
Non-stationary dynamic Bayesian network
learning

Christophe Gonzales, Séverine Dubuisson
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Bayesian network
Definition: Bayesian network [Pearl (1988)]

1 A directed acyclic graph (DAG):

X4
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X3X1

X2X0P(X0)

P(X1|X0)

P(X2)

P(X3|X2)

P(X4|X1,X3)

P(X5|X4)

joint distribution: P(X1, . . . ,X5) =
5∏

i=1

P(Xi |Pa(Xi))

2 To each node Xi is assigned P(Xi |Pa(Xi))
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Bayesian network structure learning

Structure Learning

Database: D

Problem: find structure G best fitting D

3 classes of algorithms:

search-based approaches: ArgmaxG P(G|D)
scoring (K2, BD, BDeu, BIC, AIC, etc.)
[Cooper & Herskovits (92), Heckerman, Geiger & Chickering (95)]

constraint-based approaches:
independence tests (χ2, G2, etc.)
[Verma & Pearl (91), Spirtes, Glymour & Scheines (93)]

hybrid approaches [de Campos (06)]

Key idea: start from G and search locally for a better
structure G′
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Stationary dynamic Bayesian network learning

Dynamic Bayesian network (DBN) [Dean & Kanazawa (89)]
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DBN structure learning: Hypothesis: B1 indep. B0 given D

ArgmaxG0,G1
P(G0,G1|D) = ArgmaxG0,G1

P(G0|D)P(G1|G0,D)

=
(
ArgmaxG0

P(G0|D), ArgmaxG1
P(G1|D)

)
[Murphy (02)]

Non-stationary DBN learning 5/21



Non-stationary dynamic Bayesian network

Definition: non-stationary DBN

Collection 〈(Bh,Th)〉mh=0

Th: transition time

Bh: Bayes net during epoch Eh = (Th−1,Th]
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Learning non-stationary DBNs

2 tasks:

1 Find the best set of transition times Th

2 Find, within each epoch Eh = (Th−1,Th], the best BN Bh
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Detecting transitions Th (1/2)

Robinson & Hartemink (2010)

Multiple database records at each time step

No transition detection criterion: optimization instead

Determine Argmax
{H,T0,...,TH ,B0,...,BH}

P(H,T0, . . . ,TH ,B0, . . . ,BH |D)

Algorithm:
start from a given set of transitions
repeat local searches for:

finding the best structure given transitions
changing the dates of the transitions
splitting/merging epochs

until convergence

Caveat:

All time slices need be observed
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Detecting transitions Th (2/2)

Nielsen & Nielsen (2008)

A single database record at each time step

Transitions detected in streaming mode

Transition detection criterion:

Current BN fitting: log
(

P(Xi =xi )
P(Xi =xi |Xj =xj∀j 6=i)

)
log� 0 =⇒ maybe not a good fit

Trend of the log toward high values =⇒ transition
(2nd Discrete Cosine Transform component)

Caveat:

Transition identified a long time after it occurred

The log formula is questionable:
P(Xi = xi ) = [0.8,0.2] v.s. P(Xi = xi |Xj = xj∀j 6= i) = [0.7,0.3]
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Constrained non-stationary DBN learning

Structure not evolving: Grzegorczyk & Husmeier (2009)

Structure evolving w.r.t. fixed transition proba:
Robinson & Hartemink (2010)

Parameter independence between Bh and Bh+1:
Robinson & Hartemink (2010)
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2 A new learning algorithm
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Detecting transition times

Streaming mode

Current BN Bh up to time t − 1

Dataset Dt at time t

Algorithm:

1 if change in the set of Xi ’s =⇒ transition Th

2 else if newly encountered values of Xi =⇒ transition Th

3 else goodness-of-fit test:
perform χ2 test on each Xi ∪ Pa(Xi)

if at least one test indicates a change =⇒ transition Th
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Learning a new BN fragment Bh+1

Attractive features:

Structure: limit the evolution

Structure: take into account the strengths of the Bh’s arcs

Parameters: dependence w.r.t. Bh
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Learning Bh+1: the key idea

P(Gh+1|Dt ,Bh) ∝ P(Gh+1,Dt |Bh)

=

∫
Θh+1

P(Gh+1,Θh+1,Dt |Bh)dΘh+1

=

∫
Θh+1

P(Dt |Gh+1,Θh+1,Bh)P(Gh+1,Θh+1|Bh)dΘh+1

=

∫
Θh+1

P(Dt |Gh+1,Θh+1)P(Gh+1,Θh+1|Bh)dΘh+1

=

∫
Θh+1

P(Dt |Gh+1,Θh+1)π(Θh+1|Gh+1,Bh)P(Gh+1|Bh)dΘh+1

= P(Gh+1|Bh)

∫
Θh+1

P(Dt |Gh+1,Θh+1)π(Θh+1|Gh+1,Bh)dΘh+1
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Graph transition distribution P(Gh+1|Bh)

An atomic graph transformation = (X(s),Y(s),As),
A(s) ∈ {arc addition (add), arc deletion (del), arc reversal (rev)}

∆(Gh,Gh+1) = 〈(X(s),Y(s),As)〉cs=1

Robinson & Hartemink (2010): P(Gh+1|Bh) ∝ e−λ|∆(Gh,Gh+1)| = e−λc

=⇒ strength of the arcs not taken into account

Generalization of the formula

P(Gh+1|Bh) ∝
∏c

s=1 ef (X(s),Y(s),As)

f (·, ·, ·) =


−λd I(X(s),Y(s)|Pa(Y(s))\{X(s)}) if As = del
−λaI(X(s),Y(s)|Pa(Y(s))) if As = add
1
2 [f (X(s),Y(s),del) + f (Y(s),X(s),add)] if As = rev

I(X ,Y |Z): takes into account the strengh of the arc (X ,Y )
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Strength of the arcs

Ebert-Uphoff (2007):

I(X ,Y |Z) =
∑
X ,Z

P(X ,Z)
∑

Y

P(Y |X ,Z) log
P(Y |X ,Z)

P(Y |Z)
,

Nicholson & Jitnah (1998): approximation

I(X ,Y |Z) ≈
∑
X ,Z

P(X )P(Z)
∑

Y

P(Y |X ,Z) log
P(Y |X ,Z)

P(Y |Z)
.
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Green part: Dirichlet prior

P(Gh+1|Dt ,Bh) ∝ P(Gh+1|Bh)

∫
Θh+1

P(Dt |Gh+1,Θh+1)π(Θh+1|Gh+1,Bh)dΘh+1

Geiger & Heckerman (97) : justification of Dirichlet priors
=⇒ Bayesian Dirichlet (BD) score:

n∏
i=1

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk )

Γ(αijk )

Problem: which Dirichlet hyperparameters?

Feature: allow dependence between CPTs of Bh and of Bh+1

B̂ = (Gh+1, Θ̂) = BN with minimal KL distance w.r.t. Bh

=⇒ hyperparameters = N ′Θ̂
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A flavor of experimentations

DBN randomly generated from Alarm and Asia [Ide & Cozman (2002)]

5 epochs of 10 time slices

=⇒ grounded BNs ≈ (1850 nodes, 2500 arcs) and (400 nodes, 430 arcs)
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A flavor of experimentations
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A flavor of experimentations

size

Time
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grounded BNs ≈ (1850 nodes, 2500 arcs)
(400 nodes, 430 arcs)
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Conclusions

Framework mathematically sound

Very flexible: take into account previous BNs:
Structure
Strength of the arcs
Parameters

Scalable
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