
Department of Informatics and Telecommunications Engineering,
Uninersity of Western Macedonia, Greece

Contents
 Introduction to Table constraints
 GAC algorithms for table constraints

 Simple Tabular Reduction (STR)
 Strong Local Consistencies

 New effiecient algorithms for table constraints
 Adaptive propagation

 Heuristics
 Conclusions and future directions

Table constraints
 Table constraints are constraints given in extension by listing the

tuples of values allowed or forbidden by a set of variables.
 They are widely studied in constraint programming (CP) as they

are present in many realworld applications
 design
 configuration
 databases
 preferences’ modeling.

 So far, research on table constraints has mainly focused on the
development of fast algorithms to enforce generalized arc
consistency (GAC).

 GAC algorithms delete inconsistent values from variable
domains and achieve the maximum level of filtering when
constraints are treated independently.

GAC algorithms for Table constraints
 Classical algorithms iterate over lists of tuples in different ways

 Bessiere and Régin 1997, Lhomme and Régin 2005, Lecoutre and Szymanek
2006.

 Recent developments, however, suggested maintaining dynamically the
list of supports in constraint tables: these are the variants of simple
tabular reduction (STR)
 Ullmann 2007, Lecoutre 2011, Lecoutre, Likitvivatanavong and Yap 2012

 Alternatively, specially-constructed intermediate structures such as
tries (Gent et al. 2007) or multi-valued decision diagrams (MDDs)
(Cheng and Yap 2010) have been proposed.

 A more recent development of AC5-based algorithms has also been
proposed in (Mairy, Van Hentenryck and Deville 2012), but its
relevance has been shown on binary/ternary constraints only.

 Among this variety of algorithms, STR2 along with the MDD approach
are considered to be the most efficient ones (especially, for large arity
constraints).

STR algorithms
 Structures

0 0 0

0 2 1

1 0 0

1 0 1

1 1 2

2 0 0

 table[c]
scp(c) = { x, y, z } position [c]

1

2

3

4

5

6

currentLimit[c]

6

1

2

3

4

5

6

 initialization

 Algorithm’s steps

 All tuples are checked until
currentLimit[c] is reached
 if a tuple is valid then

 values are added to gacValues[x],
gacValues[y], gacValues[z]
respectivelly

 else tuple is removed
 foreach variable x ∊ scp(c)

 if gacValues[x]⊂ dom(x) then
dom(x)←gacValues[x]

if dom(x)= Ø return FALSE
add any ci to Q, s.t. ci≠c ∧ x ∊ scp(ci)

STR algorithms
 Structures

0 0 0

0 2 1

1 0 0

1 0 1

1 1 2

2 0 0

1

6

3

4

5

2

currentLimit[c]

5

0 0 0

0 2 1

1 0 0

1 0 1

1 1 2

2 0 0

1

6

3

5

4

2

currentLimit[c]

6

STR applied after the removal of (z, 1).
(y, 2) no longer has support and will
therefore be deleted.

 table[c]
{ x, y, z } position [c]

 table[c]
{ x, y, z } position [c]

1

2

3

4

5

6

1

2

3

4

5

6

 propagation

 backtracking

 initialization

Structures obtained after backtracking

0 0 0

0 2 1

1 0 0

1 0 1

1 1 2

2 0 0

 table[c]
scp(c) = { x, y, z } position [c]

1

2

3

4

5

6

currentLimit[c]

6

1

2

3

4

5

6

STR algorithms
 Structures

0 0 0

0 2 1

1 0 0

1 0 1

1 1 2

2 0 0

1

6

3

5

4

2

currentLimit[c]

4

0 0 0

0 2 1

1 0 0

1 0 1

1 1 2

2 0 0

1

6

3

5

4

2

currentLimit[c]

6

STR applied after the removal of (z, 1).
(y, 2) no longer has support and will
therefore be deleted.

 table[c]
{ x, y, z } position [c]

 table[c]
{ x, y, z } position [c]

1

2

3

4

5

6

1

2

3

4

5

6

 propagation

 backtracking

 initialization

Structures obtained after backtracking

0 0 0

0 2 1

1 0 0

1 0 1

1 1 2

2 0 0

 table[c]
scp(c) = { x, y, z } position [c]

1

2

3

4

5

6

currentLimit[c]

6

1

2

3

4

5

6

Strong Local Consistencies
 GAC algorithms process one constraint at a time and thus, they cannot

exploit possible intersections that may exist between different
constraints.

 On the other hand, existing algorithms for consistencies stronger than
GAC that can exploit constraint intersections are generic and thus very
expensive.

 A specialized algorithm for table constraints, called maxRPWC+, that
achieves a consistency stronger than GAC was proposed very recently
(Paparrizou and Stergiou 2012).

 This algorithm extends the GACva algorithm (Lecoutre and Szymanek
2006) and enforces a domain filtering restriction of PWC, called max
Restricted PairWise Consistency (maxRPWC) (Bessiere, Stergiou, and
Walsh 2008).

New efficient Algorithms
 One objective of this research is to propose efficient algorithms for strong local

consistencies that can be applied on table constraints and can be easily adopted
by standard CP solvers.

 Towards this, we propose a new higher-order consistency algorithm for table
constraints, called eSTR*.

 It is based on simple tabular reduction (STR) that is able to efficiently achieve
Full PairWise Consistency (PWC+GAC).

 Despite its high space and time requirements to construct its structures, its
worst-case time complexity is quite close to that of STR algorithms.

 The concept of eSTR* is to extend any STR-based algorithm to achieve stronger
pruning, simply by introducing a set of counters for each intersection between any two
constraints ci and cj.

AAAI 2013

Extending STR algorithms
 Structures
 description

0 0 0

0 0 1

1 0 0

1 0 1

1 1 0

0

1

2

0

1

 table[C1] table[C2]
{ X, Y, Z } { Y , Z, W }

0 0 0

0 0 1

1 0 0

1 0 1

0

1

0

1

2

NULL

2

2

1

0

1

2

2

 ctr[c][ci]. holds the number of valid tuples in
table[c] that include the subtuple for variables
in scp(c)∩scp(ci) that appears in at least once
in table[c].

 ctrIndexes[c][ci] holds the index of the
counter in ctr[c][ci] that is associated with the
subtuple [scp(c)∩scp(ci)].

 ctrLink[c][ci] is an array of size

ctr[c][ci].length that links ctr[c][ci]
with ctr[ci][c]. It holds the index of the
counter in ctr[ci][c] that is associated with that
subtuple. If the subtuple is not included in any
tuple of table[ci] then ctrLink[c][ci][j] is
set to NULL.

AAAI 2013

eSTR structures for the intersection of C1 with C2 on
variables Y and Z. The highlighted values show the first
occurrence of the different subtuples for scp(C1)∩scp(C2).

eSTR algorithm
 Structures
 initialization

0 0 0

0 0 1

1 0 0

1 0 1

1 1 0

0

1

2

0

1

 table[C1] table[C2]
{ X, Y, Z } { Y , Z, W }

0 0 0

0 0 1

1 0 0

1 0 1

0

1

0

1

2

NULL

2

2

1

0

1

2

2

 Algorithm’s steps

 All tuples are checked until
currentLimit[c] is reached
 if a tuple is valid AND PW-consistent

 values are added to pwValues[x],
pwValues[y], pwValues[z]
respectivelly

 else tuple is removed
 counter is updated

 foreach variable x ∊ scp(c)
 if pwValues[x]⊂ dom(x)

dom(x)←pwValues[x]
if dom(x)= Ø return FALSE

 add any ci to Q, s.t. ci≠c ∧ x ∊scp(ci)
 AAAI 2013

eSTR algorithm
 Structures
 propagation

AAAI 2013

0 0 0

0 0 1

1 0 0

1 0 1

1 1 0

0

1

2

0

1

 table[C1] table[C2]
{ X, Y, Z } { Y , Z, W }

0 0 0

0 0 1

1 0 0

1 0 1

0

1

0

1

2

NULL

2

2

1

0

1

2

2

eSTR checks if the tuple (1, 0, 0)
of C1 is PW-consistent

eSTR algorithm
 Structures
 propagation

AAAI 2013

0 0 0

0 0 1

1 0 0

1 0 1

1 1 0

0

1

2

0

1

 table[C1] table[C2]
{ X, Y, Z } { Y , Z, W }

0 0 0

0 0 1

1 0 0

1 0 1

0

1

0

1

2

NULL

2

2

1

0

1

2

2

eSTR removes tuple (0, 0, 1) of
C1 and updates its counters

1

A weak version of eSTR, denoted by eSTRw can be
obtained by discarding lines 4–5 of Function 3 (i.e., the
update of Q is ignored when a PW-support is lost).

Theoretical results
 Algorithm eSTR applied to a CN P enforces Full PairWise Consistency on P.
 PWC+GAC and PWC+maxRPWC are equivalent.
 The consistency level achieved by Algorithm eSTRw is incomparable to

maxRPWC and PWC.
 The worst-case time complexity of one call to eSTR is
O(rd+max(r,g)t) where r denotes the arity of the constraint, t the size
of its table and g the number of intersecting constraints.
 The worst-case time complexity of STR is O(rd+rt) (Lecoutre 2011).

 The worst-case space complexity of eSTR for handling one constraint is
O(n+max(r,g)t).
 The worst-case space complexity of STR is O(n+rt) per constraint (Lecoutre

2011). Each additional eSTR structure is O(t) per intersecting constraint,
giving O(gt).

AAAI 2013

eSTR2w vs. STR2
 Points above the diagonal are solved
 faster by eSTR2w. The majority of the
 instances are above and belong to
 Random, Random-forced and Dubois.
 On Aim classes eSTR2w can outperform
 STR2 by several orders of magnitude
 on some instances.
 They are particularly expensive on
 classes of problems which include
 intersections on large sets of variables,
 as is the case with the Positive-table
 and BDD instances.

AAAI 2013

Adaptive Propagation

 Since GAC may still be superior in many problems we also suggest
ways to interleave GAC with stronger consistency algorithms.

 One such way is to apply heuristics that can dynamically select
between GAC and a stronger propagator during search.

 We describe and evaluate simple, fully automated heuristics that
monitor the effects of propagation and are applicable on constraints of
any arity.

 Experimental results demonstrate that the proposed heuristics for
adaptive propagation result in a more robust solver.

ICTAI 2012

Fully Automated Heuristics
 objective: the exploitation of the filtering power offered by strong

propagation methods without incurring severe CPU time penalties or
requiring user involvement.

 concept: switching between a weak (W) and a strong (S) propagator for
individual constraints during search when a propagation event occurs.

 The Hdwo (resp. Hdel) heuristic applies a standard propagator on a
constraint (e.g. domain consistency) until the constraint causes a domain
wipeout - DWO (resp. at least one value deletion). Then, in the immediately
following revision of the constraint, a stronger local consistency (e.g. SAC) is
applied. (Stergiou 2008)

 Refinements of Hdwo and Hdel
 Hv

dwo (resp. Hv
del) restricts the application of the strong propagator on variables that

suffered a propagation event (DWO or value deletion) in the immediately preceding
constraint revision as opposed to all variables in the constraint’s scope.

ICTAI 2012

AC3 schema with Hdwo

 1: Q←C

 2: while Q ≠ Ø do

 3: pick and delete c from Q

 4: rev[c]++

 5: if rev[c]-dwo[c]=1 then

 6: apply S
 7: else apply W
 8: if dom(x)=Ø {∀ x ∊ scp(c)} then
 9: dwo[c]=rev[c]

10: return FAIL

11: return SUCCESS

ICTAI 2012

Experiments
 We have considered GACva as the standard propagator W, given that it is the

most commonly used local consistency.
 As the S propagator we have considered two strong local consistencies,
maxRPWC and SAC, since we are interested in non-binary problems.

 This figure clearly demonstrates the
 performance gap between GAC and
 maxRPWC.

 GAC is faster on the majority of the
 instances, often by large margins.
 Since it is a weaker consistency level,
 it sometimes thrashes, while the
 stronger maxRPWC does not.
 These results justify the need for a
 robust method that can achieve a
 balance between the two.

 ICTAI 2012

GAC vs. Hv
dwo

 This figure clearly demonstrates the benefits of the adaptive heuristics.
 Although the majority of the instances is still below the diagonal they

are much closer to it, indicating small differences between the two
methods.

 These are instances where the
 application of maxRPWC+ does
 not offer any notable reductions
 in search tree size.
 On the other hand, there are
 still instances where GACva
 thrashes while Hvdwo, following
 maxRPWC+, does not.

ICTAI 2012

Conclusions
 We have introduced a new higher-order consistency algorithm for table

constraints that enforces FPWC.
 It is based on an original combination of two techniques that have proved

their worth: simple tabular reduction and tuple counting.
 Moreover, we have shown that adaptive propagation schemes can exploit

efficiently the advantages offered by strong propagators in a fully
automated way.

 The presented work can pave the way for the design and implementation
of even more efficient higher-order methods for table constraints.

 Also, it can perhaps help initiate a wider study on specialized higher-order
consistency algorithms for global constraints.

 We believe that strong local consistencies can pay off, provided that we
have efficient methods to apply them.

Publications
 Christophe Lecoutre, Anastasia Paparrizou, Kostas Stergiou, “Extending STR to a

Higher-Order Consistency”, AAAI-13, Bellevue, Washington (To appear).

 Anastasia Paparrizou, Kostas Stergiou, “Evaluating Simple Fully Automated
Heuristics for Adaptive Constraint Propagation”, ICTAI-12, pp. 880-885,
Athens, Greece.

 Anastasia Paparrizou, Kostas Stergiou, “An Efficient Higher-Order Consistency
Algorithm for Table Constraints”, AAAI-12, pp. 535-541, Toronto, Ontario, Canada.

 Anastasia Paparrizou, Kostas Stergiou, “Extending Generalized Arc
Consistency”, SETN 2012, LNCS (LNAI), Vo. 7297, pp. 174-181, Lamia, Greece.

 Thanasis Balafoutis, Anastasia Paparrizou, Kostas Stergiou, Toby Walsh, “New
Algorithms for max Restricted Path Consistency”, Constraints, Vo 16, No 4,
pp. 372-406, Springer (2011).

 Thanasis Balafoutis, Anastasia Paparrizou, Kostas Stergiou, Toby Walsh,
“Improving the performance of maxRPC”, CP 2010, LNCS, Vo 6308, pp. 69-83, St
Andrews, Scotland.

Extending STR algorithms
 The central idea of eSTR* is to store the number of times that each

subtuple appears in the intersection of any two constraints.
 For each constraint c, we introduce a set of counters for each (non trivial)

intersection between c and another constraint ci .
 Assuming that S is the set of variables that are common to both c and

ci, at any time each counter in this set holds the number of valid
tuples in c’s table that include a specific combination of values for S .

 In this way, once a tuple τ∈table(c) has been verified as valid, we can
check if it has a PW-support in table(ci) simply by observing the value
of the corresponding counter (i.e., the counter for subtuple
[scp(c)∩scp(ci)]).

 If this counter is greater than 0 then τ has a PW-support in table(ci).
 Importantly, this check is done in constant time.

AAAI 2013

Extending STR algorithms
 Structures
 description

0 0 0

0 0 1

1 0 0

1 0 1

1 1 0

0

1

2

0

1

 table[C1] table[C2]
{ X, Y, Z } { Y , Z, W }

0 0 0

0 0 1

1 0 0

1 0 1

0

1

0

1

2

NULL

2

2

1

0

1

2

2

 ctr[c][ci]. holds the number of valid tuples in
table[c] that include the subtuple for variables
in scp(c)∩scp(ci) that appears in at least once
in table[c].

 ctrIndexes[c][ci] holds the index of the
counter in ctr[c][ci] that is associated with the
subtuple [scp(c)∩scp(ci)].

 ctrLink[c][ci] is an array of size

ctr[c][ci].length that links ctr[c][ci]
with ctr[ci][c]. It holds the index of the
counter in ctr[ci][c] that is associated with that
subtuple. If the subtuple is not included in any
tuple of table[ci] then ctrLink[c][ci][j] is
set to NULL.

AAAI 2013

eSTR structures for the intersection of C1 with C2 on
variables Y and Z. The highlighted values show the first
occurrence of the different subtuples for scp(C1)∩scp(C2).

Indicative instances…
 Comparing eSTR2 to STR2 it seems that there are

problem classes where it can be considerably more
efficient (Random, Random-forced and Dubois).

 eSTR2 can outperform STR2 by several orders of
magnitude on some instances of Aim classes.

 The new algorithms are over one order of magnitude
faster than STR2 on Positive table-10 instances which
are proven unsatisfiable without search.

 The extra filtering of eSTR2 does pay off on some
classes as node counts are significantly reduced
(Aim) while on other classes it does not (Random).

 On the other hand, STR2 is better than the proposed
algorithm on Positive table problems and of course BDD,
where eSTR2 and eSTR2w exhausted the available
memory.

 Finally, comparing our algorithms to maxRPWC+ it is
clear that they are superior as they are faster on all the
tested classes (except BDD).

AAAI 2013

	Efficient Algorithms and Heuristics �for Strong Local Consistencies
	Contents
	Table constraints
	GAC algorithms for Table constraints
	STR algorithms
	STR algorithms
	STR algorithms
	Strong Local Consistencies
	New efficient Algorithms
	Extending STR algorithms
	eSTR algorithm
	eSTR algorithm
	eSTR algorithm
	Theoretical results
	eSTR2w vs. STR2
	Adaptive Propagation
	Fully Automated Heuristics
	AC3 schema with Hdwo
	Experiments
	GAC vs. Hvdwo
	Conclusions
	Publications
	Extending STR algorithms
	Extending STR algorithms
	Indicative instances…

