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Data as matrices

I In many situations, data are available as matrices

I Consider N samples vn in RF (i.e., described by F features)
I Samples stored column-wise, yielding an F × N data matrix V

V represents f n Typical F

A corpus of documents Words Documents 104 − 105

A collection of grayscale images Pixels Images 104 − 106

The spectrogram of an audio signal Frequencies Time frames 103 − 104

Ratings Items Users 106 − 108

Table 1: Examples of data available as matrices
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Matrix factorization (1/3)

Matrix factorization (MF)
MF aims at finding a decomposition of the data matrix V as the
product of two matrices

V 'WH, (1)

where W is of size F × K , and H is of size K × N

I K � min(F ,N) : low-rank approximation
I Linear dimensionality reduction technique

vn '
K∑

k=1
hknwk (2)
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Matrix factorization (2/3)
I W is called the dictionary. Columns represent characteristic or

recurring patterns of the data
I H is called the activation coefficients. The n-th column

represents how much of each pattern is needed to represent vn
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Matrix factorization (3/3)

I MF can be written as an optimization problem

min
W,H

D(V|WH) =
∑
f ,n

d(vfn|[WH]fn) (3)

I D is a separable measure of fit (“divergence”)
I Additional constraints over W and H for interpretability

I Ubiquitous example : principal component analysis (PCA)
[Pearson, 1901, Hotelling, 1933]...

I ... but does not take into account the support of the data
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Non-negative matrix factorization
Non-negative matrix factorization (NMF)
NMF aims at finding a decomposition of a non-negative data
matrix V as the product of two non-negative matrices

min
W≥0,H≥0

D(V|WH) (4)

[Paatero and Tapper, 1994, Lee and Seung, 1999]

I Non-negativity constraints improve interpretability :
I W ≥ 0 : direct interpretation of the columns of W
I H ≥ 0 : induces part-based representations

I Many application fields :
I Audio signal processing (source separation [Virtanen, 2007],

music transcription [Smaragdis and Brown, 2003])
I Text information retrieval (topic modeling [Xu et al., 2003])
I Hyperspectral imaging (unmixing [Bioucas-Dias et al., 2012])
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Divergences and statistical models

Name d(x |y)

Squared Euclidean distance (SED) 1
2(x − y)2

Kullback-Leibler (KL) divergence x log
(x

y

)
− x + y

Itakura-Saito (IS) divergence x
y − log

(x
y

)
+ 1

Table 2: Typical divergences used in NMF

For many usual cost functions, the minimization problem is
equivalent to the joint maximum likelihood estimation of W and H

min
W≥0,H≥0

D(V|WH)⇔ max
W,H

p(V; W,H) (5)
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The probabilistic framework

NMF problem Equivalent likelihood

SED-NMF vfn ∼ N ([WH]fn, σ2)
KL-NMF vfn ∼ Poisson([WH]fn)
IS-NMF vfn ∼ Exp

( 1
[WH]fn

)
Table 3: Equivalences with statistical models

Probabilistic NMF
Learning (estimation and/or inference) tasks in statistical models
of the form

vn ∼ p(.; Whn,Ψ), (6)

i.e., parametrized by the dot product Whn (and Ψ)

NB : Most of the time we have E(vn) = Whn
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Model variants and learning problems

N

hn•

W•vn

(1)
N

•θ
H

hn

W•vn

(2)
N

•θ
H

hn
•θ
W

Wvn

(3)

I (1) Frequentist NMF – Maximum likelihood estimation
I (2) Semi-Bayesian NMF – Our setting
I (3) Bayesian NMF – Infer posterior distribution p(W,H|V)
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Inference in semi-Bayesian NMF (1/2)

Two estimation paradigms

I Maximizing joint likelihood estimation (MJLE) :

max
W,H

log p(V,H; W) = log p(V|H; W) + log p(H) (7)

Estimation of FK + KN parameters
I Maximizing marginal likelihood estimation (MMLE) :

max
W

log p(V; W) = log
∫

H
p(V|H; W)p(H)dH (8)

Estimation of FK parameters
MMLE is a better-posed approach because the number of
parameters to be estimated is fixed w.r.t. the number of samples N
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Inference in semi-Bayesian NMF (2/2)

I Empirical comparison of the two paradigms
[Dikmen and Févotte, 2011, Dikmen and Févotte, 2012] in
the Poisson and Exponential models

I MMLE tends to automatically prune the columns of W, while
MJLE makes use of all K columns

I Favorable behavior that was left unexplained
I Related works of the literature

I Integration of nuisance parameters [Berger et al., 1999]
I Noisy ICA [Moulines et al., 1997]
I Latent Dirichlet allocation (LDA) [Blei et al., 2003]

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 11/39



Inference in semi-Bayesian NMF (2/2)

I Empirical comparison of the two paradigms
[Dikmen and Févotte, 2011, Dikmen and Févotte, 2012] in
the Poisson and Exponential models

I MMLE tends to automatically prune the columns of W, while
MJLE makes use of all K columns

I Favorable behavior that was left unexplained
I Related works of the literature

I Integration of nuisance parameters [Berger et al., 1999]
I Noisy ICA [Moulines et al., 1997]
I Latent Dirichlet allocation (LDA) [Blei et al., 2003]

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 11/39



Inference in semi-Bayesian NMF (2/2)

I Empirical comparison of the two paradigms
[Dikmen and Févotte, 2011, Dikmen and Févotte, 2012] in
the Poisson and Exponential models

I MMLE tends to automatically prune the columns of W, while
MJLE makes use of all K columns

I Favorable behavior that was left unexplained

I Related works of the literature
I Integration of nuisance parameters [Berger et al., 1999]
I Noisy ICA [Moulines et al., 1997]
I Latent Dirichlet allocation (LDA) [Blei et al., 2003]

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 11/39



Inference in semi-Bayesian NMF (2/2)

I Empirical comparison of the two paradigms
[Dikmen and Févotte, 2011, Dikmen and Févotte, 2012] in
the Poisson and Exponential models

I MMLE tends to automatically prune the columns of W, while
MJLE makes use of all K columns

I Favorable behavior that was left unexplained
I Related works of the literature

I Integration of nuisance parameters [Berger et al., 1999]
I Noisy ICA [Moulines et al., 1997]
I Latent Dirichlet allocation (LDA) [Blei et al., 2003]

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 11/39



Inference in semi-Bayesian NMF (2/2)

I Empirical comparison of the two paradigms
[Dikmen and Févotte, 2011, Dikmen and Févotte, 2012] in
the Poisson and Exponential models

I MMLE tends to automatically prune the columns of W, while
MJLE makes use of all K columns

I Favorable behavior that was left unexplained
I Related works of the literature

I Integration of nuisance parameters [Berger et al., 1999]

I Noisy ICA [Moulines et al., 1997]
I Latent Dirichlet allocation (LDA) [Blei et al., 2003]

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 11/39



Inference in semi-Bayesian NMF (2/2)

I Empirical comparison of the two paradigms
[Dikmen and Févotte, 2011, Dikmen and Févotte, 2012] in
the Poisson and Exponential models

I MMLE tends to automatically prune the columns of W, while
MJLE makes use of all K columns

I Favorable behavior that was left unexplained
I Related works of the literature

I Integration of nuisance parameters [Berger et al., 1999]
I Noisy ICA [Moulines et al., 1997]

I Latent Dirichlet allocation (LDA) [Blei et al., 2003]

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 11/39



Inference in semi-Bayesian NMF (2/2)

I Empirical comparison of the two paradigms
[Dikmen and Févotte, 2011, Dikmen and Févotte, 2012] in
the Poisson and Exponential models

I MMLE tends to automatically prune the columns of W, while
MJLE makes use of all K columns

I Favorable behavior that was left unexplained
I Related works of the literature

I Integration of nuisance parameters [Berger et al., 1999]
I Noisy ICA [Moulines et al., 1997]
I Latent Dirichlet allocation (LDA) [Blei et al., 2003]

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 11/39



Overview

We will focus on two sub-cases :

I Independent priors on H

p(H) =
N∏

n=1
p(hn) (9)

I Poisson likelihood + Gamma prior
I (Exponential likelihood + Inverse Gamma prior)

I Temporal priors on H

p(H) = p(h1)
∏
n≥2

p(hn|hn−1) (10)

I Design of a meaningful prior
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Model and objective

The Gamma-Poisson (GaP) model [Canny, 2004]
hkn ∼ Gamma(αk , βk) (11)

vfn|hn ∼ Poisson([WH]fn) (12)

I Different application fields for this observation model
I Text information retrieval (observation model very close to

LDA) [Canny, 2004, Buntine and Jakulin, 2006]
I Recommender systems (“Poisson factorization”)

[Gopalan et al., 2015]
I Image processing [Cemgil, 2009]

I MMLE amounts to

min
W
L(W) = − log

∫
p(V|H; W)p(H)dH (13)

Hyperparameters α and β may also be optimized

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 13/39



Model and objective

The Gamma-Poisson (GaP) model [Canny, 2004]
hkn ∼ Gamma(αk , βk) (11)

vfn|hn ∼ Poisson([WH]fn) (12)

I Different application fields for this observation model
I Text information retrieval (observation model very close to

LDA) [Canny, 2004, Buntine and Jakulin, 2006]
I Recommender systems (“Poisson factorization”)

[Gopalan et al., 2015]
I Image processing [Cemgil, 2009]

I MMLE amounts to

min
W
L(W) = − log

∫
p(V|H; W)p(H)dH (13)

Hyperparameters α and β may also be optimized

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 13/39



Model and objective

The Gamma-Poisson (GaP) model [Canny, 2004]
hkn ∼ Gamma(αk , βk) (11)

vfn|hn ∼ Poisson([WH]fn) (12)

I Different application fields for this observation model
I Text information retrieval (observation model very close to

LDA) [Canny, 2004, Buntine and Jakulin, 2006]
I Recommender systems (“Poisson factorization”)

[Gopalan et al., 2015]
I Image processing [Cemgil, 2009]

I MMLE amounts to

min
W
L(W) = − log

∫
p(V|H; W)p(H)dH (13)

Hyperparameters α and β may also be optimized

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 13/39



Data augmentation

I Superposition property of the Poisson distribution

The augmented GaP model
hkn ∼ Gamma(αk , βk) (14)
cfkn ∼ Poisson(wfkhkn) (15)
vfn =

∑
k

cfkn (16)

I C denotes the F × K × N tensor with entries cfkn
I Thanks to the conjugacy between the Poisson and the Gamma

distribution, hkn can be marginalized out from Eqs. (14)-(15)
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Marginalizing the activation coefficients

New formulation of GaP

ckn ∼ NM
(
αk ,

[ w1k∑
f wfk + βk

, . . . ,
wFk∑

f wfk + βk

]T
)

(17)

vn =
∑

k
ckn (18)

where ckn = [c1kn, . . . , cFkn]T is a vector of size F

I The vector ckn has a so-called negative multinomial (NM)
distribution, known in closed form

I GaP can therefore be seen as a composite NM model
I Alternative characterization with the multinomial distribution
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Closed-form marginal likelihood

I Denote by CV the set of “admissible components”

CV = {C ∈ NF×K×N | ∀(f , n),
∑

k
cfkn = vfn}. (19)

I The marginalization of C yields

p(V; W) =
∑

C∈CV

p(C; W) =
∑

C∈CV

∏
k,n

p(ckn; wk)︸ ︷︷ ︸
NM

(20)
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Exhibiting a regularization term

I After computation, we obtain

− 1
NL(W) =− 1

N log

∑
C∈CV

f (C; W)

 (21)

+
∑

k
αk log(||wk ||1 + βk) + cst (22)

I “Data-fitting term” + “regularization term”
I Term of the form R(x) =

∑
k log(|xk |+ ε) is known to be

sparsity-inducing [Candès et al., 2008]
I Provides a deeper understanding of the self-regularization

phenomenon
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Optimization of the marginal likelihood (1/2)

I EM algorithm [Dempster et al., 1977] iteratively optimizes the
following functional

Q(W; W̃) =
∫

Z
log p(V,Z; W)p(Z|V; W̃) (23)

Z is the set of latent variables, W̃ the current value
I Three possible choices :

I Z = {C,H} : known from [Dikmen and Févotte, 2012]
I Z = {H} : known from [Dikmen and Févotte, 2012]
I Z = {C} : novel

I In all cases the posterior of the latent variables p(Z|V; W̃) is
not tractable
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Optimization of the marginal likelihood (2/2)

I We resort to Monte Carlo EM [Wei and Tanner, 1990]
I Sampling from p(C,H|V; W̃) with a Gibbs sampling procedure
I Optimizes instead

Q̂(W) = 1
J
∑

j
log p(V,Z(j); W) (24)

Can be carried out in closed form for EM-CH and EM-C,
EM-H requires a MM1-based procedure

1Majorization-Minimization
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Experimental work (1/3)
Synthetic dataset V1 (4× 100) generated from the GaP model
with W?

1
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Figure 1: Speed of convergence comparison of the three algorithms on
dataset V1 (K = 3)
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Experimental work (2/3)
I Synthetic dataset V2 (4× 100) generated from the GaP

model with W?
2 = 100×W?

1
I Over-dispersed, non-sparse
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Figure 2: Speed of convergence comparison of the three algorithms on
dataset V2 (K = 3)
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Experimental work (3/3)
I Taste Profile dataset (1509× 805)
I Over-dispersed, sparse
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Figure 3: Speed of convergence comparison of the three algorithms the
Taste Profile dataset (K = 10)
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Temporal prior

I Matrices V where the samples are correlated

I Add correlation to the models by lifting the independence
assumption on the columns of H

I Markov structure on the columns + independence of the rows

p(H) =
∏
k

p(hk1)
∏
n≥2

p(hkn|hk(n−1)) (25)

So-called temporal models
I Non-negative Markov chains, in relation with the Gamma

distribution
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Gamma Markov Chains of the literature (1/3)
Chaining on the rate parameter

hkn|hk(n−1) ∼ Gamma
(
α,

β

hk(n−1)

)
(26)

[Févotte et al., 2009, Févotte, 2011]

I E(hkn|hk(n−1)) = α
β hk(n−1)

I No well-defined stationary distribution
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Gamma Markov Chains of the literature (2/3)
Chaining on the rate parameter with an auxiliary variable

zkn|hk(n−1) ∼ Gamma
(
αz , βzhk(n−1)

)
(27)

hkn|zkn ∼ Gamma (αh, βhzkn) (28)

[Cemgil and Dikmen, 2007]

I E(hkn|hk(n−1)) = βzαh
βh(αz−1)hk(n−1)

I No well-defined stationary distribution
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Gamma Markov Chains of the literature (3/3)

Chaining on the shape parameter

hkn| hk(n−1) ∼ Gamma
(
αhk(n−1), β

)
(29)

[Acharya et al., 2015, Schein et al., 2016]

I E(hkn|hk(n−1)) = α
β hk(n−1)

I No well-defined stationary distribution
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Limitations

I All the chains proposed in the NMF literature are based on
E(hkn|hk(n−1)) ∝ hk(n−1)

I All share the same drawback : the absence of a well-defined
stationary distribution

I Leads to degenerate realizations of the chain
I Difficult to interpret from a generative perspective
I We propose to use Markov chains with a well-defined

stationary distribution
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The BGAR(1) process (1/2)
First-order autoregressive Beta-Gamma process – BGAR(1)

hk1 ∼ Gamma(α, β) (30)
hkn = bknhk(n−1) + εkn (31)

where bkn ∈ [0, 1] and εkn ≥ 0 are i.i.d. r.v. such that

bkn ∼ Beta(αρ, α(1− ρ)) (32)
εkn ∼ Gamma(α(1− ρ), β) (33)

[Lewis et al., 1989]

I We have

E(hkn|hk(n−1)) = ρhk(n−1) + α(1− ρ)
β

(34)

I hkn is marginally Gamma distributed
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The BGAR(1) process (2/2)

More precisely...

I α and β control the marginal distribution
I ρ controls the correlation between two successive values
I ρ→ 0 : i.i.d. random variables, ρ→ 1 : deterministic process
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A novel temporal NMF model
The BGAR-NMF model

hk ∼ BGAR(ρk , αk , βk) (35)
vfn| hn ∼ Poisson([WH]fn) (36)

I W is left to be a deterministic variable to be estimated
I α, β, ρ are treated as fixed hyperparameters
I V and H define a hidden Markov model [Cappé et al., 2005]

hn−1 hn hn+1

vn−1 vn vn+1

•
W

•
α, β, ρ
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MMLE in the BGAR-NMF model (1/2)

I Maximize the marginal likelihood

max
W

p(V; W) =
∫

H,B
p(V,H,B; W)dHdB (37)

Using B as auxiliary variables
I Amounts to estimating the static parameters of the HMM

[Kantas et al., 2015]
I MCEM algorithm whose sampling step is carried out with

sequential Monte Carlo (SMC)
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MMLE in the BGAR-NMF model (2/2)
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Figure 4: Evolution of the norm of the columns of W w.r.t. the number
of EM iterations on the NIPS dataset (11463× 29).

I Method seemingly works on small dimensioned datasets
I Fails to produce exploitable results on real datasets

I Samples of poor quality ?
I Label switching

I Need for an alternative estimation paradigm in the
BGAR-NMF model
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MAP estimation in the BGAR-NMF model (1/3)

I MAP estimation amounts to the minimization of the following
function

C(W,H,B) = − log p(H,B|V; W) (38)
= − log p(V|H; W)− log p(H,B) + cst (39)

I We resort to a MM-based scheme. Only − log p(V|H; W)
needs to be majorized. Standard scheme in the NMF
literature [Lee and Seung, 2000, Févotte and Idier, 2011]

I For H and B, leads to order-3 polynomial equations to solve
I We have to restrict ourselves to certain values of

hyperparameters
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MAP estimation in the BGAR-NMF model (2/3)
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Figure 5: Evolution of h w.r.t. ρ on a synthetic dataset
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MAP estimation in BGAR-NMF model (3/3)

I Comparison of all the presented models in a MAP framework
I Prediction problem on the NIPS dataset. 80/10/10 split

Method `1 error `2 error KL error

GaP 17.14± 0.47 4011± 446 267031± 9859

Rate 13.07± 0.58 4652± 1907 206574± 12839

Rate + Aux 9.34± 0.29 912± 225 136412± 6212

Shape 12.63± 0.3 1946± 240 192849± 5753

BGAR 9.3± 0.17 839± 119 138351± 6262

Table 4: Prediction results on the NIPS dataset
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1 Introduction

2 MMLE in the Gamma-Poisson model

3 Temporal NMF

4 Conclusions and perspectives



Conclusions
We tackled maximum marginal likelihood estimation in
semi-Bayesian NMF models

I Study of two particular instances : the GaP model and the
IGCN model

I Rewriting of the models free of H, which led to an expression
of the marginal likelihood

I The expression revealed a penalty term on W
I We tackled the optimization of the likelihood with (MC)-EM

algorithms
I Study of temporal Markovian NMF models

I Thorough review of the literature, which revealed that all
considered Markov chains shared the same drawback

I We proposed the use of an overlooked model from the time
series literature, BGAR(1)

I MMLE tackled with SMC : not satisfying
I MAP estimation tackled with an MM-based algorithm showed

better performance on prediction tasks
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Perspectives

I Model aspects
I Break out of conjugate prior distributions
I Break out of composite models
I Carry out the analysis in a family of distributions
I Other Markov chains with stationary Gamma distribution

I Optimization aspects
I Break out of MC-EM : alternative schemes ?
I Direct optimization of the likelihood
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Associated publications

I Filstroff, L., Lumbreras, A., and Févotte, C. (2018).
Closed-form Marginal Likelihood in Gamma-Poisson Matrix Factorization.
In Proceedings of the International Conference of Machine Learning
(ICML).

I Filstroff, L., and others (2019)
Temporal Non-negative Matrix Factorization with Gamma Markov Chains.
In preparation. IEEE Transactions on Signal Processing.

I Xia, R., Tan, V.Y.F., Filstroff, L., and Févotte, C. (2019).
A Ranking Model Motivated by Nonnegative Matrix Factorization with
Applications to Tennis Tournaments.
In Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD).

I Lumbreras, A., Filstroff, L., and Févotte, C. (2018).
Bayesian mean-parameterized nonnegative binary matrix factorization.
In revision. Data Mining and Knowledge Discovery.

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 38/39



Thank you for your attention.
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Additional slides

I The MM framework

I Variants of the EM algorithm

I Links between PF and LDA

I NB and NM distributions

I Examples of self-reg.

I The IGCN model

I MM algorithm for BGAR-NMF

I MAP estimation



The Majorization-Minimization (MM) framework
I Majorize the function f by an auxiliary function g
I Minimize g instead
I g is such that g(x ; x̃) ≥ f (x) and g(x̃ ; x̃) = f (x̃)

0.0 0.5 2.0 2.5x(i) x(i + 1) x⋆

−4

−2

0

2

4

f(x)

g(x; x(i))

Go back
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Variants of the EM algorithm

I MCEM : converges as Niter → +∞ AND J → +∞ At
iteration t, uses J samples for maximization

I SAEM [Delyon et al., 1999, Kuhn and Lavielle, 2004]
Converges as Niter → +∞

Q̂t(θ) = (1− γt)Q̂t−1(θ) + γt
Jt

∑
j

log p(V,Z(j); θ) (40)

(γl )l≥1 is a sequence of positive step sizes decreasing to 0
At iteration t, uses all past samples for maximization

I On-line EM [Cappé et al., 2005]
Stochastic approximation “one sample at a time”

Go back
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Equivalence between Poisson Factorization and LDA

vfn ∼ Poisson([WH]fn) (41)

is equivalent to

Ln ∼ Poisson
(∑

f
wfk

∑
k

hkn

)
(42)

vn|Ln ∼ Mult (Ln,λn) (43)

with
λfn =

∑
k wfkhkn∑

f wfk
∑

k hkn
(44)

Imposing
∑

f wfk = 1 and
∑

k hkn = 1 leads to the observation
model of LDA (difference in budget)

Go back
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NB and NM distributions
Negative Binomial (NB) distribution
With α > 0 and p ∈ [0, 1]. For all c ∈ N

P(X = c) = Γ(α + c)
Γ(α)c! (1− p)αpc (45)

{
λ ∼ G(α, β)
X |λ ∼ Poisson(λ) ⇔ X ∼ NB

(
α,

1
β + 1

)
(46)

Negative Multinomial (NM) distribution
With α > 0 and pf ∈ [0, 1] and

∑
f pf ≤ 1. For all c1, . . . , cF ∈ NF

P(X1 = c1, . . . ,Xn = cF ) = Γ(α +
∑

f cf )
Γ(α)

∏
f cf ! pα0

∏
f

pcf
f (47)

Go back

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 43/39



Examples of self-regularization

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
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The IGCN model and objective
The IGCN model

hkn ∼ IG(αk , βk) (48)
xfn|hn ∼ CN (0, [WH]fn) (49)

I CN denotes the complex normal distribution
I Standard STFT model in audio signal processing (“Gaussian

composite model”)
[Févotte et al., 2009, Hoffman et al., 2010]

I Inverse Gamma prior for practical reasons : conjugacy with
the normal distribution of known mean

I MMLE amounts to

min
W
L(W) = − log

∫
p(X|H; W)p(H)dH (50)

Go back
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Marginalization of the activation coefficients

I Same augmentation with variables C as in the GaP model
(superposition property of the normal distribution)

I IGCN can be written as a composite complex Student’s t
model

I Does not lead to a closed-form expression of the likelihood,
because we end up with an intractable integral

p(X; W) =
∫

C∈C
p(C; W)dC =

∫
C∈C

∏
k,n

p(ckn; wk)dC (51)

I Still exhibits a term of the form
∑

f ,k log(wfk), which
promotes “local” sparsity

Louis Filstroff INRA-MIAT Seminar November 29th, 2019 46/39



Optimization of the marginal likelihood

I In [Dikmen and Févotte, 2011], the optimization was tackled
with a variational algorithm

I We have proposed three novel EM algorithms based on three
choices of the latent variables

I E-step based on a shared Gibbs sampling procedure
I M-step in closed form (EM-CH), or tackled with MM-based

schemes (EM-H, EM-C)
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Experimental results

I Real audio decomposition task on a short piano sequence
I Performance compared with the standard IS-NMF
I No obvious advantage in this case (similar audio accuracy,

dictionary not especially sparse, computationally prohibitive)
I Conceptually interesting, but shows the limitations of the

method
Go back
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MM : Constraints

In BGAR, we have

hkn = bknhk(n−1) + εkn (52)
hk(n+1) = bk(n+1)hkn + εk(n+1) (53)

Leads to
bknhk(n−1) ≤ hkn ≤

hk(n+1)
bk(n+1)

(54)

and
0 ≤ bkn ≤ min

(
1, hkn

hk(n−1)

)
(55)
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MM : Hyperparameter constraints
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Figure 6: Hyperparameter values of the parameters αk and ρk ensuring a
well-posed MAP estimation in the BGAR-NMF model
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MAP Estimation

Objective function

C(W,H) = − log p(V|H; W)︸ ︷︷ ︸
Majorize

− log p(H) (56)

Standard majorization in the Poisson case

G(H; H̃) = −
∑
k,n

pkn log hkn +
∑
k,n

qkhkn (57)

I Rate : order-2 polynomials
I Rate + Aux : order-1 polynomials
I Shape : Newton’s method
I BGAR : order-3 polynomials

Go back
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