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The StatSeq Dataset (just to make sure you remember) 

•  StatSeq consists of 72 datasets originated from 9 different “in 
silico” gene networks, each simulated under 8 different 
parameter settings such as population sizes, marker distances, 
and heritability.  

•  For each of the 72 datasets there are two matrices:  
–  i) the gene expression matrix  
–  ii) the genotype matrix which represents the mutated genes. 

•  The problem is to identify the network topology from the 
data (reverse-engineering). 
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To solve the problem: Network Inference by Regression (NIR)  

 
 

dx1/dt = a2 x2 + a6 x6 + a9 x9 + a12 x12 

promoters 

RNAs 

+ p 

p 

Gardner, di Bernardo et al, Science, 2003; Cantone et al, Cell, 2009 – code @ http://dibernardo.tigem.it 

NIR requires knowledge of  the perturbed gene in each experiment  
but it recovers a DIRECTED NETWORK 



For steady-state data the eqs. become: 

 

0 = ai1x1 + ai2x2 + … + aiNxN + p 
 

ai1x1 + ai2x2 + … + aiNxN =  -p 
 

dxi /dt = ai1x1 + ai2x2 + … + aiNxN + p 



	


	



A solution can be obtained by linear regression: 

•  We can solve one gene at a time by writing the eq. for a gene i in 
experiment 1: 

 

ai1x11 + ai2x21 + … + aiNxN1 = 0 

ai1x12 + ai2x22 + … + aiNxN2 = 1 

ai1x1N + ai2x2N + … + aiNxNN = 0 
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NxN 

ai1x11 + ai2x21 + … + aiNxN1 =  -p 

Assuming we over-express one gene at a time, then we will obtain N 
experiments. E.g. if  we perturbed gene i in the 2nd experiment:   

Gene N in all M experiment 

How gene 1 regulates gene i 

[ai1…aiN]T=X-1p 

Perturbation vector p 

Th i s i s so lved by l inear 
regression with variable selection 
and assuming a sparse network, i.e. 
genes (N)<exps (M) 



Application to StatSeq data: 

–  i) the gene expression matrix = X 

–  ii) the genotype matrix which represents the mutated 
genes =P 

•  Assuming that the mutated genes cause a change in 
expression of the target genes. 

•  Assuming a sparse network, i.e. each gene is 
connected at most to 10 other genes, so that the ai 
vector is of dimension 10. 
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Results: it works better that MI/Correlation methods. 
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Differential Network Analysis for the identification of condition-
specific pathway activity and regulation 

 

 
 

Part II 

Gennaro Gambardella 

Gambardella G. et al, Bioinformatics, under review 



Overview of the reverse-engineering strategy (very simple): 

2930	
  HUMAN	
  microarray	
  hybridiza2ons	
  
	
  

22,283	
  transcripts	
  	
  for	
  each	
  pla:orm.	
  
	
  

30	
   2ssue	
   specific	
   co-­‐expression	
   networks	
   using	
   the	
  
Spearman	
  Correla2on	
  Coefficient	
  SCC.	
  

We	
   built	
   a	
  database	
   containing	
   re-­‐annotated	
  
microarray	
   experiments	
   for	
   2ssues	
   and	
   cell	
  
type	
  for	
  HUMAN.	
  

DB	
  expe 

Semi  automatic 
re-annotation 
using ontology  

Data normalization (RMA) 
SCC computing (22283x22283 probe pair) 

Significant interaction identification 

30 tissue specific 
co-expression 

networks 
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Results: Co-expression networks, structure & validation 

The Golden standard is a mainly composed of  about 80,000 experimentally validate 
interactions from Reactome database. 10 

 
 



DIfferential Network Analysis can elucidate tissue-specific pathways 

•  We developed a network-based algorithm, 
DINA, which is able to identify sets of 
genes which are significantly co-regulated 
only in specific conditions.  

•  The algorithm stars: 
1.   with a set of M genes and a set of N 

networks.  
2.  quantifies how variable the co-regulation 

probability is across the N networks using 
an entropy-based measure (H).  

•  Its significance is estimated using a 
Permutation Test. 
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Results: Application to 187 KEGG pathways, the top significant pathways 

•  The Glycine, serine and 
threonine metabolism is 
present only in liver and 
kidney. 

•  U s i n g  o n l y  t h e 
expression level of the 
genes in the pathway we 
w o u l d  h a v e  n o t 
obtained the correct 
answer.  

 
 

In order to test whether 
DINA was, indeed, able to 
i den t i f y t i s sue - spec i f i c 
pathways we used the full 
manually curated list of  187 
KEGG pathways f rom 
MsigDb. 
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DINA is able to detect dysregulated pathways in disease  

Hepatocarcinoma cell lines: a simple model of  HCC progression 
1.  Primary human hepatocytes 

2.  HepG2 cell lines (initial stage) 

3.  Huh7 cell lines (severe) 

Primary hepatocytes HepG2 
(initial) 

Huh7 
(severe) 

[wt p53] [wt p53] [mt p53] 
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We selected 34 bona 
fide targets of  p53 [1] 
and checked for their 
co-expression in the 
HCC cell lines. 

DINA is able to detect dys-regulated pathways in disease   
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(initial) 
wt p53 

(severe) 
mt p53 

(wt) 
wt p53 

[1] Lim et al. (2007) The p53 knowledgebase: an 
integrated information resource for p53 research. 

Oncogene, Mar 8;26(11):1517-21. 



DIfferential Network Analysis (DINA) for the identification of TFs 

•  We computed, for a total of 1358 
verified TFs,  the number of edges 
connecting each TF to the enzymes 
in the selected pathway in each of 
the 30 TSCN.  

–  We selected those TFs that were 
significantly differentially co-
expressed with the enzymes across 
the tissues using the exact Fisher 
test. 
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DIfferential Network Analysis (DINA) for the identification of TFs 
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•  For each of the 9 metabolic pathways previously identified as tissue-specific, we 
identified the regulators shared by the majority (i.e. 7 out of 9) of metabolic 
pathways. 

•  Very little is known about YEATS2 function. Recently, it has been demonstrated to 
interact with the ATAC complex (Ada-Two-A-Containing) 

Symbol Name Role Citations

NR1H4 nuclear receptor subfamily 1, group H, member 4 activator [45, 81,82]

ESRRG estrogen-related receptor gamma activator [82, 83]

TRPS1 trichorhinophalangeal syndrome I inhibitor –

NR1I3 nuclear receptor subfamily 1, group I, member 3 activator [47, 48,82]

HNF4A hepatocyte nuclear factor 4, alpha activator [49, 82]

ZNF394 zinc finger protein 394 inhibitor –

TBR1 T-box, brain, 1 activator –

DAB2 disabled homolog 2, mitogen-responsive phosphoprotein activator –

DIP2C disco-interacting protein 2 homolog C (Drosophila) activator –

TRIM15 tripartite motif-containing 15 activator –

ASB9 ankyrin repeat and SOCS box-containing 9 activator –

YEATS2 YEATS domain containing 2 inhibitor –

SIRT4 sirtuin 4 activator [50–52]

Table 1: Ranked common transcription factors for the 6 significant pathways. In boold genes with know
Gene Ontology (Molecular Function) transcription factor activity.

Table X - DINA results.
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TABLE LEGEND 
 
Bold : genes encoding 
proteins with known TF 
activity. 
 
No Bold: genes encoding 
protein indirectly acting on 
transcription 



Yeats2 as a novel regulator of metabolic gene expression 

 
 

YEATS2 has been proposed to participate to the ATAC (Ada-Two-A-Containing) complex. ATAC, 
together with SAGA (Spt-Ada-Gcn5-Acetyl-Transferase), is able to modulate transcription, both by 
chromatin modification and by interaction with the TATA-binding protein (TBP). 

Yeats2 expression 
decreases during 

starvation in primary 
hepatocytes 

BF 8,78E-15 BF 5,31E-24 

BF 0.22 

BF 1,81E-20 

BF 3,22E-12 

BF 3,87E-17 

BF 2,91E-28 

Thanks to 
Nicoletta 
Moretti 
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Conclusion II 

•  We hypothesized that genes belonging to a tissue-specific pathway are 
actively co-regulated, and hence co-expressed, only in specific tissues 
where the pathway is active, but not in others, independently of their 
absolute level of expression.  

•  We proposed an approach (DINA) based on quantifying the variability in 
the co-regulation probability and gene topology across tissues or 
conditions. 

•  We showed that this approach can be succesfully usend to elucidate 
tissue specific pathway and regulators. 

•  We showed that DINA is also able to identify dysregulated pathway in 
disease. 

	


	

 http://dina.tigem.it Web tool availabe at 
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