, and carbon 
and energy cost. 
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The root apical meristem generates root primary 

tissues 

 Primary anatomical organization of roots is stereotyped. 

 Arabidopsis thaliana as a simple plant model. 

 Root meristem organized around a central stem cell niche 

Stem cell niche 

Organising Center 

(termed “Quiescent 

Center”) 
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Root branching consists in  

organogenesis of a lateral root primordium… 

 Selected pericycle cells resume cell division   organogenesis  

initiation development emergence 

 New axis of growth, distinction flank cells/ central cells…. : patterning  

Lateral root 

primordium 

pericycle 
central 

vascular 
tissues 

endodermis 

cortex 
epidermis 

 De novo organisation of a root meristem 
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… which progressively organises into a 

new root apical meristem 

Goh et al., 2016 

o expression of root stem cell niche marker genes at stage IV/V  

o inner layer or outer layer specific-gene expression as early as stage II 

inner layer 
outer layer 

 Dynamic LRP functional patterning: 

presumptive QC  

Yellow : plasmamembrane marker         Green : Stem cell niche organizing centre marker 



Number of cells 
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Cellular organization of the LRP is not fixed 

 Frequencies and locations of cell divisions are not stereotyped 

Lucas et al., 2013 

 Still, the outcome is the organization of a functional root apical meristem. 

Two different 

lateral root 

primordia 

Time I II III IV V VI 

 Misoriented cell division planes do not preclude functional LR formation. 



What mechanisms control the functional patterning of the 

lateral root primordium ? 

 Despite conserved landmarks, LRP development does not rely on a strictly 
controlled cell division pattern (Lucas et al., 2013; Van Damme et al., 2011) 

 What are the mechanisms controlling cell fate and functional patterning  
in the developing lateral root primordium? 

Focus on gene network patterning properties 

9 
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A systems biology approach of the gene regulatory 

network operating during LRP development 

Patterning  

properties 
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A systems biology approach of the gene regulatory 

network operating during LRP development 

Time course 

 transcriptomics 

Patterning 

properties 

Lucas et al., 2008 

Voss et al., 2015 
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A systems biology approach of the gene regulatory 

network operating during LRP development 

Time-course 

 transcriptomics 
Gene network 

inference 

Gene network 

Patterning 

properties 

Lavenus et al., 2015 

250 genes 

>1000 interactions 



13 

A systems biology approach of the gene regulatory 

network operating during LRP development 

Time course 

 transcriptomics Gene network 

inference 

Formal analysis Spatialization 

Patterning 

properties 

État 1 État 2 
PUCHI QC25 

Gene network 
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What is the global genetic system controlling 

lateral root formation ?  

Inference of the gene network  

operating during LRP development 
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Inference of the gene regulatory network involved in 

lateral root primordium development 

 First step : an ATH1 Affymetrix microarray-based transcriptomic dataset of 
lateral root formation, 54h long with 3h-time step, using synchronized 
gravistimulated root bends (8 000 genes differentially expressed (t-test, q 
value>0,05)) 

 Lucas et al., 2008; Péret et al., 2012; Lavenus et al., 2015 



Inference of the gene regulatory network involved in 

lateral root primordium development 

 First step : an ATH1 Affymetrix microarray-based transcriptomic dataset of 
lateral root formation, 54h long with 3h-time step, using synchronized 
gravistimulated root bends (8 000 genes differentially expressed (t-test, q 
value>0,05)) 

 Lucas et al., 2008; Péret et al., 2012; Lavenus et al., 2015 

Transcript accumulation of gene of interest 

Time after stimulus (h) 

min 

max 
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Inference of the gene regulatory network involved in 

lateral root primordium development 

 Second step : gene network inference based on this transcriptomic dataset and 
focused on a core list of genes of interest (TDCor algorithm, Lavenus et al., 2015) 

Search for expression profiles correlated with delay 

 Correlation with delay could be due to expression of gene X 
being regulated by the product of gene Y  

Computation of quality indexes whose probability distribution depends on 
topology 

 Prediction of the most probable topology out of multiple co-regulated  
genes 

Lavenus et al., Plant Cell 2015 
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Linear correlation between two profiles could be due to 

genetic regulation  

 Calculation of Pearson’s correlation coefficient between the two profiles, 
one shifted in time compared to the other 

 Calculation of time delay for highest Pearson’s correlation coefficient 

Lavenus et al., Plant Cell 2015 

Gene expression (mRNA, a. u.) Gene expression (mRNA, a. u.) 
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Several network topologies could explain profile 

correlation 

Lavenus et al., Plant Cell 2015 
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Statistical filters allow selecting most probable topologies 

Lavenus et al., Plant Cell 2015 

TPI= Triangle Pruning Index 

DPI= Diamond Pruning Index 



21 

Principles of the gene network inference algorithm TDCor 

 The TDCor algorithm (Lavenus et al. 2015) 

• Runs on expression profiles extracted from the LR dataset (or any other 
transcriptomic kinetics dataset) 

• Assumes consistent regulation relationship throughout the sample 

• Uses Pearson’s correlation to produce a raw preliminary network 

• Uses various filters to eliminate false positive and refine the network 
topology 

• Looks for non-combinatorial linear interactions 
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Selection of genes of interest 

• lateral root formation 

 Selection of genes involved in  

• root meristem organization and activity 

• hormonal transduction 

• cell division 

• cell differenciation 

Perilli et al. 2012 

 Possibility to include any other gene 
present on the Affymetrix chip (e.g. selected 
because of interesting features of its 
expression profile …)  



Selection of genes of interest 

 A list of 261 genes 

 Not only transcription factors 

 A “prior” data is given to each gene, 
based on the litterature, to indicate if 
transcriptional regulation activity has been 
reported or not 

 This “prior” information helps the 
inference procedure by authorizing or not 
the algorithm to draw outward edges from 
the node. However indicating a prior is not 
compulsory (prior = 2) 



A number of marker genes for root meristem cell identities 

SHR 

SCR 

GL2 

QC 

AHP6 

WER 

Transcript accumulation of gene of interest 

Time after stimulus (h) 

min 

max 
WOL 

 Meristem genes are differentially expressed in the LR formation dataset 



SHR 

SCR 

GL2 

QC 

AHP6 

WER 

Transcript accumulation of gene of interest 

Time after stimulus (h) 

min 

max 

A number of marker genes for root meristem cell identities 

WOL 

 Meristem genes are differentially expressed in the LR formation dataset 

 Onset of meristem genes induction coincides with a major transition in lateral 
root primordium formation    



TDCor output from the 261-gene list : a 247-gene network 

Node diameter = outdegree (number of targets), edge width = interaction bootstrap, edge color=estimated index of 
directness 
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Based on the 261 gene list and the LR transcriptomic 

dataset, TDCor predicts a 247-gene regulatory network 

 Based on the 261 gene list and the LR transcriptomic dataset, TDCor predicts a 
247-gene regulatory network containing 1069 predicted interactions 

 Genes that do no appear in the network are either not present on the 
Affymetrix microarray, or not differentially expressed in the LR transcriptomic 
dataset, or not linked by any predicted interaction 

 Predicted edges can correspond to a direct or indirect regulation relationship  

Transcript accumulation 

Time after stimulus (h) 

SHR 

SCR 

SHR and SCR experimental profile in the LR dataset 

Inference by TDcor algorithm 
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How reliable is this predicted topology of the 

LR formation network ?  

Confrontation of ARF7 predicted targets  

to experimental data 



What confidence to give to this prediction ?  

The case of the ARF7 transcription factor 

Lavenus et al., 2013 

 ARF7 is predicted to occupy a upstream position in the network 

 ARF7 is predicted to positively regulate a LOB/PUCHI genetic module 

ARF7 experimental profile in the 

LR data set transcriptomic profile Inference by TDcor algorithm 



30 

Prediction of an ARF7/ARF19 -dependent module 

 This prediction of an important ARF7/ARF19-
dependent module is consistent with experimental 
data :  

arf7 arf19 double mutation blocks lateral root 
formation in Arabidopsis. 

Fukaki et al., 2007 

Lavenus et al., TIPS 

2003 
Based on experimental 
data 

iaa14DN 
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Prediction of ARF7 targets 

 Out of 11 1st-order 
predicted targets of ARF7, 4 
are confirmed by qRT-PCR 
and/or CHIP and 1 is  
rejected (KRP2) 

Lavenus et al., 2015 

✔ ✔ ✔ 

✔ 

✖ 
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Prediction of ARF7 targets 

 Out of the 31 genes found to be 
positive target genes of ARF7 in an 
experimental transcriptomic dataset), 22 
(71%) are predicted to be located 1, 2 or 
3 edges downstream of ARF7 in the 261-
gene network 

 Experimental dataset about ARF7 
targets: inducible complementation of the 
arf7 arf19 mutant by a ARF7-GR 
construct, (H. Fukaki’s kab, Kobe) 

network 
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Analysis of topological and dynamic properties  

of the network 

What are the general properties of the network ? 
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Genes are organised into three main groups 

Red edge = inhibition; Blue edge = stimulation 
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Genes are organised into three main groups:  

example of PLETHORA family transcription factors 

Red edge = inhibition; Blue edge = stimulation 

PLT4 PLT3 
PLT2 

PLT1 

PLT5 
PLT7 
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This is consistent with both temporal and spatial 

patterning in gene expression pattern 

Time after stimulus (h) 

Transcript accumulation 

PLT5 

PLT7 

PLT3 

PLT1 
PLT2 
PLT4 

 The general topology of the network suggests a toggle-switch mechanism 
controlling a spatio temporal gene expression pattern in relation with root 
meristem establishment 
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Genes are organised into three main groups 

Node size Edge color Edge width 
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Genes are organised into three main groups 

Node size Edge color Edge width 

Some later-expressed 

meristem-related 

genes: ARF5/MP, SHR, 

SCR, WOL,GL2,  

PLT1-4,… 

Some early-expressed, 

boundary-related 

genes: ARF7, ARF19, 

LOB, PUCHI, PLT5, 

PLT7… 

Group 2 Group 1 

Group 3 
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Group 1: Prediction of an ARF7-dependent module 

controlling early stimulus response and boundary genes 

Cytoscape/yfile/Hierarchical layout 

Edge color: index of directness 

AGL21 

ARF7 

LBD29 

PUCHI 
PLT7 LBD33 

ARF9 

ARF1 

LBD18 

HAT22 

JAZ1 

WRKY56 REV 

PLT5 ARF2 

ARF19 

WOX13 

LBD17 

ARF4 

CNA 

LBD14 

ARF17 

Stimulus 
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Group 1: Prediction of an ARF7-dependent module 

controlling early stimulus response and boundary genes 

Cytoscape/yfile/Hierarchical layout 

Edge color: index of directness 

AGL21 

ARF7 

LBD29 

PUCHI 
PLT7 LBD33 

ARF9 

ARF1 

LBD18 

HAT22 

JAZ1 

WRKY56 REV 

PLT5 ARF2 

ARF19 

WOX13 

LBD17 

ARF4 

CNA 

LBD14 

ARF17 

Stimulus 
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Activation pattern of the ARF7 module in the primordium 

LBD16 

PUCHI 

PLT5 
Lavenus et al., 2015 

Hirota et al., 2007 
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Group 2 : prediction of a PLT1-dependent module : PLT1 

as a hub regulating multiple meristem genes 

Cytoscape/yfile/Hierarchical layout 

Edge color: index of directness 

PLT1 

LBD4 
MYB56 

ARF16 

ARF6 

LRP1 

PES PLT2 

FEZ AtWIP4 

PLT

3 

PLT4 

MP/ARF5 

TMO6 

TMO7 

SHR 

SCR 

BDL 

GL2 

SMB 

WER 

ARF8 

ROW1 

ACR4 

PHB PKL 

CLF 

ARF18 

AGL14 

CycD6.1 

AtML1 

TIR1 

CycD2.1 CycB1.1 

CycD3.1 

BRI1 

ANT 

TMO5 

PHV 



PLT1-4 are known master regulators of root meristem 

development 

35S::PLT2:GR + dex 

PLT2 overexpression in the shoot 

apex converts the shoot apical 

meristem into a root apical meristem 

Galinha et al., 2007 
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PLT1 PLT2 PLT3 PLT4 

PLT1-4 genes are auxin inducible 

and highly expressed in the root 

meristem 

ectopic root 

meristem 



Activation pattern of the ARF5 subnetwork in the LRP 

Lavenus et al., 2015 

pMP::MP:GFP Du & Scheres, 2017 
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Experimental data suggests a role of PLT5 and PLT7 (in 

group 1) and PLT3 (in group 2) in switching on PLT1,2,4 

 Onset of meristematic PLT1, PLT2 and PLT4 gene expression is impaired in plt3,5,7 
triple mutant 

Du & Scheres, 2017 
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Analysis of topological and dynamic properties  

of the network 

What are the general properties of the network ? 



Modeling dynamic properties of the inferred network 

 Aim : to model dynamically the state flow of the gene network in order to 
identify gene regulatory cascades, master regulators, attractor states, 
bifurcation behaviours… 

47 

TDCore inputs 

TDCor outputs 
Complex network 

e.g. 246 genes, 
1069 interactions 
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Modeling dynamic properties of the inferred network 

 Strategy: to use boolean modeling of the network 

B 
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Modeling dynamic properties of the inferred network 

 Strategy: to use boolean modeling of the network 

B 

 However most available boolean models require explicit specification of 
network and of each interaction rules (BooleanNet, NetDS, 
NetworkToolkitExtended, BooleSim, SimBoolNet, Atalia, …) 

 Impractical for massive network modelling 

 Currently developing implementation of automated boolean modelling 
for large scale networks 



A new simulation algorithm – PYTHONIS 
(PYTHon-based bOolean Network generIc Solver) 

 Uses any given predicted topology of a GRN (e.g. 246 genes, 1069 interactions) 

 
 Boolean modeling as a simplification (various formats) 

50 



A new simulation algorithm – PYTHONIS 
(PYTHon-based bOolean Network generIc Solver) 

 Uses any given predicted topology of a GRN (e.g. 246 genes, 1069 interactions) 

 
 Boolean modeling as a simplification (various formats) 

 Strong biological assumptions 

o Strong upregulators 

o Strong downregulators 

o No lazy genes 

51 



A new simulation algorithm – PYTHONIS 
(PYTHon-based bOolean Network generIc Solver) 

 Uses any given predicted topology of a GRN (e.g. 246 genes, 1069 interactions) 

 
 Boolean modeling as a simplification (various formats) 

 Strong biological assumptions 

o Strong upregulators 

o Strong downregulators 

o No lazy genes 

 Automated generation and solving of boolean model for entire network 



A new simulation algorithm – PYTHONIS 
(PYTHon-based bOolean Network generIc Solver) 

 For any random or given initial state,  

 o state flow (deterministic) 

o final states (can be stable states or loops) 

o basins of attraction 

o Hamming distance between basins of attractions  

o => identification of nodes important for cell fate bifurcation? 

SHR 

SCR 

GL2 

QC 

AHP6 

WER 

Transcript accumulation of gene of interest 

Time after stimulus (h) 

min 

max WOL 



A new simulation algorithm – PYTHONIS 
(PYTHon-based bOolean Network generIc Solver) 

 For any random or given initial state,  

 o state flow (deterministic) 

 Currently being validated against known regulatory networks 

o final states (can be stable states or loops) 

o basins of attraction 

o Hamming distance between basins of attractions  

 Simulation of the impact of knock-out (always 0) or gain-of-function (always 1) 
mutations 

o impact on state flow and final states 
o Hamming distance between « mutant » and « wild type » 
final states   
o => assessing the significance of each node in state flow 

o => identification of nodes important for cell fate bifurcation? 

54 
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Experimental validation of predicted regulatory modules 

What can this GRN tell us about lateral root formation ? 
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PUCHI is a regulator of lateral root development 

 PUCHI is an AP2/EREBP transcription factors expressed in lateral root primordia 

Hirota et al., 2007 

GFP-PUCHI 

 PUCHI loss of function affects lateral root primordium development 

 Induced by the root-promoting hormone auxin, but no described PUCHI targets 
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A systems biology approach to identify PUCHI targets 

 Among 480 genes whose expression profile is correlated with that of PUCHI during 
lateral root development, gene function in Very Long Chain Fatty Acids biosynthesis 
pathway is over represented (p-value< 0,05) 
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VLCFA biosynthetic pathway and function 

 Very Long Chain Fatty Acids are synthesized in the ER membrane and incorporated 
into membrane lipids, storage lipids and apoplast polymeres 

 Multiple roles in membrane dynamics, cell polarity, cytokinesis, suberin and wax 
deposition, embryonic and post-embryonic development 

 

KCR KCS 

HCD ECR 

VLCFA 

elongation 
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VLCFA biosynthetic mutations affect plant development  

KCR KCS 

HCD ECR 

VLCFA 

elongation 

KCR1 RNAi 
Beaudoin et al., 2009 

PAS1 (a FAE complex chaperonne) 

Roudier et al., 2010 

WT KCR1 RNAi WT pas1-3 

Loss of function mutation in 
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PUCHI upregulates VLCFA biosynthetic enzymes expression  

 During lateral root development (induced by NPA/NAA treatment) VLCFA 
biosynthetic enzymes expression are upregulated in a PUCHI-dependent manner 

KCR KCS 

HCD ECR 

VLCFA 

elongation 

(HCD) 
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VLCFA biosynthetic enzymes expression in LRP is 

dependent on PUCHI  

 Expression of VLCFA biosynthetic enzymes in wild-type developing lateral root 
primordia is dependent on PUCHI 

KCR KCS 

HCD ECR 

VLCFA 

elongation 
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PUCHI mutation impairs VLCFA contents in auxin-

stimulated roots 

 Lipidomic profiling of roots grown of callus-induction medium showed a reduction 
in very long-chain fatty acid contents in puchi compared to WT.  
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A systems biology approach of the gene regulatory 

network operating during LRP development 

Time course 

 transcriptomics Gene network 

inference 

Formal analysis Spatialization 

Patterning 

properties 

État 1 État 2 
PUCHI QC25 

Gene network 

Network exploration 

and validation 
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Gene regulatory networks for root branching 

• Systems biology analysis of gene 
regulatory networks involved in root 
branching and patterning properties 

Gene regulatory networks with time 
and space information 

• Functional analyses of master 
regulators 

Modeling mechanisms for root branching  

• Root architecture phenotyping of 
highly diverse lines 

• Identification of regulatory loci and 
functional analysis 

Arabidopsis - Rice Rice - Pearl millet - Sorghum 

Identifying gene subnetworks and master regulator genes 

 for root-targeted plant breeding strategies 
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Root system architecture influences plant nutrition 

 Relationship between hydromineral nutrition (proportion of available water that 
is captured, φ) and root length density (RLD, cm/dm3) or root volume density 
(RVD, cm3/dm3)  in the soil for barley (non irrigated) 

Carvalho et al., 2013 

Root length average per cm3 of soil Root volume average per cm3 of soil 

Proportional water capture Proportional water capture 
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Root system architecture is an important trait for 

plant adaptation and selection  

 Exploration of different soil layers 

 Balance between efficient soil exploration, water and ions capture, and 
carbon and energy cost. 

Number and position of 

newly emerged lateral roots 

Quinoa from 

dry habitat 

Quinoa from 

wet habitat 

Grown in rhizotrons in the same conditions 

Depth (cm) 

Alvares-Flores et al., 2014 
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A wealth of genetic information is available on 

Arabidopsis root meristem regulation 

Lee et al. 2013 

 Transcription factors such 
as WOX5, PLT, SHR, SCR 

 Hormones and transducers 

 Mobile peptides 

 Cell-cycle regulators 

 Chromatin modifiers 
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Functional organization of the LRP does not rely on a 

stereotyped cell division pattern 

Vandamme et al., 2011 

 aurora mutants, defective in the regulation of cell division orientation, are able 
to form functional lateral roots 

Col-0 

aur1-2 aur2-2 
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Group 3 : GATA23, CPC… a complex picture 

Cytoscape/yfile/Hierarchical layout 

Edge color: index of directness 

GATA23 

TTL1 

ARR12 

CRF1 GCN5 CPC 

B3 

CK 
 A complex 

expression profile 
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The LR network is predicted to organize into two 

subnetworks with distinct crosstalk with auxin 

 

 Distinct crosstalks of each module with auxin distribution and signaling may 
contribute to progressive patterning of the lateral root primordium. 

Benkova et al., 2003 

Auxin signaling (DR5::GUS) 
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Use of marker genes to monitor LRP functional patterning 

stele quiescent centre epidermis 

hag 

T
ra

n
s
c
ri
p
t 
a
c
c
u
m

u
la

ti
o
n

 

root cap 

SHR SCR QC WER GL2 
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Use of marker genes to monitor LRP functional patterning 
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Gradual functional patterning of the LRP  

 Critical changes in gene expression occur at stage I-II transition and stage IV 
(meristem formation phase), and early after emergence (expression of epidermis 
and root cap markers) 

Stele (SHR) quiescent centre (WOX5) epidermis (GL2) 
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The LR transcriptomic dataset and the gene network inference: new 

tools to decipher the genetic regulation of lateral root development 

 TDCor algorithm predicts candidate upstream regulators or downstream 
targets for a gene of interest 

Analysis of the candidate 

subnetwork controlling stem cell 

niche establishment: 

 
• Regulators of meristem formation ? 
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The LR transcriptomic dataset and the gene network inference: new 

tools to decipher the genetic regulation of lateral root development 

 TDCor algorithm predicts candidate upstream regulators or downstream 
targets for a gene of interest 

Analysis of the candidate 

subnetwork controlling stem cell 

niche establishment: 

 
• Regulators of meristem formation ? 

Identification of previously 

unknown function for a 

transcription factor: 

 
• coordinated regulation of a 

whole metabolic pathway during 

LRP development 
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The LR transcriptomic dataset and the gene network inference: new 

tools to decipher the genetic regulation of lateral root development 

 TDCor algorithm predicts candidate upstream regulators or downstream 
targets for a gene of interest 

 TDCor algorithm predicts the topology of the network, allowing to identify 
putative hubs and master regulators in lateral root development despite 
functional redundancy 
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The LR transcriptomic dataset and the gene network inference: new 

tools to decipher the genetic regulation of lateral root development 

 TDCor algorithm predicts candidate upstream regulators or downstream 
targets for a gene of interest 

 TDCor algorithm predicts the topology of the network, allowing to identify 
putative hubs and master regulators in lateral root development 

 The inferred topology of the network can be subjected to in silico (and in 
vivo) analysis in order to identify the properties of this network that may control 
the functional patterning of the developing root primordium 
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The LR transcriptomic dataset and the gene network inference: new 

tools to decipher the genetic regulation of lateral root development 

 TDCor algorithm predicts candidate upstream regulators or downstream 
targets for a gene of interest 

 TDCor algorithm predicts the topology of the network, allowing to identify 
putative hubs and master regulators in lateral root development 

 The inferred topology of the network can be subjected to in silico (and in 
vivo) analysis in order to identify the properties of this network that may control 
the functional patterning of the developing root primordium 

 Importantly, this algorithm (in R, available on the CRAN website) can be run 
for the analysis of any transcriptomic time-course series, provided suficient 
number of time points (> 10) and short time steps (ca 3h). 


