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Suppose, given a data set, we wish to express its correct dependency among the variables by an
undirected tree. One possible way to deal with this problem is to apply the Chow-Liu algorithm [2]
to the data set. Then, in our daily experience, we notice that some variables are discrete and others
continuous. However, almost all the existing methods assume unrealistic cases: either all the variables
are discrete or all of them are Gaussian. In this paper, we remove such restrictions and demonstrate that
the proposed algorithm actually works for any data set.

Let X(1), · · · , X(N) be N (≥ 1) discrete random variables. Let V := {1, · · · , N} and E ⊆ {{i, j}|i ̸=
j, i, j ∈ V } be vertex and edge sets, and assume that the undirected graph (V,E) expresses a tree, i.e.,
no loop exists. We consider the associated distribution

Q(x(1), · · · , x(N)|E) =
∏

{i,j}∈E

Pi,j(x
(i), x(j))

Pi(x(i))Pj(x(j))

∏
i∈V

Pi(x
(i)) , (1)

where {Pi}i∈V and {Pi,j}i ̸=j are obtained by marginalizing the distribution P1,··· ,N of X(1), · · · , X(N).
Then, suppose we start from E = {} and E = {{i, j}|i ̸= j, i, j ∈ V }; choose {i, j} ∈ E that maximizes
the mutual information I(i, j) of X(i) and X(j), remove the pair {i, j} from E , and add it to E as an edge
unless any loop is generated when the edge is added; and repeat this until E is empty to obtain a tree
(V,E). Chow and Liu [2] showed that the resulting distribution expressed by (1) minimizes the Kullback
divergence

D(P1,··· ,N ||Q) :=
∑
x(1)

· · ·
∑
x(N)

P1,··· ,N (x(1), · · ·x(N)) log
P1,··· ,N (x(1), · · ·x(N))

Q(x(1), · · ·x(N)|E)

among all the trees expressed by (V,E).
In this paper, assuming that the true distribution is expressed by (1), we find (V,E) from n examples

{X(1) = x
(1)
i , · · · , X(N) = x

(N)
i }ni=1 so that the estimation converges to the correct (V,E) with probability

one as n → ∞. One might want to calculate the maximum likelihood estimators based on the relative
frequencies to apply the Chow-Liu algorithm. However, we would not obtain any correct (V,E) in general
cases. For examples, suppose X(1), · · · , X(N) are independent, then such a naive Chow-Liu algorithm
seeks a tree whereas no edge should be connected for the random variables. Suzuki [7] considered a similar
problem to obtain a way to estimate a correct forest rather than a tree based on the MDL principle [6]
but only for discrete variables.

The current paper proposes a method to estimate a forest not just for discrete but also for continuous
variables by constructing a Bayesian measure. The measure is constructed by weighting histograms
obtained through estimating the quantization of the original distribution rather than estimating one
quantized histogram, and its universality is insured. We will find that the MDL based method [7] is
contained as a special case of the proposed method. The idea is based on an extended version of the
MDL principle. Although consistency is assured for the original MDL, we have not yet given proof of
consistency for the extended version, where consistency is defined by the property that the selected model
coincides with the true one with probability one as n grows. We will have evidence of the conjecture in
our experiments.

On the other hand, very few results have been reported for the problem thus far, and the general
approach has been considered to be hard. For example, recently, D. Edwards, et.al [3] considered an
extended version of the Chow-Liu algorithm. However, they posed restrictive assumptions: each variable
is either discrete or Gaussian; and no Gaussian variables are allowed to be in any path between two
discrete variables. Also, several authors revisited a similar approach in machine learning and statistics
[4, 5]. However, they are only for discrete variables and more than ten years after [7].
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Let Pn(i) := Pn({x(i)
k }nk=1) =

∏n
k=1 P (X(i) = x

(i)
k ) and Pn(i, j) := Pn({x(i)

k , x
(j)
k }nk=1) =

∏n
k=1 P (X(i) =

x
(i)
k , X(j) = x

(j)
k ). Then, we construct measuresRn(i) := Rn({x(i)

k }nk=1) andRn(i, j) := Rn({x(i)
k , x

(j)
k }nk=1)

such that∑
Rn(i) = 1 , Rn(i) ≥ 0 ,

1

n
log

Pn(i)

Rn(i)
→ 0 ,

∑
Rn(i, j) = 1 , Rn(i, j) ≥ 0 ,

1

n
log

Pn(i, j)

Rn(i, j)
→ 0

for any Pn(i) and Pn(i, j), respectively. Notice that Rn follows Pn for any Pn as n → ∞ (uni-

versal Bayesian measures). We define Rn(xn|E) and Qn(xn|E) by
∏

{i,j}∈E

Rn(i, j)

Rn(i)Rn(j)

∏
i∈V

Rn(i) and

n∏
k=1

Q(x
(1)
k , · · · , x(N)

k |E) =
∏

{i,j}∈E

Pn(i, j)

Pn(i)Pn(j)

∏
i∈V

Pn(i), respectively. Then, for discrete variables, we

obtain Theorems 1 and 2:

Theorem 1 For any probability distribution Q expressed by (1), with probability one as n → ∞,

1

n
log

Qn(xn|E)

Rn(xn|E)
→ 0 . (2)

Theorem 2 The variant of the Chow-Liu algorithm using

J(i, j) :=
1

n
log

1− pij
pij

+
1

n
log

Rn(i, j)

Rn(i)Rn(j)

instead of I(i, j) obtains the true forest with probability one as n → ∞ if the true distribution is expressed
by (1) and the the prior probability pij of X(i) and X(j) being independent is given for i ̸= j.

The idea is to maximize the posterior probability that is proportional to
∏

{i,j}∈E

(1− pi,j)R
n(i, j)

pi,jRn(i)Rn(j)
for

forest (V,E) given n examples xn.
The main result of this paper is to extend Theorems 1 and 2 to the case that each of X(1), · · · , X(N)

is either discrete or continuous. The idea is to extend the universal Bayesian measures Rn(i) and Rn(i, j)
to the ones not assuming either discrete or continuous. The quantities are obtained by estimating and
weighting histograms [8], and the derivation is based on the Radon-Nikodym theorem [1].
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