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Causal relationships: from genotype to phenotype

Inherited phenotypes have genetic roots

Phenotype: observed characteristic (anatomical,
morphological, molecular, physiological, ethological) or trait in a
living organism. Many of which are inherited from parents
(Mendel’s peas...).

Polymorphisms (several shapes) control gene expression
or the affinity between a protein and its target. Can be (i)
complex and (ii) quantitative (6= discrete).
Traits carried out by DNA. Information unit (for constructing
and operating an organism) = gene with different forms or
alleles whose inheritance is complicated by recombination
of chromosomes (diploids).
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Causal relationships: from genotype to phenotype

Gene Regulatory Networks

Mutations on DNA seq.: random events that can create a
new allele hence new trait(s) when viable→ Basis for
evolution.

Links, causal dependencies between genes or genes and
their products are represented into a Gene Regulatory
Networks (GRN).
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Angiogenic signaling network (Adollahi et al. 2007)
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Causal relationships: from genotype to phenotype

Gene Regulatory Networks

Mutations on DNA seq.: random events that can create a
new allele hence new trait(s) when viable→ Basis for
evolution.

Links, causal dependencies between genes or genes and
their products are represented into a Gene Regulatory
Networks (GRN).

Abundance of genomics data (=measurements of cell compo-
nent activity). Can be directly used to infer GRN (Wehrli et al.
2006, Bansal et al. 2007).
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Genetical genomics

Avowed biological target

Genetical genomics
Combine genetic information (perturbation of the network) and
genomics measures (Jansen & Nap 2001) because...

Biological goal: Understand genetic mechanisms (i)
allowing observed diversity and (ii) able to accomplish
many diverse functions.
More pragmatic goal: exploiting genetic context and
observed (e-)traits to reconstruct GRN or less ambitiously:
identify genes with strong regulatory roles.

With...High levels of measurement replication: each allele at each
QTL present in a large number of samples→ the effect of the QTL on
gene expression will therefore be measured many times.
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Genetical genomics

Biological ingredients

3 mechanisms to link genotype to the observed e-traits

⊕

Physical map
Linkage map
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Genetical genomics

Biological findings (unavowed)

Unanswered questions so far: (i) number of loci that underlie
variation in heritable phenotypes, (ii) distribution of their effect
sizes, (iii) their molecular natures, (iv) mechanisms of action and
interaction and (v) their dependencies on environmental
variables.

Applications: medical and agricultural genetics, genetic
engineering as well as in basic evolutionary biology.
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Genetical genomics

Learning GRN from expression data

I Pairwise algorithms
(correlation, mutual information,
hierarchical clustering. . . ).

I Differential equation
modelling.

I Network-based algorithms
(boolean networks,
dynamic/discrete BN. . . )

(Bansal et al. 2007 and V.A. Smith’s website)
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Model-based approach with Markovian dependencies

Gene clustering with missing observations in a
Markovian setting

Data: omics measurements on individual biological entities
& interactions between these entities (from experimental
evidence or derived: litterature, genomic context,
co-expression...).
Network information in Markov Random Field (MRF).
Observations modelled conditionally on node status
through probabilistic distributions (e.g. Gaussian
distribution specifically built for high-dimensional data,
Bouveyron et al., Comput. Statist. Data Analysis 2007) so
accounting for noise.



Biol. issues Spatial gene expression clustering Genet. genom. to infer network Summary

Model-based approach with Markovian dependencies

Gene clustering with missing observations in a
Markovian setting

Data: omics measurements on individual biological entities
& interactions between these entities (from experimental
evidence or derived: litterature, genomic context,
co-expression...).
Network information in Markov Random Field (MRF).
Observations modelled conditionally on node status
through probabilistic distributions (e.g. Gaussian
distribution specifically built for high-dimensional data,
Bouveyron et al., Comput. Statist. Data Analysis 2007) so
accounting for noise.



Biol. issues Spatial gene expression clustering Genet. genom. to infer network Summary

Model-based approach with Markovian dependencies

Gene clustering with missing observations in a
Markovian setting

Data: omics measurements on individual biological entities
& interactions between these entities (from experimental
evidence or derived: litterature, genomic context,
co-expression...).
Network information in Markov Random Field (MRF).
Observations modelled conditionally on node status
through probabilistic distributions (e.g. Gaussian
distribution specifically built for high-dimensional data,
Bouveyron et al., Comput. Statist. Data Analysis 2007) so
accounting for noise.



Biol. issues Spatial gene expression clustering Genet. genom. to infer network Summary

Model-based approach with Markovian dependencies

Gene clustering with missing observations in a
Markovian setting

Data: omics measurements on individual biological entities
& interactions between these entities (from experimental
evidence or derived: litterature, genomic context,
co-expression...).
Network information in Markov Random Field (MRF).
Observations modelled conditionally on node status
through probabilistic distributions (e.g. Gaussian
distribution specifically built for high-dimensional data,
Bouveyron et al., Comput. Statist. Data Analysis 2007) so
accounting for noise.

Novel instantiation of an EM-based algorithm for model estima-
tion: mean-field like approximations and accounting for missing
observations (MAR).
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Model-based approach with Markovian dependencies

Workflow of a computational biology data analysis
with our method

(from Blanchet & Vignes, J. Comput. Biol. 2009)
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Model-based approach with Markovian dependencies

SpaCEM3 software

The SpaCEM3 software allows the user to specify the structure
of the model, estimate parameters, select relevant models (BIC,
ICL) and visualize the results in the GUI.

(freely available at http://spacem3.gforge.inria.fr/)

http://spacem3.gforge.inria.fr/
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Model-based approach with Markovian dependencies

Biological features of clusters

Modularity
Interpretability of
cluster profiles
GO term
representativity
Link to metabolic
pathways
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HMRF in genetical genomics

Inferring a MRF with genetical genomics data

1 Estimating weights -as a measure of uncertainty- on
putative edges and fixing those on edges defined by expert
knowledge.

...could lead to the inference of N(N − 1)/2 parameters.
2 Triplet Markov fields (Blanchet & Forbes, IEEE PAMI 2008)

allowing objects to be assigned to overlapping subclasses
seem an interesting lead to model genetic background of a
gene by introducing an additional blanket that could
encode genetic dependencies in the population.

...application at present limited to supervised classification.
Optimality to include genetics?



Biol. issues Spatial gene expression clustering Genet. genom. to infer network Summary

HMRF in genetical genomics

Inferring a MRF with genetical genomics data

1 Estimating weights -as a measure of uncertainty- on
putative edges and fixing those on edges defined by expert
knowledge.

...could lead to the inference of N(N − 1)/2 parameters.
2 Triplet Markov fields (Blanchet & Forbes, IEEE PAMI 2008)

allowing objects to be assigned to overlapping subclasses
seem an interesting lead to model genetic background of a
gene by introducing an additional blanket that could
encode genetic dependencies in the population.

...application at present limited to supervised classification.
Optimality to include genetics?



Biol. issues Spatial gene expression clustering Genet. genom. to infer network Summary

HMRF in genetical genomics

Inferring a MRF with genetical genomics data

1 Estimating weights -as a measure of uncertainty- on
putative edges and fixing those on edges defined by expert
knowledge.

...could lead to the inference of N(N − 1)/2 parameters.
2 Triplet Markov fields (Blanchet & Forbes, IEEE PAMI 2008)

allowing objects to be assigned to overlapping subclasses
seem an interesting lead to model genetic background of a
gene by introducing an additional blanket that could
encode genetic dependencies in the population.

...application at present limited to supervised classification.
Optimality to include genetics?



Biol. issues Spatial gene expression clustering Genet. genom. to infer network Summary

HMRF in genetical genomics

Inferring a MRF with genetical genomics data

1 Estimating weights -as a measure of uncertainty- on
putative edges and fixing those on edges defined by expert
knowledge.

...could lead to the inference of N(N − 1)/2 parameters.
2 Triplet Markov fields (Blanchet & Forbes, IEEE PAMI 2008)

allowing objects to be assigned to overlapping subclasses
seem an interesting lead to model genetic background of a
gene by introducing an additional blanket that could
encode genetic dependencies in the population.

...application at present limited to supervised classification.
Optimality to include genetics?



Biol. issues Spatial gene expression clustering Genet. genom. to infer network Summary

Outline
1 Introduction and biological issues

Causal relationships: from genotype to phenotype
Genetical genomics

2 Gene expression clustering with missing observations
in a Markovian setting

Model-based approach with Markovian dependencies
Leads to use Markovian modelling in a genetical
genomics context

3 Reconstruction of networks combining genetic and
genomics data

Existing methods
Artificial data set simulation
Learning with Bayesian Networks or with a lasso SEM
regression
Preliminary results



Biol. issues Spatial gene expression clustering Genet. genom. to infer network Summary

Existing methods

Learning networks in genetical genomics

I Pairwise algo. (Ghazalpour et al.,
PLOS Gen., 2006) co-expression
network + module cis-eQTL
I Equation-based algo. (Liu et al.,
Genetics, 2008): greedy SEM with
expr. levels and genotypes as covar.,
pre-filtered by eQTL info.
. Nathalie Keussayan’s MSc. (with
Brigitte Mangin).
I Network-based algo. (Zhu et al.,
PLoS Comput. Biol., 2007): MCMC
algo. on BN structures with BIC and
eQTL info. as a prior.
. Jimmy Vandel MSc. (with Simon de
Givry). Staying with us for a PhD .
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Artificial data set simulation

A recipe for genetical genomics artificial dataset
generation

Choose a network with
features as close as possible
to know features of realistic
biological networks→
http://www.

comp-sys-bio.org/AGN/.
Simulate genotype from a RIL population: pop size,
chromosome size, number and distribution of markers
(incl.error and missingness)→ CarthaGène.
Compute gene expression data from gene activity ODE→
COmplex PAthway SImulator (COPASI,
http://www.copasy.org/) for steady-state expression
levels.
Note: expr. levels need to be discretized with BN: k-means,
log-scale, mixture, box-plot...?

http://www.comp-sys-bio.org/AGN/
http://www.comp-sys-bio.org/AGN/
http://www.copasy.org/
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Learning with Bayesian Networks or with a lasso SEM regression

Bayesian Networks (BN)

Definition of BN

Directed Acyclic Graph (DAG) & P(V ) =
∏p

i=1 P(Vi | Vpa(Vi ), with
Vi := Mi ⊗Gi . Clever init.: encompassing network with putative eQTL
→ MCQTL http://carlit.toulouse.inra.fr/MCQTL/.

Tested Algorithms (Matlab’s BayesNet, K.Murphy and P. Leray)

1 Scoring algorithms: BIC (+ penalty for genetic linkage) with
structure exploration strategies: Maximum Weight Spanning
Tree (MWST), K2 (node ordering), Greedy Search (GS).

2 Independance algorithms: χ2 or Likelihood Ratio Test (LRT) with
PC or BNPC.

http://carlit.toulouse.inra.fr/MCQTL/
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Learning with Bayesian Networks or with a lasso SEM regression

Structural Equation Modelling (SEM)

. Y = Y .B + X .Θ + ε

where:
Y matrix of transcript levels (n × p)
X matrix of genotypes (n × q)
Bkm direct effect of level of gene k on level of gene m (Bii = 0).
Θjm direct effect of marker j on expression of gene m.

. Gene-by-gene regression

Yk = Y\k ∗ βk + X ∗Θk + εk

βk ’s and Θk ’s need to be estimated as regression coefficients.

. Values signif. 6= 0 allow us to infer network structure.
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Learning with Bayesian Networks or with a lasso SEM regression

Lasso estimation of parameters

Idea 1 Least Square: unbiased but variance on estimator
becomes a problem since typically n� p.
Idea 2 Biased estimations: v2.α ridge (not parcimonious),
v2.β best subset (fixed number of variables can have
coef.6= 0), v2.final Lasso (Tibshirani J. Royal. Statist. Soc B.
1996, selects and reduces variables).

β̂k = arg min
[
|Yk − [Y\kX ].βk |L2 + λ|βk |L1

]
(|β̂k |L1 ≤ τ, βk =t [Bk θk ])

We used the Least Angle Regression (LAR) algo. (lars in R) to
compute X .β̂, with cross-validation, BIC and Meinshausen
criteria to determine the best λ.
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criteria to determine the best λ.
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Learning with Bayesian Networks or with a lasso SEM regression

BN vs. SEM: advantages and drawbacks

BN SEM

Computational time

Continuous data

Modelling cycles

Param./likelihood estim.

Non-linear dependencies
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Preliminary results

Results: (i) BN vs. SEM and (ii) with or without
genotypes

Network recovery performances on 9 artificial datasets
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Summary

Summary
Panel of different methods to deal with genetical genomics
data.
Plausible synthetic data generation (room for
improvement!).
Obvious gain in using genetic information

Open Problems
Validate/assess algorithms (any others? Elastic Net?) for
network structure recovery in genetical genomics.
Try these methods on a real gold standard dataset (mice,
yeast, thaliana ok...What if sunflower or strawberries).
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