Efficient Algorithms and Heuristics for Strong Local Consistencies

Anastasia Paparrizou Advisor: Kostas Stergiou

Department of Informatics and Telecommunications Engineering, Uninersity of Western Macedonia, Greece

Contents

- Introduction to Table constraints
- GAC algorithms for table constraints
 - Simple Tabular Reduction (STR)
- Strong Local Consistencies
 - New effiecient algorithms for table constraints
- Adaptive propagation
 - Heuristics
- Conclusions and future directions

Table constraints

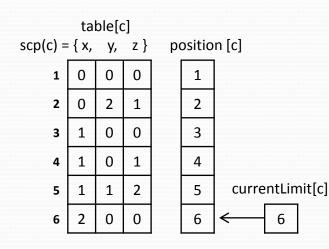
- Table constraints are constraints given in extension by listing the tuples of values allowed or forbidden by a set of variables.
- They are widely studied in constraint programming (CP) as they are present in many realworld applications
 - design
 - configuration
 - databases
 - preferences' modeling.
- So far, research on table constraints has mainly focused on the development of fast algorithms to enforce generalized arc consistency (GAC).
- GAC algorithms delete inconsistent values from variable domains and achieve the maximum level of filtering when constraints are treated independently.

GAC algorithms for Table constraints

- Classical algorithms iterate over lists of tuples in different ways
 - Bessiere and Régin 1997, Lhomme and Régin 2005, Lecoutre and Szymanek 2006.
- Recent developments, however, suggested maintaining dynamically the list of supports in constraint tables: these are the variants of simple tabular reduction (STR)
 - Ullmann 2007, Lecoutre 2011, Lecoutre, Likitvivatanavong and Yap 2012
- Alternatively, specially-constructed intermediate structures such as tries (Gent et al. 2007) or multi-valued decision diagrams (MDDs) (Cheng and Yap 2010) have been proposed.
- A more recent development of AC5-based algorithms has also been proposed in (Mairy, Van Hentenryck and Deville 2012), but its relevance has been shown on binary/ternary constraints only.
- Among this variety of algorithms, STR2 along with the MDD approach are considered to be the most efficient ones (especially, for large arity constraints).

STR algorithms

Structures
initialization



Algorithm's steps

- All tuples are checked until currentLimit[c] is reached
 - if a tuple is valid then
 - values are added to gacValues[x], gacValues[y], gacValues[z] respectivelly

else tuple is removed

- **foreach** variable x ∈ scp(c)
 - if gacValues[x]⊂ dom(x) then dom(x)←gacValues[x]
 if dom(x) = Ø return FALSE

add any ci to Q, s.t. ci \neq c \land x \in scp(ci)

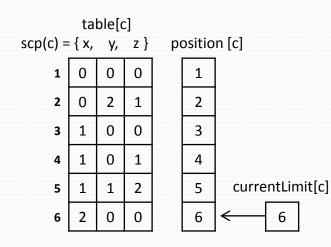
STR algorithms

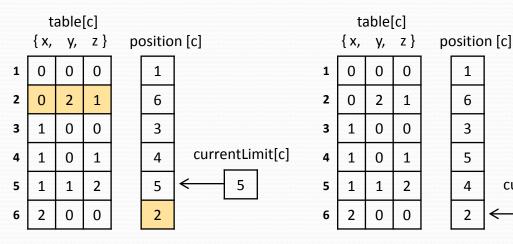
Structures

initialization

propagation

backtracking





STR applied after the removal of (z, 1). (y, 2) no longer has support and will therefore be deleted.

Structures obtained after backtracking

currentLimit[c]

6

STR algorithms

Structures

initialization

propagation

backtracking

0

1

0

1

2

position [c]

1

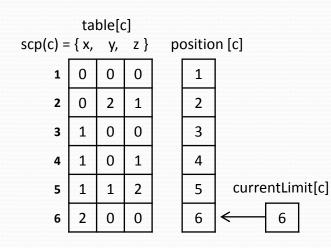
6

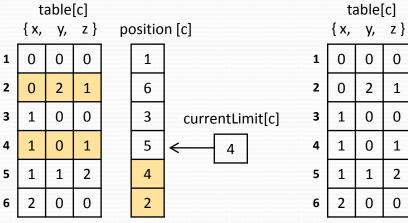
3

5

4

currentLimit[c]





STR applied after the removal of (z, 1). (y, 2) no longer has support and will therefore be deleted.

2 0 6

Structures obtained after backtracking

Strong Local Consistencies

- GAC algorithms process one constraint at a time and thus, they cannot exploit possible intersections that may exist between different constraints.
- On the other hand, existing algorithms for consistencies stronger than GAC that can exploit constraint intersections are generic and thus very expensive.
- A specialized algorithm for table constraints, called maxRPWC+, that achieves a consistency stronger than GAC was proposed very recently (Paparrizou and Stergiou 2012).
- This algorithm extends the GACva algorithm (Lecoutre and Szymanek 2006) and enforces a domain filtering restriction of PWC, called max Restricted PairWise Consistency (maxRPWC) (Bessiere, Stergiou, and Walsh 2008).

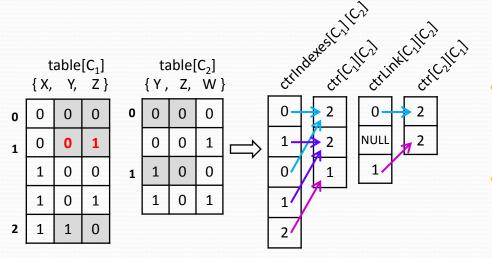
New efficient Algorithms

- One objective of this research is to propose efficient algorithms for strong local consistencies that can be applied on table constraints and can be easily adopted by standard CP solvers.
- Towards this, we propose a new higher-order consistency algorithm for table constraints, called eSTR*.
- It is based on simple tabular reduction (STR) that is able to efficiently achieve *Full PairWise Consistency* (PWC+GAC).
- Despite its high space and time requirements to construct its structures, its *worst-case time complexity* is quite close to that of STR algorithms.
 - The concept of *eSTR** is to extend any STR-based algorithm to achieve stronger pruning, simply by introducing a set of counters for each intersection between any two constraints c_i and c_j.

Extending STR algorithms

• Structures

description

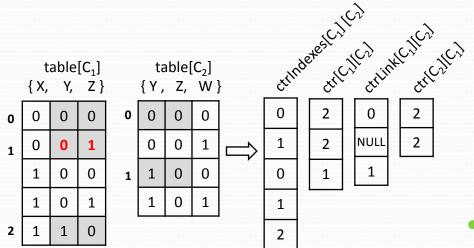


eSTR structures for the intersection of C_1 with C_2 on variables Y and Z. The highlighted values show the first occurrence of the different subtuples for $scp(C_1) \cap scp(C_2)$.

- ctr[c][ci]. holds the number of valid tuples in table[c] that include the subtuple for variables in scp(c) ∩ scp(ci) that appears in at least once in table[c].
- ctrIndexes[c][ci] holds the index of the counter in ctr[c][ci] that is associated with the subtuple [scp(c)∩scp(ci)].
- ctrLink[c][c_i] is an array of size ctr[c][c_i].length that links ctr[c][c_i] with ctr[c_i][c]. It holds the index of the counter in ctr[c_i][c] that is associated with that subtuple. If the subtuple is not included in any tuple of table[c_i] then ctrLink[c][c_i][j] is set to NULL.

eSTR algorithm

- Structures
 - initialization



Algorithm's steps

- All tuples are checked until currentLimit[c] is reached
 - if a tuple is valid AND <u>PW-consistent</u>
 - values are added to pwValues[x], pwValues[y], pwValues[z] respectivelly
 - else tuple is removed

counter is updated

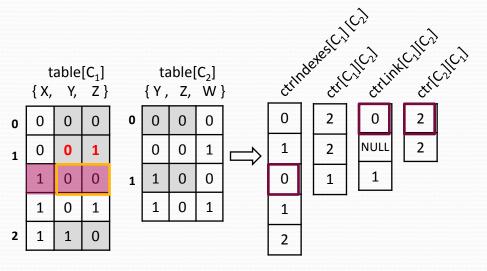
- **foreach** variable x ∈ scp(c)
 - if pwValues[x]⊂ dom(x)
 dom(x)←pwValues[x]
 if dom(x)=Ø return FALSE

add any ci to Q, s.t. $ci \neq c \land x \in scp(ci)$

eSTR algorithm

• Structures

propagation



eSTR checks if the tuple (1, 0, 0) of C_1 is PW-consistent

Function 2 isPWconsistent(c, index)

1: for each $c_t \neq c$ s.t. $ scp(c_t) \cap scp(c) > 1$ do						
2:	$j \leftarrow \texttt{ctrIndexes}[c][c_i][\texttt{index}]$					
3:	$k \leftarrow \texttt{ctrLink}[c][c_i][j]$					
4:	if $k = \text{NULL OR ctr}[c_i][c][k] = 0$ then					
5:	return FALSE					
6: return TRUE						

Function 3 updateCtr(c, index)

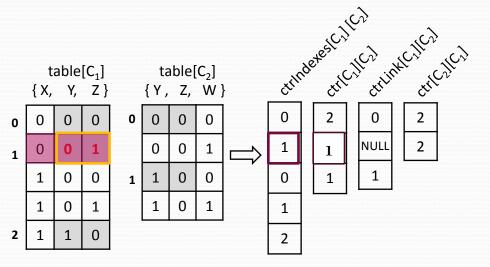
1: for each $c_i \neq c$ s.t. $|var(c_i) \cap var(c)| > 1$ do

- 2: $j \leftarrow \operatorname{ctrIndexes}[c][c_i][\operatorname{index}];$
- 3: $\operatorname{ctr}[c][c_i][j] \leftarrow \operatorname{ctr}[c][c_i][j] 1$
- 4: if $\operatorname{ctr}[c][c_i][j] = 0$ then
- 5: add c_i to Q

eSTR algorithm

• Structures

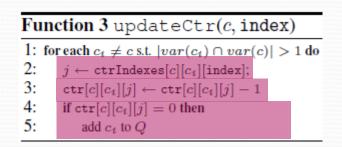
propagation



eSTR removes tuple (0, 0, 1) of C_1 and updates its counters

Function 2 isPWconsistent(c, index)

- 1: for each $c_i \neq c$ s.t. $|scp(c_i) \cap scp(c)| > 1$ do 2: $j \leftarrow \text{ctrIndexes}[c][c_i][\text{index}]$
- 3: $k \leftarrow \operatorname{ctrLink}[c][c_i][j]$
- 4: if $k = \text{NULL OR ctr}[c_i][c][k] = 0$ then
- 5: return FALSE
- 6: return TRUE



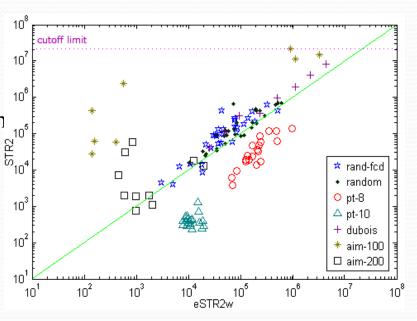
A weak version of **eSTR**, denoted by **eSTRw** can be obtained by discarding lines 4–5 of Function 3 (i.e., the update of Q is ignored when a PW-support is lost).

Theoretical results

- Algorithm eSTR applied to a CN P enforces Full PairWise Consistency on P.
- PWC+GAC and PWC+maxRPWC are equivalent.
- The consistency level achieved by Algorithm eSTRw is incomparable to maxRPWC and PWC.
- The worst-case time complexity of one call to eSTR is
 O(rd+max(r,g)t) where r denotes the arity of the constraint, t the size of its table and g the number of intersecting constraints.
 - The worst-case time complexity of STR is O(rd+rt) (Lecoutre 2011).
- The worst-case space complexity of eSTR for handling one constraint is O(n+max(r,g)t).
 - The worst-case space complexity of STR is O(n+rt) per constraint (Lecoutre 2011). Each additional eSTR structure is O(t) per intersecting constraint, giving O(gt).

eSTR2wvs.STR2

- Points above the diagonal are solved faster by eSTR2w. The majority of the instances are above and belong to *Random, Random-forced* and *Dubois*.
- On Aim classes eSTR2w can outperform STR2 by several orders of magnitude on some instances.
- They are particularly expensive on classes of problems which include intersections on large sets of variables, as is the case with the *Positive-table* and *BDD* instances.



Adaptive Propagation

- Since GAC may still be superior in many problems we also suggest ways to interleave GAC with stronger consistency algorithms.
- One such way is to apply heuristics that can dynamically select between GAC and a stronger propagator during search.
- We describe and evaluate simple, fully automated heuristics that monitor the effects of propagation and are applicable on constraints of any arity.
- Experimental results demonstrate that the proposed heuristics for adaptive propagation result in a more robust solver.

Fully Automated Heuristics

- <u>objective</u>: the exploitation of the filtering power offered by strong propagation methods without incurring severe CPU time penalties or requiring user involvement.
- <u>concept</u>: switching between a weak (W) and a strong (S) propagator for individual constraints during search when a propagation event occurs.
 - The H_{dwo} (resp. H_{del}) heuristic applies a standard propagator on a constraint (e.g. domain consistency) until the constraint causes a domain wipeout DWO (resp. at least one value deletion). Then, in the immediately following revision of the constraint, a stronger local consistency (e.g. SAC) is applied. (Stergiou 2008)

• *Refinements* of H_{dwo} and H_{del}

• H^v_{dwo} (resp. H^v_{del}) restricts the application of the strong propagator <u>on variables</u> that suffered a propagation event (DWO or value deletion) in the immediately preceding constraint revision as opposed to all variables in the constraint's scope.

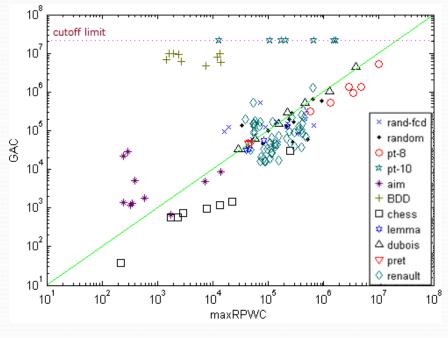
AC3 schema with H_{dwo}

```
1: Q←C
```

- 2: while $Q \neq \emptyset$ do
- 3: pick and delete c from Q
- 4: rev[c]++
- 5: if rev[c]-dwo[c]=1 then
- 6: apply **S**
- 7: else apply W
- 8: if dom(x)= \emptyset { \forall x \in scp(c)} then
- 9: dwo[c]=rev[c]
- 10: return FAIL
- 11: return SUCCESS

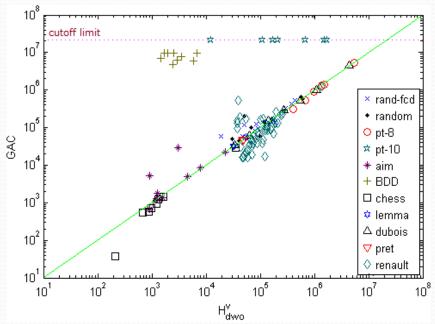
Experiments

- We have considered GACva as the standard propagator W, given that it is the most commonly used local consistency.
- As the **S** propagator we have considered two strong local consistencies, maxRPWC and SAC, since we are interested in non-binary problems.
- This figure clearly demonstrates the performance gap between GAC and maxRPWC.
 - GAC is faster on the majority of the instances, often by large margins.
 - Since it is a weaker consistency level, it sometimes thrashes, while the stronger maxRPWC does not.
 - These results justify the need for a robust method that can achieve a balance between the two.



GAC vs. H^{v}_{dwo}

- This figure clearly demonstrates the benefits of the adaptive heuristics.
- Although the majority of the instances is still below the diagonal they are much closer to it, indicating small differences between the two methods.
- These are instances where the application of maxRPWC+ does not offer any notable reductions in search tree size.
- On the other hand, there are still instances where GACva thrashes while H^v_{dwo}, following maxRPWC+, does not.



Conclusions

- We have introduced a new higher-order consistency algorithm for table constraints that enforces FPWC.
- It is based on an original combination of two techniques that have proved their worth: simple tabular reduction and tuple counting.
- Moreover, we have shown that adaptive propagation schemes can exploit efficiently the advantages offered by strong propagators in a fully automated way.
- The presented work can pave the way for the design and implementation of even more efficient higher-order methods for table constraints.
- Also, it can perhaps help initiate a wider study on specialized higher-order consistency algorithms for global constraints.
- We believe that strong local consistencies can pay off, provided that we have efficient methods to apply them.

Publications

- Christophe Lecoutre, Anastasia Paparrizou, Kostas Stergiou, "*Extending STR to a Higher-Order Consistency*", *AAAI-13*, Bellevue, Washington (To appear).
- Anastasia Paparrizou, Kostas Stergiou, *"Evaluating Simple Fully Automated Heuristics for Adaptive Constraint Propagation"*, **ICTAI-12**, pp. 880-885, Athens, Greece.
- Anastasia Paparrizou, Kostas Stergiou, "An Efficient Higher-Order Consistency Algorithm for Table Constraints", AAAI-12, pp. 535-541, Toronto, Ontario, Canada.
- Anastasia Paparrizou, Kostas Stergiou, "*Extending Generalized Arc Consistency*", **SETN 2012**, LNCS (LNAI), Vo. 7297, pp. 174-181, Lamia, Greece.
- Thanasis Balafoutis, Anastasia Paparrizou, Kostas Stergiou, Toby Walsh, "*New Algorithms for max Restricted Path Consistency*", **Constraints**, Vo 16, No 4, pp. 372-406, Springer (2011).
- Thanasis Balafoutis, Anastasia Paparrizou, Kostas Stergiou, Toby Walsh, *"Improving the performance of maxRPC"*, CP 2010, LNCS, Vo 6308, pp. 69-83, St Andrews, Scotland.

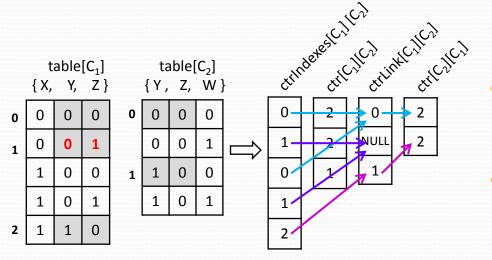
Extending STR algorithms

- The central idea of eSTR* is to store the number of times that each subtuple appears in the intersection of any two constraints.
 - For each constraint c, we introduce a set of counters for each (non trivial) intersection between c and another constraint c_i.
- Assuming that S is the set of variables that are common to both c and c_i, at any time each counter in this *set holds the number of valid tuples in c's table* that include a specific combination of values for S.
- In this way, once a tuple τ∈table(c) has been verified as valid, we can check if it has a PW-support in table(c_i) simply by observing the value of the corresponding counter (i.e., the counter for subtuple [scp(c)∩scp(c_i)]).
- If this counter is greater than 0 then τ has a PW-support in table(ci).
- Importantly, this check is done in **constant time**.

Extending STR algorithms

• Structures

description



eSTR structures for the intersection of C_1 with C_2 on variables Y and Z. The highlighted values show the first occurrence of the different subtuples for $scp(C_1) \cap scp(C_2)$.

- $ctr[c][c_1]$. holds the number of valid tuples in table[c] that include the subtuple for variables in $scp(c) \cap scp(c_1)$ that appears in at least once in table[c].
- ctrIndexes[c][c₁] holds the index of the counter in ctr[c][c₁] that is associated with the subtuple [scp(c)∩scp(c₁)].
- ctrLink[c][c_i] is an array of size ctr[c][c_i].length that links ctr[c][c_i] with ctr[c_i][c]. It holds the index of the counter in ctr[c_i][c] that is associated with that subtuple. If the subtuple is not included in any tuple of table[c_i] then ctrLink[c][c_i][j] is set to NULL.

Indicative instances...

- Comparing eSTR2 to STR2 it seems that there are problem classes where it can be considerably more efficient (*Random, Random-forced* and *Dubois*).
- eSTR2 can outperform STR2 by several orders of magnitude on some instances of Aim classes.
- The new algorithms are over one order of magnitude faster than STR2 on *Positive table-10* instances which are proven unsatisfiable without search.
- The extra filtering of eSTR₂ does pay off on some classes as node counts are significantly reduced (*Aim*) while on other classes it does not (*Random*).
- On the other hand, STR2 is better than the proposed algorithm on *Positive table* problems and of course *BDD*, where eSTR2 and eSTR2w exhausted the available memory.
- Finally, comparing our algorithms to maxRPWC+ it is clear that they are superior as they are faster on all the tested classes (except *BDD*).

Instance		STR2	maxRPWC+	eSTR2 ^w	eSTR2
rand-3-20-20 60	t	130	102	37	66
-632-fcd-8		128,221	33,924	27,490	27,272
rand-3-20-20 60		430	183	43	80
-632-fcd-26		534,012	38,556	26,531	26,489
rand-3-20-20-60		450	536	187	220
-632-19		462,920	129,618	121,199	120,795
rand-3-20-20-60		670	295	74	137
-632-26		827,513	64,665	45,268	45,426
rand-8-20-5-18		17	753	30	26
-800-7		17,257	3,430	1,001	626
rand-8-20-5-18		19	1,568	52	55
-800-11		67,803	7,920	3,299	1,279
rand-10-20-10-5		0.4	208	0.02	0.02
-10000-1		1,110	0	0	0
rand-10-20-10-5		0.4	1,687	0.03	0.02
-10000-6		1,110	0	0	0
bdd-21-133-18-78-6		30	1.5	-	-
	n	20,582	0	-	-
dubois-22		315	734	96	182
	n	129,062,226	41,538,898	41,538,898	40,037,032
dubois-27		8,404	28,358	4,448	8,492
	n	4,206,712,146	1,651,070,290	1,651,070,290	1.808,444,072
aim-100-1-6-sat-2	t	423	0.16	0.02	0.02
	n	29,181,742	100	100	100
aim-100-2-0-sat-3		2,447	0.3	0.14	0.05
	n	177,832,989	111	111	100
aim-200-2-0-sat-1	t	57	0.7	0.6	0.1
	n	2,272,993	1,782	9,847	200
aim-200-2-0-sat-4	t	30	0.7	0.4	0.2
	n	987,160	1,965	4,276	499