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Introduction State of the art

Gene regulation
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Introduction State of the art

Main elements to study regulation

DNA sequences: 
- Regulatory regions
- Motifs  

Experimental data:
-  TF binding 
-  Epigenetics

    Gene expression 
    - Count of mRNA
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Introduction State of the art

1- Predicting epigenetics based on DNA sequences

DNA sequences: 
- Regulatory regions
- Motifs  

Experimental data:
-  TF binding
-  Epigenetics

    Gene expression 
    - Count of mRNA

DNA sequence can modulate the epigenome and ultimately gene expression
[Quante & Bird Cell Biol (2016)]

Specific DNA motifs can be associated to specific epigenetic marks [Whitaker
& al. Nature (2015)]

Predicting effects of non-coding variants with deep learning-based sequence
model [Zhou & al. Nat.Methods (2015)]

Convolution networks for quantifying the function of DNA sequences [Quang
& al. NAR (2016)]

May TAHA NETBIO December 14, 2018 4 / 26



Introduction State of the art

2- Predicting gene expression based on experimental data

DNA sequences: 
- Regulatory regions
- Motifs  

Experimental data:
-  TF binding
-  Epigenetics

    Gene expression
    - Count of mRNA 

Regression analysis of combined gene expression regulation in acute myeloid
leukemia [Li & al. PLoS CB (2014)]

Combining transcription factor binding affinities with open-chromatin data
for accurate gene expression prediction [Schmidt & al. NAR (2017)]

Inference of transcriptional regulation in cancers [Jiang & al. Proc. Natl. Acad.
Sci (2015)]
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Introduction State of the art

Limits of experimental data

These variables present biological and technical limits:

Experimental data are cost and time consuming

Not available for all conditions

Do not capture regulation instructions that may lie at the sequence-level
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Introduction Our work

3- Predicting gene expression based on the DNA sequence

Our objective: Establish a model to predict and explain gene expression based
only on DNA sequence level

DNA sequences: 
- Regulatory regions
- Motifs  

Experimental data:
-  TF binding 
-  Epigenetics

    Gene expression
    - Count of mRNA   

Concomitant works (2018)
Deep learning sequence-based ab initio prediction of variant effects on expression
and disease risk [Zhou & al. Nature genetics (2018)]

Sequential regulatory activity prediction across chromosomes with convolutional
neural networks [kelley & al. Genome Research (2018)]

Predicting mRNA abundance directly from genomic sequence using deep
convolutional neural networks [Agarwal & Shendure BioRxiv (2018)]
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Introduction Our work

Outline

1 Data: Gene expression and DNA sequence
Gene expression in cancer
Nucleotide compositions and Motifs

2 Summary of the penalized linear model
Article
Take home message

3 Convolution neural networks
Different networks
Convolution network architecture
Perspectives
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Data sets Gene expression

Gene expression

RNA-seq data1

241 samples from 12 different
cancers: AML, BRCA, . . .

1- https://cancergenome.nih.gov/
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Data sets DNA sequence

Transcription factors binding sites: Motifs

Wb,j = log
(

Pb,j
P(b)

)
base b, position j

Position Probability Matrix2 PPM (P)

Position Weight Matrix3 PWM (W )

Computing score

2- [Mathelier & al. NAR (2016), Khan & al. NAR (2018)]

3- [Wyeth & al. Nat. Rev. Genet. (2004)]

Score(S,W ) = max
i

|W |−1∑
j=0

log P(si+j |Wj)
P(si+j)
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Data sets DNA sequence

Nucleotide compositions
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Coding DNA Region

3’ Untranslated Region

5UTR CDS 3UTR
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mRNA
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percentage(N, s) = ]N
|s|

For each region:
4 nucleotides (A, C, G and T) and 16 di-nucleotides (CpG, CpA, . . . )
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Linear model

Published work
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Linear model

Take home message

A Lasso penalized linear model to predict gene expression based on nucleotide
compositions in different regulatory regions

DNA sequences contain information able to explain gene expression

Sequence-level information is highly predictive of gene expression and in some
occasions comparable to reference ChIP-seq data alone
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Convolution networks

Convolution neural network
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Convolution networks

Types of network
There are different types of neural network. We used:

1 Deep neural network
More than two hidden layers
xi : a binary or continuous vector
yi : a binary or continuous scalar
Classification and regression

2 Convolution neural network
One or More layers
High number of neurons
Xi : a matrix (DNA Sequence,
text, image)
yi : a binary or continuous scalar
Classification and regression
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Convolution networks

Motivations

1 State of the art:
Convolution networks applied to DNA sequence is more and more used and
developed over the years

Networks to predict epigenetics based on the sequences ([Quang & al. NAR
(2016), Zhou & al. Nat.Methods (2015), . . . ]

In 2018, predicting gene expression based on DNA sequence ([Zhou & al.
Nature genetics (2018), Agarwal & Shendure BioRxiv (2018), . . . ])

2 Using the DNA sequences as predictive variables instead of a summary of the
sequence (scores and compositions)
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Convolution networks

Convolution network
    

Convolution layer
  

Max-pooling
layer

Fully-connected

All neurons are 
connected

   Y

Output 
layer

Input 
layer

     Filters

Gradient descent
Model weight estimations are obtained by the backpropagation algorithm of
gradient descent optimization
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Convolution networks

Convolution layer

     X
    K

Portion I1

Feature map

Portion I3

For I1 (i.e. j=1):
f(∑k∑n(In,k+1Kn,w-k)) k ∊ {1,..., 4} &

                                                                 n ∊ {1,..., 4}
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Convolution networks

Input layer

A C G … T A T G A … C C G

T T C … G A T G C … A A G

C G A … T A T G A … C A T

.... .... ....

G T A … C A T G T … G G A

G T C … C A T G G … G C C

Gene 1

                Gene 2

                Gene 3

……..

Gene n-1

Gene n

Promoter sequence -500/+500 b    
 around TSS

 -500 …... 0 …... +500

A 1 …... 0 …... 0

C 0 …... 0 …... 0

G 0 …... 0 …... 1

T 0 …... 1 …... 0

 -500 …... 0 …... +500

A     0 …... 0 …... 0

C 0 …... 0 …... 1

G 1 …... 0 …... 0

T 0 …... 1 …... 0

Hot coding matrix for each 
gene 

May TAHA NETBIO December 14, 2018 19 / 26



Convolution networks

Hyperparameters

1 Number of convolution/pooling layers

2 Type and window size of the pooling layer:
Maximum
Average
Window size can go from 1 to length of the output

3 Number of non-linear dense layers (ReLU: f (x) = max(0, x) activation in
general)

4 Regularization:
Dropout with different probabilities
`1 and `2 regularization with different values of the λ

5 Training parameters: optimizer (Adam, RMSprop), number of epochs . . . .
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Convolution networks

Parameter Optimization

Non-optimized hyperparameters
Convolution: number of layers= 1, number of neurons = 550
Training: number of epochs= 1000, optimizer = RMSprop

Set of tested values

 Initialisation Conv. weights PPM, PWM, Random 

Pooling layer Maximum and Average 
With global, 10, 100 & 400 WS 

Regularization Drp = 0.4/ no drp

Neurons in ReLU Dense 
layer 2000, 200, 400, no layer 

May TAHA NETBIO December 14, 2018 21 / 26



Convolution networks

Architecture
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Input layer: hot coding sequence of the 
CORE promoter (-500/+500 b around TSS.) 

Convolution layer: 550 PPMs of length 
15 b. ReLU activation function 

Maximum pooling layer: window size = 100 

Dropout layer with p = 0.4

Dropout layer with p = 0.4

Dense layer: 200 neurons and ReLU 
activation function 

Output layer (gene expression) 
Dense layer:  one neuron and linear 

activation  

A   G   C    T    C   A    T    G   C    T    A    G   G   A
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Convolution networks

Validation procedure

1 On the set of genes

Set of 19393 genes

Training set of 13393 
genes: 

Estimate network 
weights

  Validation set 
of 4000 genes

Model validation 
(early stopping)

Test set of 
2000 genes

Compute 
Model 
performances: 
Spearman 
Correlation

2 On the number of conditions:
Only 12 conditions, one from each type of cancer, chosen randomly
One model per patient
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Convolution networks

Results
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Pooling

CNN
Linear (Lasso)

CNN model shows higher performances than Lasso penalized regression based
only on motifs scores
Similar results when fitting a linear model with both motifs and nucleotide
composition in CORE promoter
CNN models may capture the effect of both motifs and nucleotides

May TAHA NETBIO December 14, 2018 24 / 26



Convolution networks

Limits and Perspectives

1 Hyperparameters were optimized by a manual search. Not considering
dependencies.
⇒ Optimized architecture using random search with the keras package
“hyperopt” that select the model with lower prediction error

2 Not enough input data to well estimate weights
⇒ Considering coding and non-coding genes

3 The sequence is limited to -500/+500 b
⇒ Consider larger sequence length This extension also may help to define
interactions between different regions. Note: This may increase the number
of parameters
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Convolution networks

Thank you for your attention
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