Combining genome features for gene expression modeling using convolutional network

May TAHA

IGMM - IMAG

December 14, 2018

Gene regulation

State of the art

Main elements to study regulation

DNA sequences:

- Regulatory regions
- Motifs

Experimental data:

- TF binding
- Epigenetics

Gene expression - Count of mRNA

イロト イヨト イヨト イヨト

1- Predicting epigenetics based on DNA sequences

- DNA sequence can modulate the epigenome and ultimately gene expression [Quante & Bird Cell Biol (2016)]
- Specific DNA motifs can be associated to specific epigenetic marks [Whitaker & al. Nature (2015)]
- Predicting effects of non-coding variants with deep learning-based sequence model [Zhou & al. Nat.Methods (2015)]
- Convolution networks for quantifying the function of DNA sequences [Quang & al. NAR (2016)]

< □ > < □ > < □ > < □ > < □ >

2- Predicting gene expression based on experimental data

- Regression analysis of combined gene expression regulation in acute myeloid leukemia [Li & al. PLoS CB (2014)]
- Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction [Schmidt & al. NAR (2017)]
- Inference of transcriptional regulation in cancers [Jiang & al. Proc. Natl. Acad. Sci (2015)]

イロト イヨト イヨト イヨト

Limits of experimental data

These variables present biological and technical limits:

- Experimental data are cost and time consuming
- Not available for all conditions
- Do not capture regulation instructions that may lie at the sequence-level

イロト イヨト イヨト イヨ

3- Predicting gene expression based on the DNA sequence

Our objective: Establish a model to predict and explain gene expression based only on DNA sequence level

イロト イヨト イヨト イヨ

3- Predicting gene expression based on the DNA sequence

Our objective: Establish a model to predict and explain gene expression based only on DNA sequence level

Concomitant works (2018)

- Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk [Zhou & al. Nature genetics (2018)]
- Sequential regulatory activity prediction across chromosomes with convolutional neural networks [kelley & al. Genome Research (2018)]
- Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks [Agarwal & Shendure BioRxiv (2018)]

Outline

Data: Gene expression and DNA sequence

- · Gene expression in cancer
- Nucleotide compositions and Motifs

Summary of the penalized linear model

- Article
- Take home message
- Onvolution neural networks
 - Different networks
 - Convolution network architecture
 - Perspectives

<ロト < 回 > < 回 > < 回 > < 回 >

Gene expression

- RNA-seq data¹
- 241 samples from 12 different cancers: AML, BRCA, ...

・ロト ・日下・ ・ ヨト・

Transcription factors binding sites: Motifs

JASPAR

$$W_{b,j} = log\left(rac{P_{b,j}}{P(b)}
ight)$$
 base b, position j

Position Probability Matrix² PPM (P)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	0	0.5	0.5	0	0.375	0.875	0.5	0.375	0.625	0.5	0.25	0	0	0.5
С	0.375	0	0.5	1	0	0	0	0.375	0	0	0	0	0.25	0.5
G	0.25	0.375	0	0	0	0	0	0	0.125	0	0.75	1	0.625	0
т	0.375	0.125	0	0	0.625	0.125	0.5	0.25	0.25	0.5	0	0	0.125	0

Position Weight Matrix³ PWM (W)

A	-1.93	0.79	0.79	-1.93	0.45	1.50	0.79	0.45	1.07	0.79	0.00	-1.93	-1.93	0.79
С	0.45	-1.93	0.79	1.68	-1.93	-1.93	-1.93	0.45	-1.93	-1.93	-1.93	-1.93	0.00	0.79
G	0.00	0.45	-1.93	-1.93	-1.93	-1.93	-1.93	-1.93	0.66	-1.93	1.30	1.68	1.07	-1.93
т	0.15	0.66	-1.93	-1.93	1.07	0.66	0.79	0.00	0.00	0.79	-1.93	-1.93	-0.66	-1.93

Computing score

- 2- [Mathelier & al. NAR (2016), Khan & al. NAR (2018)]
- 3- [Wyeth & al. Nat. Rev. Genet. (2004)]

$$Score(S, W) = \max_{i} \sum_{j=0}^{|W|-1} \log \frac{P(s_{i+j}|W_j)}{P(s_{i+j})}$$

A B A B A B A

May TAHA

Nucleotide compositions

$$percentage(N,s) = rac{\sharp N}{|s|}$$

For each region:

 \bullet 4 nucleotides (A, C, G and T) and 16 di-nucleotides (CpG, CpA, $\dots)$

3

イロト イヨト イヨト イヨト

Published work

RESEARCH ARTICLE

Probing instructions for expression regulation in gene nucleotide compositions

Chloé Bessière^{1,2}, May Taha^{1,2,3}, Florent Petitprez^{1,2}, Jimmy Vandel^{1,4}, Jean-Michel Marin^{1,3}, Laurent Bréhélin^{1,4‡}, Sophie Lèbre^{1,3,5‡}, Charles-Henri Lecellier^{1,2‡}

1 IBC, Univ. Montpellier, CNRS, Montpellier, France, 2 Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France, 3 IMAG, Univ. Montpellier, CNRS, Montpellier, France, 4 LIRMM, Univ. Montpellier, CNRS, Montpellier, France, 5 Univ. Paul-Valéry-Montpellier 3, Montpellier, France

- These authors contributed equally to this work.
- ‡ LB, SL, and CHL also contributed equally to this work.
- * brehelin@lirmm.fr (LB); sophie.lebre@umontpellier.fr (SL); charles.lecellier@igmm.cnrs.fr (CHL)

Take home message

- A Lasso penalized linear model to predict gene expression based on nucleotide compositions in different regulatory regions
- DNA sequences contain information able to explain gene expression
- Sequence-level information is highly predictive of gene expression and in some occasions comparable to reference ChIP-seq data alone

Convolution neural network

Image: A matching of the second se

Types of network

There are different types of neural network. We used:

Deep neural network

- More than two hidden layers
- x_i: a binary or continuous vector
- y_i: a binary or continuous scalar
- Classification and regression

Convolution neural network

- One or More layers
- High number of neurons
- X_i: a matrix (DNA Sequence, text, image)
- y_i: a binary or continuous scalar
- Classification and regression

ヘロト ヘロト ヘヨト ヘ

Motivations

- State of the art:
 - Convolution networks applied to DNA sequence is more and more used and developed over the years
 - Networks to predict epigenetics based on the sequences ([Quang & al. NAR (2016), Zhou & al. Nat.Methods (2015), ...]
 - In 2018, predicting gene expression based on DNA sequence ([Zhou & al. Nature genetics (2018), Agarwal & Shendure BioRxiv (2018), ...])
- Using the DNA sequences as predictive variables instead of a summary of the sequence (scores and compositions)

Convolution network

Gradient descent

Model weight estimations are obtained by the backpropagation algorithm of gradient descent optimization

May TAHA	NETBIO	December 14, 2018	17 / 26

Convolution layer

Input layer

Number of convolution/pooling layers

2

イロン イロン イヨン イヨン

- Number of convolution/pooling layers
- O Type and window size of the pooling layer:
 - Maximum
 - Average
 - Window size can go from 1 to length of the output

- Number of convolution/pooling layers
- O Type and window size of the pooling layer:
 - Maximum
 - Average
 - Window size can go from 1 to length of the output
- Number of non-linear dense layers (ReLU: f(x) = max(0, x) activation in general)

- Number of convolution/pooling layers
- O Type and window size of the pooling layer:
 - Maximum
 - Average
 - Window size can go from 1 to length of the output
- Number of non-linear dense layers (ReLU: f(x) = max(0, x) activation in general)
- Regularization:
 - Dropout with different probabilities
 - ℓ_1 and ℓ_2 regularization with different values of the λ

- Number of convolution/pooling layers
- O Type and window size of the pooling layer:
 - Maximum
 - Average
 - Window size can go from 1 to length of the output
- Number of non-linear dense layers (ReLU: f(x) = max(0, x) activation in general)
- Regularization:
 - Dropout with different probabilities
 - ℓ_1 and ℓ_2 regularization with different values of the λ
- Straining parameters: optimizer (Adam, RMSprop), number of epochs

Parameter Optimization

Non-optimized hyperparameters

- Convolution: number of layers= 1, number of neurons = 550
- Training: number of epochs= 1000, optimizer = RMSprop

	Set of tested values			
Initialisation Conv. weights	PPM, PWM, Random			
Pooling layer	Maximum and Average With global, 10, 100 & 400 WS			
Regularization	Drp = 0.4/ no drp			
Neurons in ReLU Dense layer	2000, 200, 400, no layer			
May TAHA	NETBIO December 14, 2018 21 / 2			

Architecture

Validation procedure

On the set of genes

Training set of 13393 genes:	Validation set of 4000 genes	Test set of 2000 genes
Estimate network weights	Model validation (early stopping)	Compute Model performances: Spearman Correlation
Set of 19393	genes	

On the number of conditions:
 Only 12 conditions, one from each type of cancer, chosen randomly
 One model per patient

	_		
0.4 ~			- ^
IVId	V I.	~1	1/2

イロト イヨト イヨト イ

Results

- CNN model shows higher performances than Lasso penalized regression based only on motifs scores
- Similar results when fitting a linear model with both motifs and nucleotide composition in CORE promoter
- CNN models may capture the effect of both motifs and nucleotides

Limits and Perspectives

 Hyperparameters were optimized by a manual search. Not considering dependencies.

 \Rightarrow Optimized architecture using random search with the keras package "hyperopt" that select the model with lower prediction error

・ロト ・日下・ ・ ヨト・

Limits and Perspectives

 Hyperparameters were optimized by a manual search. Not considering dependencies.

 \Rightarrow Optimized architecture using random search with the keras package "hyperopt" that select the model with lower prediction error

One of the second secon

Limits and Perspectives

 Hyperparameters were optimized by a manual search. Not considering dependencies.

 \Rightarrow Optimized architecture using random search with the keras package "hyperopt" that select the model with lower prediction error

- Over the second second
- The sequence is limited to -500/+500 b ⇒ Consider larger sequence length This extension also may help to define interactions between different regions. Note: This may increase the number of parameters

Thank you for your attention

