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Outline :

@ Definition of a phylogenetic tree

Definition of a phylogenetic network

@ Overview of types of phylogenetic networks

Unrooted phylogenetic networks

Rooted phylogenetic networks
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Phylogenetic trees

connected and acyclic graphs, where terminal nodes are
associated to a set of species.

Macaca




Rooted phylogenetic trees

oriented, connected and acyclic graphs, where terminal nodes are
associated to a set of species.

@ the leaves or taxa represent

. TIME
extant organisms

@ internal nodes represent
hypothetical ancestors
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@ the only node without _ = K
ancestor is called root ' e

@ each internal node represents
the lowest common ancestor
of all taxa below it (cluster)



But...

due to reticulate evolutionary phenomena (hybridization,
recombination, horizontal gene transfer) the evolution of a set of
species sometimes cannot be described using phylogenetic trees.
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But...

due to reticulate evolutionary phenomena (hybridization,
recombination, horizontal gene transfer) the evolution of a set of
species sometimes cannot be described using phylogenetic trees.
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in these cases we use ...

phylogenic networks
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Phylogenetic networks

any connected graph, where terminal nodes are
associated to a set of species.
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Rooted phylogenetic networks

any rooted directed acyclic graph, where terminal nodes are
associated to a set of species.
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Phylogenetic networks

Abstract networks : Explicit networks :

Visualize conflicting signals Show evolutionary scenario

(also called data-display involving reticulate events

networks) (also called evolutionary
networks)
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Phylogenetic networks

Abstract networks : Explicit networks :

Visualize conflicting signals Show evolutionary scenario

(also called data-display involving reticulate events

networks) (also called evolutionary
networks)

from clusters and trees
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When a phyl. network N represents a tree T ?

if T can be obtained from N by performing a series of node deletions,
edge deletions and node suppressions
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When a phyl. network N represents a tree T ?

if T can be obtained from N by performing a series of node deletions,
edge deletions and node suppressions

N T



When a phyl. network N represents a cluster C?

HARDWIRED SENSE : if there exists a tree edge of N such that the
set of all taxa below the edge equals C

e :{a, b, c}

¢ b ¢ d e f



When a phyl. network N represents a cluster C?

SOFTWIRED SENSE : if there exists a tree edge of N such that the
set of all taxa below the edge equals C (with one edge per reticulation
node "switched on")

e :{a, b, c}
{a, b}

a b ¢ d e f



Networks form clusters




Constructing minimal hardwired networks

cluster popping algorithm

{c.d,e f,g.h}
{c.de.f,g}

{e.f.g.n}

{cde}) {efg 7
{ab}, {cd}, {f.g}
{a}, {b}, ..., {n}

Clusters Hasse diagram Network

number of edges required ...

quadratic in |C|
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Constructing minimal softwired networks

@ cluster containment : NP-hard
@ minimization : NP-hard, APX-hard

A possible solution ... topological constraints :

o galled trees
@ galled networks

@ level-k networks : if the maximum reticulation number among the
biconnected components of N is k (still NP-hard)

DECOMPOSABLE'!
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Constructing minimal softwired networks

@ cluster containment : NP-hard
o minimization : NP-hard, APX-hard

A possible solution ... topological constraints :

o galled trees
o galled networks

o level-k networks : if the maximum reticulation number among the
biconnected components of N is k (still NP-hard)

Breaking news :
@ minimizing the level is FPT in k

o the CASS algorithm (van lersel et al, 2010) is not always optimal
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Networks form trees




Reconstructing hybridization networks (explicit)

Goal : Find a phylogenetic network that displays a set of tree T with

minimum number of reticulations (called hybrid number of T).
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Reconstructing hybridization networks (explicit)

Goal : Find a phylogenetic network that displays a set of tree 7 with
minimum number of reticulations (called hybrid number of 7).

@ minimization : NP-hard, FPT (via reductions)

@ a networks displaying C(7) does not in general display T

%>>\ A / j 6; 5 \
o b a p g ¢ WAW o b a p q ¢ o b a p g ¢

(a) Tree T (b) Tree T, (c) Tree T3 (d) Network N
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Reconstructing hybridization networks (explicit)

Goal : Find a phylogenetic network that displays a set of tree 7 with
minimum number of reticulations (called hybrid number of 7).

@ minimization : NP-hard, FPT (via reductions)
@ a networks displaying C(7) does not in general display T

@ minimum number of reticulations required for representing
C(T) < hybrid number of T

@ these numbers are equal for 2 trees
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Reconstructing all hybridization networks for two
binary trees

O phyB_rbcL.nexmi - [2] - Dendroscope (version 3.0.8alpha, built 4 Apr 2011)
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Agreement Forests

Given two trees...

a b ¢ d e f a b ¢ d f e

.. in a first step an outgroup p is attached to the root nodes.

a b ¢ d e f p a b ¢ d f e p
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Agreement Forests

An agreement forest for two rooted bifurcating phylogenetic trees
T1 and To on X Up is a set of components F = {F,, F1,..., Fp}
on X U p such that...

@ each component F; is a restricted subtree of T; and T,

SN

b ¢ d

.. Is not a restricted subtree of the tree T.

T:
restricted Tlp.cay:
AN
b c d
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Agreement Forests

An agreement forest for two rooted bifurcating phylogenetic trees
T1 and To on X Up is a set of components F = {F,, F1,..., Fp}
on X U p such that...
@ each component F; is a restricted subtree of T; and T,
Q the trees in {T1(X;|li = p,1,...,n)} and
{T2(Xi|i = p,1,...,n)} are node disjoint subtrees of T; and
T,, respectively

AN N

a d b ¢

.. are not node disjoint subtrees in the tree T.

T:

17 /22



Agreement Forests

An agreement forest for two rooted bifurcating phylogenetic trees
T1 and To on X Up is a set of components F = {F,, F1,..., Fp}
on X U p such that...

@ each component F; is a restricted subtree of T; and T,

Q the trees in {T1(&Xj|li = p,1,...,n)} and
{T2(Xi|i = p,1,...,n)} are node disjoint subtrees of T; and
T,, respectively

@ the taxon p is contained in F,

/\--/<f\,,

a d b ¢

a b ¢ d e f p a b ¢ d f e p

17 /22



Agreement Forests
An agreement forest for two rooted bifurcating phylogenetic trees
T1 and To on X Up is a set of components F = {F,, F1,..., Fp}
on X U p such that...
@ each component F; is a restricted subtree of 71 and T
Q the trees in {T1(X;|li = p,1,...,n)} and
{T2(Xj|li = p,1,...,n)} are node disjoint subtrees of T; and
T,, respectively
@ the taxon p is contained in F,

MAF
A maximal agreement forest, denoted by MAF, is any agreement

forest F( Ty, T2) of minimal size. Moreover, we have that

dispr(T1, T2) = |[F(T1, T2)[ — 1
Usually, the number of MAFs of two trees is greater than one.
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Acyclic Agreement Forest

An agreement forest F( Ty, T2) for Ty and Ty is called acyclic, if
the components can be numbered such that, if the root of one
component F is an ancestor of the root of some other component
F’, then the number assigned to F is lower than the number
assigned to F’ for all pairs of components F and F’ in F(Ty, T>).

T14 TQZ
a b ¢ d e f p a b ¢ d f e p
./_"(T17 TQ)I

No direct cycle @

N .. /<\ ;‘AFisacydi‘/J\
a d b ¢ e f p
Cy, Cy Cu 4 @4—@—»
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Acyclic Agreement Forest

An agreement forest F( Ty, T2) for Ty and Ty is called acyclic, if
the components can be numbered such that, if the root of one
component F is an ancestor of the root of some other component
F’, then the number assigned to F is lower than the number
assigned to F’ for all pairs of components F and F’ in F(Ty, Tp).

MAF

A maximal acyclic agreement forest, denoted by MAAF, is any
acyclic agreement forest F( 71, T2) of minimal size. Moreover, we
have that

h(Ti, To) = |F(T1, T2)| — 1

Usually, the number of MAAFs of two trees is greater than one.
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MAAFs in hybridization networks

T: Ts:
a b ¢ d e f p d b ¢ a f e p
MAAF: /<\
e f P a b d ¢
e P

19/22



MAAFs in hybridization networks

Ty: Ts:
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MAAFs in hybridization networks

ab.cdefp d b ¢ a f e p

MAAF: /<\ /<\

efpabd;

]
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MAAFs in hybridization networks

Tll
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MAAFs in hybridization networks

Ty: Ts:

a b ¢ d e f p d b ¢ a f e p
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Our approach to construct all hybridization
networks

o construct all MAAFs
o naif approach O(n*nlog(n)) : not suitable for huge input
trees!)
e our approach O(3*nlog(n))



Our approach to construct all hybridization
networks

e construct all MAAFs

o naif approach O(n*nlog(n)) : not suitable for huge input
trees!)
e our approach O(3*nlog(n))
o reconstruct a ( ?) phylogenetic network form
each MAAF

o work in progress (motivated by Baroni et al., 2005) ...



Reconciliation of (binary) phylogenetic trees
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Reconciliation of (binary) phylogenetic trees

AN
N

S

4 c D
G

b d

a clc?

Problem
When taking into account HGTs, the problem is NP-hard.
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Reconciliation of (binary) phylogenetic trees

20 ma,
S
10 ma 12 ma
A B C D
G
a cic2 b d

One possible solution

Dated species tree : polynomial and still realistic restriction of the
NP-hard problem
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Reconciliation of (binary) phylogenetic trees

20 ma,
S
10 ma 12 ma
B C

A D
G ts=tsg - - -
a b cre2 d
a cre2 b d A B C D

Contribution

o formal definition of the underlying biological problem

@ combinatorial modelling of the problem

@ improvement of the complexity (by dynamic programming in
0(|S2| - |G|) instead of O(|S|* - |G|*) or O(|S[® - |G])

o Doyon JP, Scornavacca C, Széllési G.J., Ranwez V et Berry V. LNCS, Springer-Verlag, 2010.

e 1 publication en préparation
o Logiciels : MPR
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