
42 Int. J. Metadata, Semantics and Ontologies, Vol. 4, Nos. 1/2, 2009 

Copyright © 2009 Inderscience Enterprises Ltd. 

Modelling and simulating work practices  
in agriculture 

Roger Martin-Clouaire* and Jean-Pierre Rellier 
INRA (Institut National de la Recherche Agronomique), 
UR875 Biométrie et Intelligence Artificielle, 
F-31326 Castanet-Tolosan, France 
E-mail: rmc@toulouse.inra.fr 
E-mail: rellier@toulouse.inra.fr 
*Corresponding author 

Abstract: Research has shown that the managerial capacities and work practices of farmers play 
a major role in explaining differences in economic and environmental performances. This paper 
presents a computer simulation framework that enables work organisation issues in agricultural 
production systems to be studied. This framework relies on a purposive frame-based ontology  
of such production systems. The paper focuses on a subpart of the ontology that concerns 
production activities, flexible plans and material resources. The paper also outlines the 
interpretation algorithms that operate on instances of these ontology concepts in any production 
system model constructed in compliance with the ontology. 

Keywords: simulation; scheduling; agricultural production system; activity; plan; resource. 

Reference to this paper should be made as follows: Martin-Clouaire, R. and Rellier, J-P. (2009) 
‘Modelling and simulating work practices in agriculture’, Int. J. Metadata, Semantics and 
Ontologies, Vol. 4, Nos. 1/2, pp.42–53. 

Biographical notes: Roger Martin-Clouaire holds a Masters in Biomedical Engineering (1982) 
from Saskatchewan University (Canada) and a PhD (1986) in Artificial Intelligence (AI) from 
Toulouse University. He joined Institut National de la Recherche Agronomique (INRA) in 1987 
as a research scientist. His main research area concerns the modelling and simulation  
of agricultural production systems and, in particular, decision-making processes involved in 
production management. He is currently director of the laboratory Unité de Biométrie et 
Intelligence Artificielle. 

Jean-Pierre Rellier joined INRA in 1976. In his early career, he worked as a statistical analyst in 
the area of cropping systems. In the mid-1980s, he became a member of the national group on 
agricultural expert system development. Since 1988, he has been a software engineer in the  
Unité de Biométrie et Intelligence Artificielle, where his main areas of interest concern the 
methodological aspects of complex system modelling and simulation. 

 

1 Introduction 

1.1 Work practices in agriculture as an object  
of scientific investigation 

Farming involves the input of resouaarces (seed, fertiliser, 
pesticides, time, labour, etc.) to natural systems driven 
towards the harvesting of outputs for sale (biomass,  
grains, livestock, etc.). The complex interaction between 
natural and human-controlled processes is at the very  
heart of agricultural production. As a production  
manager, the farmer makes decisions about the timing, 
combination and implementation of technical operations  
(tilling, planting, fertilising, irrigating, spraying, harvesting, 
feeding livestock, etc.) with the aim of achieving his 
objectives. The farming business is risky because operation  
outputs are subject to both unpredictable natural events  
 
 

(weather, disease, etc.) and changing economic factors 
(market demand, price fluctuation, etc.). 

Tough competition combined with a concern for 
environmentally acceptable practices and a desire for better 
working conditions make farm production management a 
complex task, resulting in a greater demand for farm 
management research. Farming practices are becoming an 
increasingly prominent issue in policy development and 
market positioning. Consequently, previously acceptable 
farming practices must be reassessed and economically 
viable alternatives sought. Clearly, the important aspects of 
production management regarding risk control, changes 
(new practices, products and techniques) and more stringent 
resource allocation require innovative approaches that 
recognise and focus on the holistic, dynamic and human 
dimension of farm systems. 
 
 



 Modelling and simulating work practices in agriculture 43 

1.2 A simulation approach 

Work practices are ways of structuring things to be done or 
ways in which things are done. Studying management  
and work practices implies a strong emphasis on  
identifying which activities are relevant for a given 
production objective, how they are interdependent, what the 
preconditions to their execution are, and how they should be 
structured in time and space to meet any constraints and 
achieve the desired outcome. 

Most farm managers develop a functional understanding 
of the work they do, but the scope and complexity of their 
work practices often make them difficult to comprehend 
fully. The biophysical processes at the core of their business 
are often only partially known and depend on climatic 
factors that are highly uncertain both during a given  
year and from one year to the next. The farmer’s inadequacy 
becomes most apparent when the way the work is  
done must be changed, as and when new constraints  
(e.g., environmental regulation, market demand) are 
imposed. 

By its ability to support virtual experimentation with a 
dynamic system, computer-based simulation is a very 
appealing approach to explore production management 
issues. Many simulation tools (e.g., Carberry et al., 2002) 
have been built to study isolated agronomic and 
technological aspects of the production processes, e.g., crop 
or livestock responses to particular farming operations. 
Surprisingly, little attention has been paid to the modelling 
and simulation of farmers’ management and work practices. 
Studying and supporting the development of work practices 
by means of computer tools has as yet rarely been addressed 
directly or systematically as an issue in its own right, 
probably because modelling human decision processes is 
still a scientific challenge and agricultural research is more 
inclined towards applying the scientific knowledge to the 
design of material technologies (seeds, fertilisers, herbicides 
and machinery) than to studying the processes of on-farm 
decision-making. Our research work aims at providing a 
simulation framework for virtual experimentation enabling 
farming system researchers to study how management 
decisions are made in uncertain conditions, how activities 
are coordinated, how scarce resources (e.g., labour, 
machinery) are allocated, and how planned activities are 
actually implemented in situ. Such a simulation tool  
can be of great help to gain a better understanding  
of the functioning of production systems, to improve  
them, develop new ones and support learning processes.  
The originality of our simulation framework lies mainly in 
the provision of a representation of the farmer’s behaviour 
as a cognitive agent interacting with and operating on a 
biophysical system. 

1.3 Ontology for work practices 

Ontology (Chandrasekaran et al., 1999) is a term originally 
coined by philosophers to refer to the study of being or what 
exists. In computer science, ontology has been adopted by  
 

the Artificial Intelligence (AI) community as a means to 
provide a formal definition of a body of knowledge relevant 
for a specific purpose. Making ontology is concerned  
with identifying and describing the essential concepts and 
constraints of a domain with the help of a representation 
language that is based on a small set of basic meta-concepts. 
However, building ontology means different things to 
different practitioners, ranging from simple lexicons,  
to categorically organised thesauri, to taxonomies where 
terms are related hierarchically and have distinguishing 
properties embedded in a logical theory. Ontologies also 
differ in their scope and purpose. The most prominent 
ontologies, especially those on the web built with OWL 
(Smith et al., 2004), rely on frame-based representation 
languages equipped with powerful reasoning facilities.  
The formal semantics founding such ontologies enable,  
for instance, testing the consistency of ontology after an 
updating or merging operation, or inferring properties that 
are not literally present in the ontology. 

The ontology of agricultural production systems 
(Martin-Clouaire and Rellier, 2006) presented in this paper 
does not require such inferential capabilities because the 
purpose is not related to ontological reasoning but rather to 
supporting the development of simulation models of such 
systems. Our ontology is part of a computer simulation 
framework and provides at conceptual level the means  
to describe farm system aspects that are relevant for  
studying work practices. As such, the ontology serves as a 
metamodel that enables the reuse of pre-formalised  
concepts and templates to be particularised, instantiated  
and then mapped into an executable dynamic model of a 
specific system. This ontology results from discussions with 
farming system specialists, our own modelling experience 
and review of the literature on dynamic systems, planning, 
workflow management (WFMC, 1996) and business 
process modelling. 

The paper focuses on the part of the ontology that 
concerns the conceptualisation of technical production 
activities, their organisation in flexible plans and the 
material resources required by the activities together  
with the various restrictions on their availability and  
use. The paper also outlines the processes that operate  
on instances of these structural components in any 
production system model constructed in compliance with 
the ontology. 

In Section 2, we sketch out the frame representation and 
dynamic system primitives that underlie the ontology we 
have developed. An informal conceptual model of an 
agricultural production system is given in Section 3.  
Deeper insight into the modelling of activities and their 
organisation in flexible plans is provided in Section 4. 
Resources and constraints on their usage are addressed in 
Section 5. Section 6 illustrates the use of ontology in the 
study of grassland-based dairy systems. Section 7 reviews 
related studies. Finally, in the concluding section,  
we summarise the contribution of this paper and outline 
future developments. 
 



44 R. Martin-Clouaire and J-P. Rellier  

2 Ontology foundations 

A frame representation (Chaudhri et al., 1998; Smith et al., 
2004) has been used to formalise the corpus of domain 
knowledge relevant to production systems and their study 
by simulation. A frame is a data structure that represents a 
set of things, a concept or an abstraction. A frame has  
slots that describe the attributes or properties of the things 
represented by the frame. A slot can be filled by values  
of various types such as numbers, strings, lists, frames  
or procedural fragments. Each slot can be associated  
with value restrictions (facets) and procedures that  
specify reactions when a value is changed or accessed.  
Particular slots enable modellers to express that some 
frames are composed of other frames. Others allow  
the assertion of a frame taxonomy. This hierarchy can  
then be used for inheritance of slots, allowing a sparse 
representation. As well as frames representing concepts,  
a frame-based representation may also contain instance 
frames representing particular realisations. 

The notion of frames emphasises their role for the 
representation of knowledge. Object-oriented programming 
is a programming paradigm that emphasises the role of 
objects as being the primary concern in the programming 
task; objects are represented by classes encapsulated  
with attributes and services defined by functions. The two 
concepts are often confused because they operate with 
overlapping terminology. Some ontology-design ideas 
originated from the literature on object-oriented design and 
the UML language (Booch et al., 2005). However, ontology 
development is different from designing classes in object-
oriented programming. In object-oriented programming,  
a programmer makes design decisions based on the 
operational properties of a class, whereas ontology designer 
makes these decisions based on the structural properties  
of a frame. However, objects and frames are related by 
implementation. In our representation framework, frames 
are implemented by classes. The graphical notations of 
UML are used (see for instance, Figure 1) to communicate 
in a standard way the structural aspects of the ontology. 

Figure 1 UML class diagram of dynamic system foundations of the ontology 

 
 
It is certainly unusual in the ontological engineering realm 
to let slot values be procedural codes because it is virtually 
in contradiction with the emphasis on enabling logical 
reasoning about the ontology content. Since our ontology 
aims rather at supporting the design and development of 
dynamic system models, we need to provide the means to 
describe behaviour. Using procedural slot values is a 
convenient way used to express at semantic level how 
things change in response to a stimulus. 

Building on the base of this frame representation,  
we have developed three fundamental concepts for the 
modelling of dynamic systems: entity, process and event. 
These represent the structural, functional and dynamic 
aspects of a system, respectively (Rellier, 2005). An entity 
describes a kind of material or abstract item in the area of 

interest. The state of a system at a given moment in time is 
the value of the slots of the entities it comprises. A process 
is a specification of the behaviour of a system, i.e., of the 
entities composing it. Typically, the process code specifying 
this behaviour includes the use of methods attached to 
entities affected by the process. A process causes a change 
in state when a particular event occurs. Thus, events convey 
the temporality of process triggers. 

Other useful concepts have also been introduced.  
An entity set specification is the functional definition of a 
set of entities, such that the resultant set content (that may 
happen to be a singleton) depends on the current state of the 
system. Monitors are devices that simulate the mechanistic 
or natural reactions of entities to stimuli. They watch  
for changes in structure or value and trigger a procedure  



 Modelling and simulating work practices in agriculture 45 

that implements the desired reaction. A descriptor is  
the encapsulation of everything that is known about a 
descriptive attribute (semantics, value domain, default 
value, current value, monitor attached). A method is the 
encapsulation of everything that is known about a functional 
attribute (semantics, returned type, parameters, code to 
execute). Specialised subframes of methods are designed  
to be attached to entities, processes, events, etc. 

Actually the production system ontology consists of a 
set of particularisations of these concepts as shown in the 
next sections. The ontological representation framework, 
depicted in Figure 1 under the form of a UML class 
diagram, is implemented as a C++ package called DIESE 
that also includes a discrete event simulation package 
designed to operate on the data structures underlying the 
ontology. The simulation engine of DIESE carries the 
inferential mechanisms in charge of processing the event 
agenda and producing the dynamic behaviour of the system 
model. 

3 Architecture of a production system 

An agricultural production system (see Figure 2) is 
conceptually an entity situated in and influenced by what is 
called the external environment (e.g., the climatic and 
economic context). It can be divided into three interactive 
subsystems: the manager, the operating system and the 
biophysical system. A production system and the three 
composing subsystems are active entities in the sense  
that they are the repository of processes and have inputs 
(physical or informational), outputs and an agenda of 
events. The processes are controlled by the events  
(straight lines) of the agenda. 

Figure 2 Agricultural production system (see online version  
for colours) 

 

The biophysical system is composed of biophysical  
entities (e.g., crops, livestock). It has processes such as 
photosynthesis or animal intake that specify how the 
biophysical entities change. Among the events controlling 
these processes are those triggered by the execution of  

the operations performed by the operating system.  
The inputs are material inputs (e.g., fertilisers provided  
by the operating system) and energy either coming from the 
external environment or provided by the operating system. 
The processes may generate particular events connected to 
significant changes in the state of the biophysical system. 
Thus, the biophysical system may also include sensors and 
alarm devices, modelled as monitors. 

The manager is the farmer who has the responsibility of 
achieving the overall production system objective. In our 
model, the manager has a management strategy that drives 
the behaviours of the operating system and, indirectly,  
of the biophysical system. A strategy is a handcrafted 
construct that specifies a kind of flexible nominal plan 
complete with context-responsive adaptations and the 
relevant implementation details for the step-by-step control 
and execution of the actions to be performed. 

Since the production process is greatly influenced by 
factors beyond his control, the farmer must pay special 
attention to the robustness of his strategy so as to work 
reasonably well in almost all climatic scenarios and to be 
responsive to important contingencies whose effects can,  
in most cases, be eliminated or mitigated by proper 
agronomic practices. Agricultural production management 
must therefore rely on decision-making behaviour that is 
both plan-based and reactive. 

As farmers have accumulated experience and advice, 
they have learned to develop their own temporal 
organisation of farming activities consistently with the 
overall objective and resource limitations. The resulting 
management strategy reflects the farmer’s personal work 
practices, which can be seen in his monitoring and 
observation behaviour, in his understanding of the way  
the production system functions, and in his appreciation  
of what events are important and how they should be 
reacted to. 

The manager’s processes are responsible for: 

• monitoring the occurrence of new events and 
scrutinising salient aspects of the current state of  
the production system (mainly in the biophysical 
system) 

• revising the management strategy in situations 
recognised beforehand to necessitate such adaptations 

• updating the status of the activities in the nominal  
plan according to changes in the state of the system  
and the passing of time (e.g., some activities may  
be obsolete while others may now be considered  
for execution) 

• generating the sets of activities that are feasible  
(i.e., consistent with the nominal plan and thus open  
to further consideration for execution) and providing 
the necessary implementation details controlling the 
dynamic allocation of resources. 

Every time the manager acts, the results of his work 
(advocated sets of activities and requirements) are  
handed over to the operating system that has to execute 



46 R. Martin-Clouaire and J-P. Rellier  

them or some of them using the resources available  
(e.g., labour, tools). The operating system utilises its own 
problem-solving procedure to derive the selected set of 
executable activities. Typically, the role of decision-maker 
involved in the operating system is also played by the 
farmer; on large farms, however, the manager might 
delegate this role to another person. Two essential processes 
are involved in the decision-making of the operating system. 
They aim at: 

• allocating resources to activities 

• applying the manager’s rules of preference to select the 
preferred set of activities if there are concurrent 
options. 

The execution of the current set of activities continues until 
a change in resources occurs (end of an operation or end of 
working hours). Such an event may be followed by a new 
scheduling of activities to be executed, a transfer of control 
to the manager, or nothing if the plan is finished. 

The next two sections focus on the ontological 
constructs developed for a rigorous representation and 
processing of plans and resources, respectively. 

4 Plans and their unfolding through time 

4.1 Primitive and composed activities 
Our ontology abides by an activity-centred 
conceptualisation of work organisation. In its simplest form, 
an activity, which is then called a primitive activity,  
denotes something to be done to a particular biophysical 
object or location (e.g., a mob, a plant, a field or a set of 
these) by an executor (e.g., a worker, a robot or a set of 
these). Besides these three components, a primitive activity 
is characterised by local opening and closing conditions, 
defined by time windows or predicates (Boolean functions) 
referring to the biophysical state. These conditions are used 
to determine, at any time, which activities are eligible  
for execution. For this purpose, any activity has a status 
within this set: sleeping, waiting, open, closed and  
cancelled (explained later). Formally, in the frame-based 
representation language introduced in Section 2, the notion 
of activity is represented as a particularised entity  
(see Figure 3). The slots defined for this notion are inherited 
by the subclasses. For instance, the non-primitive activities 
that are particular activities have all the properties defined at 
the more abstract level. As subclasses they have extra slots. 

Figure 3 UML class diagram of  entities linked to ‘activity’ 

 
 
The “something-to-be-done” component of a primitive 
activity is an intentional transformation called an operation 
(e.g., the harvesting operation). The notion of operation  
is also represented as a particularised entity (see Figure 3). 
The step-by-step changes to the biophysical system as the 
operation is carried out are specified in a particular 
functional slot (method) of the operation. These changes 

take place over a period of time by means of a process that 
increases the degree of achievement at each step of the 
operation until it is completed. An operation is said to be 
instantaneous if its degree of achievement goes from 0 to 1 
in a single step. An operation affects a collection of objects 
resulting from the expansion of the specification of an entity 
set. Objects on which an operation is carried out can be 



 Modelling and simulating work practices in agriculture 47 

individual objects (e.g., a field or a plant) or objects having 
numerical descriptors (e.g., an area). Speed is defined as a 
quantity (e.g., number of items, area) that can be processed 
in a unit of time. The duration of the operation is the ratio of 
the total quantity to the speed. To have the effect realised 
the operation must satisfy certain enabling conditions that 
refer to the current state of the biophysical system (e.g., the 
field to be processed should not be too muddy). 

Activities can be further constrained by adding temporal 
relations between them and by using programming 
constructs enabling specification of temporal ordering, 
iteration, aggregation and optional execution. To this end, 
we use a set of non-primitive or aggregated activities  
having evocative names such as before, iterate, and  
optional that are presented in the next subsections.  
Others are utilised to specify choice of one activity  
among several (or), grouping of activities (and) and 
concurrence among some of them (e.g., co-start, equal, 
include, overlap). Formally, a non-primitive activity is a 
particularised activity. As such it might also be given 
opening and closing conditions. It has a relational property 
that points to the set of other activities directly involved in it 
(or constrained  by it). In addition, it is equipped with a set 
of procedural slots that are receptacle of the semantics of the 
change in status specific to each non-primitive activity. 

A non-primitive activity is called the mother activity and 
the activities that are constrained by it are called the child 
activities. The opening and closing of a non-primitive 
activity depend on its own local opening and closing 
conditions (if any) and on those of the underlying activities. 
All the activities are connected; the only one that does not 
have a mother is the plan. The plan is flexible in the sense 
that two different sequences of events are likely to yield two 
different realisations of the plan due to the functional nature 
of the specifications of activities and operations. 

The passing of time and the evolution of the production 
system may render true the conditions that govern the 
change in status of the primitive activities. The change in 
status of activities occurs at particular times specified by the 
manager and also when an operation is completed.  
Any change in status of an activity is propagated to the 
activities that are directly or indirectly connected to it via 
the constraints enforced by non-primitive activities. 

The meaning of the possible values of an activity  
status can now be explained. The value sleeping is given to 
all activities at the time of creation. It means that the 
opening and closing conditions do not have to be examined 
yet. The status changes to waiting as soon as the  
opening activities have to be examined. For instance,  
as soon as an activity finishes, it becomes necessary to 
monitor those following it in a sequence specified  
with a before activity. The nominal plan is declared to be 
waiting at the starting time of a simulation. The status of an 
activity changes to open when its opening conditions are 
satisfied. The status changes from open to closed when  
the closing conditions are satisfied or, in the case of a 
primitive activity, when the underlying operation is 
completed. The status changes to cancelled when the 
activity is no longer of interest; this happens, for instance, 

once a choice among alternatives specified through an or 
activity has been made, putting the non-selected alternatives 
in cancelled status. 

The principle that governs the change in status of the 
involved activities (mother and sons) is expressed by  
four methods conveying: 

• the preconditions that must be satisfied by the mother 
activity to enable the change in status of some of the 
child activities and vice versa 

• the post-conditions or effects of any change in status of 
a mother or child activity on the others. 

Subsections 4.2–4.4 give specific properties defining  
non-primitive activities before, iterate, and optional.  
They also give an informal account of the content of the 
procedural slots. 

4.2 Sequencing activities 

To specify that the activities A1, A2, …, An must be 
performed successively without any overlapping, one can 
use a before activity having A1, A2, …, An as child 
activities. The activity denoted by before (A, B) means that 
the activity B cannot have the status open before the status 
of A is closed. The time order of the sequence is expressed 
by the order of the list of constrained activities. Any before 
activity has two extra properties that allow, if necessary, 
specification of the delays between the opening of two 
consecutive activities, and between the closing of one 
activity and the opening of the next. 

Among other preconditions, the first child must be 
allowed to change to open for the mother activity status to 
become open; similarly, for the last child to become closed, 
the mother must be allowed to change to closed. 

The effect of a change in status of a before activity 
follows a set of rules, such as: “as soon as the mother 
changes to open, the first child changes to open” or “as soon 
as the last child activity changes to closed, the mother 
changes to closed”. 

Another non-primitive activity used to specify a 
sequence is meet. It is very similar to before except that 
there should be no delay between the closing of a child and 
the opening of the next one. 

4.3 Iteration 

An iterate activity, which has a single child (constrained) 
activity, specifies that the child activity should be  
repeated within the time during which the mother activity is 
open. The mother must be given opening and closing  
time windows, or opening and closing predicates, or the 
maximum and minimum number of replications, or any 
combination of the above possibilities. The child or 
descendant activities should not appear elsewhere in the 
plan. An iterate activity has two extra properties that  
allow specification, if necessary, of the delays between  
the opening of two consecutive iterations of the child,  
and between the closing of the child activity and the 
opening of its next iteration. 



48 R. Martin-Clouaire and J-P. Rellier  

The only preconditions to a change in status of the child 
are that the mother be waiting or open for the child to 
change to waiting, and that the mother be open for the child 
to change to open or closed. As soon as the mother activity 
changes to open (resp. closed) the child changes to waiting 
(resp. closed) if possible. 

As soon as the child changes to closed, it is set 
immediately to waiting unless the mother’s closing 
conditions are satisfied at that time. 

The iteration procedure, which is invoked each time the 
child activity changes to closed provided the mother is open, 
duplicates (instantiates) the child activity as needed in 
compliance with the constraints of delay between repetitions 
and limitations of the number of iterations, if provided.  
The child activity status is initialised to waiting. 

4.4 Optional activity 

An optional activity has a single child activity and expresses 
that if this activity cannot be executed (i.e., if it is too late 
with respect to the opening interval or if the opening 
predicate cannot be satisfied), it is not a sufficient reason for 
the plan to be declared invalid. In other words, optional(A) 
means that the activity A should be executed if possible. 
The child or descendant activities should not appear 
elsewhere in the plan if not declared optional there too.  
The status of the mother can change to waiting only if the 
child can change to waiting. Analogous preconditions  
apply when substituting waiting by open or by closed and 
by swapping child and mother. The effect rules follow from 
the precondition rules (e.g., the child becomes open as soon 
as the mother becomes open). When the mother activity 
cannot be executed, its status is forced to change to closed. 

4.5 Updating the status of the activities in a plan 

The advance of time and the evolution of the production 
system (the biophysical system, in particular) may render 
true the opening and closing conditions of activities.  
The status of the activities is updated by a process 
responding to events scheduled to occur at any examination 
time specified by the manager (typically at discontinuity 
points induced by a new day or a new week) or on 
termination of an operation. The updating process invites 
the manager to run his own so-called Update method that 
essentially checks that the opening or closing conditions can 
be satisfied and that the constraints linking this activity to 
others would be satisfied if the change proceeded.  
When applied to the plan, this method causes a recursive 
examination of all the activities that are waiting or open. 
Any activity whose change in status is validated is updated, 
and the change is propagated immediately to the connected 
activities. See Martin-Clouaire and Rellier (2005, 2006),  
for a more formal presentation of this Update algorithm. 

Normally, the status updating process is repeatedly 
invoked until the plan is closed. In some cases, the plan 
cannot be closed. Such a failure is detected when an activity 
that is not optional can no longer be opened or when it 
cannot be closed without violating restrictions induced  

by other activities (e.g., a meet activity in which the second 
child cannot be open although the first should be closed). 

The Update procedure applies to an argument activity, 
which is initially the plan itself, each time the process is 
triggered. It uses opening and closing predicates attached to 
this argument activity. These predicates, which are specific 
to each non-primitive activity as shown in Sections 4.2–4.4, 
return true if it is legal to open or close the activity.  
They check whether preconditions of a change in status are 
satisfied or not. In case change is validated, Update calls a 
procedure that actually changes the status and propagates 
the effect to the connected activities as far as needed 
according to the activity-dependent rules. 

5 Resources and allocation 

5.1 An ontology of resources and usage constraints 

Farm management is the process by which resources  
and situations are handled over time by the manager of the 
farm system in an attempt to achieve his or her goals.  
It is therefore essential to include the concept of resources in 
the ontology. Basically, a resource is an entity that supports 
or enables the execution of activities. Typically, the activity 
executors, the machinery involved and the various inputs 
(seeds, fertiliser, water, fuel) are resources. Resources are 
generally in finite supply and have significant influence on 
when and how activities may be executed. The availability 
of a resource is restricted by availability constraints that 
specify the conditions allowing their use or consumption. 
The constraints are temporal constraints (time windows  
of availability), capacity-related constraints (the amount 
available) or state-related constraints. Any resource is 
possibly constrained with respect to the maximum number 
of operations supported simultaneously and the maximum 
number of resources of other types that can be used 
simultaneously. 

There are many types of resources that must be dealt 
with Smith and Becker (1997). A resource can be either 
consumable (usable only once) or reusable after it has  
been released. It can be a discrete-state resource  
(whose availability is expressed by a qualitative state  
such as ready or not ready) or a capacity resource  
(whose availability is characterised by a vector of  
numerical values expressing a multi-dimensional capacity).  
We distinguish between single resources and aggregate 
resources, which are collections of resources. See Figure 4 
for a class diagram description of the part of the ontology 
dealing with resources. 

In a primitive activity, the role of resource is  
played by the operated object, the operation resources  
and the executor. An operated object is a discrete-state 
resource that is a part of the biophysical system (an entity  
or a set of entities of the biophysical system).  
It is characterised by its ability to be transformed by  
several operations simultaneously. It may allow several 
resources to be simultaneously involved in transformations, 
and several executors to carry out certain transformations  
simultaneously. 
 



 Modelling and simulating work practices in agriculture 49 
 

Figure 4 UML class diagram of the notion of resources 

 
 
An operation resource is either a discrete-state resource 
(e.g., tools) or a capacity resource (e.g., diesel fuel).  
It is characterised by its ability to be used simultaneously 
for several objects acted upon in the biophysical system,  
to be involved simultaneously in several operations, and to 
be used simultaneously by several executors. 

An executor is a discrete-state resource characterised by 
its (his) ability to work simultaneously on several objects  
in the biophysical system, to be involved simultaneously in 
several operations, to cope with several operation resources 

used simultaneously in the operations it (he) is engaged in. 
Another feature of an executor is its (his) work power that 
has an effect on the speed of the operation and on the 
requirement of operation resources if the latter are declared 
proportional to power. An executor is either an individual 
resource (e.g., a worker) or a labour team (a set of 
individual workers whose work power is by default the sum 
of the powers of the individual workers it comprises). 

As an illustration, consider a cutting activity having the 
resource specifications shown in Table 1. 

Table 1 Resource requirements in a cutting activity 

What is specified: Specification: Instances of entities or resources (*): 

Operated objects “non-grazing fields greater than 0.5ha” FIELD: {f1, f2, f3, …} 
Operation resources “one mower and one tractor” MOWER: {m1, m2} TRACTOR: {t2} 
Executors “one person from farmer’s sons or his employees” SON: {s1, s2, s3} EMPLOYEE: {e} 

(*): small capitals refer to classes, normal characters refer to existing instances of the class. 
 
The operated object specification refers to a set of spatial 
entities that are dynamically generated by expanding the 
entity set specification defining this set. Considering it  
as a resource is useful in case it is decided to disallow  
two simultaneous operations on any of these entities.  

The specification of resources coming with the operation 
component states that two machines are required: a mower 
and a tractor. The executor is a person to be selected  
either from the farmer’s sons or his employees. If we  
have instances available in each of these classes,  



50 R. Martin-Clouaire and J-P. Rellier  

we have to consider two alternative allocations. In this 
example, at the time of allocation, the allocation  
procedure would return two alternatives {(f1, m1, t2, s2),  
(f1, m1, t2, e)} if f1 is the only field satisfying the request, 
m1 and t2 are the mower and tractor that are available,  
and s2 and e are, respectively, the second son and the 
employee who have no duty at that time. It might return a 
set of only one collection of assignments if no son or 
employee is available. It might of course return no solution 
at all, meaning that it is impossible to execute the activity 
immediately. 

The use of resources is restricted by various constraints 
that make resource allocation a tricky combinatorial task.  
In addition to availability constraints, the ontology makes  
it possible to specify co-usage restrictions that concern  
the simultaneous use of a resource in different operations 
and combined with other resources. These co-usage 

restrictions are defined as specific entities having a slot 
whose value is a set (conjunction) of inconsistency 
conditions defined as cardinality limitations. The restriction 
called activity-inconsistency-conditions applies to an 
activity whereas the one called resource-sharing-violation-
conditions applies to a resource. Finally, a third type of 
usage restriction called activities-resources-inconsistent-
commitments is available in the ontology. It has two slots 
whose values are a set of activity-inconsistency-conditions 
and a set of resource-sharing-violation-conditions.  

Table 2 shows an example of each type of usage 
restriction entity. The activity-inconsistency-conditions 
entity specifies that it is forbidden for any of the farmer’s 
sons to use a tractor to cut a field. Checking this constraint 
amounts to making cardinality verifications relative to  
the number of sons and the number of tractors involved in 
the activity. 

Table 2 Example of restrictions on resource usage 

Kind of constraint entity that is specified: Specification: 

activity-inconsistency-conditions {CUTTING; ((SON > 0)(TRACTOR > 0))} 
resource-sharing-violation-conditions {LOCATION; ((EXECUTOR > 1))} 
activities-resources-inconsistent-commitments {   {GRAZING; ((DAIRY-HERD > 0)) } 

   { LOCATION ; ((PESTICIDE > 0))  }} 

 
The resource-sharing-violation-conditions restriction states 
that there cannot be more than one executor at any location. 
Again, the checking of the constraint is a matter of 
cardinality verification, but this time, all allocations made so 
far for the current activity list are considered. 

The activities-resources-inconsistent-commitments 
constraint states an incompatibility between a grazing 
activity by any dairy herd and the concomitant use of any 
pesticide at any location. 

5.2 Resource allocation 
This subsection outlines the main ideas implemented  
in the process that carries out the allocation of resources. 
Assume that at the current time we have to allocate a set of 
three primitive activities {a, b, c} that are eligible for 
execution according to the plan. The algorithm operates on a 
lattice of subsets of activities as shown in Figure 5.  
The nodes of the lattices are gone through in breadth-first 
order, starting from the top. 

Figure 5 Lattice of activities 

 
 
In a given node, the algorithm tries to allocate each 
primitive activity in turn and propagates information 
incrementally in the lattice so that the search space can  

be significantly reduced. More specifically, if an activity  
is successfully allocated, the algorithm propagates this 
allocation to descending nodes that have the same starting 



 Modelling and simulating work practices in agriculture 51 

activities up to the current one (e.g., node 1 and node 2 have 
the same starting activities up to b). In the example of 
Figure 5, the resources allocated to activity a in node 1 can 
be propagated to the same activity in nodes 2, 5 and 3.  
If a failure is encountered in an attempt to allocate an 
activity in a node, the node is declared inconsistent and  
all descending nodes having the same starting activities  
(up to the current one) are also declared inconsistent.  
For instance, the activity b in node 1 cannot be allocated 
once the activity a has been allocated; node 1 is declared 
inconsistent (no need to visit c), which cause node 2 to be 
declared inconsistent too. If a node becomes fully allocated, 
the descending allocated nodes are marked ‘suboptimal’ in 
the sense that they are included in larger set of executable 
activities. Once node 3 is fully allocated in Figure 5, the 
node 5 and 7 are marked suboptimal. Note that, due to the 
co-usage restrictions, the set of resources allocated to an 
activity (e.g., c) in a node (e.g., node 3) at a given level may 
be different from the set of resources allocated to the same 
activity in another node (e.g., node 4) at the same level. 

At the end, the algorithm returns all the nodes that are 
fully allocated and neither suboptimal nor inconsistent,  
that is, nodes 3 and 4 in the example. The algorithm is 
complete in the sense that all solutions are produced.  
The choice of the one to be executed results from the 
computation of a scoring method that combines various 
preferences. 

6 Example 

The concepts and procedures defined in the above sections 
have been used to describe a grassland-based livestock 
production system (Martin et al., 2008). A challenge for 
such systems is the efficient and sustainable use of the 
perennial species-rich grasslands of the farmland to  
reduce herbage loss and fulfil the livestock feeding 
requirements. Different grassland types have different uses 
including the kind of grazing animals they are suitable for 
and the number of hay-making harvests they can sustain. 
They also have different growth patterns. The management 
problem is quite complex and is addressed in different  
ways by farmers, especially in their handling of climatic 
uncertainty, a recurrent difficulty for which they seek 
support and advice. Currently, simulation models of 
different instances of such systems are developed to  
enable researchers to analyse existing management  
practices and to design new ones. The simulation results  
are the basis of discussions between scientists and extension 
services. 

The ontology has been extended (particularised) to 
entities such has fields or herds, activities such as grazing, 
feeding livestock with hay or concentrates, and cutting 
fields. Making a model of an executable plan is a matter of 
instantiating the abstract primitive activities provided as a 
library and articulating them using non-primitive activities. 
Figure 6 illustrates the kind of plans considered in this 
application. 
 

Figure 6 A plan of a grassland-based livestock system  
(see online version or colours) 

 

The opening and closing conditions of the activities have 
been omitted for the sake of brevity. Typically they refer to 
herbage availability on the fields or the physiological  
stage of grass. The and activity in the first line makes  
it possible to wrap four activities. The first three ones are 
meet activities and the last one is another and activity.  
Only the first one (lines 2 to 7) is commented on here.  
The primitive activities are written in grey characters  
like the following: operation (operated-object, executor)  
or operation (operated-object) when there is no need to 
specify an executor component. The entity names starting 
with F (resp. H) denote fields (resp. herds). Note that  
the operated object component may be a collection of 
entities as in the grazing activity in line 5 where two fields 
(F19A and F19B) are specified. 

The meet activity in line 2 constrains two composed 
activities, the first one (lines 2 to 4) being an include 
activity, and the second one (lines 5 to 7) an and actvity. 
Semantically, meet specifies that its two constrained 
activities are contiguous: as soon as the first one ends, the 
second one is activated. Similarly, the include activity 
constrains two activities. Semantically, it forces the period 
during which the second one has open status to be included 
in the period during which the first one has the same status. 
The two activities constrained by include are two composed 
activities, the first being a ‘meeting’ sequence of two 
grazing activities (one required and one optional) and the 
second being an iterative hay-feeding activity. The and 
activity in lines 5 to 7 wraps three activities: a grazing 
activity to be iterated and two cutting activities. 

7 Related works 

Several agent behaviour specification approaches have  
been published in the AI robotic literature in recent  
years. Logic-based agent languages such as those of the  
 



52 R. Martin-Clouaire and J-P. Rellier  

Golog/ConGolog family (De Giacomo et al., 2000) were 
developed primarily to support formal reasoning about 
current and potential agent activities to ensure that  
certain properties are complied with. ConGolog allows 
specification of complex plans that are kinds of control 
procedures. The main difference with our approach is  
that our interpreter can only determine repeatedly the 
actions that are eligible for execution; non-executability is a 
property that is eventually revealed when a dead end is met. 
Actually, for the target applications, we are more interested 
in a probabilistic assessment of the non-executability of a 
plan; a plan that does not work in very extreme climatic 
scenarios (e.g., severe drought) may not necessarily be 
rejected in agriculture. A situation of non-executability of 
the plan revealed by simulation calls for modification of the 
plan or of the conditional adjustments that should be 
included in the management strategy for providing plan 
adaptation capabilities. In addition, we address management 
problems that involve rich temporal and procedural 
constraints on and between activities. We have paid special 
attention to making the plan intelligible through the 
language. The actions have complex and highly uncertain 
consequences that are difficult to incorporate in an action 
theory intended to allow reasoning about their anticipated 
effects. 

Reactive plan frameworks (see SPARK Morley and 
Myers (2004) for one of the latest, a member of the PRS 
family (Ingrand et al., 1992)) are also related to the present 
work in the sense that they provide languages to express 
procedural organisation of actions. They have an execution 
procedure capable of implementing open-ended responsive 
decision-making behaviour based on high-level control 
constructs. However, these languages do not offer rich 
ready-to-use primitives to express temporal constraints on 
the activities. Consequently, it is hard to reproduce the 
ability to maintain a sense of continuity in the application of 
a nominal plan. Neither the PRS nor the ConGolog types  
of model have primitives dedicated to the management of 
resources. 

The kind of flexible temporal constraints used in  
our plan representation framework are also present in the 
COMIREM system (Smith et al., 2005), which promotes an 
opportunistic interactive planning paradigm. In this system, 
resource allocation decisions are made incrementally as 
availability constraints and activities from the plan become 
known. 

Finally, other languages have been developed to model 
and simulate work processes. Among them is the multiagent 
environment Brahms (Sierhuis et al., 2007), developed by 
NASA and geared towards modelling people’s activity 
behaviour in space missions. 

8 Concluding remarks 

We have presented a special-purpose work organisation 
language developed for modelling agricultural production 
tasks that are highly dependent on uncontrollable exogenous  
 

factors and that involve activities constrained by rich 
temporal properties and resource requirements. As pointed 
out in the previous section, the problem of developing 
purposive programmable action behaviours in open 
environments is also addressed by the planning/scheduling 
and autonomous agent communities in AI. In these 
approaches, the emphasis is more on the automatic 
construction of plans and formal verification of plan 
properties or on execution performance. Because we only 
aim at simulating decision behaviour, we give greater 
importance to the development of a rich representation 
language that can incorporate the kind of knowledge used 
by production managers in practice. The language must 
allow sufficient flexibility, so that premature decisional 
commitment can be avoided, and plan-based reasoning and 
resource allocation can be interleaved at the time of 
execution. 

The framework is quite generic. It might be applicable 
in other domains than agriculture but we did not attempt  
to do so. Moreover, it is likely that other domains such  
as manufacturing may not need the same kind of features 
than those introduced to deal with the uncertainty  
around driving factors such as weather. In manufacturing,  
uncertainty affects what needs to be produced (the demand)  
rather than the production process itself (Martin-Clouaire 
and Rellier, 2006). 

Our ontology, together with the simulation environment 
that implements it, provides assistance in the development 
of production system simulation models by guiding  
the knowledge elicitation process and by minimising  
the amount of code to be written. In developing a farm 
production system model, the ontology acts as a metamodel; 
implementing a model amounts to particularising the 
ontology concepts as required by the domain and then 
instantiating the corresponding classes to capture the 
specific aspects of the system to be simulated. 

To be used and shared, ontology has to be consensual, 
concise, precise and encompassing. To tend towards these 
properties in the work practice ontology, we have interacted 
with farming system experts and imported notions long  
used in the workflow and in production management 
communities (WFMC, 1996). However, in this paper,  
we do not claim to have developed the ultimate ontology 
capable of capturing the whole essence of work organisation 
knowledge. Actually, a strong point of the ontology  
is its extensibility, thanks to the generic nature of the 
underlying framework. An extension currently under 
development concerns terms such as goal, preference and 
inferential mechanisms required, for instance, to model 
anticipation in decision processes. A combination with the 
Belief-Desire-Intention (BDI) type of decision-making 
architecture (Rao and Georgeff, 1995) is being considered. 
Beliefs express the manager’s current state of knowledge 
about the production system; intentions are the activities 
structured in a plan; desires are specifications about dated 
target states of the production system. Another extension 
addresses the modelling of spatial features and their 
dynamics. 



 Modelling and simulating work practices in agriculture 53 

The ontology and DIESE, its associated simulation 
framework, are currently used in two large projects: the one 
briefly considered in the example in Section 6, and 
MELODIE (Chardon et al., 2007), which involves farm 
models integrating crop, dairy and pig production systems. 
The development of the ontology was largely inspired by 
the analysis made in a modelling project on greenhouse 
tomato production systems (Jeannequin et al., 2003). 

References 
Booch, G., Rumbaugh, J. and Jacobson, I. (2005)  

The Unified Modeling Language User Guide, 2nd ed., 
Addison-Wesley Professional, Boston. 

Carberry, P.S., Hochman, Z., McCown, R, Dalgliesh, N.,  
Foale, M., Poulton, P., Hargreaves, J., Hargreaves, D., 
Cawthray, S., Hillcoat, N. and Robertson, M. (2002)  
‘The FARMSCAPE approach to decision support’, 
Agricultural Systems, Vol. 74, No. 1, pp.141–177. 

Chandrasekaran, B., Josephson, J. and Benjamins, V. (1999)  
‘What are ontologies and why do we need them’,  
IEEE Intelligent Systems, Vol. 14, No. 1, pp.20–26 

Chardon, X., Rigolot, C., Baratte, C., Le Gall, A., Espagnol, S., 
Martin-Clouaire, R., Rellier, J-P., Raison, C., Poupa, J-C. and 
Faverdin, P. (2007) ‘MELODIE: a whole-farm model  
to study the dynamics of nutrients in integrated dairy and pig 
farms’, in Oxley, L. and Kulasiri, D. (Eds.): MODSIM 2007 
Int. Congress on Modelling and Simulation. Modelling and 
Simulation Society of Australia and New Zealand, December, 
pp.1638–1645, ISBN: 978-0-9758400-4-7, http://www. 
mssanz.org.au/MODSIM07/papers/25_s25/MELODIE_s25_
Chardon_.pdf 

Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and  
Rice, J.P. (1998) Open Knowledge Base Connectivity 2.0, 
Report of Knowledge Systems Laboratory, Stanford, CA. 

De Giacomo, G., Lespérance, Y. and Levesque, H. (2000) 
‘Congolog, a concurrent programming language based  
on the situation calculus’, Artificial Intelligence, Vol. 121, 
pp.109–169. 

Ingrand, F., Georgeff, M. and Rao, A. (1992) ‘An architecture  
for real-time reasoning and system control’, IEEE Expert, 
Knowledge-Based Diagnosis in Process Engineering, Vol. 7, 
No. 6, pp.34–44. 

Jeannequin, B., Martin-Clouaire, R., Navarrete, M. and  
Rellier, J-P. (2003) ‘Modelling management strategies for 
greenhouse tomato production’, Proc. CIOSTA-CIGRV 
Congress, Turin, pp.506–513. 

 
 
 
 
 
 
 
 
 
 
 
 

Martin, G., Duru, M., Martin-Clouaire, R., Rellier J-P.,  
Theau, J-P., Thérond, O. and Hossard, L. (2008) ‘Towards a 
simulation-based study of grassland and animal  
diversity management in livestock farming systems’,  
Proc. iEMSs2008, Barcelona, Spain, Vol. 2, pp.783–791, 
http://www.iemss.org/iemss2008/uploads/Main/Vol2-iEMSs 
2008-Proceedings.pdf 

Martin-Clouaire, R. and Rellier, J-P. (2005) ‘Representing and 
interpreting flexible production management plans’, Proc. 
Conceptual Modelling and Simulation Conf. (CMS 2005), 
Marseille, pp.69–76, F. http://carlit.toulouse.inra.fr/diese/ 
docs/CMS05.pdf 

Martin-Clouaire, R. and Rellier, J-P. (2006) Fondements 
ontologiques des systèmes pilotés’, Internal report  
UBIA-INRA, Toulouse-Auzeville, F. http://carlit.toulouse. 
inra.fr/diese/docs/ri_ontologie.pdf 

Morley, D. and Myers, K. (2004) ‘The SPARK agent framework’, 
Proc. AAMAS-04, New York, pp.712–719. 

Rao, A. and Georgeff. M. (1995) ‘BDI agent: from theory  
to practice’, Proc. Int. Conf. on Multiagent Systems,  
San Francisco, pp.312–319. 

Rellier, J-P. (2005) DIESE: un outil de modélisation et de 
simulation de systèmes d’intérêt agronomique, Internal report 
UBIA-INRA, Toulouse-Auzeville, http://carlit.toulouse.inra. 
fr/diese/docs/ri_diese.pdf 

Sierhuis, M., Clancey, W.J. and van Hoof, R.J. (2007) ‘Brahms:  
a multi-agent modelling environment for simulating work 
processes and practices’, Int. J. Simulation and Process 
Modelling, Vol. 3, No. 3, pp.134–152. 

Smith, M.K., Welty, C. and McGuinness, D. (Eds.) (2004) OWL 
Web Ontology Language Guide, http://www.w3.org/TR/ 
owl-guide 

Smith, S.F. and Becker, M.A. (1997) ‘An ontology for 
constructing scheduling systems’, Proceedings of the AAAI 
Spring Symposium on Ontological Engineering, April,  
Palo Alto, CA, pp.120–129. 

Smith, S.F., Hildum, D.W. and Crimm, D.R. (2005)  
‘COMIREM: an intelligent form for resource management’, 
IEEE Intelligent Systems, Vol. 20, No. 2, pp.16–24. 

WFMC. (1996) Workflow Management Coalition Terminology and 
Glossary, (WFMC-TC-1011), Technical Report, Workflow 
Management Coalition, Brussels. 




