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Introduction
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Context

We consider a function f whose evaluation of f is costly :

examples
physical experiment
output of a large
computer code
...
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Using a limited number of observations we want to answer
questions such as

what is the minimum of f ?
what is the mean value ?
what is the probablility to be above a given threshold ?
Are there some non influent variables ?
...
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Outline :

1. Introduction to GP models
2. A few words on RKHS
3. What is a kernel ?
4. Designing kernels
5. Application : eriodicity detection
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Gaussian process regression
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We assume we have observed f for a limited number of time points
x1, . . . , xn :
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The observations are denoted by fi = f (xi ) (or F = f (X )).
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Since f in unknown, we make the general assumption that it is to
the sample path of a Gaussian process Y :
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Y is characterised by its mean and covariance function.
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We can look at the sample paths of Y that interpolate the data
points :
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The conditional distribution is still Gaussian. It has mean and
variance

m(x) = E (Y (x)|Y (X ) = F ) = k(x ,X )k(X ,X )−1F
v(x) = var (Y (x)|Y (X ) = F ) = k(x , x)− k(x ,X )tk(X ,X )−1k(x ,X )

where k is the kernel : k(x , y) = cov(Y (x),Y (y)).
It can be represented as a mean function with confidence intervals.
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Changing the kernel has a huge impact on the model :
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k(x , y) = σ2 exp
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k(x , y) = σ2 exp
(
−|x − y |

θ

)
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This is because it means changing the prior on f :
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Given the observations, the model is entirely defined by the kernel.
We will now focus on this object.
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Theorem (Loeve)

k corresponds to the covariance of a GP
m

k is a symmetric positive semi-definite function

Definition
A function k is positive semi-definite if it satisfies

n∑
i=1

n∑
j=1

aiajk(xi , xj) ≥ 0

for all n ∈ N, for all xi ∈ D, for all ai ∈ R.
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A symmetric positive semi-definite function is also the reproducing
kernel of a RKHS :

Definition
H is a RKHS with kernel k if it is a Hilbert space such that :

for all x , k(x , .) ∈ H
for all f ∈ H, 〈f (.), k(x , .)〉H = f (x)

Given a kernel k, the associated RKHS is the completion of{ n∑
i=1

aik(xi , .); n ∈ N, ai ∈ R, xi ∈ D
}

for the inner product〈 n∑
i=1

aik(xi , .),
m∑

i=1
bik(xi , .)

〉
=

n∑
i=1

m∑
j=1

aibjk(xi , xj)
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Given some observations, the best predictor is defined as the
interpolator with minimal norm :

m = argmin
h∈H

{||h||H, h(xi )=f (xi )} = · · · = k(x ,X )k(X ,X )−1F

The expression is the same as the conditional expectation of the
GP !

k m

H

Z
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In order to build m we can use any off the shelf kernel :

white noise : k(x , y) = δx ,y

bias : k(x , y) = 1

linear : k(x , y) = xy

exponential : k(x , y) = exp (−|x − y |)

Brownian : k(x , y) = min(x , y)

Gaussian : k(x , y) = exp
(
−(x − y)2

)
Matérn 3/2 : k(x , y) = (1 + |x − y |)× exp (−|x − y |)

sinc : k(x , y) =
sin(|x − y |)
|x − y |

...
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The kernel has to be chosen accordingly to the prior believe on the
function to approximate :

What is the regularity of the phenomenon ?
Is it stationary ?
...

If we have some knowledge about the behaviour of f , can we
design a kernel accordingly ?
We will discuss 3 options :

Making new from old
Linear operator
extracting RKHS subspaces
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Designing kernels
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Making new from old :

Kernels can be :
Summed together

I On the same space k(x , y) = k1(x , y) + k2(x , y)
I On the tensor space k(x, y) = k1(x1, y1) + k2(x2, y2)

Multiplied together
I On the same space k(x , y) = k1(x , y)× k2(x , y)
I On the tensor space k(x, y) = k1(x1, y1)× k2(x2, y2)

Composed with a function
I k(x , y) = k1(f (x), f (y))

All these operations will preserve the positive definiteness.

How can this be useful ?
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Sum of kernels over the same space
Example (The Mauna Loa observatory dataset)
This famous dataset compiles the monthly CO2 concentration in
Hawaii since 1958.
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Let’s try to predict the concentration for the next 20 years.
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Sum of kernels over the same space
We first consider a squared-exponential kernel :
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The results are terrible !
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Sum of kernels over the same space
What happen if we sum both kernels ?

k(x , y) = σ21krbf 1(x , y) + σ22krbf 2(x , y)
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The model is drastically improved !
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Sum of kernels over the same space
We can try the following kernel :

k(x , y) = σ20x2y2 + σ21krbf 1(x , y) + σ22krbf 2(x , y) + σ23kper (x , y)
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Once again, the model is significantly improved.
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Effect of a linear operator

Property
Let L be a linear operator that commutes with the covariance, then
k(x , y) = Lx (Ly (k1(x , y))) is a kernel.

Example
We want to approximate a function [0, 1]→ R that is symmetric
with respect to 0.5. We will consider 2 linear operators :

L1 : f (x)→
{

f (x) x < 0.5
f (1− x) x ≥ 0.5

L2 : f (x)→ f (x) + f (1− x)

2 .
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Effect of a linear operator : example (Ginsbourger, AFST
2013)

Examples of associated sample paths are

k1 = L1(L1(k))
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The differentiability is not always respected !
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Effect of a linear operator

Ideally, we want to extract the subspace of symmetric functions in
H

H

Hsym

f

L1f
L2f

and to define L as the orthogonal projection onto Hsym

⇒ This can be difficult... but it raises interesting questions !
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Kernels for periodicity detection
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General problem
Given a few observations can we extract the periodic part of a
signal ?
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As previously we will build an orthogonal decomposition of the
RKHS :

H = Hp +Ha

where Hp is the subspace of H spanned by the Fourier basis
B(t) = (sin(t), cos(t), . . . , sin(nt), cos(nt))t .

Property
The reproducing kernel of Hp is

kp(x , y) = B(x)tG−1B(y)

where G is the Gram matrix G associated to B.
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We can deduce the following decomposition of the kernel :

k(x , y) = kp(x , y) + k(x , y)− kp(x , y)︸ ︷︷ ︸
ka(x ,y)

Property : Decomposition of the model
The decomposition of the kernel gives directly

m(t) = (kp(t) + ka(t))t(Kp + Ka)−1F
= kp(t)t(Kp + Ka)−1F︸ ︷︷ ︸

periodic sub-model mp

+ ka(t)t(Kp + Ka)−1F︸ ︷︷ ︸
aperiodic sub-model ma

and we can associate a prediction variance to the sub-models :

vp(t) = kp(t, t)− kp(t)t(Kp + Ka)−1kp(t)

va(t) = ka(t, t)− ka(t)t(Kp + Ka)−1ka(t)
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Example
For the observations shown previously we obtain :
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Can we can do better ?
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Previously, the kernels were parameterized by 2 variables :

k(x , y , σ2, θ)

but writing k as a sum allows to tune independently the
parameters of the sub-kernels.
Let k∗ be defined as

k∗(x , y , σ2p, σ2a , θp, θa) = kp(x , y , σ2p, θp) + ka(x , y , σ2a , θa)

Furthermore, we include a 5th parameter in k∗ accounting for the
period by changing the Fourier basis :

Bω(t) = (sin(ωt), cos(ωt), . . . , sin(nωt), cos(nωt))t

N. Durrande INRA Toulouse – MIAT Seminar : GP models and kernel design 33 / 51



Introduction Gaussian process regression Designing kernels Kernels for periodicity detection Conclusion

If we optimize the 5 parameters of k∗ with maximum likelihood
estimation we obtain :
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The 24 hour cycle of days can be observed in the oscillations of
many physiological processes of living beings.

Examples
Body temperature, jet lag, sleep, ... but also observed for plants,
micro-organisms, etc.

This phenomenon is called the circadian rhythm and the
mechanism driving this cycle is the circadian clock.

To understand how the circadian clock operates at the gene level,
biologist look at the temporal evolution of gene expression.
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The aim of gene expression is to measure the activity of various
genes :
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The mRNA concentration is measured with microarray experiments

The chip is then scanned to determine the occupation of each cell
and reveal the concentration of mRNA.
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Experiments to study the circadian clock are typically :
1. Expose the organism to a 12h light / 12h dark cycle
2. at t=0, transfer to constant light
3. perform a microarray experiment every 4 hours to measure

gene expression

Regulators of the circadian clock are often rhythmically regulated.
⇒ identifying periodically expressed genes gives an insight on

the overall mechanism.
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We used data from Edward 2006, based on arabidopsis.

The dimension of the data is :
22810 genes
13 time points

Edward 2006 gives a list of the 3504 most periodically expressed
genes. The comparison with our approach gives :

21767 genes with the same label (2461 per. and 19306
non-per.)
1043 genes with different labels
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Let’s look at genes with different labels :
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Conclusion
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Conclusion

We have seen that
Gaussian process regression is a great tool for modeling
Kernels can (and should) be tailored to the problem at hand

What cannot be done with GPs...
It is rather difficult to :

impose non linear constrains
deal with a (very) large number of observations
...
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Conclusion
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Sensitivity analysis

The analysis of the influence of the various variables of a
d-dimensional function f is often based on the HDMR :

f (x) = f0 +
d∑

i=1
fi (xi ) +

∑
i<j

fi ,j(xi , xj) + · · ·+ f1,...,d (x)

where
∫

f (xI)dxi = 0 if i ∈ I.

Can we obtain a similar decomposition for the model ?
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A first idea is to consider ANOVA kernels [Stitson 97] :

k(x, y) =
d∏

i=1
(1 + k(xi , yi ))

= 1 +
d∑

i=1
k(xi , yi )︸ ︷︷ ︸

additive part

+
∑
i<j

k(xi , yi )k(xj , yj)︸ ︷︷ ︸
2nd order interactions

+ · · ·+
d∏

i=1
k(xi , yi )︸ ︷︷ ︸

full interaction
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A decomposition of the best predictor is naturally associated to
those kernels.

Example : we have in 2D K = 1 + K1 + K2 + K1K2 so the best
predictor can be written as

m(x) = (1 + k(x1) + k(x2) + k(x1)k(x2))tK−1F
= m0 + m1(x1) + m2(x2) + m12(x)

This decomposition looks like the ANOVA representation of m but

the mI do not satisfy ∫
Di

mI(xI)dxi = 0

We need to build a kernel k0 such that
∫
k0(x , y)dx = 0 for all y .
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The RKHS framework will be very useful here

Can we extract the subspace of zero mean function in H ?

h ∈ H0 ⇔
∫

h(x)dx = 0
H0

H

The integral operator is linear, and it is bounded if∫
k(x , x)dx <∞.
⇒ We apply Riesz theorem. Let R be the representer.

h ∈ H0 ⇔
∫

h(x)dx = 0⇔ 〈h,R〉H = 0
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Calculations give directly

R(x) = 〈R, k(x , .)〉H =

∫
D
k(x , s)ds

L(h) = h − 〈R, k(x , .)〉H
||R||2H

R

k0(x , y) = k(x , y)−

∫
k(x , s)ds

∫
k(y , s)ds∫∫

k(s, t)dsdt
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Let us consider the random test function f : [0, 1]10 → R :

x 7→ 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N (0, 1)

The steps for approximating f with GPR are :
1 Learn f on a DoE (here LHS maximin with 180 points)
2 get the optimal values for the kernel parameters using MLE,
3 build the kriging predictor m based on

∏
(1 + k0)

As f̂ is a function of 10 variables, the model can not easily be
represented : it is usually considered as a “blackbox”. However, the
structure of the kernel allows to split m in submodels.
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The univariate sub-models are :

(
we had f (x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N (0, 1)

)
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The sensitivity indices can be obtained analytically :

SI =
var (mI(XI))

var (m(X ))

=
FT K−1 (

⊙
i∈I Γi ) K−1F

FT K−1
(⊙d

i=1 (1n×n + Γi )− 1n×n
)

K−1F

where Γi is the matrix Γi =
∫

Di
k0i (si )k0i (si )

T dsi , 1n×n is the n × n
matrix of ones and where � is an entrywise product.
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