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Abstract. The discovery of regulatory networks is an important aspect in the
post genomic research. We compared various scoring criteria in the context of
structure learning in Bayesian networks. We show that adding a uniform node
in-degree prior helps improve precision without deteriorate sensitivity for typical
regulatory networks encountered in prokaryote and eukaryote organisms. Exper-
iments are performed on simulated highly non-linear genetical genomics data.
Taking into account specific biological information about DNA markers can fur-
ther enhance the reconstruction process. We performed a large comparison with
existing approaches of gene regulatory network inference. Our preliminary re-
sults show that the best approach exploits an extended normalized maximum
likelihood score in the framework of discrete Bayesian networks.

Keywords: structure learning, discrete Bayesian networks, extended Bayesian
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cal genomics.

1 Introduction

The post-genomic era shifted the main biological focus from single-gene to genome-
wide approaches. High throughput data available from new technologies allowed to get
inside main features of gene expression and its regulation and, as a result, to discover
the existence of nonrandom and well-defined structures that determine a network of
complex (highly non linear) interactions called Gene Regulatory Network (GRN). The
ultimate goal is to find direct causal influences between gene-activities. Knowing the
complete GRN of the cell or organism allows to better understand and control complex
biological phenomenon as demonstrated e.g., obesity and bone traits in mouse [20], and
flowering time in Arabidopsis thaliana [16].

In practice, DNA arrays simultaneously measure the level of mRNAs product in a
(set of) living cell(s). We assume steady-state data. These mRNA concentrations define
the gene-activities or gene expression levels.

In addition to gene-activities data, we want to exploit DNA marker genotype data.
The so-called genetical genomics approach entails an analysis of high throughput mRNA
expression data in a pedigree of genetically distinct individuals [15] [7](Chap. 4). There-
fore, our observed data for structure inference will be both continuous (i.e., gene-
activities) and discrete (i.e., genotypes).
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Among many frameworks used to infer GRN we choose graphical probabilistic
model and more specific static Bayesian Networks (BN) [6]. Learning BN structure
is still an open problem and several approaches try to solve it. One of them consists in
exploring the space of BN structures and evaluates each structure with a specific scoring
criterion in order to select which structure maximizes the score. It is this score-based
approach we use in the following study, we compare several scores in an extended form
to favour specific structures.

In Section 2 we present existing approaches to learn GRN. Next we explore in
Section 3 existing scoring criteria, including a combination of two very recent ones,
resulting in a new criterion which is more robust than classical one to small sample size
[26, 27] and which allows to add a priori information on the selected model [3]. Then,
in Section 4, we present our simulated data in the field of genetical genomics. Finally,
we report our experimental results comparing network inference methods in Section 5
and conclude.

2 State-of-the-art

Existing approaches for network inference can be classified in three categories [1]. The
first category measure (partial) correlations for all pairs of gene-activities and keep in
the final graph gene pairs which correlate above a user-defined significance threshold.
Due to symmetry measure this methods cannot determine the direction of edges, re-
sulting in undirected GRN, also called Co-Expression Networks (CEN). CEN inference
software ParCorA [9] uses Pearson and Spearman (rank) correlations. ARACNE [19]
and CLR [10] are based on Mutual Information instead.

The second type of methods relies on linear models. The general framework of
Gaussian Graphical Model (GGM) assumes the data are drawn from a multivariate
normal distribution. Among the existing approaches based on GGM are GeneNet [23],
Simone [5] (it assumes a modular network with constant connectivity inside each mod-
ule), and GGMSelect [12] which first builds a family of candidate graphs from the
data and then selects one graph among this family according to a dedicated criterion.
The difficulty of learning a global structure has conducted to a simpler gene-by-gene
regression, by regressing with the Lasso each gene-activity against the others [22], in
the so-called Structural Equation Modeling (SEM) framework (similar to determinis-
tic ordinary differential equations in the case of steady-state data without noise). This
approach was tested in the context of genetical genomics by [17] where structure in-
ference is based on a penalized likelihood ratio and an adaptation of Occam’s window
model selection [18].

The third class of methods consists in probabilistic discrete graphical models. Ac-
cording to the steady-state data, we focus our study on static Bayesian networks, com-
posed of a directed acyclic graph (DAG) with a conditional probability (possibly mod-
eling a highly non-linear gene interaction) associated to each node in the graph. On
the contrary to linear models, Bayesian networks can represent any complex gene in-
teraction, except cyclic gene interactions. This framework was first applied to gene
expression data in [11]. It was further tested on genetical genomics data by [28] with
the genetic information used as prior information. Our goal is to test the Bayesian net-
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work approach on genetical genomics data by modeling the genetic information as extra
variables in the DAG.

As all of this methods cannot (or only partially) distinguish the direction of interac-
tions, we study and evaluate our methods for undirected GRNs in this paper.

3 Extended Bayesian scores

A Bayesian network [6] denoted by B = (G,PG) is composed of a directed acyclic graph
G = (X,E) with nodes representing p random discrete variables X = {X1, . . . , Xp},
linked by a set of directed edges E, and a set of conditional probability distributions
PG = {P1, . . . , Pp} defined by the topology of the graph: Pi = �(Xi|Pa(Xi)) where
Pa(Xi) = {X j ∈ X | −−−−−−→(X j, Xi) ∈ E} is the set of parent nodes of Xi in G. Let a =

maxp
i=1 |Pa(Xi)| be the maximum number of parents for a node. A Bayesian network

B represents a joint probability distribution on X such that:

�(X) =

p∏
i=1

�(Xi|Pa(Xi)) (1)

The conditional probability distributions PG are determined by a set of parameters,
θ, via the equation:

�(Xi = k|Pa(Xi) = j) = θi jk

where k is a value of Xi, and j is a value configuration of the parent set Pa(Xi). The
number of independent parameters in θ is called the dimension of B and it is noted
Dim(B) =

∑p
i=1 Dim(Pi) with Dim(Pi) = (ri − 1)qi where ri is the domain size of

variable Xi and qi =
∏

X j∈Pa(Xi) r j, is the product of the parental domains of Xi.
Learning the structure of a Bayesian network consists in finding a DAG Gmaximiz-

ing �(G|D) where D represents the observed data. We have:

�(G|D) =
�(D|G)�(G)
�(D)

∝ �(D|G)�(G) (2)

The first term �(D|G) of Equation 2, called the marginal likelihood, can be rewritten
by integrating parameters out:

�(D|G) =

∫
θ

�(D|G, θ)�(θ|G)dθ (3)

Assuming a uniform prior on the parameters, this integral can be simplified as
shown in [4] using Laplace approximation (for large sample size n) resulting in the
Bayesian Information Criterion (BIC) [24] which combines a maximum likelihood
term with a penalty term on the dimension of the model, as expressed below:

BIC(G) = log(�(D|G, θML)) −
1
2

log(n)Dim(BG) ≈ log(�(D|G))

where BG = (G, θML) is the Bayesian network defined by the proposed structure G with
parameters θML estimated by following the maximum likelihood principle.
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BIC is derived through asymptotics and its behavior is suboptimal for small sam-
ple sizes. On the contrary, the popular Bayesian Dirichlet criterion (BDeu1) assumes
that the parameter vectors θi j are independent of each other and distributed according
to Dirichlet distributions with hyper-parameters αi jk = α

riqi
, resulting in the following

score:

BDeu(G) = �(D|G) =

p∏
i=1

qi∏
j=1

Γ(αi j)
Γ(ni j + αi j)

ri∏
k=1

Γ(ni jk + αi jk)
Γ(αi jk)

with ni jk, the number of occurrences of the configuration (Xi = k, Pa(Xi) = j) in the n
samples, and ni j =

∑ri
k=1 ni jk.

Unfortunately, the posterior probability distribution of the network structures is very
sensitive to the choice of the so-called equivalent sample size parameter α [25].

A recent scoring criterion based on the normalized maximum likelihood (NML)
distribution has been proposed in [26, 27] to avoid this sensitivity problem,

NML(G) = �(D|G) =
�(D|G, θML)∑

D′ �(D′|G, θML)

where the normalization is over all data sets D′ of the same sample size n. Although the
number of data sets is exponential, this score can be locally computed for each variable
Xi ∈ X in linear time as described in [26, 27], assuming a ri-ary multinomial variable.
Multiplying this local score over all the variables in X defines a global score called the
factorized normalized maximum likelihood (fNML). In this sense fNML can be seen
as an alternative way to define the marginal likelihood of Equation 3. Asymptotically
fNML behaves like BIC [27].

Instead of choosing a uniform prior on the space of DAGs in Equation 2, we propose
to choose a uniform prior on the number of parents (i.e. node in-degree) for every node.
The motivation behind this is that the number of possible DAGs grows exponentially
with the number of parents (up to p/2 parents), resulting in the selection of dense net-
works which do not correspond to the current knowledge of existing real gene networks
which are sparse graphs [2]. As done in [3], we define a sparsity prior local to each node
in G:

�(Gi) ∝ τ(Xi)−γ

with γ ∈ [0, 1], Gi is the restricted graph to Xi composed of variables X = {Xi ∪ Pa(Xi)}
linked by E = {

−−−−−−→(X j, Xi) | X j ∈ Pa(Xi)} and τ(Xi) = Cp−1
ai is the number of different parent

sets of size ai = |Pa(Xi)| among p− 1 potential parents. The value γ = 0 corresponds to
a uniform prior on the space of DAGs. The value γ = 1 corresponds to a uniform node
in-degree prior. In order to get a global prior, we assume restricted graph independence,
�(G) ≈

∏p
i=1 �(Gi).

Clearly, our approximation overestimates the number of DAGs having a fixed se-
quence of in-degrees ai, ∀i ∈ {1, . . . , p}. E.g., there exists no DAG with only two nodes
having one parent each (it would be cyclic), whereas it has a prior probability pro-
portional to one in our approach. Figure 1 compares the true number of DAGs with

1 Symbol eu stands for Equivalent Uniform, i.e. this criterion gives the same score for Markov
equivalent Bayesian networks and assumes a uniform prior on the θ parameters.
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a varying number of nodes and a fixed sequence of in-degrees following a power law
distribution (such that there are a total of p edges in average) with our approximation.
Using γ < 1 (e.g., γ = 0.7) would probably be more correct. It remains an open question
if the true number can be expressed analytically.

Fig. 1. Comparison on true (blue) and approximate (red) logarithm number of DAGs with a fixed
sequence of node in-degrees following a power law distribution, varying the number of nodes in
the x axis.

In the sequel, we note BICγ, BDeuγ, and fNMLγ the previous scoring criteria ex-
tended by the γ-based sparsity prior defined above.

4 Simulated genetical genomic data

4.1 Bayesian network model description and specific biological information

The set of discrete random variables X is composed of one variable per gene-activity,
denoted Gi, and one variable for each genetic marker, denoted Mi, ∀i ∈ {1, . . . , p} with
p the number of genes. We associate for each gene a single genetic marker as we see in
figure 2.

Although we have 2p variables in our model, we can reduce the search space thanks
to biological knowledges. First ones due to genetic linkage between markers on the
same chromosome and biological facts are presented in figure 3. Seconds depend on
specific biological information about the genetic marker positions inside their associ-
ated gene since they are in our case used to represent effective mutations on the DNA,
i.e., mutations which have an impact on gene expressions as we present in figure 4.

These restrictions on edges are simply applicable on BN but we also apply them for
the SEM Lasso approach [22]. In order to ban some edges, we remove corresponding
regressors (marker or gene variable) from the potential regressor list and in order to
force edges, we make a first linear regression with the known regulators then we apply
the standard method on the estimated residuals of this regression (and we also remove
the known regressors from the list).
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Fig. 2. Example of 3 genes network with regu-
lation from G2 to G1 and G3. We assume ge-
netic linkage between marker (Mi → Mi+1)
and consider two distinct marker positions. First
we consider a marker located in the gene pro-
moter region (e.g. M3 ), the mutation observed
for this marker will only modify the expression
level of the gene so we have M3 → G3. The
other situation is a mutation occurring in a cod-
ing region (exon) (e.g. M1 & M2) which mod-
ifies the regulation activity of the gene but not
its proper expression level. In this case for each
Gi → G j with i ∈ {1, 2} we have Mi → G j.

Fig. 3. If we assume that we know marker posi-
tions, we can depict them as a first-order Markov
chain following their position on the chromo-
some by fixing (in green) Mi → Mi+1 and
banning (in red) others edges between markers
Mi 9 M j∀ j , i+1. We also assume there are no
regulations from any gene-activity towards any
genetic marker (which would have no biological
meaning) Gi 9 M j∀i, j .

Fig. 4. For each marker Mi in a promoter region
(M3 here) we can fix in our model Mi → Gi and
forbidding any other edges Mi 9 G j, ∀ j , i.
In the case of marker Mi is in a promoter region
(M1 and M2) we only ban Mi 9 Gi.

4.2 Data simulator

The lack of data combining gene expressions and genotypes of segregating individuals
leads us to generate artificial datasets with a complete control on the parameters (level
of noise, interaction intensity, network topology,...). Gene networks are commonly as-
sumed to be scale free [2], for this reason we used artificial networks described in [21]
with such a structure. This kind of network is characterized by a power law on node
connectivity, which means that a small number of nodes are highly connected to others
(called hubs) while the vast majority have only few connections.

To simulate genes behavior we used non linear ordinary differential equations for
each gene as described in [17]. The following equation defines the mRNA concentration
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of gene i by simulating both gene and marker interactions in a realistic way. We have:

dGi

dt
= Vi

∏
G j∈Inh(Gi)

Z j(
1

1 + G j
)
∏

Gk∈Act(Gi)

Zk(1 +
Gk

Gk + 1
) −Gi + θiGi

with Vi defines gene i activity rate, affected if the mutation is in promoter region (Vi =

0.75 or 1 depending on mutation presence or absence), Inh(Gi) (resp. Act(Gi)) are in-
hibitors (resp. activators) concentrations, Z j (resp. Zk), inhibition (resp. activation) ac-
tivity rate of regulators j (resp. k) affected if the associated mutations are in exons
(Z j/k = 0.75 or 1 depending on mutation presence or absence) and θi, a gaussian noise
with mean 0 and variance 0.1.

We used the COPASI software [14] to define the steady state measurement of each
gene expression level. We performed the steady state measurements for each individual
of a RIL population (RIL generator from [8]) to get samples with large genetic diversity
and so varying gene-activities between individuals.

In order to test our approach we used 50-node networks and generated for each
of them a population of 500 individuals. We obtained with COPASI continuous gene-
activities and discrete genotypes (boolean value indicating if there is a mutation or not)
at every genetic marker. Because of discrete BN, we have to discretize gene-activities.

We have chosen an adaptive method depending on the expression level distribution
of each gene. As we could observed, our datasets have complex distributions, so we
have to distinguish 2 cases. If we detect a bimodal distribution, we use an adapted
k-means algorithm to get a three-class discretization which ensures a minimum class
size (5% sample size) and a maximum size for extremum classes (30%). In the case
of multimodal distribution, we use the more general case of gaussian mixture model
search to find a maximum of four classes.

5 Experimental results

In order to validate different aspects of this study we decompose our results in three
distinct parts. First, we test the impact of extended criteria in the score-based structure
learning algorithm Greedy Search (GS) [6]. Next, we consider taking into account spe-
cific biological knowledge as described in Section 4.1, and finally we perform a vast
comparison with existing methods for inferring gene regulatory networks from expres-
sion and genotype data.

Before evaluating the network we make a post processing operation as we are only
interested in gene regulation, we reduce the 2p nodes of our learnt BN to a simple CEN
network, by projecting all Mi → G j as a Gi → G j∀ j , i, and then keeping only Gi

nodes, removing also edge orientations.
To evaluate each graph we use sensitivity (or recall) T P

(T P+FN) and positive predictive
value (or accuracy) T P

(T P+FP) metrics [1] where TP (true positive) is the number of correct
edges in the learnt network, FN (false negative) for missing edges absent from the learnt
network and present in the true network, and FP (false positive) is the number of edges
present in the learnt network and absent from the true network. In this study we do not
consider edge orientations.

All results presented in this paper are the mean over 50 artificial networks.
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5.1 Evaluation of extended Bayesian criteria

In figure 5 we observe a similar behavior for BIC and fNML scores. For a small sample
size, increasing γ allows to improve significantly prediction of the learnt network with
a moderate loss in sensitivity. This is coherent with the fact that higher γ promote low
connectivity of the network especially in the case of small sample size. Instead of learn-
ing poor confident edges which mostly represent spurious edges, extended score will
not select them increasing in this way precision. However sensitivity decreases, show-
ing a loss of a few true regulations. Even if the trade-off between precision/sensitivity
is clearly better for γ = 0.5 compared to γ = 0, it decreases between γ = 0.5 and
γ = 1 which leads to imagine an optimal γ value. Finally with more samples, all criteria
converge due to asymptotically equivalence of these scores.

For clarity of graphics, we do not present the results for BDeu score which gave
performance similar to BIC except in the case of 50 sample size where BDeu performed
worse.

Fig. 5. Comparison of two extended Bayesian criteria. The figures show for extended scores
fNML (green) and BIC (red), the evolution of the predictive value (to the left) and the sensitivity
(to the right) of learnt networks with varying sample sizes. For each extended score, we have
three different γ values: γ = 0 (solid line), γ = 0.5 (dash line) and γ = 1 (point line).

5.2 Evaluation of adding specific biological information

By fixing/forbidding edges as presented in Section 4.1, we can restrict the space of
DAGs to explore. In figure 6 we show the consequence of this approach. It is not sur-
prising to see an improvement of the predictive metric for all methods since we give
correct information about the true network even if this information do not give explic-
itly any regulation between genes. This phenomenon is more important for small sample
size except for the SEM Lasso approach with 50 individuals caused by the poor perfor-
mance of this method in this configuration. However we have also a residual loss of true
interactions for BIC and Lasso methods like when we apply extended score. For BIC
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criterion this loss is very limited (or null half of the time) and more visible for Lasso
but without a clear explanation of this behavior. Only the fNML score do not respect
this evolution, both metrics are improved with edge information which makes this score
interesting for further investigation about integrating additional expert information.

In the same manner BDeu and BIC got similar results.

Fig. 6. Impact of adding specific biological information. The figures show for three approaches
BIC1 (red), f NML1 (green), and SEM Lasso (blue), the evolution of the predictive value (to the
left) and the sensitivity (to the right) of learnt networks with varying sample sizes. For each
criterion, two curves represent the results without the extra information about edges (solid line)
and with this information (dash line).

5.3 Global evaluation with existing network inference methods

In this part we try to make a large comparison with different approaches proposed in
the literature to infer gene networks. Methods used are summarized in figure 7 and are
freely available on the web or on author’s demand. We also give for each method the
parameter settings fixed by ourself whereas other parameters are left to their default
value. Based on previous comparison we used BIC1, BDeu1, f NML1 and SEM Lasso
with including specific biological information (i.e., restriction on edges as presented in
Section 4.1).

We see in figure 8 a great performance disparity of the methods, we distinguish in
each case two groups the poor and the (relative) good results. There is also no outper-
forming method which means that all approaches have the same difficulties with a poor
sensitivity in small sample size case. Hubs are the most problematic structure in net-
work for all methods, they are link to a majority of edges and are known to be difficult
to learn since some regulation dominate their behavior and hide others.

ARACNE and CLR have poor results in both situations whereas ParCorA perform
well, computation of partial correlation give to it a serious advantage and seems to prove
that Spearman correlation (same result with Pearson correlation) is more competitive in
our simulation.
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Software Description Parameters Ref
Banjo(v2.2) Bayesian network inference BDeuα = 1 [13]
ARACNE Mutual Information correlation threshold = 0.15 [19]
CLR(v1.2) Mutual Information correlation threshold = 4 [10]
ParCorA Spearman correlation pcuto f f = 0.001; 1storder [9]
Simone(v1.0) Gaussian graphical model modularnumber = 2 [5]
GGMselect(v0.1) Gaussian graphical model ”C01” f amily [12]
GeneNet(v1.2.4) Gaussian graphical model cuto f f = 0.95 [23]
SEM Lasso Lasso regression αmeinshausen = 0.1 [22]

Fig. 7. Features of tested methods

Fig. 8. Predictive value (horizontal axe) and sensitivity (vertical axe) for sample size=500
(to the left) and 100 (to the right). Methods are classified in 3 categories: 1-Co-expression
network ARACNE (red square), CLR (green square), ParCorA (blue square); 2-Linear model
Simone (yellow circle), GeneNet (red circle), GGMSelect (green circle), SEM Lasso (blue circle);
3-Bayesian network Banjo with BIC1 (red star), BDeu1 (blue star), and fNML1 (green star).

Simone have the worst performance of the comparative study, maybe due to the
modular network expected (we tested with several modular number 1 to 6 without sig-
nificant improvements) which not correspond to the real network. GeneNet appear to
be very sensitive to sample size with a huge performance decrease when we reduce the
sample size and finally does not seem to be able to manage real dataset where number
of sample is small compare to gene number.

SEM Lasso and GGMselect have a same behavior in both configurations with best
results for SEM Lasso due to edges assumptions, these methods are robust concerning
their predictive value but less concern their sensitivity with more than 50% decrease in
the 100 individuals case.

BN with each of the 3 scores is the most robust method, BIC1 and BDeu1 performed
similarly whereas f NML1 outperformed the both. This last score is the better choice
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for 100 individuals case (the more realistic of our test) and is not too far from the best
for 500 individuals. We have to note the general good performance of ParCorA since
without any a priori, it performed very well even if it is less suitable to take in account
expert knowledge as BN can.

6 Conclusion

In conclusion, we have studied different scoring criteria in the framework of discrete
Bayesian networks, including the combination of two recent ones [3, 27], f NML1,
which obtained the best results on our simulated genetical genomics dataset for medium
sample size (n = 100 samples with p = 50 genes and 50 markers) compared to a
large set of existing gene regulatory network inference methods. Adding a sparsity prior
greatly improves the accuracy of our methods. It should be noted that except for our ap-
proach and the SEM Lasso, other approaches used genotype information on their own,
without the additional knowledge of promoter/coding region mutations which may be
difficult to acquire in practice.

Still, it remains to validate our approach on real data and to study causality in GRNs.
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