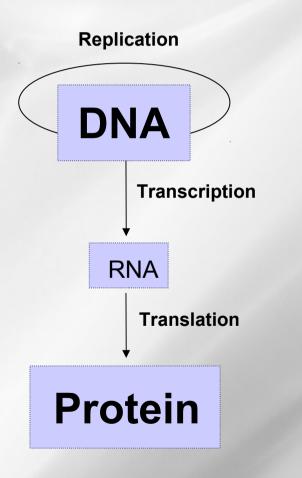


small RNAseq data analysis

Philippe Bardou, Christine Gaspin & Jérôme Mariette

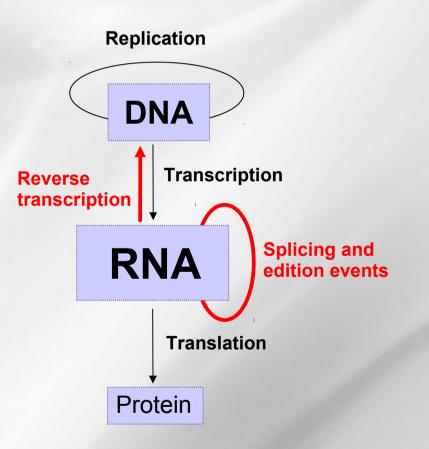

Introduction to miRNA world and sRNAseq

Central dogma of molecular biology

• Evolution of the dogma : 1950-1970

DNA structure discovery.

One gene = one function

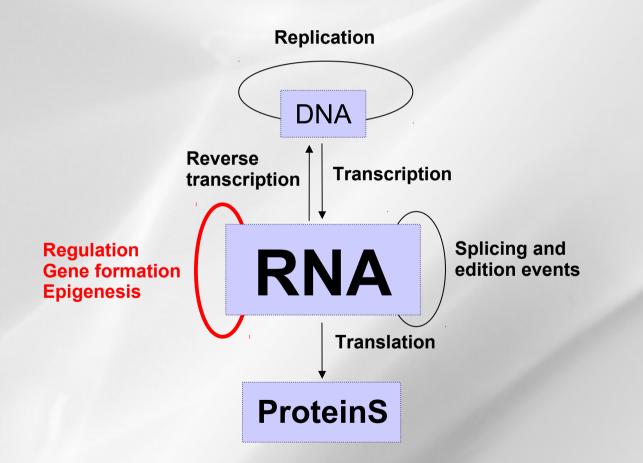


Central dogma of molecular biology

•

Evolution of the dogma : 1970-1980

Genome analysis



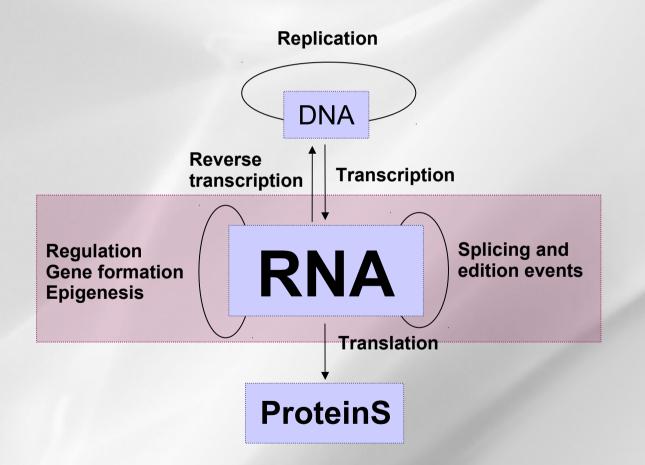
aeno ioinfo

Central dogma of molecular biology

Evolution of the dogma : today •

Genome analysis + Sequencing

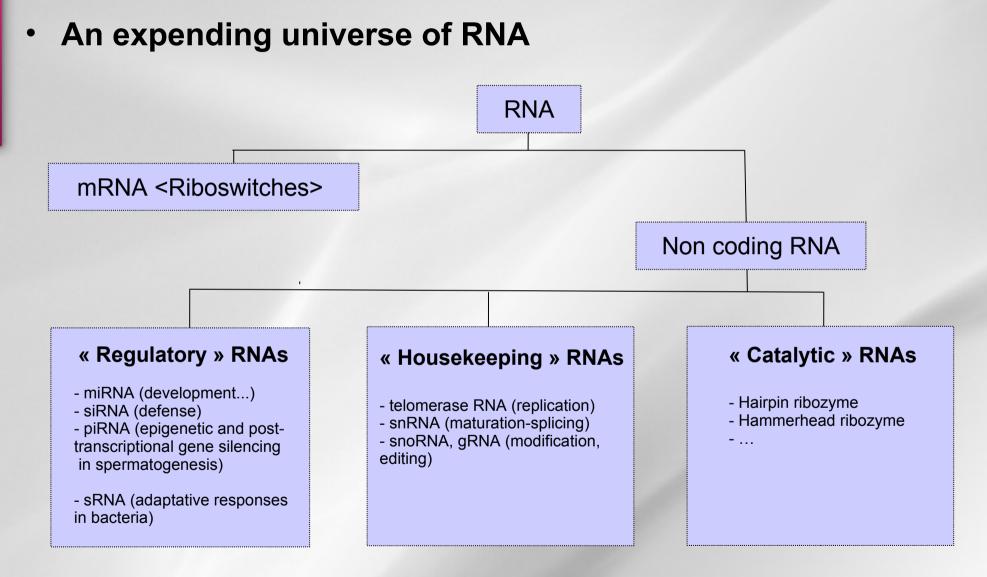
Many genes = one functionnel complex



geno toul Σ bioinfo

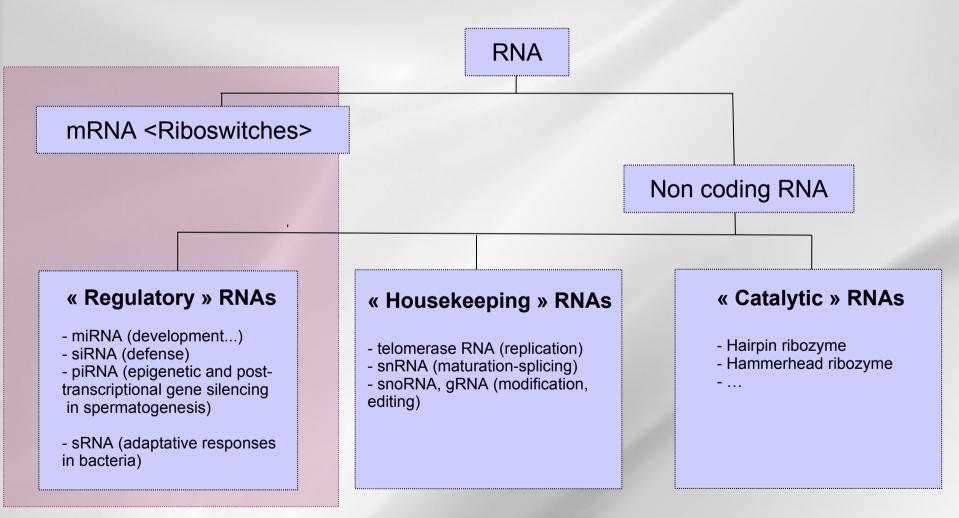
Central dogma of molecular biology

Evolution of the dogma : today


Genome analysis + Sequencing

Many genes = one functionnel complex

The RNA world


→ Multiple roles of RNA in genes regulation

The RNA world

•

An expending universe of RNA

\rightarrow Multiple roles of RNA in genes regulation

Not predicted by gene prediction

- No specific signal (start, stop, splicing sites...)
- Multiple location (intergenic, intronic, coding, antisens)
- Variable size
- No strong sequence conservation in general
- A variety of existing approaches not always easy to integrate
 - Known family: Homology prediction
 - New family: *De novo* prediction

Large non coding protein RNA

- >300 nt
- rRNA, Xist, H19, ...
- Genome structure & expression

Small non coding protein RNA

- >30 nt
- tRNA, snoRNA, snRNA...
- mRNA maturation, translation

Micro non coding protein RNA

- 18-30 nt
- miRNA, hc-siRNA, ta-siRNA, nat-siRNA, piRNA...
- PTGS, TGS, Genome stability, defense...

Large non coding protein RNA

- >300 nt
- rRNA, tRNA, Xist, H19, ...
- Genome structure & expression
- Small non coding protein RNA
 - >30 nt
 - snoRNA, snRNA...
 - mRNA maturation, translation

Micro non coding protein RNA

- 18-30 nt
- miRNA, hc-siRNA, ta-siRNA, nat-siRNA, piRNA...
- Genome stability, defense...

Large non coding protein RNA

- >300 nt
- rRNA, tRNA, Xist, H19, ...
- Genome structure & expression
- Small non coding protein RNA
 - >30 nt
 - snoRNA, snRNA...
 - mRNA maturation, translation

Micro non coding protein RNA

- 18-30 nt
- miRNA, hc-siRNA, ta-siRNA, nat-siRNA, piRNA...
- Genome stability, defense...

The miRNA world

Cell, Vol. 75, 843-854, December 3, 1993, Copyright © 1993 by Cell Press

The C. elegans Heterochronic Gene lin-4 **Encodes Small RNAs** with Antisense Complementarity to lin-14

Rosalind C. Lee.*† Rhonda L. Feinbaum.*‡ and Victor Ambrost Hanvard I Iniversity Department of Cellular and Developmental Biology Cambridge, Massachusetts 02138

Summary

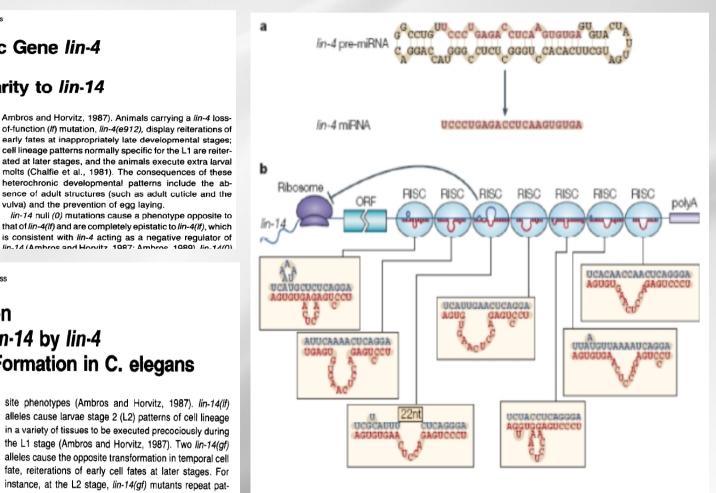
lin-4 is essential for the normal temporal control of diverse postembryonic developmental events in C. elegans. lin-4 acts by negatively regulating the level of IN 14 protein creating a temporal decrease in I IN-14

Cell, Vol. 75, 855-862, December 3, 1993, Copyright © 1993 by Cell Press

Posttranscriptional Regulation of the Heterochronic Gene lin-14 by lin-4 Mediates Temporal Pattern Formation in C. elegans

Bruce Wightman, *† Ilho Ha, * and Gary Ruykun Department of Molecular Biology Massachusetts General Hospital Boston, Massachusetts 02114

Summary


During C. elegans development, the temporal pattern of many cell lineages is specified by graded activity of the heterochronic gene Lin-14. Here we demonstrate

site phenotypes (Ambros and Horvitz, 1987), lin-14(lf) alleles cause larvae stage 2 (L2) patterns of cell lineage in a variety of tissues to be executed precociously during the L1 stage (Ambros and Horvitz, 1987). Two lin-14(gf) alleles cause the opposite transformation in temporal cell fate, reiterations of early cell fates at later stages. For instance, at the L2 stage, lin-14(gf) mutants repeat patterns of cell lineage appropriate for the L1 stage (Ambros and Horvitz, 1984)

vulva) and the prevention of egg laving.

Discovery of lin-4 in C. elegans in 1993

lin-14 controls these stage-specific cell lineages by generating a temporal gradient of Lin-14 pucker protoin /Lin

(He & Hannon, Nature reviews, 2004)

The miRNA world

A key regulation function

Nature. 2011 January 20; 469(7330): 336-342. doi:10.1038/nature09783.

Pervasive roles of microRNAs in cardiovascular biology

Eric M. Small¹ and Eric N. Olson¹ ¹Department of Molecular Biology, University of Texas Southwestern Medical Center, Hines Boulevard, Dallas, Texas 75390-9148, USA

Development 138, 1081-1086 (2011) doi:10.1242/dev.056317

Small RNAs Guide Hematopoi @ 2011. Published by The Company of Biologists Ltd **Differentiation and Function**

Francisco Navarro and Judy Lieberma Regulation of mouse stomach development and Barx1

This information is current as of December 28, 2011

J Immunol 2010:184:5939-5947 doi:10.4049/jimmunol.0902567

expression by specific microRNAs http://www.jimmunol.org/content/184 Byeong-Moo Kim^{1,2,*,†}, Janghee Woo^{1,3,†}, Chryssa Kanellopoulou⁴ and Ramesh A. Shivdasani^{1,2,‡}

Developmental Cell 11, 441-450, October, 2006 ©2006 Elsevier Inc. DOI 10.1016/j.devcel.2006.09.009

Since then, several g

RNA-cloning strategies to

vertebrates and invertebra

The Diverse Functions of MicroRNAs in Animal Development and Disease

Wigard P. Kloosterman¹ and Ronald H.A. Plasterk^{1,2,*} ¹Hubrecht Laboratory Centre for Biomedical Genetics

Leading Edge Review

Origin, Biogenesis, and Activity of Plant MicroRNAs

Olivier Voinnet^{1,*}

¹Institut de Biologie Moléculaire des Plantes, CNRS UPR2357-Université de Strasbourg, 67084 Strasbour *Correspondence: olivier.voinnet@lbmp-ulp.u-strasbg.fr DOI 10.1016/j.cell.2009.01.046

MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic g use highly conserved as well as more recently evolved, species-specific m array of biological processes. This Review discusses current advances in o origin, biogenesis, and mode of action of plant miRNAs and draws compa zoan counterparts.

miSSING LINKS: miRNAs and plant development Christine Hunter and R Scott Poethig

The discovery of hundreds of plant micro RNAs (miRNAs) has triggered much speculation about their potential roles in plant development. The search for plant genes involved in miRNA processing has revealed common factors such as DICER, and new molecules, including HEN1. Progress is also being made toward identifying miRNA target genes and understanding the mechanisms of miRNA-mediated gene regulation in plants. This work has lead to a reexamination of m

PTGS and co-suppression, whereas siRNAs of 24-26 nt (long siRNAs) are associated with long-range transmission of silencing signals and methylation of corresponding genomic regions (Figure 1) [4]. The role of siRNAs in plant PTGS has been reviewed recently [5,6] and so is not discussed in detail here.

characterized mutations that are now International Journal of Alzheimer's Disease components or targets of miRNA-med Volume 2011 (2011), Article ID 894938, 6 pages

doi:10.4061/2011/894938

Addresses Plant Science Institute, Department of Biological Pennsylvania, Philadelphia, Pennsylvania 1

Review Article

Current Opinion in Genetics & Develo

0959-437X/\$ - see front matter

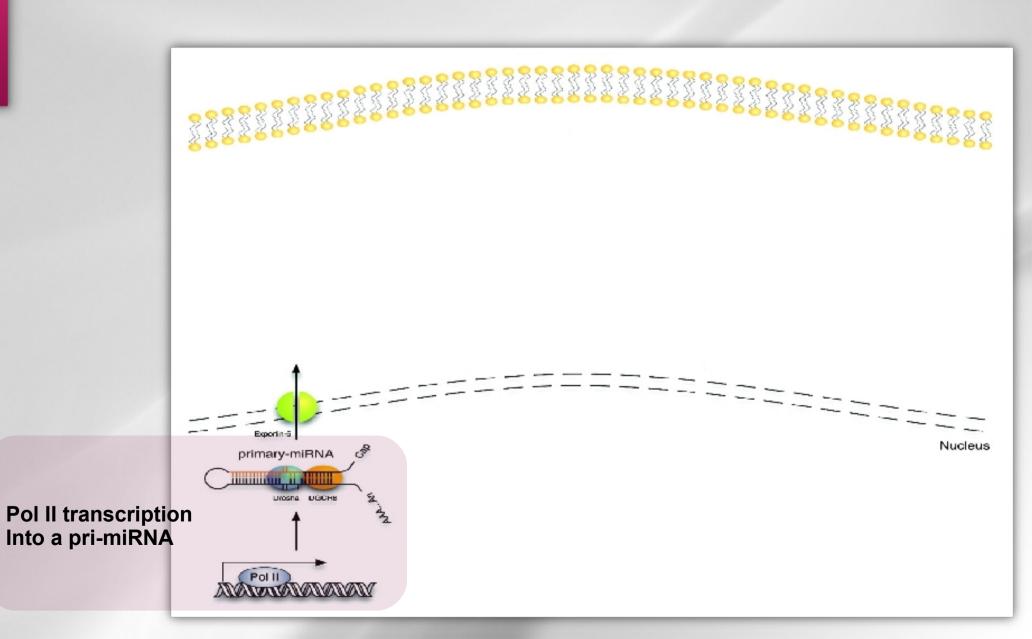
Avenues © 2003 Elsevier Ltd. All rights reserved

DOI 10.1016/S0959-437X/0300081-9

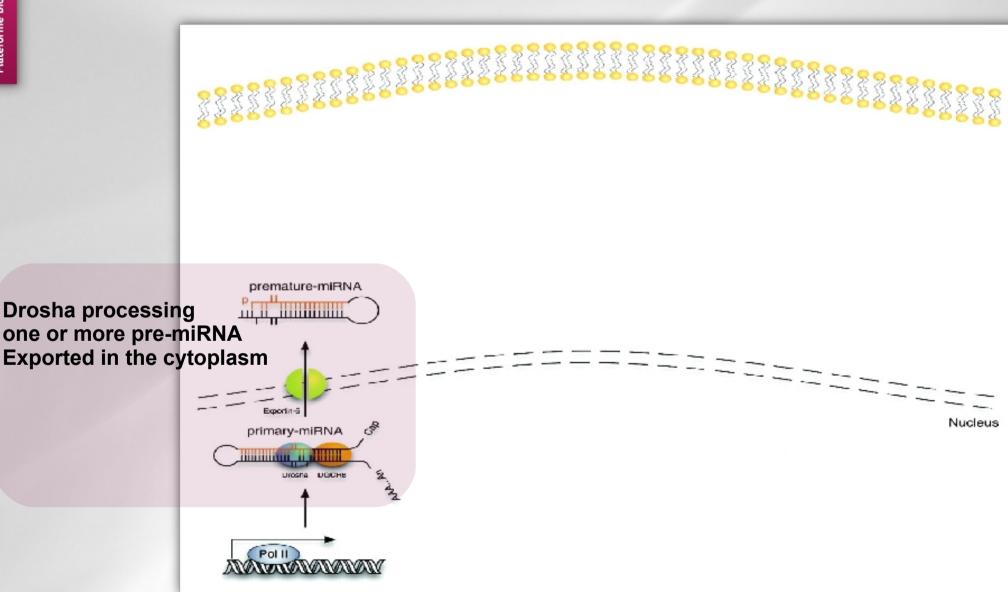
MicroRNAs and Alzheimer's Disease Mouse This review comes from a themed issue Pattern formation and developmental m Models: Current Insights and Future Research

Charlotte Delav^{1,2} and Sébastien S. Hébert^{1,2}

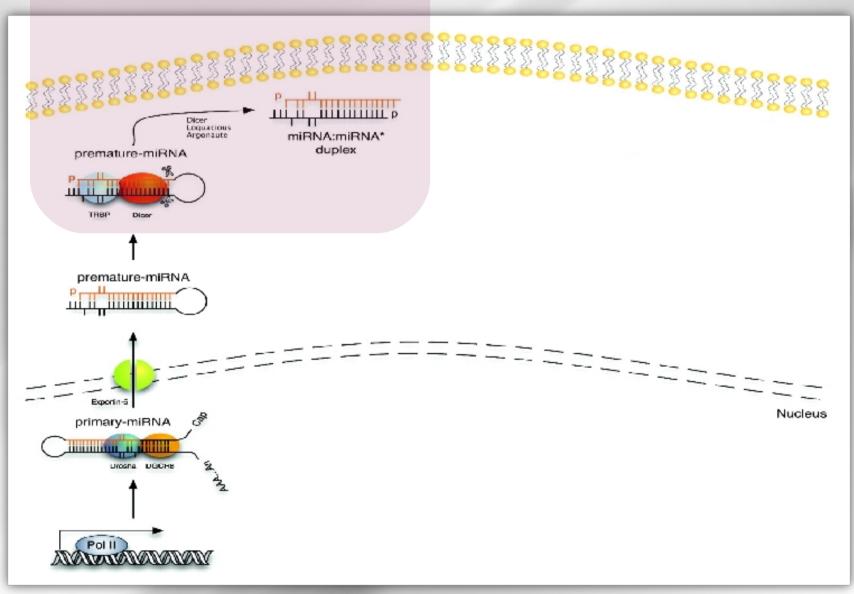
372

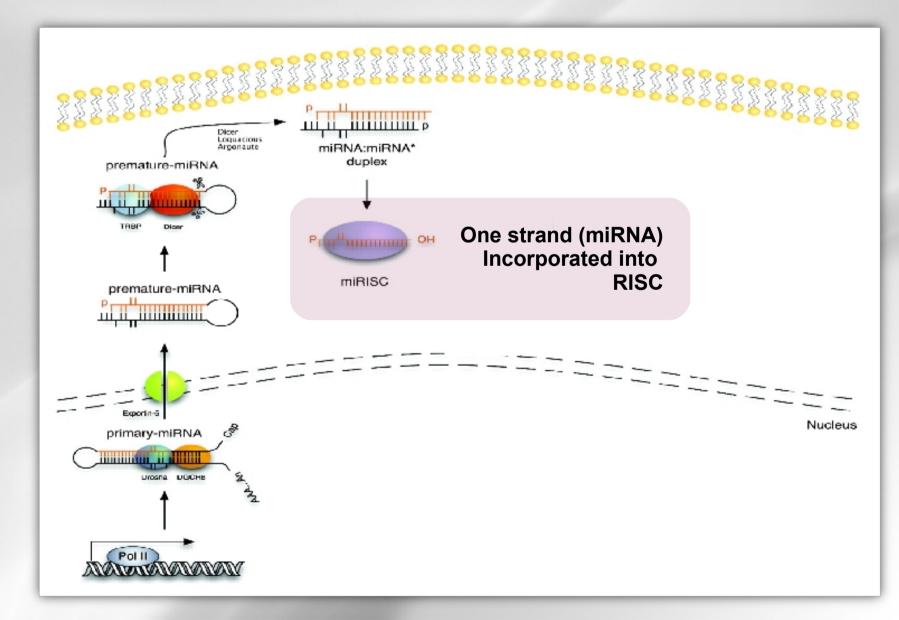

geno toulΣ bioinfo

The miRNA world

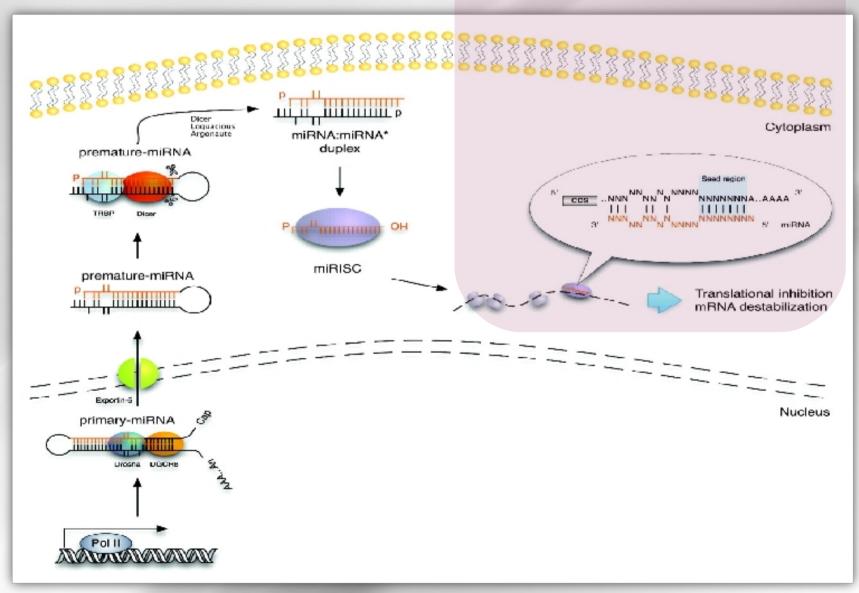

Animals

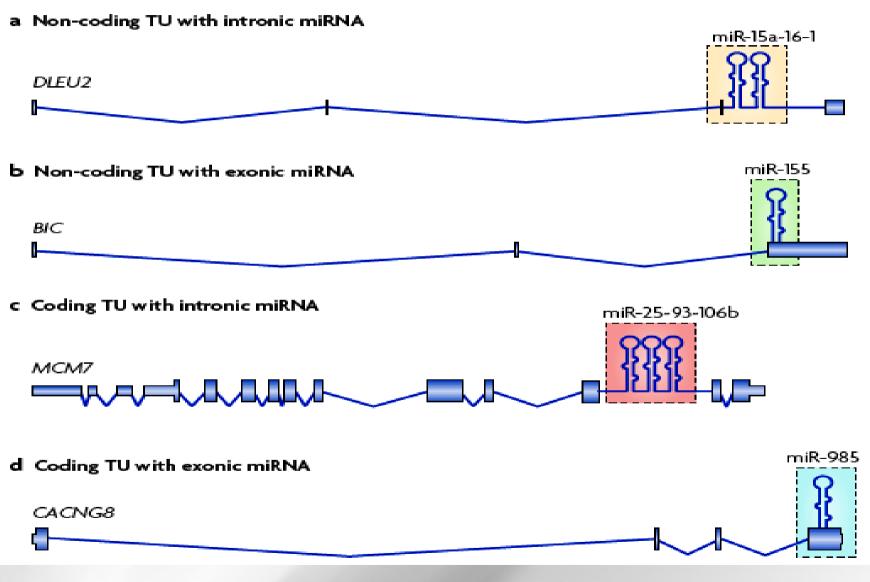
- Developmental timing (C. elegans): lin-4, let-7
- Neuronal left/right asymetry (C. elegans): Lys-6, mir-273
- Programmed cell death/fat metabolism (D. melanogaster): mir-14
- Notch signaling (D. malanogaster): mir-7
- Brain morphogenesis (Zebrafish): mir-430
- Myogeneses and cardiogenesis: mir-1, miR-181, miR-133
- Insulin secretion: miR-375
- Plants
 - Floral timing and leaf development: miR-156
 - Organ polarity, vascular and meristen development: mir-165, miR-166
 - Expression of auxin response genes: miR-160





Dicer processing Into a duplex miRNA Structure





The miRNA location

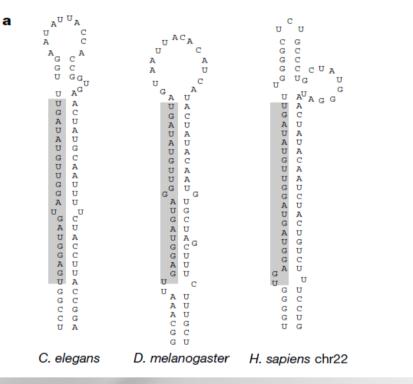
 \rightarrow Cluster organisation

geno toul Σ bioinfo

The miRNA conservation

Conservation of the sequence and temporal expression of *let-7* heterochronic regulatory RNA

Amy E. Pasquinelli*†, Brenda J. Reinhart*†, Frank Slack‡, Mark Q. Martindale§, Mitzi I. Kurodall, Betsy Maller‡, David C. Hayward¶, Eldon E. Ball¶, Bernard Degnan#, Peter Müller*, Jürg Spring*, Ashok Srinivasan**, Mark Fishman**, John Finnerty††, Joseph Corbo‡‡, Michael Levine‡‡, Patrick Leahy§§, Eric Davidson§§ & Gary Ruvkun*

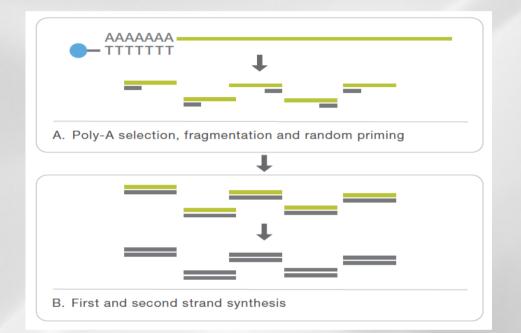

* Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA

‡ Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA

§ Kewalo Marine Lab, Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA

Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA

an let ten ter non 475

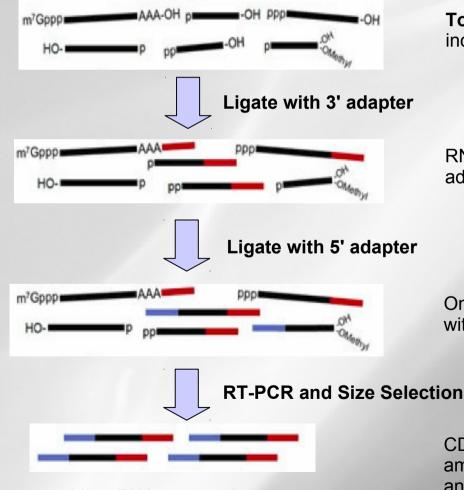


A. E. Pasquinelli et al., Nature 408, 86-9 (2000)

How can we study miRNA?

• RNAseq not suited for miRNA (protocol and size)

- small RNAseq: ability of high throughput sequencing to
 - Interrogate known and new small RNAs
 - Quantify them
 - Profile them on a large number of samples
 - Cost-effective


small RNAseq platforms comparisons

Platform	454 Roche Titanium	HiSeq2000 Illumina	Solid 3+ Life Technologies
Characteristics	-Titanium chemistry -Pyrosequencing -PCR amplification	 Polymerase-based sequence-by-synthesis PCR amplification Multiplexing 	-ligation-base-sequencing -PCR amplification
Applications	-De novo sequencing -Small genomes -Transcriptome	-Resequencing -Transcriptomic/RNAseq -Epigenomic -Small RNA -Allele specific sequencing	-De novo sequencing -Resequencing -Transcriptomic/RNAseq -Epigenomic -Small RNA
Paired end separation	Not used	200bp	200bp
Mb / run	800Mb	600Gb	60Gb
Read length	800 bp	100bp	50bp
Known Biases	 Long homopolymer - makes signal saturation read duplication 	 Rich GC or AT regions: under-representation during amplification Most error in end of cycle 	- read duplication ?

small RNA-Seq library preparation

 Monophosphate presence in 5' extremity and OH presence in 3' extremity

Total RNA: contain all kinds of RNA species including miRNA, mRNA, tRNA, rRNA...

RNA with modified 3'-end will not ligate with 3' adapters. Only RNA with OH in 3'-end will ligate.

Only RNA with monophosphate in 5'-end will ligate with 5' adapters.

CDNA containing both adapter sequences will be amplified. MicroRNA will be enriched from PCR

and gel size selection.

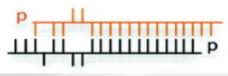
MicroRNA sequencing library

What are we looking for ?

- List of known miRNA
- List of new miRNA
- miRNA target(s)
- miRNA quantification
- Differential expression



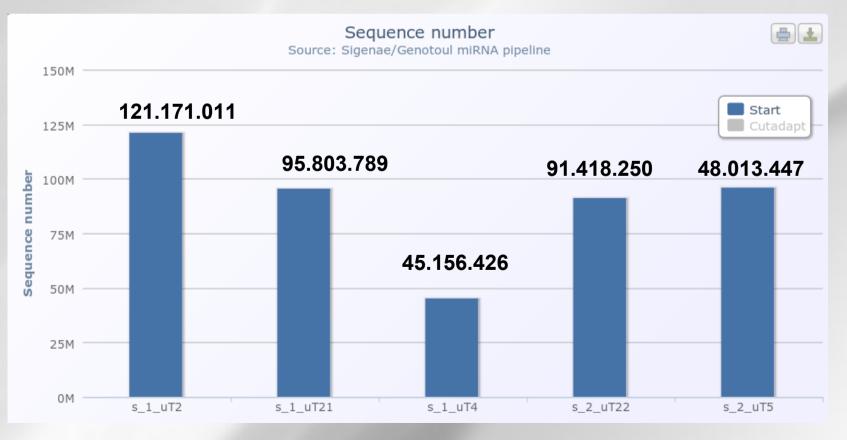
small RNAseq data analysis



What should we retain for data analysis ?

Pre-miRNA information:

- Hairpin structure of the pre-miRNA
- Pre-miRNA localisation (coding/non coding TU intronic/exonic)
- Presence of cluster
- Size of the pre-miRNA
- miRNA and miRNA* information:



- Existence of both miRNA and miRNA*
- Sequence conservation
- Overhang (around 2 nt) related to drosha and Dicer cuts
- Size of miRNA and miRNA*
- Overexpression of the miRNA compared to the miRNA*
- Existence of other products in sRNAseq data

Description of the dataset

- 5 experiments (5 lanes, no multiplexing)
 - Different tissues, different stages
- No reference genome
 - Only scaffolds

. . .

Fastq format

@D61655M1 171:2:1:1192:1017#0/1 +D61655Ml 171:2:1:1192:1017#0/1 @D61655M1 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 NTCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAA +D61655M1 171:2:1:13360:1961#0/1 B[[[[Y[YXXcccccccc\cccc_aacccYUUVV0Q @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTGAAT AGT TAT CTC GT ATGC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 +D61655M1 171:2:1:13770:1993#0/1 @D61655Ml 171:2:1:13819:1998#0/1 T AGCTT ATC AGA CTG GTG TTG GC ATCT CGT ATG CCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgggfg^ggggfggggeggggdgggg @D61655M1_171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

Fastq format

@D61655M1 171:2:1:1192:1017#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1192:1017#0/1 @D61655M1 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655Ml 171:2:1:13360:1961#0/1 NTCT CGT AT GCC GT CT TC T GCT T G A A A A A A A A A A A +D61655M1 171:2:1:13360:1961#0/1 @D61655Ml 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTG AAT AGT TAT CTC GT AT GC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGC TTT TGC TTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgggfg^ggggfggggeggggdgggg @D61655M1_171:2:1:2975:2145#0/1 T AGT T T GT C AGA CT T T T G T T T GGA GGT C GT AT G G C A +D61655M1 171:2:1:2975:2145#0/1

Line 1 starts with @

Information	Meaning	
D61655M1_171	The unique instrument name	
2	Flowcell lane45.156.426	
1	Tile number within the flox cell lane	
1192	'x'-coordinate of the cluster within the tile	
1017	'y'-coordinate of the cluster within the tile	
#0	index number for a multiplexed sample (0 for no indexing)	
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)	

1 1 1

@D61655M1 171:2:1:1192:1017#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655Ml 171:2:1:1192:1017#0/1 @D61655Ml 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 +D61655M1 171:2:1:13360:1961#0/1 @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTG AAT AGT TAT CTC GT ATGC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGCTTT TGCTTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgfggfg^ggggfggggeggggdgggg @D61655M1 171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

Line 1 starts with @

Information	Meaning	
D61655M1_171	The unique instrument name	
2	Flowcell lane45.156.426	
1	Tile number within the flox cell lane	
1192	'x'-coordinate of the cluster within the tile	
1017	'y'-coordinate of the cluster within the tile	
#0	index number for a multiplexed sample (0 for no indexing)	
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)	

Line 2 Raw sequence of 36 nt (36 cycles in sequencing)

1 1 1

bioinfo

Fastq format

@D61655M1 171:2:1:1192:1017#0/1 +D61655M1 171:2:1:1192:1017#0/1 @D61655Ml 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 +D61655M1 171:2:1:13360:1961#0/1 @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTG AAT AGT TAT CTC GT ATGC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGCTTT TGCTTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgfggfg^ggggfggggeggggdgggg @D61655M1 171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

Line 1 starts with @

Information	Meaning	
D61655M1_171	The unique instrument name	
2	Flowcell lane45.156.426	
1	Tile number within the flox cell lane	
1192	'x'-coordinate of the cluster within the tile	
1017	'y'-coordinate of the cluster within the tile	
#0	index number for a multiplexed sample (0 for no indexing)	
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)	

Line 2 Raw sequence of 36 nt (36 cycles in sequencing)

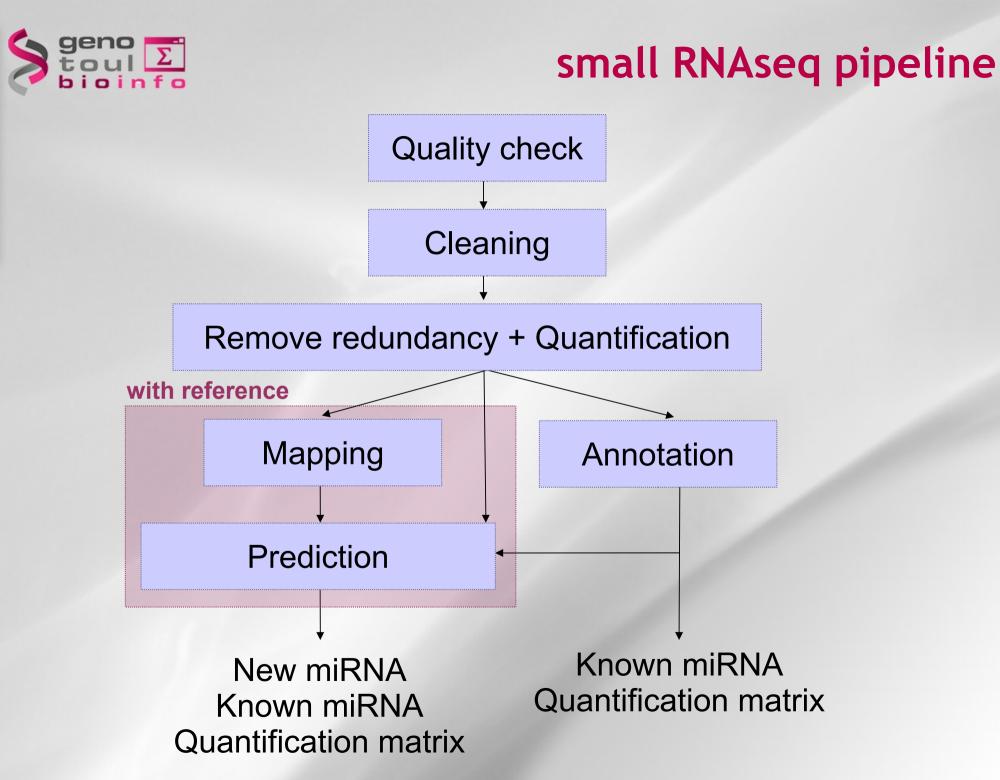
Line 3 starts with a '+' character and is optionally followed by the same sequence identifier (and any description) again.

1 1 1

Fastq format

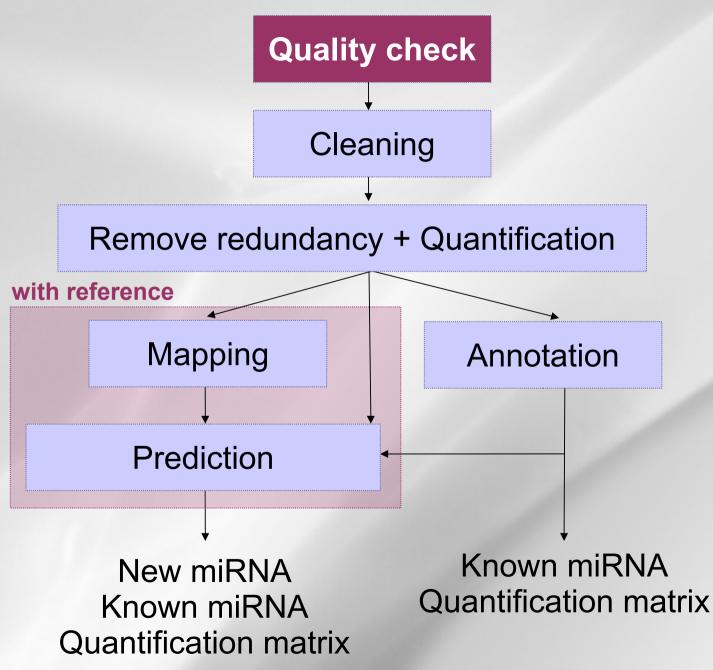
@D61655M1 171:2:1:1192:1017#0/1 +D61655M1 171:2:1:1192:1017#0/1 @D61655M1 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 +D61655M1 171:2:1:13360:1961#0/1 @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTG AAT AGT TAT CTC GT AT GC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGCTTT TGCTTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG +D61655M1 171:2:1:13819:1998#0/1 @D61655Ml 171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

Line 1 starts with @


Information	Meaning	
D61655M1_171	The unique instrument name	
2	Flowcell lane45.156.426	
1	Tile number within the flox cell lane	
1192	'x'-coordinate of the cluster within the tile	
1017	'y'-coordinate of the cluster within the tile	
#0	index number for a multiplexed sample (0 for no indexing)	
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)	

Line 2 Raw sequence of 36 nt (36 cycles in sequencing)

Line 3 starts with a '+' character and is optionally followed by the same sequence identifier (and any description) again.


Line 4 Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence.

1 1 1

small RNAseq pipeline

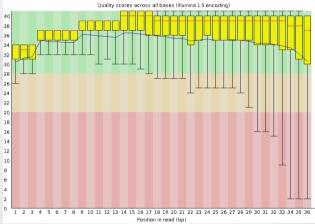
1. Quality control

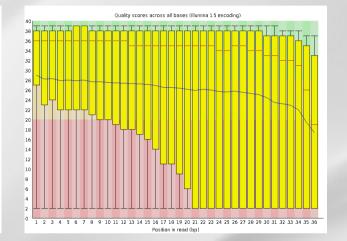
FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/)

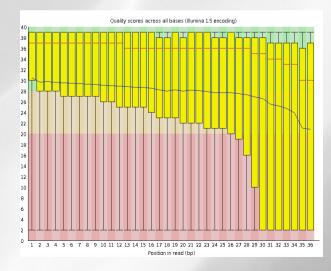
Function	A quality control tool for high throughput sequence data.
Language	Java
Doguiromento	A <u>suitable Java Runtime Environment</u>
Requirements	The Picard BAM/SAM Libraries (included in download)
Code Maturity	Stable. Mature code, but feedback is appreciated.
Code Released	Yes, under <u>GPL v3 or later</u> .
Initial Contact	Simon Andrews

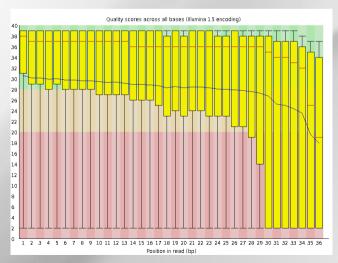
A simple way to do quality control. It provides a modular set of analyses to give a quick impression of whether data has any problems of which you should be aware before doing any further analysis. The main functions of FastQC are:

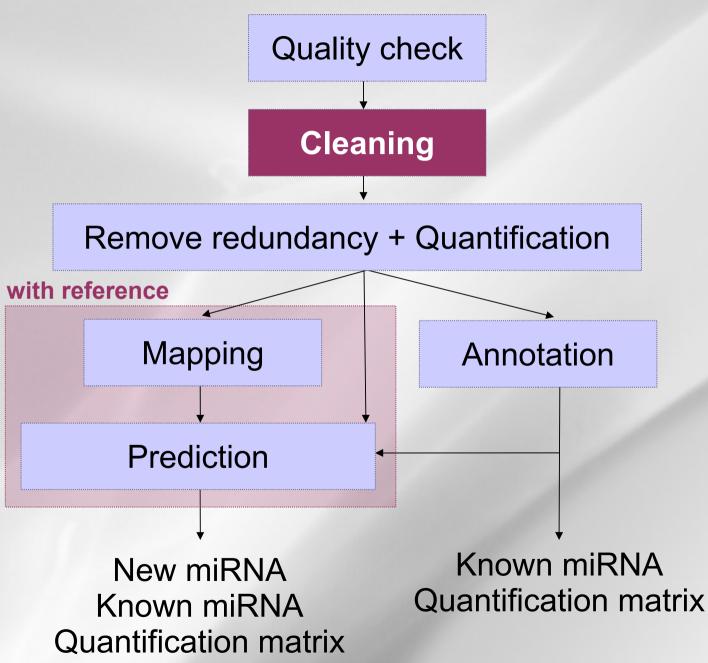
- Import of data from BAM, SAM or FastQ files (any variant)
- Provide a quick overview to tell you in which areas there may be problems
- Summary graphs and tables to quickly assess your data
- Export of results to an HTML based permanent report
- Offline operation to allow automated generation of reports without running the interactive application


Fastqc -o nf.out nf_in.fastq




1. Quality control


Per base quality



small RNAseq pipeline

Outputed reads

Outputed reads

- Some sequences contain only adapters

Outputed reads

- Some sequences contain only adapters
- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).

>Adapteur
ATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCATCTC
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143
TGAGATGAAGCACTGTAGCTCTCGTATGCCGTCT

Outputed reads

- Some sequences contain only adapters

- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).

- Some of them are other type of RNAs (green).

>Adapteur
ATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCATCTC
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143

Outputed reads

- Some sequences contain only adapters
- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).
 - Some of them are other type of
- RNAs (green).
 - Some adapters contain errors (blue).

>Adapteur
ATCTCGTATGCCGTCTTCTGCTTG AAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCATCTC
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143
TGAGATGAAGCACTGTAGCTCTCGTATGCCGTCT

Outputed reads

- Some sequences contain only adapters
- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).
- Some of them are other type of RNAs (green).
 - Some adapters contain errors (blue).
- Some sequences contain polyN (red)

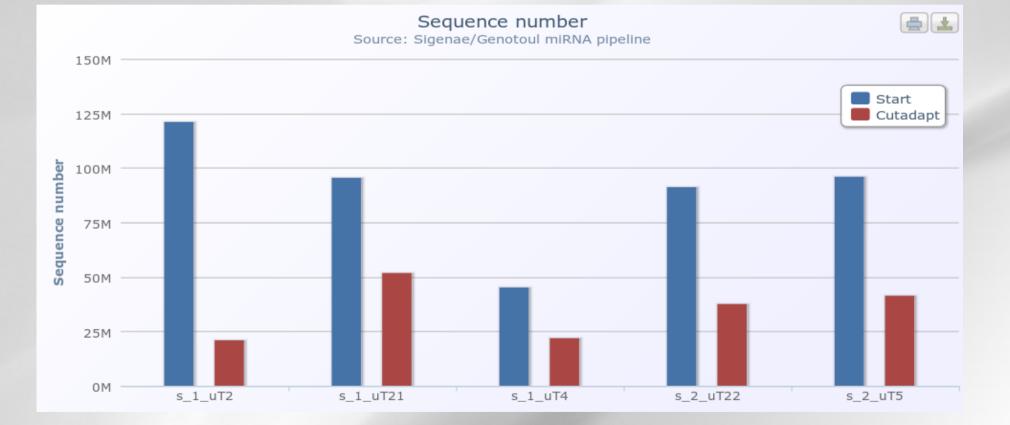
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCATCTC
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143
TGAGATGAAGCACTGTAGCTC <mark>TCTCGTATGCCGTCT</mark>

2. Cleaning

Adapters removing and length filtering

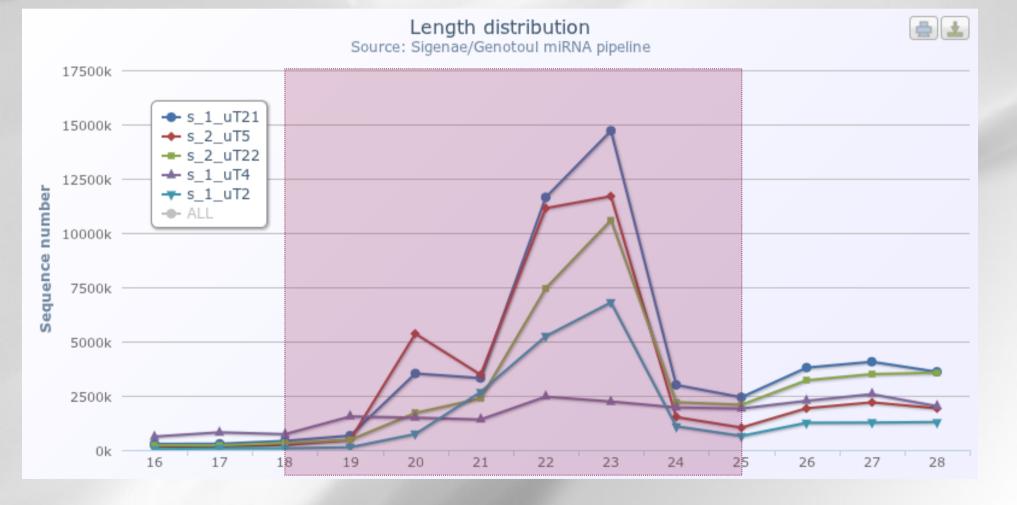
Cutadapt http://code.google.com/p/cutadapt/.

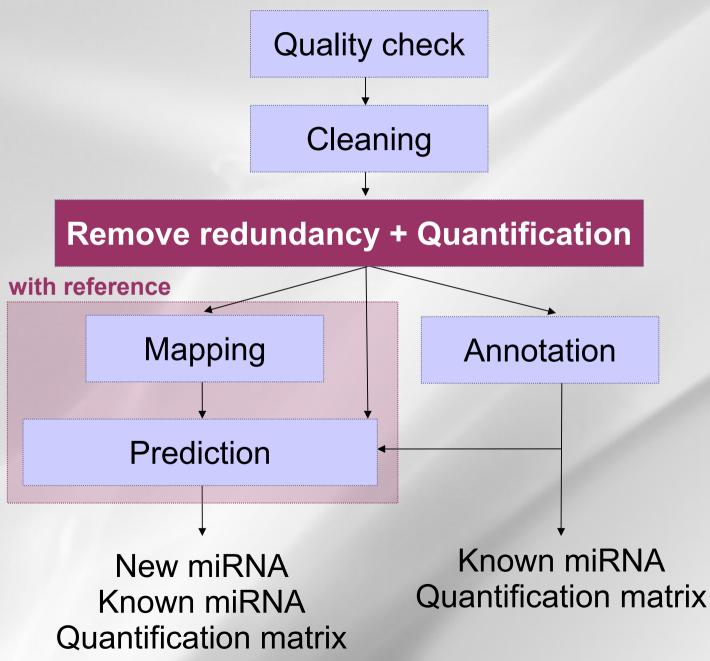
Cutadapt removes adapter sequences from high-throughput sequencing data. Indeed, reads are usually longer than the RNA, and therefore contain parts of the 3' adapter. It also allows to keep only sequences of desired length (15<length<29).


	Options -a and -b	Option -a	Option -b			
Read	Read runs into adapter	Full adapter in the beginning	Full adapter in the beginning			
Adapter Removed sequence	Adapter within read		Partial adapter in the beginning			

cutadapt -a ATCTCGTATGCCGTCTTCTGCTTG -m15 -M 29 -o nf_out.fg nf_in.fq

2. Cleaning


56 % of reads discarded


2. Cleaning

Size in between 18bp:24bp → miRNA ?

small RNAseq pipeline

3. Remove redundancy

Removing identical reads

- save computational time
- useless to keep all the read
- Keep the number of occurrence for each reads

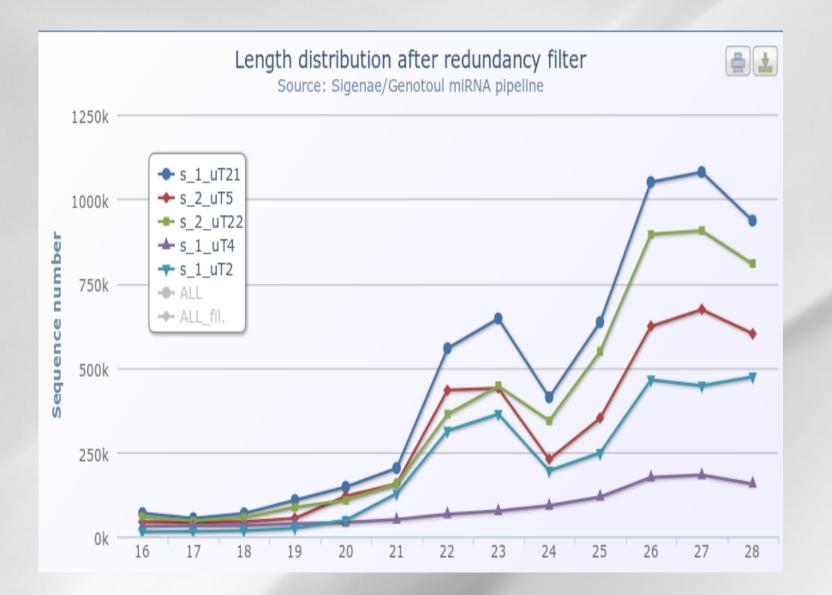
38

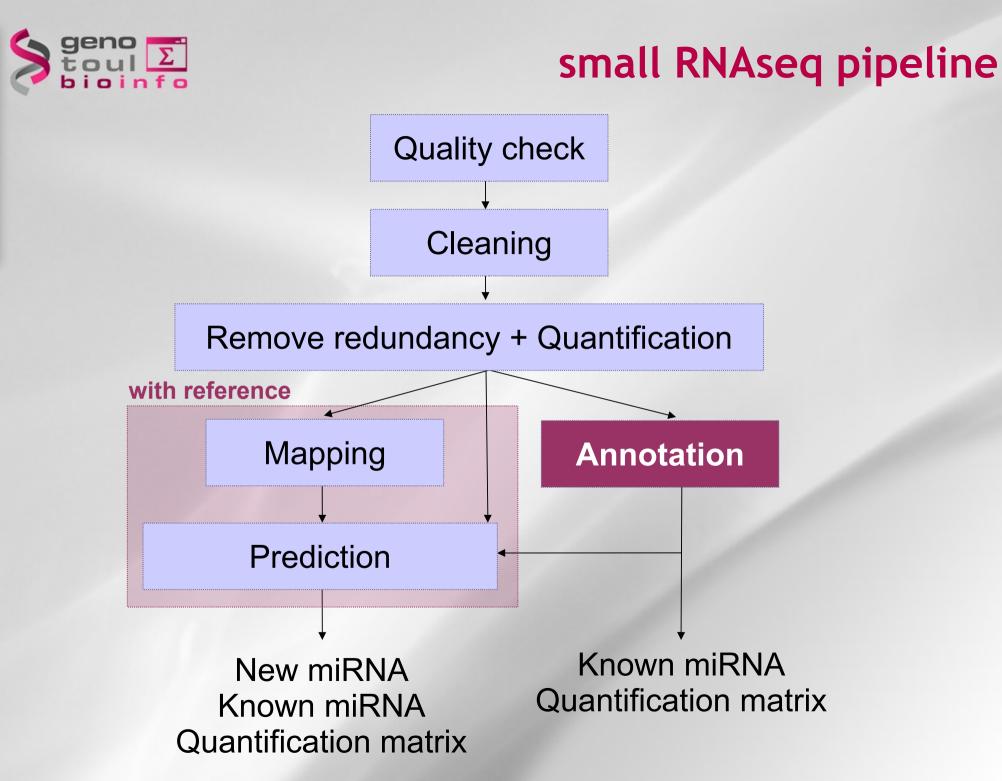
51

82

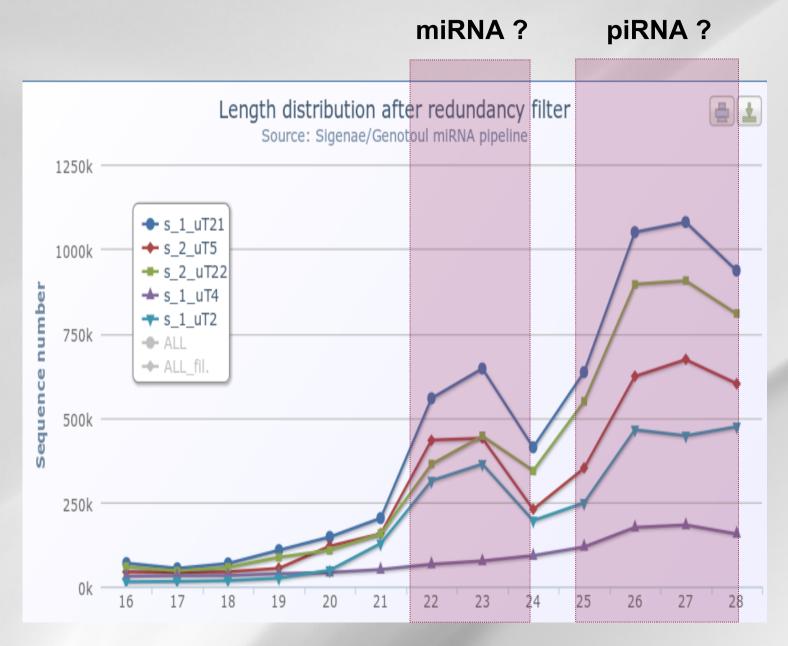
2

3


2

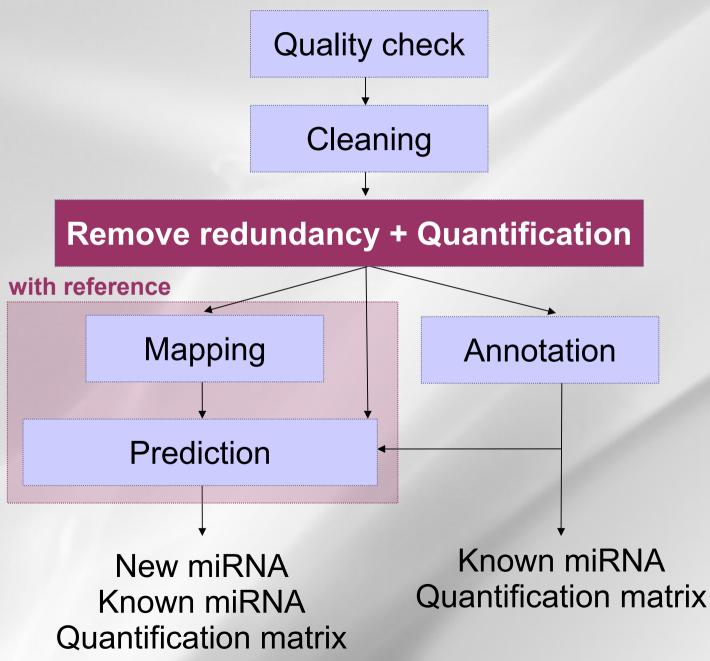

AAATGAATGATCTATGGACAGCA AAATGAATGATCTATGGACAGCAG AAATGAATGATCTATGGACAGCAGA AAATGAATGATCTATGGACAGCAGAAAG AAATGAATGATCTATGGACAGCAGC AAATGAATGATCTATGGACAGCAGCA AAATGAATGATCTATGGACAGCAGCAA AAATGAATGATCTATGGACAGCAGCAAA AAATGAATGATCTATGGACAGCAGCAAC AAATGAATGATCTATGGACAGCAGCAAG 57 AAATGAATGATCTATGGACAGCAGCAG AAATGAATGATCTATGGACAGCCGC AAATGAATGATCTATGGACGGCAGCA

fastqnr.pl sample.fq | sort -k1,1 > sample.matrix


3. Remove redundancy

3. Remove redundancy

More differencies between piRNAs than with miRNAs ?


Exercices

- Exercice 1: Nettoyage de séquences

 Pour les séquences contenues dans le fichier /work/gaspin/L3/TP0.fastq, utiliser cutadapt pour enlever les adaptateurs (adaptateur=ATCTCGTATGCCGTCTTCTGCTTG) et conserver uniquement les séquences comprises entre 20 et 26 nt. Combien de séquences avez vous éliminé ? Ecrire un programme permettant de compter le nombre de séquences de 20, 21 ...26 nt. Que déduisez-vous des résultats ?

small RNAseq pipeline

3. Quantification

Computes an expression matrix

 Read must be at least in 2 samples if present less than 5 times

#seq	s_1_uT21	s_1_uT2	s_1_uT4	s_2_uT22	s_2_uT5
 AAAAGGGCTGTTTGTGCAGGCAG	87	14	0	85	5
AAAAGGGCTGTTTGTGCAGGCAGA	1	0	0	1	0
AAAAGGGCTGTTTGTGCAGGCAGG	1	0	0	2	0
AAAAGGGCTGTTTGTGCAGGCAGT	1	0	0	3	0
AAAAGGGCTGTTTGTGCAGGCAGTTT	0	0	0	0	1
AAAAGGGCTGTTTGTGCAGGCAT	1	2	0	3	0
AAAAGGGCTGTTTGTGCAGGCTA	0	0	0	1	0
AAAAGGGCTGTTTGTGCAGGCTG	1	0	0	1	0
AAAAGGGCTGTTTGTGCAGGCTT	1	0	0	0	0
AAAAGGGCTGTTTGTGCAGGG	6	1	0	4	2
AAAAGGGCTGTTTGTGCAGGGA	11	1	0	3	4
AAAAGGGCTGTTTGTGCAGGGAG	88	9	0	62	11
AAAAGGGCTGTTTGTGCAGGGAGC	1	0	0	0	0
AAAAGGGCTGTTTGTGCAGGGAGCTGA	0	0	0	1	0
AAAAGGGCTGTTTGTGCAGGGAGT	0	1	0	0	0
AAAAGGGCTGTTTGTGCAGGGAGTT	0	0	0	1	0
AAAAGGGCTGTTTGTGCAGGGAT	2	0	0	0	1
AAAAGGGCTGTTTGTGCAGGGATT	1	0	0	0	0

quatification.pl -i 2 -a 5 sample1.matrix sample2.matrix ... > quantification.matrix

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)
 - miRBase::Registry provides names to novel miRNA genes prior to their publication.
 - miRBase::Sequences provides miRNA sequence data, annotation, references and links to other resources for all published miRNAs.
 - miRBase::Targets provides an automated pipeline for the
 mediation of targets for all published animal miRNAs.

D152–D157 Nucleic Acids Research, 2011, Vol. 39, Database issue doi:10.1093/nar/gkq1027

Published online 30 October 2010

miRBase: integrating microRNA annotation and deep-sequencing data

Ana Kozomara and Sam Griffiths-Jones*

Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

- Rfam (http://rfam.sanger.ac.uk/)
 - A collection of RNA families
 - Rfam 10.1, June 2011, 1973 families
 - A track now included in the UCSC genome browser
 - Be careful: also contains (not all) miRNA families

D136–D140 Nucleic Acids Research, 2009, Vol. 37, Database issue doi: 10.1093/nar/gkn766

Published online 25 October 2008

Rfam: updates to the RNA families database

Paul P. Gardner^{1,*}, Jennifer Daub¹, John G. Tate¹, Eric P. Nawrocki², Diana L. Kolbe², Stinus Lindgreen³, Adam C. Wilkinson¹, Robert D. Finn¹, Sam Griffiths-Jones⁴, Sean R. Eddy² and Alex Bateman¹

¹Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK, ²Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, USA, ³Center for Bioinformatics, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark and ⁴Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, UK

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

- Rfam (http://rfam.sanger.ac.uk/)
- Silva (////www.arb-silva.de/) silva
 - A comprehensive on-line resource for quality checked and aligned ribosomal RNA sequence data.
 - SSU (16S rRNA, 18S rRNA)
 - LSU (23S rRNA, 28S rRNA)
 - Eukarya, bacteria, archaea

7188–7196 Nucleic Acids Research, 2007, Vol. 35, No. 21 doi:10.1093/nar/gkm864

Published online 18 October 2007

SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB

Elmar Pruesse^{1,2}, Christian Quast^{1,3}, Katrin Knittel⁴, Bernhard M. Fuchs⁴, Wolfgang Ludwig⁵, Jörg Peplies⁶ and Frank Oliver Glöckner^{1,3,*}

¹Microbial Genomics Group, Max Planck Institute for Marine Microbiology, ²University Bremen, Center for Computing Technologies, D-28359, ³Jacobs University Bremen gGmbH, D-28759, ⁴Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, ⁵Department for Microbiology, Technical University Munich, D-85354 Freising and ⁶Ribocon GmbH, D-28359 Bremen

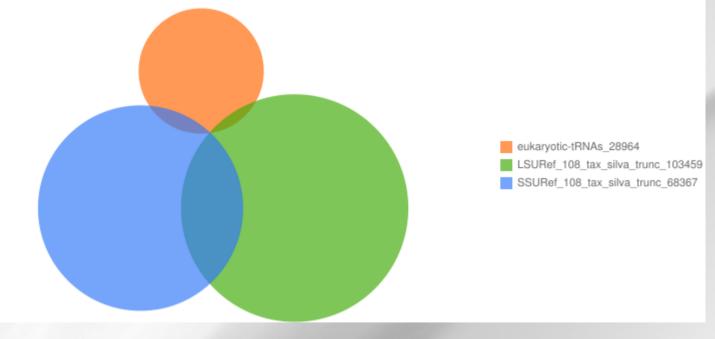
- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

- Rfam (http://rfam.sanger.ac.uk/)
- Silva (////www.arb-silva.de/) silva
- GtRNAdb(http://gtrnadb.ucsc.edu/)
 - Contains tRNA gene predictions made by the program tRNAscan-SE (Lowe & Eddy, Nucl Acids Res 25: 955-964, 1997) on complete or nearly complete genomes.
 - All annotation is automated and has not been inspected for agreement with published literature.

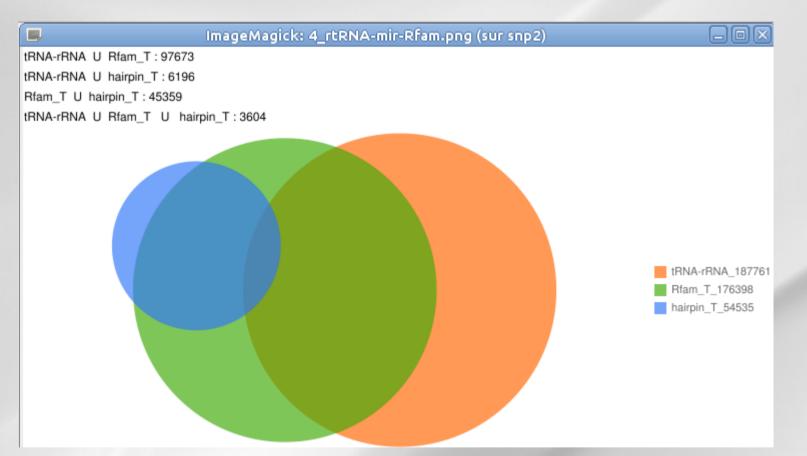
Published online 4 November 2008

Nucleic Acids Research, 2009, Vol. 37, Database issue D93–D97 doi:10.1093/nar/gkn787

GtRNAdb: a database of transfer RNA genes detected in genomic sequence


Patricia P. Chan and Todd M. Lowe*

Department of Biomolecular Engineering, University of California, Santa Cruz, 1156 High Street, SOE-2, Santa Cruz, CA 95064, USA


Reads with multiple annotation

eukaryotic-tRNAs U LSURef_108_tax_silva_trunc : 707 eukaryotic-tRNAs U SSURef_108_tax_silva_trunc : 1230 LSURef_108_tax_silva_trunc U SSURef_108_tax_silva_trunc : 11385 eukaryotic-tRNAs U LSURef_108_tax_silva_trunc U SSURef_108_tax_silva_trunc : 293

Reads with multiple annotation

→ A lot of reads annotated with mirBase but also with tRNA and rRNA database

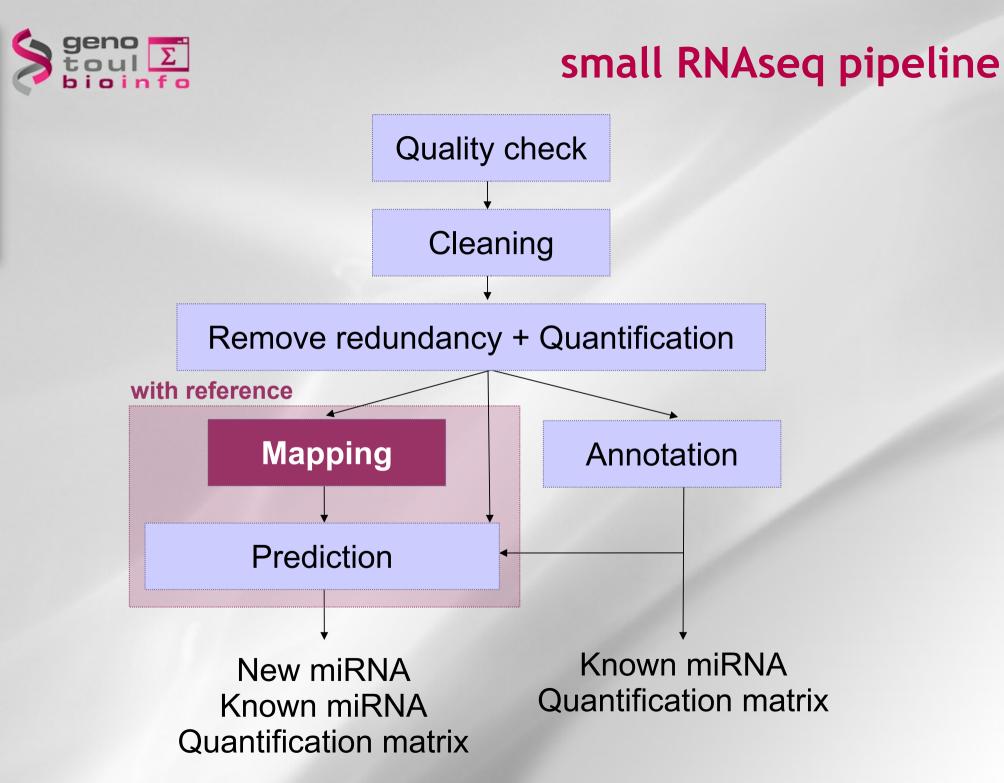
986

rRNA present in miRBase

Mir-739 or 28S rRNA ?

geno toulΣ bioinfo

	GOCTAGGTGAAGATCTTGGTGGTAGTAGCAAATATTCAAACGAGAACTTTGAAGGCCGAAGTGGAGA
	((((****(((((****(*((((*******)))))****))))**))))**))))**))))**))))
2	GOCTAGGTGAAGATCTTGGTGGTAGTAG**************
2	******TGAAGATCTTGGTGGTAGTAGCAAA**********
2	**************************************
2	
7	**************************************
5	**************************************
Ē	* ** ** ** ** *AGATCTT GGTGGT AGTAGCAAAT** ** ** ** ** ** ** ** ** ** ** ** **
5 5	
5	********AGATCTTGGTGGTAGTAGCAAATAT**********
2	**************************************
9	* ** ** ** ** ** ** ** ** ** *GTGGT AGTAGCAA AT AT TC AA ACGAGA** ** ** ** ** ** ** ** ** ** ** **
2	
7	**************************************
3	**************************************
10	**************************************
4	*********************TGGTAGTAGCAAATATTCAAACGAGAA**********
6	**************************************
9	**************************************
11	**************************************
5	**************************************
18	**************************************
21	**************************************
5	**************************************
10	**************************************
5	**************************************
2	**************************************
11	**************************************
8	**************************************
6	**************************************
5	**************************************
9	* ** ** ** ** ** ** ** ** ** ** ** ** *
11	*****************************AGTAGCAAATATTCAAACGAGAACTTTG**********
4	**************************************
3	**************************************
2	**************************************
18	**************************************
13	***************************GTAGCAAATATTCAAACGAGAAC**********
14	**************************************
80	**************************************
12	***************************GTAGCAAATATTCAAACGAGAACTTT**********
124	**************************************
3	**************************************
49	**************************************
23	**************************************
7	***************************TAGCAAATATTCAAACGAGAACT**********
3	**************************************
534	**************************************
497	**************************************
28	**************************************
51	**************************************
1140	**************************************
153	**************************************
280	** ** ** ** ** ** ** ** ** ** ** ** **
200	ACGAGAACTITICAAGGCCGAAGTGGAGA

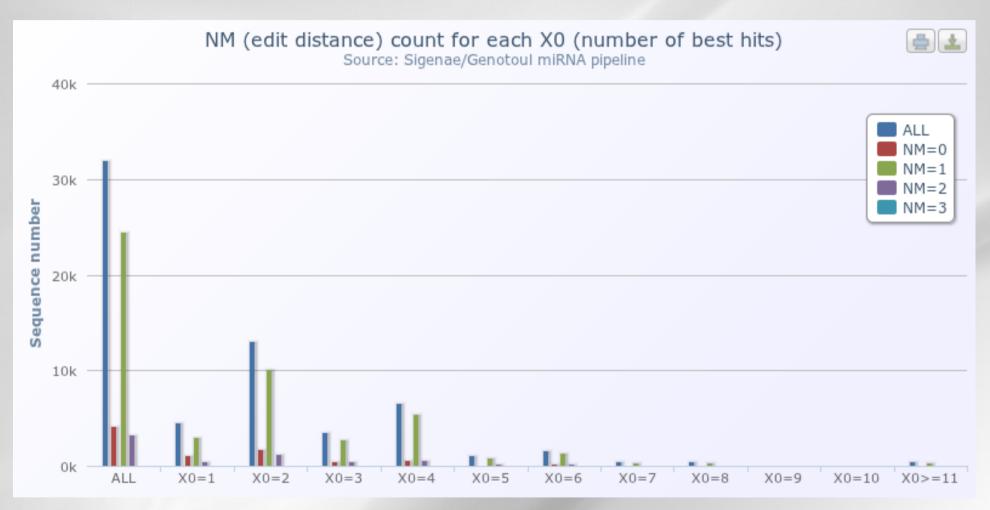

			DNIA Georgebi	Results-Mozilla	- Firster							
chier Édition Af	fichage Histori				a Firerox							
Fichier Édition Affichage Historique Marque-pages Qutils Aide Image: State of the s												
Most Visited ∼ Men Mail k Koders Code Search: 🔅 sRNAMap: Small Non 🖞 BioInformatique des »												
oogle				× + m ~ 🛛 r					, ~			
miRNA Search Re	culte	+	Rechercher	- y 112 - 🔍 i	⊐ · • · ≌	raitagei			• · Oct			
	esten anglais ∽		e à l'aide de la	a barre d'outils	Google ?							
oogle				ire les pages en					Optio	ns Y X		
			,							2		
miRBase			m	iRBase	;				MANCH	ESTER 1824		
me Search Br	owse Help Do	ownload Blo	g Submit							Search		
		_		_								
		S	Sequenc	e search	results				\$			
		Mat	ches for yo	our nucleotie	de sequenc	е			P.			
Accession	ID	Query start	Query and	Subject start	Subject and	Ctrond	Coore	Evalue	Alignmont			
Accession MI0012527		Guery start	73	18	Subject end 85	Suranu +	331	1e-21	Align			
MI0015608		12	36	29	53	-	89	0.18	Align			
MI0001408		25	57	76	108	-	84	0.47	Align			
<u>MI0010704</u>	pvu-MIR166a	13	51	184	222	-	78	1.5	Align			
MI0011580	dme-mir-2491	16	64	17	65	-	74	3.2	Align			
<u>MI0001408</u>	cbr-mir-240	38	73	29	64	+	72	4.7	<u>Align</u>			
		Alig	nment of G	uery to hair	pin miRNA	S						
Query: 6-73	mdo-n	nir-739 : 18-8		score: 331	-	alue: 1e-2	21					
UserSeq		ggugaagaucuu	ggugguaguagca	aauauucaaacgaga	acuuugaaggccga	aguggaga	aggguu	73				
mdo-mir-	739 18	ggugcagaucuug	ggugguaguagca	aauauucaaacgaga	acuuugaaggccga	aguggaga	aggguu	85				
Queru 10.26	ele mi	- 4057 · 20 5	2	score: 89		alue: 0.18						
Query: 12-36 UserSeq		<u>r-4057</u> : 29-5: gaucuugguggua	aguagcaaauauu		eva	iue. 0.18	,					
cin-mir-		ĬIIIIII gaucuuggugaaa										
			2	0.0								
Query: 25-57 UserSeg		<u>r-240</u> : 76-10 guagcaaauauu		score: 84	eva	alue: 0.47						
cbr-mir-		guageuaaaauu										
Query: 13-51		IR166a : 184		score: 78		alue: 1.5						
UserSeq		11 111111 111		aaacgagaacuuug								
pvu-MIR] erminé	184	auuuugguguua	laAAdnssannnc	cauuggaaacuuug	222							
One fills			M			200			1 (60	2001		
·□ <u>ref NR (</u> ength=507			Homo	o sapien	S KNA,	205	TDO	somal	T (RN	12821)		
GENE ID:	10000858	9 RN289	51 RN	A, 285 ı	ribosoma	al 1	[Hom	o sap	piens]			
10 or few	er PubMe	d links	5)			<u>GENE ID: 100008589 RN2851</u> RNA, 28S ribosomal 1 [Homo sapiens] (10 or fewer PubMed links)						

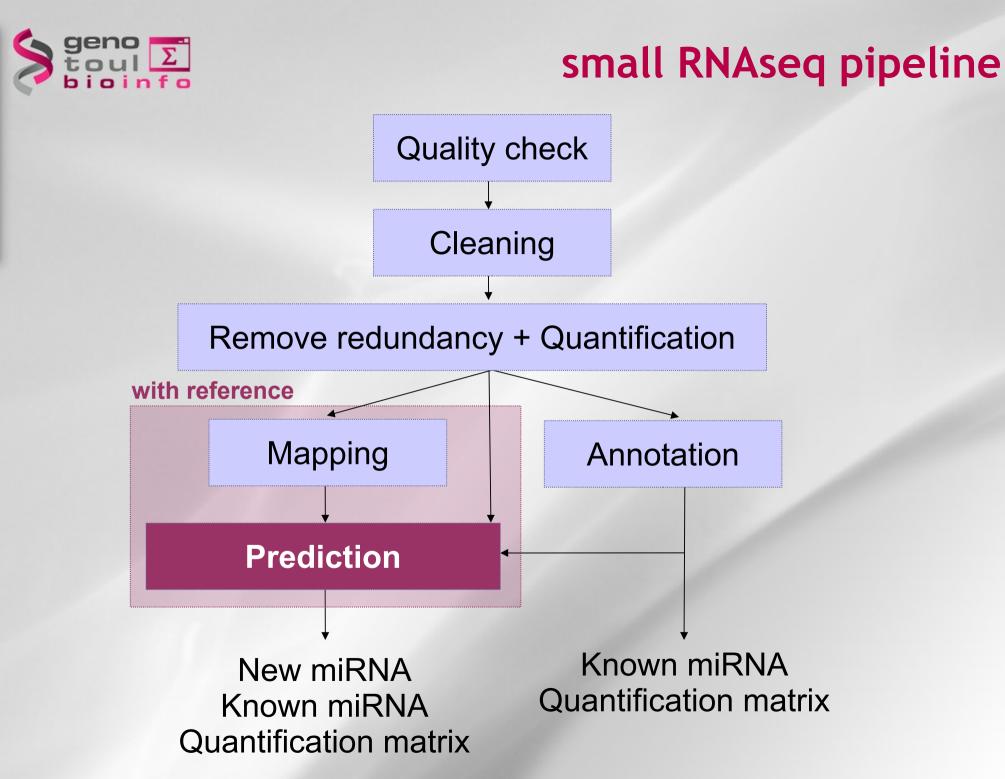
Score Ident Stran	= 12 ities d=Plus	2 bits (66) = 68/69 (99 /Plus	, Expect = 6e-28 %), Gaps = 0/69 (0%)	
Query	5	AGGTGAAGAT	CTTGGTGGTAGTAGCAAATATTCAAACGAGAACTTTGAAGGCCGAAGTGG	64
Sbjct	2341	AddtdcAdAt		2400
Query	65	AGAAGGGTT	73	
Sbjct	2401	YPYYPY	2409	

Annotation

occurences

Show 100 C entries									Search all colu	mps:
#seq \$	eukaryotic-tRNAs	♦ hairpin T ♦	LSURef_108_tax_silva_trunc 🔹	Rfam T	SSURef_108_tax_silva_trunc	SupportedBy ≎	Total ô	s 1 uT21 0	s 1 uT2 \$	
seq681297#1#189	0	oan-mir-20a-1	X54512.4749.8508	RF00051;mir-17;AAPN01282049.1/1987-2067	0	1	189	0	0	189
seq299078#2#304	0	mmu-mir-5105	V01270.3862.8647	RF01960;SSU rRNA eukarya;AAYZ01438197.1/1-1685	0	2	304	165	0	0
seq610618#2#267	0	sha-mir-5105	V01270.3862.8647	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	2	267	102	0	0
seq1353575#4#218	0	mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	218	95	0	17
seq1353596#4#550	0	mmu-mir-5105	U34342.1.3663	RF01960;SSU rRNA eukarya;AAYZ01438197.1/1-1685	0	4	550	161	0	183
seq2060361#3#113	0	mmu-mir-5105	U34342.1.3663	RF01960;SSU rRNA_eukarya;AAYZ01438197.1/1-1685	0	3	113	55	0	15
seq2060376#4#266	0	mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	266	97	3	56
seq1163251#5#342	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	5	342	96	2	116
seq1353595#5#239	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	5	239	57	4	111
seq1353600#5#759	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU rRNA eukarya;AAYZ01438197.1/1-1685	0	5	759	170	29	247
seq2060374#4#113	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	113	25	0	62
seq401616#3#139	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	3	139	54	0	0
seq577112#4#524	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	524	146	0	203
seq1748431#4#548	0	cfa-mir-195	U34340.1.3432	RF00177;SSU_rRNA_bacteria;EU328070.1/1-1479	EU328070.1.1479	4	548	232	0	92
seq345104#4#102	0	gga-mir-1617	HQ856851.1.2611	RF00090;SNORA74;CAAE01008763.1/14090-14288	0	4	102	25	0	20
seq41650#5#523	0	sha-mir-716a	HQ856851.1.2611	RF00001;5S_rRNA;ABIM01036847.1/2163-2281	0	5	523	258	2	34
seq709529#5#160	0	hsa-mir-4792	GU372691.11134.15878	RF00100;7SK;AANN01516090.1/17881-17571	0	5	160	23	1	80
seq257457#2#119	0	sha-mir-716b	GQ424316.1.1993	RF00001;5S_rRNA;AARH01008767.1/1334-1421	0	2	119	0	0	106
seq718037#4#193	0	mmu-mir-5102	FP929060.89.2972	RF00028;Intron_gpI;EU352794.1/2419-2809	0	4	193	39	0	86
seq53378#5#144	0	mmu-mir-677	FP565809.564563.566970	RF01960;SSU_rRNA_eukarya;AAQR01407656.1/1-1561	AF198113.1.1740	5	144	43	3	56
seq1328312#4#393	0	ata-MIR172	FJ966040.1.2409	RF00100;7SK;AAQQ01276673.1/1502-1765	CABZ01109011.107.1605	4	393	155	24	0
seq1328326#4#142	0	ata-MIR172	FJ966040.1.2409	RF00306;snoZ178;AAZX01013617.1/1306-1470	CABZ01109011.107.1605	4	142	52	8	0
seq487403#4#645	0	ata-MIR172	FJ966040.1.2409	RF00306;snoZ178;AAZX01015218.1/4829-4668	U94741.1.2950	4	645	226	4	0
seq487443#4#169	0	sbi-MIR396c	FJ966040.1.2409	RF00100;7SK;AAKN02002849.1/102766-102498	CABZ01109011.107.1605	4	169	69	2	0
seq1328328#5#144	0	smo-MIR1082a	FJ966040.1.2409	RF00306;snoZ178;AC114644.10/51094-51230	CABZ01109011.107.1605	5	144	52	11	5
seq653494#4#168	0	mmu-mir-5102	FJ605292.1.3569	RF01960;SSU_rRNA_eukarya;CABB01000342.1/31007-29320	0 0	4	168	53	0	34
seq686909#5#164	0	rlcv-mir-rL1-8	FJ424422.1.2497	RF01960;SSU_rRNA_eukarya;Z83748.1/1-1822	GQ352554.1.1846	5	164	6	4	140
seq1328311#5#316	0	ata-MIR172	FJ360703.1.2869	RF00009;RNaseP_nuc;AC102108.12/162476-162168	CABZ01109011.107.1605	5	316	80	24	6
seq667010#4#118	0	mmu-mir-5102	FJ040535.1.4142	RF00028;Intron_gpI;EU352794.1/2419-2809	0	4	118	42	0	8
seq1328321#4#323	0	osa-MIR408	EU921138.1.2387	RF00306;snoZ178;AAZX01015218.1/4829-4668	CABZ01109011.107.1605	4	323	91	23	0
seq487405#4#315	0	smo-MIR1082a	EU921138.1.2387	RF00306;snoZ178;AASC02015737.1/1625-1475	CABZ01109011.107.1605	4	315	124	3	0
seq1461535#5#1418	0	hsa-mir-4700	EU875589.109747.113671	RF00002;5_8S_rRNA;AJ270036.1/1-105	DM486508.4754.6504	5	1418	412	45	476
seq1861043#4#142	0	hsa-mir-4700	EU875589.109747.113671	RF00002;5_8S_rRNA;AF342795.1/144-297	AC211391.79568.81654	4	142	61	0	8


5. Mapping the reads


- Blat http://genome.ucsc.edu/cgi-bin/hgBlat
- Blast http://blast.ncbi.nlm.nih.gov/Blast.cgi
- Gmap http://www.gene.com/share/gmap/
- Bowtie http://bowtie-bio.sourceforge.net/index.shtml
- BWA http://bio-bwa.sourceforge.net

5. Mapping the reads with bwa

Alignement of annotated reads

Precise excision of a 21-22mer is typical of microRNA

 less represented reads are products of Dicer errors and sequencing/sample preparation artifacts

GAGAGTGGAGTGCAGCCAAGGATGACTTGCCGGAATTCACAT	ATAGAGTGGAATGA
CAGCCAAGGATGACTTGCCGG	675
CAGCCAAGGATGACTTGCCG	26
AGCCAAGGATGACTTGCCGG	8
CAGCCAAGGATGACTTGCCGGAA	8
CAGCCAAGGATGACTTG	2
CAGCCAAGGATGACTTGCCGGA	2
CAGCCAAGGATGACTTGC	1

Once the reads mapped

Identify all contiguous read regions

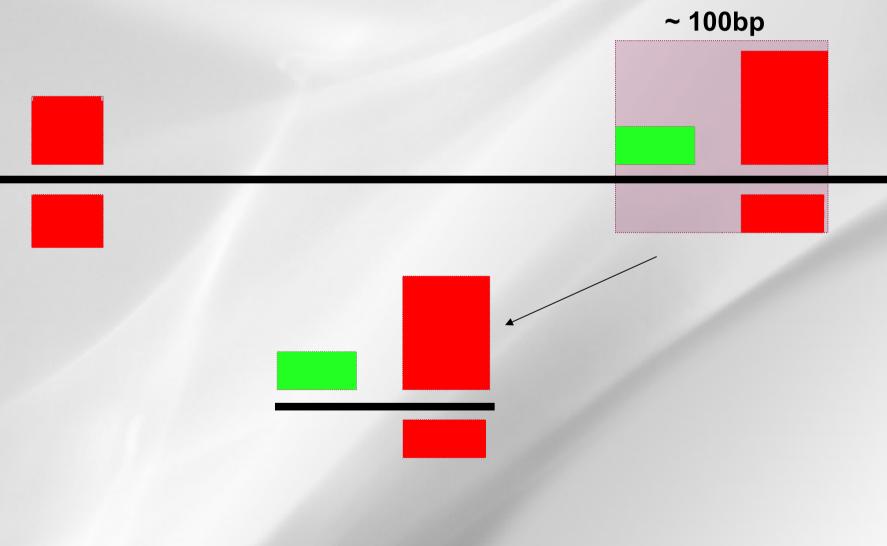
Identify all contiguous read regions

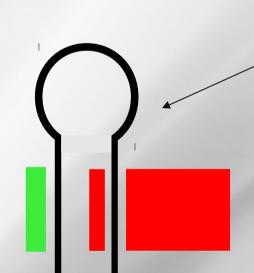
Plateforme Bioinformatique Midi-Pyrér

miRNA precursors have a characteristic secondary structure

 The detection of a microRNA* sequence, opposing the most frequent read in a stable hairpin (but shifted by 2 bases), is sufficient to diagnose a microRNA.

		N
Mir-30	CTGTAAACATCCTTGACTGGAAGCTGG*************	G
	(((((((((((((((((((((((((((((())))))))	G U
	0000000011111111122222222233333333334444444445555555555	C G -
	12345678901234567890123456789012345678901234567890123456789012345678	- A -
2	***************************************	Α -
60	**************************************	G -
8	***TAAACATCCTTGACTGGAAGCTGG*************	G -
10	***TAAACATCCTTGACTGGAAGCTG**************	22
89	***TAAACATCCTTGACTGGAAGCT***************	Α -
297	**GTAAACATCCTTGACTGGAAGCT***************	<u>с</u> –
1677	**GTAAACATCCTTGACTGGAAGC****************	U
2	**GTAAACATCCTTGACTGGAAGCTG**************	с –
459435	*TGTAAACATCCTTGACTGGAAGC****************	ē
30331	*TGTAAACATCCTTGACTGGAAG*****************	U -
40391	*TGTAAACATCCTTGACTGGAAGCT***************	A -
17	CTGTAAACATCCTTGACTGGAAGCT***************	<u> </u>
259	СТGTAAACATCCTTGACTGGAAGC******	<u> </u>
21	СТБТАААСАТССТТБАСТББААБ*****************	<u> </u>
2	СТБТАААСАТССТТБАСТББАА******************	Ü :
	12345678901234567890123456789012345678901234567890123456789012345678	G -
	0000000011111111122222222233333333334444444444	<u> </u>





- Stable hairpin structure shifted by 2 bases
- miRNA > miRNA*

Extend and fold read regions

~ 100bp


Extend and fold read regions

~ 100bp

- In the absence of reads corresponding to an expected miRNA*, additional checks on the structure are:
 - Degree of pairing in the miRNA region
 - Hairpin: around 70nt in length
 - The secondary structure is significantly more stable than randomly shuffled versions of the same sequence
 - miRNA cluster

• Which one should be used ?

Exercices

– Exercice 2: Ma séquence peut-elle représenter un miRNA ?

- Chacune des séquences contenues dans le fichier /work/gaspin/L3/TP1 correspond au précurseur possible d'un miRNA. Dites quelles sont les informations qui, à votre connaissance, vous permettraient d'attribuer l'annotation miRNA.
- Sachant que le programme RNAfold permet de calculer la structure secondaire la plus stable pour une séquence donnée, utilisez le pour replier les séquences de TP1:
 - » Quelles sont les séquences qui contiennent potentiellement des miRNA?
 - » Dites comment vous pourriez exploiter ce programme dans le cadre de l'analyse de séquences issues de sRNAseq lorsque vous disposez d'un génome de référence.