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Table constraints 
 Table constraints are constraints given in extension by listing the 

tuples of values allowed or forbidden by a set of variables.  
 They are widely studied in constraint programming (CP) as they 

are present in many realworld applications  
 design  
 configuration 
 databases 
 preferences’ modeling. 

 So far, research on table constraints has mainly focused on the 
development of fast algorithms to enforce generalized arc 
consistency (GAC). 

 GAC algorithms delete inconsistent values from variable 
domains and achieve the maximum level of filtering when 
constraints are treated independently. 



GAC algorithms for Table constraints 
 Classical algorithms iterate over lists of tuples in different ways  

 Bessiere and Régin 1997, Lhomme and Régin 2005, Lecoutre and Szymanek 
2006. 

 Recent developments, however, suggested maintaining dynamically the 
list of supports in constraint tables: these are the variants of simple 
tabular reduction (STR)  
 Ullmann 2007, Lecoutre 2011, Lecoutre, Likitvivatanavong and Yap 2012  

 Alternatively, specially-constructed intermediate structures such as 
tries (Gent et al. 2007) or multi-valued decision diagrams (MDDs) 
(Cheng and Yap 2010) have been proposed. 

 A more recent development of AC5-based algorithms has also been 
proposed in (Mairy, Van Hentenryck and Deville 2012), but its 
relevance has been shown on binary/ternary constraints only.  

 Among this variety of algorithms, STR2 along with the MDD approach 
are considered to be the most efficient ones (especially, for large arity 
constraints). 
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 initialization 

 Algorithm’s steps 
 

 All tuples are checked until 
currentLimit[c] is reached 
 if a tuple is valid then  

 values are added to gacValues[x], 
gacValues[y], gacValues[z] 
respectivelly 

 else tuple is removed 
 foreach variable x ∊ scp(c) 

 if gacValues[x]⊂ dom(x) then  
dom(x)←gacValues[x] 

if dom(x)= Ø return FALSE 
add any  ci to Q, s.t. ci≠c ∧ x ∊ scp(ci) 
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Strong Local Consistencies 
 GAC algorithms process one constraint at a time and thus, they cannot 

exploit possible intersections that may exist between different 
constraints.  

 On the other hand, existing algorithms for consistencies stronger than 
GAC that can exploit constraint intersections are generic and thus very 
expensive. 

 A specialized algorithm for table constraints, called maxRPWC+, that 
achieves a consistency stronger than GAC was proposed very recently 
(Paparrizou and Stergiou 2012).  

 This algorithm extends the GACva algorithm (Lecoutre and Szymanek 
2006) and enforces a domain filtering restriction of PWC, called max 
Restricted PairWise Consistency (maxRPWC) (Bessiere, Stergiou, and 
Walsh 2008). 



New efficient Algorithms 
 One objective of this research is to propose efficient algorithms for strong local 

consistencies that can be applied on table constraints and can be easily adopted 
by standard CP solvers.  

 Towards this, we propose  a new higher-order consistency algorithm for table 
constraints, called eSTR*. 

 It is based on simple tabular reduction (STR) that is able to efficiently achieve 
Full PairWise Consistency (PWC+GAC). 

 Despite its high space and time requirements to construct its structures, its 
worst-case time complexity is quite close to that of STR algorithms. 

 

 The concept of eSTR* is to extend any STR-based algorithm to achieve stronger 
pruning, simply by introducing a set of counters for each intersection between any two 
constraints ci and cj. 

AAAI 2013 



Extending STR algorithms 
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 ctr[c][ci]. holds the number of valid tuples in 
table[c] that include the subtuple for variables 
in scp(c)∩scp(ci) that appears in at least once 
in table[c]. 

 

 ctrIndexes[c][ci] holds the index of the 
counter in ctr[c][ci] that is associated with the 
subtuple  [scp(c)∩scp(ci)]. 

 
 ctrLink[c][ci] is an array of size 

ctr[c][ci].length that links ctr[c][ci] 
with ctr[ci][c]. It holds the index of the 
counter in ctr[ci][c] that is associated with that 
subtuple. If the subtuple is not included in any 
tuple of table[ci] then ctrLink[c][ci][j] is 
set to NULL. 

AAAI 2013 

eSTR structures for the intersection of C1 with C2 on 
variables Y and Z. The highlighted values show the first 
occurrence of the different subtuples for scp(C1)∩scp(C2). 
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 Algorithm’s steps 
 

 All tuples are checked until 
currentLimit[c] is reached 
 if a tuple is valid AND PW-consistent 

 values are added to pwValues[x], 
pwValues[y], pwValues[z] 
respectivelly 

 else tuple is removed 
          counter  is updated 

 foreach variable x ∊ scp(c) 
 if pwValues[x]⊂ dom(x)  

dom(x)←pwValues[x]  
if dom(x)= Ø return FALSE 

     add any ci to Q, s.t. ci≠c ∧ x ∊scp(ci) 
 AAAI 2013 
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eSTR algorithm 
 Structures  
 propagation 
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A weak version of eSTR,  denoted by eSTRw can be 
obtained by discarding lines 4–5 of Function 3 (i.e., the 
update of Q is ignored when a PW-support is lost). 



Theoretical results 
 Algorithm eSTR applied to a CN P enforces Full PairWise Consistency on P. 
 PWC+GAC and PWC+maxRPWC are equivalent. 
 The consistency level achieved by Algorithm eSTRw is incomparable to 

maxRPWC and PWC. 
 The worst-case time complexity of one call to eSTR is 
O(rd+max(r,g)t) where r denotes the arity of the constraint, t the size 
of its table and g the number of intersecting constraints. 
 The worst-case time complexity of STR is O(rd+rt) (Lecoutre 2011). 

 The worst-case space complexity of eSTR for handling one constraint is 
O(n+max(r,g)t). 
 The worst-case space complexity of STR is O(n+rt) per constraint (Lecoutre 

2011). Each additional eSTR structure is O(t) per intersecting constraint, 
giving O(gt). 

 

AAAI 2013 



eSTR2w vs. STR2  
 Points above the diagonal are solved 
  faster by eSTR2w. The majority of the  
 instances are above and belong to  
 Random, Random-forced and Dubois.  
 On Aim classes eSTR2w can outperform  
 STR2 by several orders of magnitude  
 on some instances. 
 They are particularly expensive on  
 classes of problems which include  
 intersections on large sets of variables,  
 as is the case with the Positive-table  
 and BDD instances.  

AAAI 2013 



Adaptive Propagation 
 

 Since GAC may still be superior in many problems we also suggest 
ways to interleave GAC with stronger consistency algorithms.  

 One such way is to apply heuristics that can dynamically select 
between GAC and a stronger propagator during search. 

 We describe and evaluate simple, fully automated heuristics that 
monitor the effects of propagation and are applicable on constraints of 
any arity. 

 Experimental results demonstrate that the proposed heuristics for 
adaptive propagation result in a more robust solver. 

ICTAI 2012 



Fully Automated Heuristics 
 objective: the exploitation of  the filtering power offered by strong 

propagation methods without incurring severe CPU time penalties or 
requiring user involvement. 

 concept: switching between a weak (W) and a strong (S) propagator for 
individual constraints during search when a propagation event occurs. 

 

 The  Hdwo (resp. Hdel) heuristic applies a standard propagator on a 
constraint (e.g. domain consistency) until the constraint causes a domain 
wipeout - DWO (resp. at least one value deletion). Then, in the immediately 
following revision of the constraint, a stronger local consistency (e.g. SAC) is 
applied. (Stergiou 2008) 

 

 Refinements of Hdwo and Hdel  
 Hv

dwo  (resp. Hv
del) restricts the application of the strong propagator on variables that 

suffered a propagation event (DWO or value deletion) in the immediately preceding 
constraint revision as opposed to all variables in the constraint’s scope. 

ICTAI 2012 



AC3 schema with Hdwo 
 

 1: Q←C 

 2: while Q ≠ Ø do 

 3: pick and delete c from Q 

 4: rev[c]++ 

 5: if rev[c]-dwo[c]=1 then 

 6:      apply S 
 7: else apply W 
 8: if dom(x)=Ø {∀ x ∊ scp(c)} then 
 9:      dwo[c]=rev[c] 

10:       return FAIL 

11: return SUCCESS 

ICTAI 2012 



Experiments 
 We have considered GACva as the standard propagator W, given that it is the 

most commonly used local consistency.  
 As the S propagator we have considered two strong local consistencies, 
maxRPWC and SAC, since we are interested in non-binary problems. 

 This figure clearly demonstrates the  
 performance gap between GAC and  
 maxRPWC. 

 GAC is faster on the majority of the  
 instances, often by large margins. 
 Since it is a weaker consistency level,  
 it sometimes thrashes, while the  
 stronger maxRPWC does not. 
 These results justify the need for a  
 robust method that can achieve a  
 balance between the two. 

 ICTAI 2012 



GAC vs. Hv
dwo 

 This figure clearly demonstrates the benefits of the adaptive heuristics. 
 Although the majority of the instances is still below the diagonal they 

are much closer to it, indicating small differences between the two 
methods. 

 These are instances where the  
 application of maxRPWC+ does 
 not offer any notable reductions 
 in search tree size.  
 On the other hand, there are  
 still instances where GACva 
 thrashes while Hvdwo, following  
 maxRPWC+, does not. 

ICTAI 2012 



Conclusions 
 We have introduced a new higher-order consistency algorithm for table 

constraints that enforces FPWC.  
 It is based on an original combination of two techniques that have proved 

their worth: simple tabular reduction and tuple counting. 
 Moreover, we have shown that adaptive propagation schemes can exploit 

efficiently the advantages offered by strong propagators in a fully 
automated way.  

 The presented work can pave the way for the design and implementation 
of even more efficient higher-order methods for table constraints.  

 Also, it can perhaps help initiate a wider study on specialized higher-order 
consistency algorithms for global constraints. 

 We believe that strong local consistencies can pay off, provided that we 
have efficient methods to apply them. 
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Extending STR algorithms 
 The central idea of eSTR* is to store the number of times that each 

subtuple appears in the intersection of any two constraints. 
 For each constraint c, we introduce a set of counters for each (non trivial) 

intersection between c and another constraint ci .  
 Assuming that S is the set of variables that are common to both c and 

ci, at any time each counter in this set holds the number of valid 
tuples in c’s table that include a specific combination of values for S .  

 In this way, once a tuple τ∈table(c) has been verified as valid, we can 
check if it has a PW-support in table(ci) simply by observing the value 
of the corresponding counter (i.e., the counter for subtuple  
[scp(c)∩scp(ci)]). 

 If this counter is greater than 0 then τ has a PW-support in table(ci). 
 Importantly, this check is done in constant time. 

AAAI 2013 
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Indicative instances… 
 Comparing eSTR2 to STR2 it seems  that there are 

problem classes where  it can be considerably more 
efficient (Random, Random-forced and Dubois).  

 eSTR2 can outperform STR2 by several orders of 
magnitude on some instances of Aim classes. 

 The new algorithms are over one order of magnitude 
faster  than STR2 on Positive table-10 instances which 
are proven unsatisfiable without search. 

 The extra filtering of eSTR2 does pay off on some 
classes as node counts are significantly reduced 
(Aim) while on other classes it does not (Random). 

 On the other hand, STR2 is better than the proposed 
algorithm on Positive table problems and of course BDD, 
where eSTR2 and eSTR2w exhausted the available 
memory. 

 Finally, comparing our algorithms to maxRPWC+ it is 
clear that they are superior as they are faster on all the 
tested classes (except BDD). 

AAAI 2013 
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