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The StatSeq Dataset (just to make sure you remember)

* StatSeq consists of 72 datasets originated from 9 different “in
silico” gene networks, each simulated under 8 different
parameter settings such as population sizes, marker distances,

and heritability.

* For each of the 72 datasets there are two mattrices:
— 1) the gene expression matrix

— 11) the genotype matrix which represents the mutated genes.

* The problem is to identify the network topology from the
data (reverse-engineering).
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To solve the problem: Network Inference by Regression (NIR)

Network model / a
promoters —> B Influence
function
X2 \

RNAs > — | Xs—> dX;
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X12 / Output
Input RNA Transcription
concentrations Rate

dx;/dt = a, X, + @g Xg + @9 Xg + @15 X35 + P

NIR requires knowledge of the perturbed gene in each experiment

but it recovers a DIRECTED NETWORK
Gardner, di Bernardo et al, Science, 2003; Cantone et al, Cell, 2009 — code @ http://dibernardo.tigem.it



For steady-state data the eqs. become:

dx;/dt = a;;x; + apX, + ... F Xy T P
0=a;x;+apX; + ... +aXy+p

<>

Xyt apX, T ..o FtanXy = -p



A solution can be obtained by linear regression:

* We can solve one gene at a time by writing the eq. for a gene 71in
experiment 7:

aj1Xqq t X + ... FapXy1 T P
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Assuming we over-express one gene at a time, then we will obtain N
experiments. E.g. if we perturbed gene 7 in the 27 experiment:

@ This is solved by linear

regression with variable selection

Qi Xqq + AppXoq + ...t ApXyg = - -
ot T2 AnXnt =0 and assuming a sparse network, 1.e.

genes (N)<exps (M)

'$ [a;1...apn]"=X"p

Ai1X1p + QipXop T ... F AKXy = 1

A Xqn tapXoy t .. F Xy =0

/ / AN

How gene 1 regulates gene i Perturbation vector p

Gene N in all M experiment



Application to StatSeq data:

— 1) the gene expression matrix = X

— 1) the genotype matrix which represents the mutated
genes =P

e Assuming that the mutated genes cause a change in
expression of the target genes.

 Assuming a sparse network, i.e. each gene is
connected at most to 10 other genes, so that the a,
vector is of dimension 10.
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Results: it works better that MI/Correlation methods.
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Fig. 3 Precision-Recall curve at 10% of Recall for NIR and ARACNe algorithms. The Pre-
cision (TP/(TP+FP) ) vs. Recall (TP/(TP+FN) ) curve at 10% of Recall for NIR (black line) and
ARACNe (blue line) algorithms. Only the first two type of each datasets composed by 1000 genes
have been used. The dashed line represents the precision of the random algorithm.



Part 11
Differential Network Analysis for the identification of condition-
specific pathway activity and regulation
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Overview of the reverse-engineering strategy (very simple):
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Results: Co-expression networks, structure & validation
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The Golden standard 1s a mainly composed of about 80,000 experimentally validate
intgractions from Reactome database.



DIfferential Network Analysis can elucidate tissue-specific pathways

@® Gene

Co-regulation
* We developed a network-based algorithm,
DINA, which is able to identify sets of G
. .. - "
genes which are significantly co-regulated QO -
only 1n specific conditions. l?) Liver -
- - -
U [ ]
o -

* The algorithm stars:

1. with a set of M genes and a set of N
networks.

2. quantifies how variable the co-regulation
probability is across the N networks using
an entropy-based measure (H).

. tissue speci

i

* Its significance is estimated using a
Permutation Test.

... pathway of interest ...

11



Results: Application to 187 KEGG pathways, the top significant pathways
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DINA was, indeed, able to:
identify tissue-specific!
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* The Glycine, serine and
threonine metabolism 1s
present only in liver and
kidney.

* Using only the
expression level of the
genes in the pathway we

would have not
obtained the correct
- answer.




Primary hepatocytes HepG2 Huh?7
(initial) (severe)
[wt p53] [wt p53] [mt p53]

Hepatocarcinoma cell lines: a simple model of HCC progression

1. Primary human hepatocytes

2. HepG?2 cell lines (1nitial stage)

3. Huh7 cell lines (severe)
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DINA is able to detect dys-regulated pathways in disease
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DIfferential Network Analysis (DINA) for the identification of TFs

‘ Gene

h

We computed, for a total of 1358 Transcipion Fackor

ified TF h ber of ed
verifie s, the number of edges P’('
U

connecting each TF to the enzymes
in the selected pathway in each of

the 30 TSCN.

— We selected those TFs that were
significantly differentially co-

-
o
-
—

expressed with the enzymes across
the tissues using the exact Fisher

.. tissue specific networks ...

test.

... pathway of interest ...
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DIfferential Network Analysis (DINA) for the identification of TFs

Symbol Name Role Citations

NR1H4 nuclear receptor subfamily 1, group H, member 4 activator  [45,81,82] TABIL.E I.EGEND
ESRRG estrogen-related receptor gamma activator  [82,83]

TRPS1  trichorhinophalangeal syndrome I inhibitor - .
NR1I3 nuclear receptor subfamily 1, group I, member 3 activator  [47,48, 82] Bold: genes encods ng
HINF4A  hepatocyte nuclear factor 4, alpha activator [49,82] P roteins with known TF
ZNF394 zinc finger protein 394 inhibitor - d&fl-ﬂl.{j/.

TBR1 T-box, brain, 1 activator —

DAB2 disabled homolog 2, mitogen-responsive phosphoprotein activator - No Bold: genes €ﬂ6‘0dZ.ﬂg
DIP2C disco-interacting protein 2 homolog C (Drosophila) activator - p rotein indirec lt/)/ actin 9 on
TRIM15 tripartite motif-containing 15 activator — .o

ASB9 ankyrin repeat and SOCS box-containing 9 activator — fi"&lﬁf&‘?"lp ron

YEATS2 YEATS domain containing 2 inhibitor - _

SIRT4 sirtuin 4 activator  [50-52]

* For each of the 9 metabolic pathways previously identified as tissue-specific, we

identified the regulators shared by the majority (i.e. 7 out of 9) of metabolic

pathways.

* Very little 1s known about YEATS2 function. Recently, it has been demonstrated to
interact with the ATAC complex (Ada-Two-A-Containing)

16



Yeats2 as a novel regulator of metabolic gene expression

YEATS2 has been proposed to participate to the ATAC (Ada-Two-A-Containing) complex. ATAC,
together with SAGA (Spt-Ada-Gcenb5-Acetyl-Transferase), is able to modulate transcription, both by
chromatin modification and hy interaction with the TATA-binding protein (ITBP).
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Conclusion 11

* We hypothesized that genes belonging to a tissue-specific pathway are
actively co-regulated, and hence co-expressed, only in specific tissues
where the pathway is active, but not in others, independently of their
absolute level of expression.

* We proposed an approach (DINA) based on quantifying the variability in
the co-regulation probability and gene topology across tissues or
conditions.

* We showed that this approach can be succesfully usend to elucidate
tissue specific pathway and regulators.

*  We showed that DINA is also able to identify dysregulated pathway in

disease.

Web tool availabe at http://dina.tigem.it
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