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Context: large scale convex optimization

Two old ideas have received renewed attention in the past years:
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Context: large scale convex optimization

Two old ideas have received renewed attention in the past years:

Block decomposition: Linear oracles:

X1

minkex (X, C)

5

Coordinate descent: Conditional gradient:
@ Large dimension @ “Complex constraints”
@ Distributed data @ Primal-dual interpretation

Theoretical properties and empirical performances?
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Scope of the presentation

@ Most results in the litterature hold for random block selection rules.

@ Lacoste-Julien and co-authors analyzed the random block conditional
gradient method (RBCG).

» Block-Coordinate Frank-Wolfe Optimization for Structural SVMs
(ICML 2013)

@ We propose a convergence analysis for the cyclic block variant (CBCG).
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Scope of the presentation

@ Most results in the litterature hold for random block selection rules.

@ Lacoste-Julien and co-authors analyzed the random block conditional
gradient method (RBCG).

» Block-Coordinate Frank-Wolfe Optimization for Structural SVMs
(ICML 2013)

@ We propose a convergence analysis for the cyclic block variant (CBCG).

This presentation: focus on machine learning related aspects
@ General introduction to linear oracle based optimization methods.
@ Specification to (regularized) empirical risk minimization (ERM).
@ Details about the application to structured SVM.
(Taskar et. al., 2003 — Tsochantaridis et. al., 2005)
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1. Context

2. Conditional Gradient algorithm

3. CG and convex duality

4. Block CG and L; regularized ERM

5. Results
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Optimization setting: /: R” — R is convex, C; with L-Lipschitz gradient over
X C R"” which is convex and compact.

f:= min f(x)
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Optimization setting: /: R” — R is convex, C; with L-Lipschitz gradient over
X C R"” which is convex and compact.

f:= min f(x)

Start with x? € X

pr € argmax ¢ x <Vf(xk),xk -y)

XK1 = (1 — oF)xk £ akpk 0<ak<1
Step size:
° ok — k%2 Open loop
o x*t1 = argming ¢ i F(y) Exact line search
o x*t1 = argmin ¢ g Q(X*, y) Approximate line search

Fy) < Qx,y) = F()+ (VF(x)y —x) + 2y —xI3

(tangent quadratic upper bound, descent Lemma).
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Historical remarks

Fifty years ago:
@ First appearance for quadratic programs (Frank, Wolfe, 1956).
e f(x¥) — f = O(1/k) (Polyak, Dunn, Dem'Yanov ..., 60's).
@ For any € > 0, it cannot be O(1/k'*€) (Canon, Cullum, Polyak, 60's)
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Historical remarks

Fifty years ago:
@ First appearance for quadratic programs (Frank, Wolfe, 1956).
e f(x¥) — f = O(1/k) (Polyak, Dunn, Dem'Yanov ..., 60's).
@ For any € > 0, it cannot be O(1/k'*€) (Canon, Cullum, Polyak, 60's)

Recent developments (illustrations follow):
@ Revival for large scale problems.

@ Primal dual interpretation (Bach 2015) and convergence analysis (Jaggi
2013)

@ Block decomposition variants (Lacoste-Julien et al. 2013)
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Why is it interesting?

@ O(1/k?) can be achieved by using projections (Beck, Teboulle 2009).

@ Conditional Gradient does not compete in practice.

7/21



Why is it interesting?

@ O(1/k?) can be achieved by using projections (Beck, Teboulle 2009).

@ Conditional Gradient does not compete in practice.

In some situations, projection does not constitute a practical alternative.
Linear programs on convex sets attain their value at extreme points.

7/21



Why is it interesting?

@ O(1/k?) can be achieved by using projections (Beck, Teboulle 2009).

@ Conditional Gradient does not compete in practice.

In some situations, projection does not constitute a practical alternative.
Linear programs on convex sets attain their value at extreme points.

Trace norm:
For M € R™", |[M||« = Y, oi, where {o;} is the set
of singular values of M.

@ Projection on the trace norm ball is a
thresholding of singular values — full SVD.

@ Linear programming on the trace norm ball is
finding the largest singular value — leading
singular vector.
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3. CG and convex duality
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Convex duality

Recall that X is convex and compact. Define its support function g: R" — R”

W —
g: W — max (x, w)
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Convex duality

Recall that X is convex and compact. Define its support function g: R” — R”

: —
g5 w— max (x,w)

Given A € R"™™ and b € R", consider the problems

p=min SIwl3 +g(—Aw +b) (= P(w))
G =mig 2IATx]Z -~ (x.b) (= D)

@ Weak duality: for any w € R™ and x € X,
P(w)+ D(x) >0

@ Strong duality holds

Tl
+
Q)

Il
o
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Primal subgradient and dual conditional gradient

g:w — max (x, w) (x € argmax < x € dg(w))
XE

_ .1 s _

p=min 2 [wl§+&(~Aw+b) (= P(w))

I — mi 1 T 2 _ _
d=min SA"x]2 — {x,b) (= D(x)
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Primal subgradient and dual conditional gradient

g: W — max (x, w) (x € argmax < x € dg(w))
XE

_ .1 _

5= min Wl +&(~Aw +b) (= P(w)

s LT _

§=miy 2 ATx[ ~ (x,b) (= D(x)

A conditional gradient step in the dual:
k

p*: max (AATXK —b,x* —y) = [|ATx¥]3 — (b,x*) + g(—AATx* +b)
y

= P(ATx*) + D(x¥)
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XE

_ .1 _

5= min Wl +&(~Aw +b) (= P(w)

s LT _

§=miy 2 ATx[ ~ (x,b) (= D(x)

A conditional gradient step in the dual:

p~ : max (AATXK —b,x* —y) = [|ATx¥]3 — (b,x*) + g(—AATx* +b)
ye
= P(ATx¥) + D(x¥)
Consider the primal variable wX = ATx*: we have p* € 9g(—Aw* + b).

Wk+1 _ Wk — OLkAT(ka + pk) — 70&k6P(Wk)
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Primal subgradient and dual conditional gradient

g: W — max (x, w) (x € argmax < x € dg(w))
XE

_ .1 _

5= min Wl +&(~Aw +b) (= P(w)

s LT _

§=miy 2 ATx[ ~ (x,b) (= D(x)

A conditional gradient step in the dual:

p~ : Tea)z( (AATXK —b,x* — y) = |ATXK||2 — (b, x*) + g(—AATx* +b)
= P(ATx*) + D(x¥)
Consider the primal variable wX = ATx*: we have p* € 9g(—Aw* + b).
WA wk = AT (—xk 4 pk) = —a*oP(wk)

Implicit subgradient steps in the primal!
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Primal subgradient and dual conditional gradient

@ The primal-dual interpretation holds in much more general settings (Bach
2015).

@ Primal-dual convergence analysis, min;—1__x P(w') + D(x') = O(1/k)
(Jaggi 2013).

@ Automatic step size tuning for subgradient descent in the primal.
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4. Block CG and L; regularized ERM
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L2 regularized ERM

Consider a problem of the form:

N
_ A 1
P= o EHW”% + N ?:1 g(—Aiw +b;) (= P(w))
1 & 2 1N
- ) A1 . 1 )
d _x;eXT:IT,,,,,N 2 1IN ;AI Xj i N ,-21 <Xl7b,> ( D(x))
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L2 regularized ERM

Consider a problem of the form:

N
1
ﬁ:Wn;]ilQm *||W||§+N;g(—A,w+b,) (: P(W))
1 & 2 1N
- ) A1 . 1 )
d_x,-eXT:I?,...,N 2 [INX ;A’ Xi . N§<X’7bl> (= D(x))

Binary SVM: dataset (a;,/;)) e R™ x {-1,1},i=1,...,N
A 1
_ 2 AT
P(w) = ZlIwli3 + 5 }; max(0,1 — f:a] w)
=
@ Prediction: /(a,w) = argmax,e{_Ll}/aTw = sign(a’w).

@ Convex surrogate of the empirical risk: % vazl (I(aj,w) = 1)
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L2 regularized ERM: dual block conditional gradient

The dual has a separable block structure: x; € X,i=1,..., N. Start with
x¥eX,i=1,...,N, and iterate for k e Nand i =1,..., N

S argmax ¢ x (Vi D(x*), xf —y)

XH — (1= af)x + ot 0<af <1
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L2 regularized ERM: dual block conditional gradient

The dual has a separable block structure: x; € X,i=1,..., N. Start with
x%e X,i=1,...,N, and iterate for k e Nand i =1,..., N
S argmax ¢ x (Vi D(x*), xf —y)
XEH = (1= af)x + afph 0<af<1

Mainly three way to choose blocks:

@ Uniformly at random (Lacoste-Julien et al. 2013).

@ Cyclic (Beck et al. 2015).

@ Essentially cyclic, “random permutation” (Beck et al. 2015).

Primal interpretation: a subgradient method (stochastic, cyclic, etc .. .).

p; € dg (—Aw" +b;)
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Structured output learning and structured SVM

a() b (2) u@) 1@ 0 (5) u(e) s(@) 1®) y(9)

rIAFREsIFLS
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Structured output learning and structured SVM

Dataset: (a;,;)) € Ax L,i=1,...,N. L is discrete and structured:
@ Feature function: ¢: A x L — R™
@ Prediction /(a,w) = argmaxc . (w, ¢(a, /))

@ Risk function A: £2 — R,
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Structured output learning and structured SVM

Dataset: (a;,;)) € Ax L,i=1,...,N. L is discrete and structured:
@ Feature function: ¢: A x L — R™
@ Prediction /(a,w) = argmaxc . (w, ¢(a, /))

@ Risk function A: £2 — R,

Binary SVM:

o L={-1,1}.
® ¢(a,l) = la.

@ Aisthe 0—1 loss

@ Prediction is a sign (optimize over a set of size 2)

@ The dual constraint set is a box (product of segments).
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Structured output learning and structured SVM
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Label sequence learning:

@ L is the set of possible words over an alphabet.

@ ¢ is inspired by HMM (unary and binary terms over a chain)

@ A is the Hamming distance.

@ Prediction (or decoding) is done by dynamic programming (Viterbi
algorithm).
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Dataset: (a;,;)) € Ax L,i=1,...,N. L is discrete and structured:
@ Feature function: ¢: A x L — R™
@ Prediction /(a,w) = argmaxc . (w, ¢(a, /))

@ Risk function A: £2 — R,

N
Empirical risk: w — > A(/;, I(aj, w)).
i=1
Label sequence learning:
@ L is the set of possible words over an alphabet.
@ ¢ is inspired by HMM (unary and binary terms over a chain)
@ A is the Hamming distance.
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@ Feature function: ¢: A x L — R™
@ Prediction /(a,w) = argmaxc . (w, ¢(a, /))

@ Risk function A: £2 — R,

N

Convex relaxation: w — » max {A(h, 1) = (w, é(a;, 1) = é(ar, 1))} -
i=1

Label sequence learning:

@ L is the set of possible words over an alphabet.
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Structured output learning and structured SVM

Dataset: (a;,;)) € Ax L,i=1,...,N. L is discrete and structured:
@ Feature function: ¢: A x L — R™
@ Prediction /(a,w) = argmaxc . (w, ¢(a, /))

@ Risk function A: £2 — R,

N
Ao
Structured SVM: min = |w| +;@<{A(/,-,/)_ (w, p(ai, 1) — d(ai, 1))}

Label sequence learning:

L is the set of possible words over an alphabet.

¢ is inspired by HMM (unary and binary terms over a chain)

A is the Hamming distance.

Prediction (or decoding) is done by dynamic programming (Viterbi
algorithm).

@ The dual constraint set is a product of simplices (of size |£|).
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5. Results
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Convergence rates

k: number of effective passes through the N blocks.
The rates are given for the duality gap.

B: diameter of the dual constraint set X x X x ... x X.
L: Lipschitz modulus of VD.
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Convergence rates

k: number of effective passes through the N blocks.
The rates are given for the duality gap.

B: diameter of the dual constraint set X x X x ... x X.
L: Lipschitz modulus of VD.

Random block: the rate relates to an expectation (Lacoste-Julien et al. 2013).
1
0] (%(LBz + D(xo))>
Cyclic block: deterministic rate (Beck et al. 2015).

Approximate line search : O

(i
opent (o= 2 o

where (3 is the smallest block Lipschitz modulus o
a single blocks).

LB?N= )

LBQf)

<4 xi+~ xe

D (variations constrained to
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Results on synthetic problems

1000 random QP over the unit cube in R% (normalized).

Predefined step

Exact line-search

—

=
o

type

~ cBoG-P
- cBCG-C
. RBCG

-~ CG



Results on structural SVM

Handwritten words recognition.
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Conclusion regarding cyclic block selection rule

@ One of the few attempts to analyse essentially cyclic methods.
@ Huge gap compared to random selection.

@ Efficient in practice.

Future directions:
@ Gap between theory and practice
@ Linear convergence

@ Exact line search, inexact oracles
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General conclusion

@ Nice duality between constraint block decomposition and sequential
methods for sums.

@ Conditional gradient is "bad”, but it is good in settings for which nothing
else is affordable.
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