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Abstract

We are interested in the analysis of L2-Boosting algorithms for linear regressions.
Some consistency result has already been proved for high-dimensional models,
when the number of predictor grows exponentially with the sample size n. We
propose a new result for Weak Greedy Algorithms, which deals with the support
recovery, provided reasonable assumptions on the regression parameter. To
clarify all the proofs, we also present some results in the deterministic case.
Finally, we propose two multi-task versions of L2-Boosting for which we can
extend these stability results provided assumptions on the sparsity of the model.
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1. Introduction

2. Greedy algorithms

In this section, we describe some essential and useful results on greedy algo-
rithms which build approximations of any functional data f by stepwise itera-
tions. In the deterministic case (i.e. noiseless setting), we will refer to ’approx-
imations’ of f . In the noisy case, these approximations of f will be designated
as ’sequential estimators’. Results on Weak Greedy Algorithms of this section
are deduced from Temlyakov [1] to our particular setting. We slightly enrich the
presentation by adding some supplementary shrinkage parameters, which offers
additional flexibility in the noisy setting. Indeed, it will be necessary to under-
stand the behaviour of the WGA with shrinkage to show statistical consistency
of Boosting method.

2.1. Reminders on Weak Greedy Algorithm (WGA)

Let H be an Hilbert space, and ‖.‖ denotes its associated norm, which is
derived from the inner product 〈, 〉 on H. We define a dictionary as a (finite)
subset D = (g1, . . . , gp) of H, which satisfies

∀gi ∈ D, ‖gi‖ = 1 and SpanD = H.
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The coherence of such dictionary D, ρD, associated to the inner product in H
is then defined as:

ρD = max
1≤i 6=j≤p

|〈gi, gj〉|.

Of course, when the dictionary is orthogonal, the coherence is null, which is an
extreme case. In this work, we are primarily interested in non-orthogonal dic-
tionaries, since it is a common, if not universal, setting of real high dimensional
data sets. Since no confusion can occur in the sequel, the subscript D is omitted
and the coherence is denoted ρ.

Greedy algorithms generate iterative approximations of any f ∈ H, using
linear combination of elements of D. Mimicking notations of [1], denote Gk(f)
(resp. Rk(f)) the approximation of f (resp. the residual) at step k of the
algorithm. These quantities are linked with the following equation:

Rk(f) = f −Gk(f).

Algorithm 1 Weak Greedy Algorithm (WGA)

Require: function f , (ν, γ) ∈ (0, 1]2 (shrinkage parameters), kup (number of
iterations.)
Initialisation: G0(f) = 0 and R0(f) = f .
for k = 1 to kup do

Step 1 Select ϕk in D such that:

|〈ϕk, Rk−1(f)〉| ≥ ν max
g∈D

| 〈g,Rk−1(f)〉| , (1)

Step 2 Compute the current approximation and residual:

Gk(f) = Gk−1(f) + γ〈Rk−1(f), ϕk〉ϕk
Rk(f) = Rk−1(f)− γ〈Rk−1(f), ϕk〉ϕk, (2)

end for

At step k, we select ϕk ∈ D which provides a sufficient amount of information on
residual Rk−1(f). The first shrinkage parameter ν stands for a tolerance towards
the optimal correlation between the current residual and any dictionary element.
It offers some flexibility in the choice of the new element plugged in the model.
Even if elements ϕk such that Equation (1) is satisfied may not be uniquely
defined, the convergence of the algorithm is guaranteed by our next results.
The second shrinkage parameter γ is the standard step-length parameter of
Boosting algorithm. It avoids a binary add-on, and actually smoothly inserts
the new predictor in the approximation of f . Refinements of WGA including an
adaptive choice of ν or γ with the iteration k, or a barycentre average between
Gk−1(f) and 〈Rk−1(f), ϕk〉ϕk may improve algorithm convergence rate. We
decide to only consider the simplest version of WGA, because in the noisy
framework, these improvements generally disappear from a theoretical point of
view (see [2]).
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Following the arguments developed in [1], we can extend their results and
obtain a polynomial approximation rate:

Theorem 2.1 (Temlyakov, 2000). Let B > 0 and assume that f ∈ A(D, B),
where

A(D, B) =

f =

p∑
j=1

ajgj , with

p∑
j=1

|aj | ≤ B

 ,

then for a suitable constant CB which only depends on B:

‖Rk(f)‖ ≤ CB(1 + ν2γ(2− γ)k)−
ν(2−γ)

2(2+ν(2−γ)) .

2.2. Stability of the Boosting algorithm for noisy regression

This section aims at extending previous results to noisy cases.We present a
noisy version of WGA, and we clarify the consistency result of [2] by careful
considerations on the empirical residuals instead of theoretical ones (which are
indeed unavailable, see Remark 1).

2.2.1. Noisy Boosting algorithm

We consider an unknown f ∈ H, and we observe some i.i.d. variables
(Xi, Yi)i={1...n}, with arbitrary distributions, and we cast the following regres-
sion model on the dictionary D:

∀i = 1 . . . n, Yi = f(Xi) + εi, where f =

pn∑
j=1

ajgj . (3)

The Hilbert space L2(P ) := {f, ‖f‖2 =
∫
fT (x)f(x)dP (x) < ∞}, is endowed

with the inner product 〈f, g〉 =
∫
fT (x)g(x)dP (x), where P is the unknown law

of the random variables X. We define the empirical WGA, that is analogised to
coupled equations (1) and (2), by replacing 〈, 〉 by the empirical inner product
〈, 〉(n), defined as:

∀(h1, h2) ∈ H, 〈h1, h2〉(n) :=
1

n

n∑
i=1

h1(Xi)h2(Xi) and ‖h1‖2(n) :=
1

n

n∑
i=1

h1(Xi)
2.

Remark 1. The theoretical residual R̂k(f) = f− Ĝk(f) cannot be used for the
WGA (see Equations (4) and (5)) even with the empirical inner product, since
f is not observed. Hence, only the observed residuals at step k, Y − Ĝk, can
be used in the algorithm. This point is not totally clear in the initial work of
[2], since notations used in its proofs are read as if R̂k(f) = f − Ĝk(f) was
available. We write explicit and correct proofs in Section Appendix A.2
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Algorithm 2 Noisy Weak Greedy Algorithm

Require: Observations (Xi, Yi)i={1...n}, γ ∈ (0, 1] (shrinkage parameter), kup
(number of iterations).
Initialisation: Ĝ0(f) = 0.
for k = 1 to kup do

Step 1: Select ϕk ∈ D such that:

|〈Y − Ĝk−1(f), ϕk〉(n)| = max
1≤j≤pn

|〈Y − Ĝk−1(f), gj〉(n)|. (4)

Step 2: Compute the current approximation and residual:

Ĝk(f) = Ĝk−1(f) + γ〈Y − Ĝk−1(f), ϕk〉(n)ϕk. (5)

end for

2.2.2. Stability of the Boosting algorithm

We will use in the sequel the two following notations: for any sequences
(an)n≥0 and (bn)n≥0 and a random sequence (Xn)n≥0, an = O

n→+∞
(bn) means

that an/bn is a bounded sequence, and Xn = oP
n→+∞

(1) means that ∀ε >

0, lim
n→+∞

P(|Xn| ≥ ε) = 0. We recall here needed standard assumptions on

high dimensional models.
Hypotheses H1

H1−1 For any gj ∈ D: E[gj(X)2] = 1 and sup
1≤j≤pn,n∈N

‖gj(X)‖∞ <∞.

H1−2 The number of predictors pn satisfies pn = O
n→+∞

(
exp(Cn1−ξ)

)
, with

ξ ∈ (0, 1) and C > 0.
H1−3 (εi)i=1...n are i.i.d centred variables in R, independent from (Xi)i=1...n,

satisfying E|ε|t <∞, for some t > 4
ξ , where ξ is given in H1-2.

H1−4 The sequence (aj)1≤j≤pn satisfies: sup
n∈N

pn∑
j=1

|aj | <∞.

Remark 2. Assumption H1−1 is clearly satisfied for compactly supported real
polynomials, or Fourier expansion with trigonometric polynomials. Assumption
H1−2 bounds the high dimensional setting and states that log(pn) should be at
the most of the same order as n. Assumption H1−3 is on the nature of the
noise, which must be centred with at least a bounded second moment. It is
required to apply a uniform law of large numbers and is satisfied for a great
number of distributions, such as Gaussian or Laplace ones. Last assumption
H1−4 is a sparsity hypothesis on the unknown signal. It is trivially satisfied
when the decomposition (aj)j=1...pn of f is bounded and has a fixed sparsity
index: Card {i|ai 6= 0} ≤ S.

We formulate then the first important result of Boosting algorithm, obtained
by [2], which stands for a stability result.
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Theorem 2.2 (Consistency of WGA). Consider Algorithm 2 presented above
and assume that Hypotheses H1 are fulfilled. Then, there exists a sequence
kn := C log(n), with C < ξ/4 log(3), such that:

E‖f − Ĝkn(f)‖2(n) = oP
n→+∞

(1).

We only give here the outline of proof, details can be found in the Appendix
section. A straightforward calculus shows that theoretical residuals would be
updated as

R̂k(f) = R̂k−1(f)− γ〈R̂k−1(f), ϕk〉(n)ϕk − γ〈ε, ϕk〉(n)ϕk. (6)

The proof of stability results from the study of a phantom algorithm, which
reproduces the behaviour of the deterministic version of the algorithm, the in-
ner product 〈, 〉 being replaced by its empirical counterpart, and the (random)
sample-driven choice of (ϕk)k≥0 is governed by the random algorithm defined
according to Equation (4). We thus consider a semi-population algorithm which
works with the deterministic inner product and the random coordinates and el-
ement of dictionary selected by the random WGA. The phantom residuals are
initialised by R̃0(f) = R̂0(f) = f and satisfy at step k:

R̃k(f) = R̃k−1(f)− γ〈R̃k−1(f), ϕk〉ϕk, (7)

where ϕk is chosen using Equation (4). The proof is then broken down in two
steps. On the one hand, we would establish an analogue of equation (1) for ϕk
which can allow us to apply Theorem 2.1 to the phantom residual R̃k(f). On
the other hand, we give an upper bound for the difference between R̂k(f) and
R̃k(f).

2.3. Stability of support recovery

This paragraph presents our main result in the univariate case. We prove
the stability of support recovery as built by the noisy WGA. We prove that
the WGA exactly recovers the support of the function with high probability,
if we assume an amplitude condition on active coefficients (see hypothesis H2

below). Interestingly, this result is related to the sparsity of f , i.e the number
of its non-null coordinates and assumptions on its order of magnitude with
respect to ρ. Next assumption also deals with the regression parameter range.
A minimal bound for the value of the active coefficients in the decomposition of
f is needed to derive a consistency result of the support estimate. If we denote
S the support of f , the next assumption is stated as follows:

Hypothesis H2: Given ξ defined in H1−2, elements (aj)1≤j≤pn satisfy:

∃κ ∈ (0, 1), ∀j ∈ S, |aj | ≥ n−κξ.

Remark that the greater the number of variables, the larger the value of ξ
and the less restrictive Assumption H2. A constraint on shrinkage parameter γ
is also needed to obtain the following result.
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Theorem 2.3 (Support recovery). i) Assume ρ(2S − 1) < 1 and hypothesis
H1, there exists a maximal shrinkage parameter γ∗, such that, for all 0 < γ < γ∗

in Equation (5), with high probability only active coefficients are selected by
Equation (4) along iterations of Algorithm 2.

ii) Moreover, if hypothesis H2 holds with a sufficiently small κ < κ∗ (with
κ∗ depending on S and γ), then Algorithm 2 fully recovers the support of f with
high probability.

Point i) of Theorem 2.3 shows that along the iterations of Algorithm2, no
false positive elements are introduced in the support of f .

Concerning point ii), related results are known for other algorithms devoted
to sparse problems (see for instance [3] for Basis Pursuit algorithms, and [4],
[5], or [6] for Orthogonal Matching Pursuit (OMP)). The link between coher-
ence and sparsity for greedy algorithms has already been pointed out by several
authors (see for instance [7] or [4] and references therein). It is already known
for other signal reconstruction algorithms [8], [9], [6], which also rely on a spar-
sity assumption. Regarding the condition obtained by [6], our assumption is
stronger since active coefficients should be bounded from below by n−κξ in-
stead of log(p)1/2n−1/2 in Theorem 4 of [6]. Our result may not be optimal
but optimal conditions on active coefficients are beyond the scope of this paper.
The weak aspect of WGA seems harder to handle, compared to the treatment
of OMP (for instance) because one has to recursively bound the amplitude of
the remaining coefficients on active variables from one iteration to the next
according to the size of shrinkage parameters.

Observe that γ∗ can be chosen equal to or smaller than 13/18, (see the proof
of Theorem 2.3). As for the comprehensive support estimation part, the size of
κ∗ is made explicit in the proof of Theorem 2.3 (see Section Appendix A.3). It
is dictated by the level of noise in the data. When the constraint on κ is not
satisfied, it is still possible to show that only correct variables are selected by
any WGA. If S becomes large, κ must be chosen close to 0 to obtain a support
recovery result. It thus implies a restrictive bound condition on the amplitude
of active coefficients. In a similar way, if κ is fixed, then Theorem 2.3 exhibits
a permitted maximum size for sparsity S, for which we guarantee the exact
recovery of the support with high probability.

In summary, a trade-off between signal sparsity, dimensionality, signal-to-
noise ratio and sample size has to be reached. We give explicit constant bounds
for results on similar problems. Interesting discussions can be found in [10] (see
their Theorems 1 and 2 for sufficient and necessary conditions for an exhaustive
search decoder to succeed with high probability in recovering a function support)
and in the Sparsity and ultra-high dimensionality Section of [11].

3. A new L2-Boosting algorithm for multi-task situations

In this section, our purpose is to extend the algorithm and the results pre-
sented above to the multi-task situation. The main focus of this work resides in
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the choice of the optimal task to be boosted. Hence, we propose a new algorithm
which follows the initial spirit of iterative Boosting (see [12] for further details)
and the multi-task structure of f . We first establish an approximation result in
the deterministic setting and then we extend stability results of Theorems 2.2
and 2.3 for the so called Boost-Boost algorithm for noisy multi-task regression.

3.1. Multi-task Boost-Boost algorithms

Let us denote Hm := H⊗m the Hilbert space obtained by m-tensorisation
with the inner product:

∀(f, f̃) ∈ H2
m, 〈f, f̃〉Hm =

m∑
i=1

〈f i, f̃ i〉H .

Given any dictionary D on H, each element f ∈ Hm will be described by its
m coordinates f = (f1, . . . fm), where each f i is spanned on D, with unknown
coefficients:

∀i ∈ J1,mnK, f i =

pn∑
j=1

ai,jgj . (8)

A canonical extension of WGA to the multi-task problem is described by Algo-
rithm 3.

In the multi-task framework at step k, it is crucial to choose in the residuals
the coordinate which is meaningful and thus most needs improvement, as well
as the best regressor ϕk ∈ D. The main idea is to focus on coordinates that are
still poorly approximated. We introduce a new shrinkage parameter µ ∈ (0, 1].
It allows a tolerance towards the optimal choice of the coordinate to be boosted
either relying on the Residual L2 norm -Equation (9)- or on the D-Correlation
sum -Equation (10).

Note that this latter choice is rather different from the choice proposed in
[3], which uses the multichannel energy and it sums the correlations of each
coordinates of the residuals to any element of the dictionary. Comments on
pros and cons of minimising the Residual L2 norm or the D-Correlation sum
viewed as the correlated residual can be found in [13] (page 2316). Although
[13] advocates for a final advantage for the D-Correlation sum alternative, we
also consider the Residual L2 norm which seems natural since it relies on the
norm of the residuals themselves instead of the sum of information gathered
by individual regressors on each residuals. Moreover, conclusions of [13] are
more particularly focused on an orthogonal design matrix. The noisy WGA for
the multi-task problem is described by Algorithm 4 where we replace the inner
product 〈., .〉 by the empirical inner product 〈., .〉(n).
We use coupled criteria of Equations (9) and (11) in the Residual L2 norm
Boost-Boost algorithm, while we use criteria of Equations (10) and (11) in its
D-Correlation sum counterpart.
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Algorithm 3 Boost-Boost algorithm

Require: f = (f1, ..., fm), (γ, µ, ν) ∈ (0, 1]3 (shrinkage parameters), kup (num-
ber of iterations).
Initialisation: G0(f) = 0Hm and R0(f) = f .
for k = 1 to kup do
Step 1: Select f ik according to:

‖Rk−1(f ik)‖2 ≥ µ max
1≤i≤m

‖Rk−1(f i)‖2, [Residual L2 norm]

(9)
or to

p∑
j=1

〈Rk−1(f ik), gj〉2 ≥ µ max
1≤i≤m

p∑
j=1

〈Rk−1(f i), gj〉2, [D-Correlation sum]

(10)
Step 2: Select ϕk ∈ D such that:

|〈Rk−1(f ik), ϕk〉| ≥ ν max
1≤j≤p

|〈Rk−1(f ik), gj〉|, (11)

Step 3: Compute the current approximation:

Gk(f i) = Gk−1(f i), ∀i 6= ik,

Gk(f ik) = Gk−1(f ik) + γ〈Rk−1(f ik), ϕk〉ϕk. (12)

Step 4: Compute the current residual: Rk(f) = f −Gk(f).
end for

3.2. Approximation Results in the deterministic setting

We consider the sequence of functions (Rk(f))k recursively built according to
our Boost-Boost Algorithm 3 either with the choice (9) or (10). Since SpanD =
H, for any f ∈ Hm, each f i can be decomposed in H, and we denote Si, the
minimal amount of sparsity for such a representation. We then prove a first
approximation result.

Theorem 3.1 (Convergence of the Boost-Boost Algorithm). Let f = (f1, . . . fm) ∈
Hm such that, for any coordinate i, f i ∈ A(D, B).

i) There exists a suitable constant CB which only depends on B: the approx-
imations provided by the Residual L2 norm Boost-Boost algorithm satisfy, for
all k ≥ m

∀i ∈ J1,mK, ‖Rk(f i)‖ ≤ CBµ−
1
2 ν−

ν(2−γ)
2+ν(2−γ) (γ(2− γ))

− ν(2−γ)
2(2+ν(2−γ))

(
k

m

)− ν(2−γ)
2(2+ν(2−γ))

.

ii) Assume ρS(1 + ν−1) < 1 + ρ, there exists a suitable constant Cρ,S,B
such that the approximations provided by the D-Correlation sum Boost-Boost
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Algorithm 4 Noisy Boost-Boost algorithm

Require: Observations (Xi, Yi)i=1,...,n, γ ∈ (0, 1] (shrinkage parameter), kup
(number of iterations).
Initialisation: Ĝ0(f) = 0Hm .
for k = 1 to kup do
Step 1: Select ik according to:

‖Y ik − Ĝk−1(f ik)‖2(n) = max
1≤i≤m

‖Y i − Ĝk−1(f i)‖2(n), [Residual L2 norm]

or to

p∑
j=1

〈Y ik−Ĝk−1(f ik), gj〉2(n) = max
1≤i≤m

p∑
j=1

〈Y i−Ĝk−1(f i), gj〉2(n), [D-Correlation sum]

Step 2: Select ϕk ∈ D such that:

|〈Y ik − Ĝk−1(f ik), ϕk〉(n)| = max
1≤j≤p

|〈Y i − Ĝk−1(f i), gj〉(n)|,

Step 3: Compute the current approximation:

Ĝk(f i) = Ĝk−1(f i), ∀i 6= ik,

Ĝk(f ik) = Ĝk−1(f ik) + γ〈Y ik − Ĝk−1(f ik), ϕk〉(n)ϕk.

end for

algorithm satisfy, for all k ≥ m

∀i ∈ J1,mK, ‖Rk(f i)‖ ≤ Cρ,S,Bµ−
1
2 ν−

ν(2−γ)
2+ν(2−γ) (γ(2− γ))

− ν(2−γ)
2(2+ν(2−γ))

(
k

m

)− ν(2−γ)
2(2+ν(2−γ))

.

Remark 3. Remark that this theorem recovers the classical condition in noisy
setting, ρ(2S − 1) < 1 when ν = 1. We can discuss on the added value brought
by the Residual L2 norm Boost-Boost algorithm. Comparing to m naive runs
of standard WGA on each coordinates of the residuals, the proposed algorithm
is efficient when the coordinates of the residuals are unbalanced, i.e. when few
columns possess most of the information to be predicted. In the opposite, when
WGA is applied to well balanced tasks, there is no clear advantage to use Resid-
ual L2 norm Boost-Boost algorithm.

3.3. Stability of the Boost-Boost algorithms for noisy multi-task regression

We establish a theoretical convergence result for these two versions of multi-
task WGA. We first state few assumptions adapted to the multi-task setting.

Hypotheses HMult
1
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HMult
1−1 For any gj ∈ D: E[gj(X)2] = 1 and sup

1≤j≤pn,n∈N
‖gj(X)‖∞ <∞.

HMult
1−2 There exist ξ ∈ (0, 1), C > 0 such that the number of predictors and tasks

(pn,mn) satisfy
pn ∨mn = O

n→+∞

(
exp(Cn1−ξ)

)
.

HMult
1−3 (εi)i=1...n are i.i.d centred in Rmn , independent of (Xi)i=1...n such that

for some t > 4
ξ , where ξ is defined in HMult

1−2 , sup
1≤j≤mn,n∈N

E|εj |t <∞.

Moreover, the variance of εj does not depend on j: ∀(j, j̃) ∈ J1,mnK2,
E|εj |2 = E|εj̃ |2.

HMult
1−4 The sequence (ai,j)1≤j≤pn,1≤i≤mn satisfies: sup

n∈N,1≤i≤mn

pn∑
j=1

|ai,j | <∞.

Remark that a critical change appears in Hypothesis HMult
1−3 . Indeed, each tasks

should be of equal variances. We thus need to normalise the data before applying
the Boost-Boost algorithms.

Hence, we can derive a result on the consistency of the Residual L2 norm
Boost-Boost algorithm. This extend the result of Theorem 2.2 for univariate
WGA.

Theorem 3.2 (Consistency of the Boost-Boost Residual L2 norm). Assume
that Hypotheses HMult

1 are fulfilled and that ρ(2S − 1) < 1, then there exists a
sequence kn := C log(n), with C < ξ/4 log(3), such that:

∀i ∈ J1,mnK, E‖f i − Ĝkn(f i)‖2(n) = oP
n→+∞

(1).

As regards the Boost-Boost algorithm defined with the sum of correlations, if
the number of predictors pn satisfies a more restrictive assumption than HMult

1−2 ,
we prove a similar result.

Theorem 3.3 (Consistency of the Boost-Boost D-Correlation sum). Assume
that Hypotheses HMult

1 are fulfilled, with pn = O
n→+∞

(nξ/4), and suppose that

ρ(2S − 1) < 1, then there exists a sequence kn := C log(n) with C < ξ/8 log(3)
such that:

∀i ∈ J1,mnK, E‖f i − Ĝkn(f i)‖2(n) = oP
n→+∞

(1).

Remark that Assumption HMult
1−2 includes the very high dimensional case, whilst

Theorem 3.3 with one more restrictive assumption, is theoretically limited to
the high dimensional case.

We can also obtain a consistency result for the support of the Boost-Boost
algorithms.

Hypothesis HMult
2 : Given ξ defined in HMult

1−2 , elements (ai,j)1≤i≤mn,1≤j≤pn
satisfy:

∃κ ∈ (0, 1),∀i ∈ J1,mnK ∀j ∈ Si, |ai,j | ≥ n−κξ.
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Theorem 3.4 (Support recovery). Assume ρ(2S−1) < 1 and Assumptions
HMult

1 are fulfilled, then the two propositions hold.
i) There exists a maximal shrinkage parameter γ∗, such that, for all 0 < γ <

γ∗ in Equation (12), with high probability only active coefficients are selected
along iterations of Algorithm 4.

ii) Moreover, if Assumption HMult
2 holds with a sufficiently small κ < κ∗

(with κ∗ depending on S and γ), then both Boost-Boost procedures fully recover
the support of f with high probability.

4. Application to simulated data

This section is dedicated to simulation studies to assess practical perfor-
mances of our method in light of expected theoretical results. The toy set we
use is a class of challenging univariate, or multi-task, noisy linear data sets with
different characteristics. They are simulated according to a linear modelling
Y = XA + ε, where Y is a n × m response matrix, X is a n × p observation
matrix, ε is additional Gaussian noise and A is the parameter that encodes
relationships to be inferred. We used n = 100 samples and all data sets are
replicated 10 times each. Covariates are generated according to a multi-task
Gaussian distribution with covariance matrix ∀i,Xi ∼ N (0, 10Ip). Errors are
generated according to a multi-task normal distribution with an identity covari-
ance matrix (except the last data set) and non-zero A-coefficients are drawn
according to a N (0, 1) distribution.

We change the value of parameters p (number of predictor variables), m
(number of responses), s (sparsity of each row of A). To assess the performance
of our approach, we use on the one hand error of prediction, which is definedn
as ‖Y −XA‖2(n). On the other hand, we compute the number of false positive
and false negative parameters, i.e inferred by mistake and missed coefficients.
The maximal number of iterations of Boosting algorithm was set to 20 with a
shrinkage factor γ equal to 0.2.

Appendix A. Stability results for Boosting algorithms

Appendix A.1. Concentration inequalities

We begin by reminding here some technical results. Lemma Appendix A.1,
given in [2], provides a uniform law of large numbers, in order to compare inner
products 〈, 〉(n) and 〈, 〉. It is useful for the proofs of theorems of Section 2.2.2
and 2.3, but does not call typical boosting arguments.

Lemma Appendix A.1. Assume that Hypotheses H1 are fulfilled on dictio-
nary D, f and ε, with 0 < ξ < 1 as given in H1−2, then:

i) sup
1≤i,j≤pn

|〈gi, gj〉(n) − 〈gi, gj〉| = ζn,1 = OP (n−ξ/2),

ii) sup
1≤i≤pn

|〈gi, ε〉(n)| = ζn,2 = OP (n−ξ/2),

iii) sup
1≤i≤pn

|〈f, gi〉(n) − 〈f, gi〉| = ζn,3 = OP (n−ξ/2).
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Denote ζn = max{ζn,1, ζn,2, ζn,3, ζn,4} = OP (n−ξ/2). The following lemma
(lemma 2 from [2]) also holds.

Lemma Appendix A.2. Under Hypotheses H1, there exists a constant 0 <
C < +∞, independent of n and k, such that on set Ωn = {ω, |ζn(ω)| < 1/2}:

sup
1≤j≤pn

|〈R̂k(f), gj〉(n) − 〈R̃k(f), gj〉| ≤ C
(

5

2

)k
ζn.

Proof This lemma is given in [2], but their notations are confusing, since
residuals R̂k are used to compute ϕk instead of Y − Ĝk (see Remark 1 at the
end of Section 2.2). Fortunately, we can generalise its application field using
Lemma Appendix A.1. First, assume that k = 0. The desired inequality follows
directly from point iii) of Lemma Appendix A.1. We now extend the proof by
an inductive argument.

Denote An(k, j) = 〈R̂k(f), gj〉(n) − 〈R̃k(f), gj〉. Then, from the recursive
relations of Equations (6) and (7), we obtain:

An(k, j) = 〈R̂k−1(f)− γ〈R̂k−1(f), ϕk〉(n)ϕk − γ〈ε, ϕk〉(n)ϕk, gj〉(n)
−〈R̃k−1(f)− γ〈R̃k−1(f), ϕk〉ϕk, gj〉

= An(k − 1, j)− γ 〈R̃k−1(f), ϕk〉(〈ϕk, gj〉(n) − 〈ϕk, gj〉)︸ ︷︷ ︸
=(I)

−γ 〈ϕk, gj〉(n)(〈R̂k−1(f), ϕk〉(n) − 〈R̃k−1(f), ϕk〉)︸ ︷︷ ︸
=(II)

−γ 〈ε, ϕk〉(n)〈ϕk, gj〉(n)︸ ︷︷ ︸
=(III)

.

Expanding Equation (7) yields ‖R̃k(f)‖2 = ‖R̃k−1(f)‖2−γ(2−γ)〈R̃k−1(f), ϕk〉2.
From the last equality, we deduce ‖R̃k(f)‖2 ≤ ‖R̃k−1(f)‖2 ≤ . . . ≤ ‖f‖2 and
Lemma Appendix A.1 i) shows that

sup
1≤j≤pn

|(I)| ≤ ‖R̃k−1(f)‖‖ϕk‖ζn ≤ ‖f‖ζn.

Moreover,

sup
1≤j≤pn

|(II)| ≤ sup
1≤j≤pn

|〈ϕk, gj〉(n)| sup
1≤j≤pn

|An(k − 1, j)|

≤ ( sup
1≤j≤pn

|〈ϕk, gj〉|+ ζn) sup
1≤j≤pn

|An(k − 1, j)|

≤ (1 + ζn) sup
1≤j≤pn

|An(k − 1, j)|.

Finally, using i) and ii) from Lemma Appendix A.1:

sup
1≤j≤pn

|(III)| ≤ sup
1≤j≤pn

|〈ϕk, gj〉(n)| sup
1≤j≤pn

|〈εik , gj〉(n)| ≤ (1 + ζn)ζn.
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Using our bounds on (I), (II) and (III), and γ < 1, we obtain on Ωn

sup
1≤j≤pn

|An(k, j)| ≤ sup
1≤j≤pn

|An(k − 1, j)|+ ζn‖f‖+ (1 + ζn) sup
1≤j≤pn

|An(k − 1, j)|

+(1 + ζn)ζn

≤ 5

2
sup

1≤j≤pn
|An(k − 1, j)|+ ζn

(
‖f‖+

3

2

)
.

A simple induction yields:

sup
1≤j≤pn

|An(k, j)| ≤
(

5

2

)k
sup

1≤j≤pn
|An(0, j)|︸ ︷︷ ︸
≤ζn

+ζn

(
‖f‖+

3

2

) k−1∑
`=0

(
5

2

)`

≤
(

5

2

)k
ζn

1 +

sup
n∈N

pn∑
j=1

|aj |+
3

2

 ∞∑
`=1

(
5

2

)−` ,

which ends the proof of i) by setting C = 1+

(
sup
n∈N

∑pn
j=1 |aj |+

3
2

)∑∞
`=1

(
5
2

)−`
.

�

Appendix A.2. Proof of consistency result

We aim then to apply Theorem 2.1 to the semi-population R̃k(f) version
of R̂k(f). This will be possible with high probability when n → +∞. We
first observe that Lemma Appendix A.2 hold changing the theoretical residual
R̂k(f) by the observed residual Y − Ĝk(f) thanks to Lemma Appendix A.1 ii).
Hence, on set Ωn, by definition of ϕk:

|〈Y − Ĝk−1(f), ϕk〉(n)| = sup
1≤j≤pn

|〈Y − Ĝk−1(f), gj〉(n)|

= sup
1≤j≤pn

{
|〈R̃k−1(f), gj〉| − C

(
5

2

)k−1
ζn

}
. (A.1)

Applying Lemma Appendix A.2 again on set Ωn, we have:

|〈R̃k−1(f), ϕk〉| ≥ |〈Y − Ĝk−1(f), ϕk〉(n)| − C
(

5

2

)k−1
ζn

≥ sup
1≤j≤pn

|〈R̃k−1(f), gj〉| − 2C

(
5

2

)k−1
ζn. (A.2)

Let Ω̃n =

{
ω, ∀k ≤ kn, sup

1≤j≤pn
|〈R̃k−1(f), gj〉| > 4C

(
5
2

)k−1
ζn

}
. We deduce

from Equation (A.2) the following inequality:

|〈R̃k−1(f), ϕk〉| ≥
1

2
sup

1≤j≤pn
|〈R̃k−1(f), gj〉|. (A.3)
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Consequently, on set Ωn ∩ Ω̃n, we can apply Theorem 2.1 to family (R̃k(f i))k,
since it satisfies a WGA with constants ν̃ = 1/2.

‖R̃k(f)‖ ≤ CB
(

1 +
1

4
γ(2− γ)k

)− 2−γ
2(6−γ)

. (A.4)

Consider now the set Ω̃Cn =

{
ω, ∃ k ≤ kn sup

1≤j≤pn
|〈R̃k−1(f), gj〉| ≤ 4C

(
5
2

)k−1
ζn

}
.

If we denote wk = wk−1 + γ|〈R̃k−1(f), ϕk〉|, with the initialisation w0 = 1, fol-
lowing the proof of Theorem 2.1, we have:

‖R̃k(f)‖2 ≤ γ−1wk sup
1≤j≤pn

|〈R̃k(f), gj〉|. (A.5)

Moreover, a straightforward recursion combined with Cauchy-Schwarz’s inequal-
ity and the fact that ‖R̃k(f)‖ is non-increasing show that

wk ≤ 1 + γ

k∑
`=1

‖R̃`−1(f)‖ ≤ 1 + γk‖f‖. (A.6)

From Equations (A.5) and (A.6), we deduce that,

‖R̃k(f)‖2 ≤ γ−14C

(
5

2

)k
ζn(1 + γk‖f‖). (A.7)

Hence, on (Ωn ∩ Ω̃n) ∪ Ω̃Cn , by Equation (A.4) and (A.7),

‖R̃k(f)‖2 ≤ C2
B

(
1 +

1

4
γ(2− γ)k

)− 2−γ
6−γ

+ 4C

(
5

2

)k
ζnγ
−1(1 + γk‖f‖). (A.8)

To conclude, remark that P
(

(Ωn ∩ Ω̃n) ∪ Ω̃Cn

)
≥ P(Ωn) −→

n→+∞
1. Inequality

(A.8) holds almost surely for all ω and for a sequence kn < (ξ/4 log(3)) log(n),
which grows sufficiently slowly:

‖R̃kn(f)‖ = oP (1). (A.9)

To finish the proof, let k ≥ 1 and consider Ak = ‖R̂k(f)−R̃k(f)‖. By definition:

Ak = ‖R̂k−1(f)− γ〈R̂k−1(f), ϕk〉(n)ϕk − γ〈ε, ϕk〉(n)ϕk

−
(
R̃k−1(f)− γ〈R̃k−1(f), ϕk〉ϕk

)
‖

≤ Ak−1 + γ|〈Y − Ĝk−1(f), ϕk〉(n) − 〈R̃k−1(f), ϕk〉|. (A.10)

Under Hypotheses H1, we deduce from Equation (A.10) the following inequality
on Ωn:

Ak ≤ Ak−1 + γ

(
C

(
5

2

)k−1
+ 1

)
ζn. (A.11)
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Using A0 = 0, we deduce recursively from Equation (A.11) that, on Ωn,
since k := kn grows sufficiently slowly:

Akn
P−−−−−→

n→+∞
0. (A.12)

Finally observe that ‖R̂kn(f)‖ ≤ ‖R̃kn(f)‖ + Akn . The conclusion holds using
Equation (A.9) and (A.12).

Appendix A.3. Proof of support recovery

We now detail the proof of Theorem 2.3 which stands for the exact recovery
of the support with high probability. Remind that we denote S (S) the sparsity
(the support) of f . We suppose that the current residuals could be decomposed
on D as R̂k(f) =

∑pn
j=1 θ

k
j gj , where (θkj )j is Sk-sparse, with support Sk.

Proof of i): The aim of the first part of the proof is to show that along the
iterations of Boosting, we only select elements of the support of f using Equation
(4). Since S0 = S, we only have to show that (Sk)k≥0 is non-increasing, which
implies that successive residual supports satisfy Sk ⊂ Sk−1. At the initial step
k = 0, S0 = S and S0 = S. The proof works now by induction, and we assume
that Sk−1 ⊂ S. Using the same outline of proof of Lemma Appendix A.2, we
have:

∀gj ∈ D, |〈Y − Ĝk−1(f), gj〉(n) − 〈R̂k−1(f), gj〉| ≤ Cζn
(

5

2

)k−1
. (A.13)

Using Equation (A.13) and the decomposition of R̂k−1(f) on D, we can write:

∀j /∈ Sk−1, |〈Y − Ĝk−1(f), gj〉(n)| ≤ ρ‖θk−1‖1 + Cζn

(
5

2

)k−1
≤ ρSk−1‖θk−1‖∞ + Cζn

(
5

2

)k−1
.(A.14)

Moreover, for j ∈ Sk−1, such that |θk−1j | = ‖θk−1‖∞, we also have:

|〈Y − Ĝk−1(f), gj〉(n)| ≥ ‖θk−1‖∞ − ρ(‖θk−1‖1 − ‖θk−1‖∞)− Cζn
(

5

2

)k−1
≥ (1− ρ(Sk−1 − 1))‖θk−1‖∞ − Cζn

(
5

2

)k−1
. (A.15)

Remind that element j is selected at step k following Equation (4). Hence, we
deduce from Equations (A.14) and (A.15) that j ∈ Sk is in Sk−1 if the following
inequality is satisfied:

(1− ρ(Sk−1 − 1))‖θk−1‖∞ − Cζn
(

5

2

)k−1
≥ ρSk−1‖θk−1‖∞ + Cζn

(
5

2

)k−1
,
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which can be rewritten as:

(1− ρ(2Sk−1 − 1))‖θk−1‖∞ ≥ 2Cζn

(
5

2

)k−1
. (A.16)

Condition (A.16) deserves a special attention since θk−1 is the decomposition
of R̂k−1(f) on dictionary D at step k − 1. Thus ‖θk−1‖∞ −→

k→+∞
0. Hence,

(A.16) is only valid for a limited number of iterations. Since ζn = OP (n−ξ/2),
the condition of Equation (A.16) would result from the induction hypothesis
(which implies that ρ(2Sk−1 − 1) < 1), if we have a sufficiently sharp control

of 2Cζn
‖θk−1‖∞

(
5
2

)k−1
all along the iterations of the Boosting algorithm, which are

allowed to grow with n as kn := Aξ log(n) with A = 1/4 log(3) (see Theorem
2.2). This is possible, if we keep shrinkage parameter γ small enough.

More precisely, by using the definition of the update rule of Algorithm (7)
and ii) of Lemma Appendix A.1, we consider at step k the index j such that
gj = ϕk:

|θkj − (θk−1j − γθk−1j )| ≤ γζn. (A.17)

Let us define uk := ‖θk‖∞, using Equation (A.17), we derive uk+1 ≥ uk(1 −
γ) − γζn, and a comparison to an arithmetico-geometric sequence yields uk ≥
(1 − γ)k (u0 + ζn) − ζn. Hence, for all k, we obtain that with high probability,
the next inequality holds

2Cζn
‖θk−1‖∞

(
5

2

)k−1
≤ 2Cn−ξ/2

(1− γ)k−1(u0 + ζn)− ζn

(
5

2

)k−1
.

We now check that the right hand side of this inequality remains lower than
1 − ρ(2Sk−1 − 1). The least favourable case (the largest attainable value of
the right hand side) is achieved by the maximal number of iterations possible

kn. Moreover, (1 − γ)knu0 is not allowed to be smaller than n−ξ/2
(
5
2

)kn−1
.

This last point is true provided that the shrinkage parameter γ is not too large.
The maximal shrinkage parameter γ∗ is found (by taking the arg max) while

assuming that
(
5
2

)kn−1
n−ξ/2 ≤ (1 − γ)kn ,. This allows us to conclude that

(A.16) holds as soon as ρ(2Sk−1 − 1) < 1. This immediately implies that
Sk ⊂ Sk−1 and Sk ≤ Sk−1. Since kn is equal to Aξ log(n) (see Theorem 2.2),
the maximal shrinkage parameter is equal to γ∗ = 13/18. �

Proof of ii): The second part of the proof consists in checking that, along
the iterations of the Boosting algorithm, every correct element of the dictionary
is chosen at least once.

It is sufficient to consider j ∈ S for the end of the proof, since we do not
select an incorrect element, with high probability. Suppose that j is selected at
step k, from inequality (A.17), we have |θkj | ≤ γζn + (1 − γ)|θk−1j |. Hence, an
other arithmetic-geometric comparison argument yields

|θkj | ≤ (1− γ)sj(k)(|θk0j | − ζn) + ζn, (A.18)
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where sj(k) denotes the number of times j is selected within the first k iterations
of the Boosting and k0 is the first step where j is selected.

We now end the proof by assuming that one element of S is never selected
and we exhibit a contradiction. Thus, there exists j0 ∈ S, such that along
the kn iterations j0 is never selected, which implies by Assumption H2 that:
|θkj0 | = |θ0j0 | ≥ n−κξ. Of course, there exists one element of j1 ∈ S, which is
selected at least bkn/Sc times (bxc is the floor function evaluated in x, it is
equal to largest integer not greater than x) and for the corresponding iteration
k1, we have

|θk1j1 | ≤ (1− γ)bkn/Sc(‖θ0‖∞ − ζn) + ζn.

Since j1 is selected at step k1, we have

|θk1j1 | ≥ γ

(
(1− ρS)‖θk1‖∞ − ζn

(
5

2

)k1)
≥ γ

(
(1− ρS)|θk1j0 | − ζn

(
5

2

)k1)

≥ γ

(
(1− ρS)n−κξ − ζn

(
5

2

)k1)
≥ γ

(
(1− ρS)n−κξ − ζn

(
5

2

)kn)
.

We obtain the sought contradiction as soon as n−κξ ≥
(
5
2

)A log(n)ξ
n−ξ/2 and

(1 − γ)bA log(n)ξ/Sc ≤ n−κξ, that is to say if κ ≤ 1
2 − A log( 5

2 ) ∧ κ∗(S) (x ∧
y := min(x, y), with κ∗(S) = A/S log(1/(1 − γ)). For instance, the Boosting
algorithm run with A = 1/4 log(3) recovers the support with high probability if
κ∗ ' 0.29/S. This ends the proof of the support consistency. �

Appendix B. Proof of results for multi-task L2-Boosting algorithms

Appendix B.1. Proof of Theorem 3.1

We here break down in several steps the proof of Theorem 3.1. Remind that
D = {(gj), 1 ≤ j ≤ p} is a dictionary, with coherence ρ, which spans H. We set
any f = (f1, . . . , fm) ∈ Hm such that f i ∈ A(D, B).

The first key remark is that, if we denote si(k) the number of steps in which
i is invoked until step k, for all i ∈ J1,mK, we deduce from Theorem 2.1 that:

∀k ≥ 1, ‖Rk−1(f i)‖ ≤ CB(1 + ν2γ(2− γ)si(k − 1))−
ν(2−γ)

2(2+ν(2−γ)) . (B.1)

The second key point of the proof consists in comparing Rk(f i) and Rk(f ik),
where ik is chosen using Equation (9) or (10). For the Boost-Boost Residual L2

norm algorithm, this step is not pivotal since, using Equation (9),

∀i ∈ J1,mK, ‖Rk(f i)‖ ≤ µ−1‖Rk(f ik)‖. (B.2)

However, for the Boost-Boost D-Correlation sum algorithm, we can prove the
following lemma:
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Lemma Appendix B.1. Suppose that ρS(1 + ν−1) < 1 + ρ, then one has for
any k:

∀i 6= ik, ‖Rk−1(f i)‖2 ≤ µ−1‖Rk−1(f ik)‖2
(

1 + ρ(S − 1)

1− ρ(S − 1)

)3

.

Proof Assume that each residual Rk(f i) is expanded on D at step k as:

Rk(f i) =

p∑
j=1

θki,jgj , where (θki,j)1≤j≤p is Sik-sparse, with support Sik. Remark

that, along the iterations of the Boost-Boost algorithm, an incorrect element of
the dictionary cannot be selected using Equation (11) (see Theorem 3.4 for some
supplementary details). We observe then that assumption ρS(1 + ν−1) < 1 + ρ
implies that at each step, each approximation is at most S-sparse. It trivially
implies that (S − 1)ρ < 1. We present an elementary lemma, proved by [14],
which would be very useful until the end of the proof.

Lemma Appendix B.2. Let D = (g1, ..., gp) a dictionary on H with coher-
ence ρ.

i) For any S-sparse family (aj)1≤j≤p, we have: p∑
j=1

|aj |2
 (1− ρ(S − 1)) ≤

∥∥∥∥∥∥
p∑
j=1

ajgj

∥∥∥∥∥∥
2

≤

 p∑
j=1

|aj |2
 (1 + ρ(S − 1)).

ii) For any function f spanned on D as f =
∑p
j=1 ajgj, where (aj)j is S

-sparse, we have p∑
j=1

|aj |2
1/2

(1−ρ(S−1)) ≤

 p∑
j=1

|〈f, gj〉|2
1/2

≤

 p∑
j=1

|aj |2
1/2

(1+ρ(S−1)).

Now, let i 6= ik. By Lemma Appendix B.2 (r.h.s. of ii) and l.h.s. of i))
combined with condition ρ(S − 1) < 1, we have

p∑
j=1

|〈Rk−1(f ik), gj〉|2 ≤ ‖Rk−1(f ik)‖2 (1 + ρ(S − 1))2

1− ρ(S − 1)
. (B.3)

Moreover Lemma Appendix B.2 again (l.h.s. of ii) and r.h.s. of i)) shows that

∀1 ≤ i ≤ m,
p∑
j=1

|〈Rk−1(f i), gj〉|2 ≥ ‖Rk−1(f i)‖2 (1− ρ(S − 1))2

1 + ρ(S − 1)
. (B.4)

By definition of ik (see Equation (10) in the Boost-Boost algorithm), we deduce
that:

∀i ∈ J1,mK,
p∑
j=1

|〈Rk−1(f ik), gj〉|2 ≥ µ

p∑
j=1

|〈Rk−1(f i), gj〉|2

≥ µ‖Rk−1(f i)‖2 (1− ρ(S − 1))2

1 + ρ(S − 1)
.(B.5)
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The conclusion follows by using Equations (B.3) and (B.5). �
To conclude, we consider the Euclidean division of k by m: k = mK +

d, where the remainder d is not greater than the divisor m. There exists a
coordinate i∗ ∈ {1 . . .m}, which is selected at least K times by Equation (9) or
(10), hence si∗(k) ≥ K. We also denote k∗ the last step which selects i∗ before
step k. Since

(
‖Rk(f i)‖

)
k

is a non-increasing sequence along the iterations of
the algorithm, by Equation (B.1), we have that:

‖Rk−1(f i
∗
)‖ ≤ ‖Rk∗−1(f i

∗
)‖ ≤ CB(1 + ν2γ(2− γ)(K − 1))−

ν(2−γ)
2(2+ν(2−γ)) . (B.6)

The conclusion holds remarking that k
m − 1 ≤ K ≤ k

m and ν < 1, and using
our bounds (B.2) for the Boost-Boost Residual L2 norm algorithm, or Lemma
Appendix B.1 for the Boost-Boost D-Correlation sum algorithm.

Appendix B.2. Proof of Theorem 3.4

We begin this section by clarifying the proof of Theorem 3.4 since this result
is needed to prove all others multi-task results. The proof rolls out in the same
way as in section Appendix A.3. Our focus is on the choice of the regressor to
add in the model whatever the column chosen to be regressed in the step before.
So, in order to simplify, notations index i may be omitted and we can do exactly
the same computations. Remark that the maximal shrinkage parameter allowed
γ∗ is equal to 13/18 for the Boost-Boost Residual L2 norm algorithm, whereas
γ∗ = 157/162 for the Boost-Boost D-Correlation algorithm, since the maximal
number of iterations allowed is not exactly the same for the two algorithms (see
section Appendix B.3 for more details).

Appendix B.3. Proof of Theorems 3.2 and 3.3

The proof of consistency results in the multi-task case rolls out as in Section
Appendix A.2. Hence, we consider a semi-population version of the two Boost-
Boost algorithms: let (R̃k(f))k the phantom residuals, which is now living inHm,
initialised by R̃0(f) = f , and satisfies at step k:

R̃k(f i) = R̃k−1(f i) if i 6= ik,

R̃k(f ik) = R̃k−1(f ik)− γ〈R̃k−1(f ik), ϕk〉ϕk, (B.7)

where (ik, ϕk) is chosen according to Algorithm 4.
As previously, we aim at applying Theorem 3.1 to the phantom residuals.

This will be possible if we can show an analogue of Equations (9) (for the
Residual L2 norm) or (10) (for the D-Correlation sum) and (11). Remark that,
from Theorem 3.4, sparsity of both residuals R̃k(f) and R̂k(f) does not exceed
S with high probability if we choose γ small enough in Equation (12).

We begin the proof by reminding Lemma Appendix A.1. In the multi-task
case, this lemma can be easily extended as the following way:
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Lemma Appendix B.3. Assume that Hypotheses HMult
1 are fulfilled on dic-

tionary D, f and ε, with 0 < ξ < 1 as given in HMult
1−2 , then:

i) sup
1≤i,j≤pn

|〈gi, gj〉(n) − 〈gi, gj〉| = ζn,1 = OP (n−ξ/2),

ii) sup
1≤i≤pn,1≤j≤mn

|〈gi, εj〉(n)| = ζn,2 = OP (n−ξ/2),

iii) sup
1≤i≤mn,1≤j≤pn

|〈f i, gj〉(n) − 〈f i, gj〉| = ζn,3 = OP (n−ξ/2).

iv) sup
1≤i≤mn

|‖εi‖2(n) − E(|εi|2)| = ζn,4 = OP (n−ξ/2).

The first three points of Lemma Appendix B.3 are the same as i), ii) and iii)
of Lemma Appendix A.1. The fourth point is something new, however, since
it proof does not call typical boosting arguments, we don’t state it here.

Denoting ζn = max{ζn,1, ζn,2, ζn,3, ζn,4} = OP (n−ξ/2), we can show that
Lemma Appendix A.2 is still true for the ik-th coordinate of f . Moreover, let
i 6= ik. Since R̂k(f i) = R̂k′(f

i) for all k′ ≤ k such that ik is not selected between
step k′ and k (see Equation (12)), we can easily extend lemma Appendix A.2
to each coordinate of f :

∀i ∈ J1,mnK, sup
1≤j≤pn

|〈R̂k(f i), gj〉(n) − 〈R̃k(f i), gj〉| ≤ C
(

5

2

)k
ζn. (B.8)

Using this extension of Lemma Appendix A.1, the same calculations of
section Appendix A.2 can be done. Hence, considering the ik-th coordinate of
f chosen by Equations (9) or (10), on set Ωn, inequality (A.3) also holds:

|〈R̃(f ik), ϕk〉| ≥
1

2
sup

1≤j≤pn
|〈R̃k−1(f ik), gj |.

Consider now the Boost-Boost Residual L2 norm algorithm. To obtain an
analogue of (9), we need the following lemma, which compares norms of both
residuals:

Lemma Appendix B.4. Under Hypotheses HMult
1 , there exists a constant

0 < C < +∞, independent of n and k, such that on the set Ωn = {ω, |ζn(ω)| <
1/2}:

∀i ∈ J1,mnK, |‖R̂k−1(f i)‖2(n) − ‖R̃k−1(f i)‖2| ≤ C

(
2

(
5

2

)k−1
+ S

)
Sζn.

Proof Consider the two residual sequences (R̂k(f))k and (R̃k(f))k, ex-
panded on D as: R̂k−1(f i) =

∑
j θ

k
i,jgj , and R̃k−1(f i) =

∑
j θ̃

k
i,jgj . Hence,
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|‖R̂k−1(f i)‖2(n) − ‖R̃k−1(f i)‖2| ≤ |
pn∑
j=1

θki,j

(
〈R̂k−1(f i), gj〉(n) − 〈R̃k−1(f i), gj〉

)
|︸ ︷︷ ︸

(I)

+ |
pn∑
j=1

θ̃ki,j

(
〈R̂k−1(f i), gj〉(n) − 〈R̃k−1(f i), gj〉

)
|︸ ︷︷ ︸

(II)

+ |
pn∑
j=1

θki,j〈R̃k−1(f i), gj〉 −
S∑
j=1

θ̃ki,j〈R̂k−1(f i), gj〉(n)|︸ ︷︷ ︸
(III)

.

By Equation (B.8), we can provide two upper bounds for (I) and (II):

(I) ≤ C
(

5

2

)k−1 pn∑
j=1

|θki,j |ζn and (II) ≤ C
(

5

2

)k−1 pn∑
j=1

|θ̃ki,j |ζn.

Denoting M := max
1≤j≤S

{|θki,j |, |θ̃ki,j |}, the following inequality holds for (I) and

(II):

(I) ∨ (II) ≤ CMS

(
5

2

)k−1
ζn.

To conclude, using Lemma (Appendix B.3), one has:

(III) ≤
pn∑
j=1

|ãki,j |
pn∑
j′=1

|aki,j ||〈gj , gj′〉 − 〈gj , gj′〉(n)| ≤ S2M2ζn.

and the conclusion follows using our last bounds. �
Since Lemma Appendix B.4 is not directly applicable to the observed resid-

ual Y − Ĝk(f), the same calculation cannot be performed to obtain an analogue
of Equation (9). However, we can compare the norm of the theoretical and
observed residuals:

∀i ∈ J1,mnK, ‖Y i − Ĝk−1(f i)‖2(n) = ‖R̂k−1(f i) + εi‖2(n)
= ‖R̂k−1(f i)‖2(n) + ‖εi‖2(n) + 2〈R̂k−1(f i), εi〉(n).

Note that, using Lemma Appendix B.3, we obtain: |〈R̂k(f i), εi〉(n)| ≤ MSζn,
where M is defined in the proof of Lemma Appendix B.4. Hence, one has for
all i:

‖R̂k−1(f i)‖2(n)+‖ε
i‖2(n)−2MSζn ≤ ‖Y i−Ĝk−1(f i)‖2(n) ≤ ‖R̂k−1(f i)‖2(n)+‖ε

i‖2(n)+2MSζn.
(B.9)
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Remind that E(|εi|2) does not depend on i from Assumption HMult
1−3 , and

denote it by σ2. Then, an application of Lemma Appendix B.3 iv) to Equation
(B.9) yields

‖R̂k−1(f i)‖2(n)+σ
2−(1+2MS)ζn ≤ ‖Y i−Ĝk−1(f i)‖2(n) ≤ ‖R̂k−1(f i)‖2(n)+σ

2+(1+2MS)ζn.
(B.10)

Hence, on Ωn, by definition of ik, Equation (B.10) and Lemma Appendix B.4,
we can write:

‖Y ik − Ĝk−1(f ik)‖2(n) ≥ sup
1≤i≤mn

‖Y i − Ĝk−1(f i)‖2(n)

≥ sup
1≤i≤mn

{
‖R̂k−1(f i)‖2(n) + σ2

}
− (1 + 2MS)ζn

≥ sup
1≤i≤mn

{
‖R̃k−1(f i)‖2 + σ2

}
− C

(
2

(
5

2

)k−1
+ S

)
Sζn

−(1 + 2MS)ζn. (B.11)

Using again the same calculus on set Ωn:

‖R̃k−1(f ik)‖2 ≥ ‖R̂k−1(f ik)‖2(n) − C

(
2

(
5

2

)k−1
+ S

)
Sζn

≥ ‖Y ik − Ĝk−1(f ik)‖2(n) − σ
2 − (1 + 2MS)ζn − C

(
2

(
5

2

)k−1
+ S

)
Sζn

≥ sup
1≤i≤mn

{
‖R̃k−1(f i)‖2 + σ2

}
− σ2 − 2(1 + 2MS)ζn

−2C

(
2

(
5

2

)k−1
+ S

)
Sζn, by Equation (B.11). (B.12)

We then obtain from Equation (B.12) that:

‖R̃k−1(f ik)‖2 ≥ sup
1≤i≤mn

‖R̃k−1(f i)‖2−2(1+2MS)ζn−2C

(
2

(
5

2

)k−1
+ S

)
Sζn.

(B.13)

Let Ω̌1
n =

{
ω, ∀k ≤ kn sup

1≤i≤mn
‖R̃k−1(f i)‖2 > 4

(
1 + 2MS + C

(
2
(
5
2

)k−1
+ S

)
S
)
ζn

}
.

We deduce from Equation (B.13) the following inequality on set Ωn ∩ Ω̌1
n:

‖R̃k−1(f ik)‖2 ≥ 1

2
sup

1≤i≤mn
‖R̃k−1(f i)‖2.

Consider finally the Boost-Boost D-Correlation sum algorithm. To obtain
an analogue of Equation (10), the following lemma is needed:
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Lemma Appendix B.5. Under Hypotheses HMult
1 , there exists a constant

0 < C < +∞, independent of n and k such that, on set Ωn = {ω, |ζn(ω)| < 1/2}:

∀i ∈ J1,mnK, sup
1≤j≤pn

|〈R̂k(f i), gj〉2(n) − 〈R̃k(f i), gj〉2| ≤ C
(

5

2

)2k

ζn.

Proof Let k ≥ 1, i ∈ J1,mnK. We have the following equality:

|〈R̂k(f i), gj〉2(n)−〈R̃k(f i), gj〉2| = |〈R̂k(f i), gj〉(n)−〈R̃k(f i), gj〉||〈R̂k(f i), gj〉(n)+〈R̃k(f i), gj〉|,
(B.14)

where |〈R̂k(f i), gj〉(n) − 〈R̃k(f i), gj〉| ≤ C
(
5
2

)k
ζn by Equation (B.8).

Moroever, using recursive equation for (R̂k(f ik))k, we can obtain the follow-
ing bounds:∣∣∣〈R̂k(f ik), gj〉(n)

∣∣∣ ≤ ∣∣∣〈R̂k−1(f ik), gj〉(n)
∣∣∣+ γ

∣∣∣〈R̂k−1(f ik), ϕk〉(n)〈ϕk, gj〉(n)
∣∣∣

+γ
∣∣〈εik , ϕk〉(n)〈gj , ϕk〉(n)∣∣

≤ sup
1≤j≤pn

∣∣∣〈R̂k−1(f ik), gj〉(n)
∣∣∣ (1 + γ|〈ϕk, gj〉(n)|

)
+ γζn(1 + ζn)

≤ M ik
k−1(1 + γ(1 + ζn)) + γζn(1 + ζn),

where M i
k := sup1≤j≤pn |〈R̂k(f i), gj〉(n)|. Remark that for i 6= ik, M i

k = M i
k−1.

On Ωn, we hence have for a suitable constant C > 0:

M i
k ≤M i

k−1

(
1 +

3

2
γ

)
+C . . . ≤

(
1 +

3

2
γ

)ksup
n∈N

pn∑
j=1

|ai,j |+
3

2

+C. (B.15)

By Equation (7), ‖R̃k(f i)‖ is non-increasing. Hence ‖R̃k(f i)‖ ≤ ‖f i‖. Cauchy-
Schwarz inequality allows us to write that:∣∣∣〈R̃k(f i), gj〉

∣∣∣ ≤ ‖R̃k(f i)‖ ≤ ‖f i‖. (B.16)

Hence, the conclusion holds using Equations (B.15) and (B.16) in Equation
(B.14) for a large enough constant C. �

Observe that Lemma Appendix B.5 remains true, if we change the observed
residual by the theoretical residual. Hence, on set Ωn,

pn∑
j=1

|〈Y ik − Ĝk−1(f ik), gj〉(n)|2 ≥ sup
1≤i≤mn

pn∑
j=1

|〈Y i − Ĝk−1(f i), gj〉(n)|2

≥ sup
1≤i≤mn

pn∑
j=1

(
|〈R̃k−1(f i), gj〉(n)|2 − C

(
5

2

)2(k−1)

ζn

)

≥ sup
1≤i≤mn

pn∑
j=1

|〈R̃k−1(f i), gj〉(n)|2 − Cpn
(

5

2

)2(k−1)

ζn.(B.17)
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Hence, Lemma Appendix B.5 again, on Ωn:

pn∑
j=1

|〈R̃k−1(f ik), gj〉|2 ≥
pn∑
j=1

|〈Y ik − Ĝk−1(f ik), gj〉(n)|2 − Cpn
(

5

2

)2(k−1)

ζn

≥ sup
1≤i≤mn

pn∑
j=1

|〈R̃k−1(f i), gj〉|2 − 2Cpn

(
5

2

)2(k−1)

ζn by Equation (B.17).

(B.18)

Let Ω̌2
n =

{
ω, ∀k ≤ kn sup

1≤i≤mn

∑pn
j=1 |〈R̃k−1(f i), gj〉|2 > 4Cpn

(
5
2

)2(k−1)
ζn

}
.

We deduce from Equation (B.18) the following inequality on Ωn ∩ Ω̌2
n:

pn∑
j=1

|〈R̃k−1(f ik), gj〉|2 ≥
1

2
sup

1≤i≤mn

pn∑
j=1

|〈R̃k−1(f i), gj〉|2.

Consequently, on Ωn ∩ Ω̃n ∩ Ω̌1
n and Ωn ∩ Ω̃n ∩ Ω̌2

n, we can apply Theorem
3.1 to family (R̃k(f i))k, since it satisfies a deterministic Boost-Boost algorithm
with constants µ̃ = 1/2, ν̃ = 1/2, and has a bounded sparsity S.

Consider now the set
(
Ω̌2
n

)C
. Using Equation (B.4), we get

‖R̃k(f i)‖2 ≤ 1 + ρ(S − 1)

(1− ρ(S − 1))2

pn∑
j=1

|〈R̃k(f i), gj〉|2 ≤ 4
1 + ρ(S − 1)

(1− ρ(S − 1))2
Cpn

(
5

2

)2k

ζn.

On the set
(
Ω̌1
n

)C
, we also have:

‖R̃k(f i)‖2 ≤ 4

(
1 + 2MS + C

(
2

(
5

2

)k
+ S

)
S

)
ζn.

The end of the proof follows as in section Appendix A.2 by remarking that

P
(

(Ωn ∩ Ω̃n) ∪ Ω̃Cn ∪ Ω̌Cn

)
≥ P(Ωn) −→

n→+∞
1. Note that the conclusion holds for

a sequence kn which grows sufficiently slowly: for the Boost-Boost Residual L2

norm algorithm, kn is alllowed to grow as (ξ/4 log(3)) log(n) whereas kn can only
grow as (ξ/8 log(3)) log(n) for the Boost-Boost D-Correlation sum algorithm.
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