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Context: large scale convex optimization

Two old ideas have received renewed attention in the past years:

Block decomposition: Linear oracles:

x =

 x1
...
xN

 minx∈X 〈x, c〉

●

Coordinate descent:

Large dimension

Distributed data

Conditional gradient:

“Complex constraints”

Primal-dual interpretation

Theoretical properties and empirical performances?
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Scope of the presentation

Most results in the litterature hold for random block selection rules.

Lacoste-Julien and co-authors analyzed the random block conditional
gradient method (RBCG).

I Block-Coordinate Frank-Wolfe Optimization for Structural SVMs
(ICML 2013)

We propose a convergence analysis for the cyclic block variant (CBCG).

This presentation: focus on machine learning related aspects

General introduction to linear oracle based optimization methods.

Specification to (regularized) empirical risk minimization (ERM).

Details about the application to structured SVM.

(Taskar et. al., 2003 – Tsochantaridis et. al., 2005)
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Outline

1. Context

2. Conditional Gradient algorithm

3. CG and convex duality

4. Block CG and L2 regularized ERM

5. Results
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Main idea

Optimization setting: f : Rn → R is convex, C1 with L-Lipschitz gradient over
X ⊂ Rn which is convex and compact.

f̄ := min
x∈X

f (x)

Start with x0 ∈ X

pk ∈ argmaxy∈X
〈
∇f (xk), xk − y

〉
xk+1 = (1− αk)xk + αkpk 0 ≤ αk ≤ 1

Step size:

αk = 2
k+2 Open loop

xk+1 = argminy∈[xk ,pk ]f (y) Exact line search

xk+1 = argminy∈[xk ,pk ]Q(xk , y) Approximate line search

f (y) ≤ Q(x, y) := f (x) + 〈∇f (x), y − x〉+
L

2
‖y − x‖22

(tangent quadratic upper bound, descent Lemma).
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Historical remarks

Fifty years ago:

First appearance for quadratic programs (Frank, Wolfe, 1956).

f (xk)− f̄ = O(1/k) (Polyak, Dunn, Dem’Yanov . . . , 60’s).

For any ε > 0, it cannot be O(1/k1+ε) (Canon, Cullum, Polyak, 60’s)

Recent developments (illustrations follow):

Revival for large scale problems.

Primal dual interpretation (Bach 2015) and convergence analysis (Jaggi
2013)

Block decomposition variants (Lacoste-Julien et al. 2013)
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Why is it interesting?

O(1/k2) can be achieved by using projections (Beck, Teboulle 2009).

Conditional Gradient does not compete in practice.

In some situations, projection does not constitute a practical alternative.
Linear programs on convex sets attain their value at extreme points.

Trace norm:
For M ∈ Rm×n, ‖M‖∗ =

∑
i σi , where {σi} is the set

of singular values of M.

Projection on the trace norm ball is a
thresholding of singular values → full SVD.

Linear programming on the trace norm ball is
finding the largest singular value → leading
singular vector.
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Convex duality

Recall that X is convex and compact. Define its support function g : Rn → Rn

g : w→ max
x∈X
〈x,w〉

Given A ∈ Rn×m and b ∈ Rn, consider the problems

p̄ = min
w∈Rm

1

2
‖w‖22 + g(−Aw + b) (= P(w))

d̄ = min
x∈X

1

2
‖ATx‖22 − 〈x,b〉 (= D(x))

Weak duality: for any w ∈ Rm and x ∈ X ,

P(w) + D(x) ≥ 0

Strong duality holds
p̄ + d̄ = 0
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Primal subgradient and dual conditional gradient

g : w→ max
x∈X
〈x,w〉 (x ∈ argmax⇔ x ∈ ∂g(w))

p̄ = min
w∈Rm

1

2
‖w‖22 + g(−Aw + b) (= P(w))

d̄ = min
x∈X

1

2
‖ATx‖22 − 〈x,b〉 (= D(x))

A conditional gradient step in the dual:

pk : max
y∈X

〈
AATxk − b, xk − y

〉
= ‖ATxk‖22 −

〈
b, xk

〉
+ g(−AATxk + b)

= P(ATxk) + D(xk)

Consider the primal variable wk = ATxk : we have pk ∈ ∂g(−Awk + b).

wk+1 −wk = αkAT (−xk + pk) = −αk∂P(wk)

Implicit subgradient steps in the primal!
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Primal subgradient and dual conditional gradient

The primal-dual interpretation holds in much more general settings (Bach
2015).

Primal-dual convergence analysis, mini=1,...,k P(wi ) + D(xi ) = O(1/k)
(Jaggi 2013).

Automatic step size tuning for subgradient descent in the primal.
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L2 regularized ERM

Consider a problem of the form:

p̄ = min
w∈Rm

λ

2
‖w‖22 +

1

N

N∑
i=1

g(−Aiw + bi ) (= P(w))

d̄ = min
xi∈X ,i=1,...,N

λ

2

∥∥∥∥∥ 1

Nλ

N∑
i=1

Ai
Txi

∥∥∥∥∥
2

2

− 1

N

N∑
i=1

〈xi ,bi 〉 (= D(x))

Binary SVM: dataset (ai , li ) ∈ Rm × {−1, 1} , i = 1, . . . ,N

P(w) =
λ

2
‖w‖22 +

1

N

N∑
i=1

max(0, 1− lia
T
i w)

Prediction: l(a,w) = argmaxl∈{−1,1}la
Tw = sign(aTw).

Convex surrogate of the empirical risk: 1
N

∑N
i=1 1(l(ai ,w) = li )
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L2 regularized ERM: dual block conditional gradient

The dual has a separable block structure: xi ∈ X , i = 1, . . . ,N. Start with
x0i ∈ X , i = 1, . . . ,N, and iterate for k ∈ N and i = 1, . . . ,N

pki ∈ argmaxy∈X
〈
∇xiD(xk), xki − y

〉
xk+1
i = (1− αk

i )xki + αk
i p

k
i 0 ≤ αk

i ≤ 1

Mainly three way to choose blocks:

Uniformly at random (Lacoste-Julien et al. 2013).

Cyclic (Beck et al. 2015).

Essentially cyclic, “random permutation” (Beck et al. 2015).

Primal interpretation: a subgradient method (stochastic, cyclic, etc . . . ).

pki ∈ ∂g
(
−Aiw

k + bi
)
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Structured output learning and structured SVM

a (1) b (2) u (3) l (4) o (5) u (6) s (7) l (8) y (9)
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Structured output learning and structured SVM

Dataset: (ai , li ) ∈ A× L, i = 1, . . . ,N. L is discrete and structured:

Feature function: φ : A× L → Rm

Prediction l(a,w) = argmaxl∈L 〈w, φ(a, l)〉

Risk function ∆: L2 → R+.

Structured SVM: min
w∈Rm

λ

2
‖w‖2 +

N∑
i=1

max
l∈L
{∆(li , l)− 〈w, φ(ai , l)− φ(ai , li )〉}

Binary SVM:

L = {−1, 1}.
φ(a, l) = la.

∆ is the 0− 1 loss

Prediction is a sign (optimize over a set of size 2)

The dual constraint set is a box (product of segments).

Label sequence learning:

L is the set of possible words over an alphabet.

φ is inspired by HMM (unary and binary terms over a chain)

∆ is the Hamming distance.

Prediction (or decoding) is done by dynamic programming (Viterbi
algorithm).

The dual constraint set is a product of simplices (of size |L|).
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Convergence rates

k̃: number of effective passes through the N blocks.

The rates are given for the duality gap.

B: diameter of the dual constraint set X × X × . . .× X .

L: Lipschitz modulus of ∇D.

Random block: the rate relates to an expectation (Lacoste-Julien et al. 2013).

O

(
1

k̃
(LB2 + D(x0))

)
Cyclic block: deterministic rate (Beck et al. 2015).

Approximate line search : O

(
1

k̃
LB2N

L

β

)
Open loop

(
αk̃
i =

2

k̃ + 2

)
: O

(
1

k̃
LB2
√
N

)
where β is the smallest block Lipschitz modulus of ∇D (variations constrained to
a single blocks).
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The rates are given for the duality gap.

B: diameter of the dual constraint set X × X × . . .× X .

L: Lipschitz modulus of ∇D.

Random block: the rate relates to an expectation (Lacoste-Julien et al. 2013).
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Results on synthetic problems

1000 random QP over the unit cube in R100 (normalized).

Predefined step Backtracking Exact line−search
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Results on structural SVM

Handwritten words recognition.

λ : 0.001 λ : 0.01 λ : 0.1
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Conclusion regarding cyclic block selection rule

One of the few attempts to analyse essentially cyclic methods.

Huge gap compared to random selection.

Efficient in practice.

Future directions:

Gap between theory and practice

Linear convergence

Exact line search, inexact oracles

20 / 21



General conclusion

Nice duality between constraint block decomposition and sequential
methods for sums.

Conditional gradient is “bad”, but it is good in settings for which nothing
else is affordable.
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