Combining genome features for gene expression modeling

using convolutional network
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Gene regulation

TFs = Transcription factors
RBPs = RNA Binding Proteins

Transcriptional
regulations

/,J Pre-mRNA Post-transcriptional
; regulations

mRNA
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Main elements to study regulation

DNA sequences: Experimental data: .
- Regulatory regions - TF binding Gene expression
. . . - Count of mMRNA
- Motifs - Epigenetics
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State of the art

1- Predicting epigenetics based on DNA sequences

DNA sequences: Experimental data: .

- Regulatory regions - TF binding Gene expression
f . . - Count of mMRNA

- Motifs - Epigenetics

@ DNA sequence can modulate the epigenome and ultimately gene expression
[Quante & Bird Cell Biol (2016)]

@ Specific DNA motifs can be associated to specific epigenetic marks [Whitaker
& al. Nature (2015)]

o Predicting effects of non-coding variants with deep learning-based sequence
model [Zhou & al. Nat.Methods (2015)]

@ Convolution networks for quantifying the function of DNA sequences [Quang
& al. NAR (2016)]
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State of the art

2- Predicting gene expression based on experimental data

DNA sequences: Experimental data: .

- Regulatory regions - TF binding Gene expression
f . . - Count of mMRNA

- Motifs - Epigenetics

@ Regression analysis of combined gene expression regulation in acute myeloid
leukemia [Li & al. PLoS CB (2014)]

@ Combining transcription factor binding affinities with open-chromatin data
for accurate gene expression prediction [Schmidt & al. NAR (2017)]

@ Inference of transcriptional regulation in cancers [Jiang & al. Proc. Natl. Acad.
Sci (2015)]

< W RETTEHG Dol 020G B 29



Limits of experimental data

These variables present biological and technical limits:
@ Experimental data are cost and time consuming

@ Not available for all conditions

@ Do not capture regulation instructions that may lie at the sequence-level
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Our work

3- Predicting gene expression based on the DNA sequence

Our objective: Establish a model to predict and explain gene expression based
only on DNA sequence level

/
DNA sequences: Experimgental data: .
- Regulatory regions - TF bin ngﬁrﬁx;r;séﬁz
- Motifs - Epigenétic
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Our work

3- Predicting gene expression based on the DNA sequence

Our objective: Establish a model to predict and explain gene expression based
only on DNA sequence level

DNA sequences: Experimgental data:
- Regulatory regions
- Motifs

Gene expression
- Count of mMRNA

| 1

Concomitant works (2018)
@ Deep learning sequence-based ab initio prediction of variant effects on expression
and disease risk [Zhou & al. Nature genetics (2018)]

@ Sequential regulatory activity prediction across chromosomes with convolutional
neural networks [kelley & al. Genome Research (2018)]

@ Predicting mRNA abundance directly from genomic sequence using deep
convolutional neural networks [Agarwal & Shendure BioRxiv (2018)]
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Outline

© Data: Gene expression and DNA sequence

o Gene expression in cancer
o Nucleotide compositions and Motifs

@ Summary of the penalized linear model

e Article
o Take home message

@ Convolution neural networks

o Different networks
o Convolution network architecture
o Perspectives
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Gene expression

@ RNA-seq data!

@ 241 samples from 12 different
cancers: AML, BRCA, ...

Frequency

1- https://cancergenome.nih.gov/
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Transcription factors binding sites: Motifs

JAS A

Position Probability Matrix2 PPM (P)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A0 05 05 0 03750875 05 03750625 05 025 0 0 05

24 0375
g c o 0 o5 1 0 0 D 05 0 0 0 O 025 05
G|025 0375 0 0 g 0 0 O 0425 0 075 1 geys O
A A T | 0375 0125 O 0 06250425 05 025 025 05 0 0 o125 0

T e e Position Weight Matrixs PWM (W)

A|-193 079 079 -1.893 045 150 079 045 1.07 079 0.00 -1.93 -1.93 0.7
W I Pb . b b .. . C|045-193 079 168 -193 -1.93 -1.93 0.45 -1.83 -1.93 -1.93 -1.93 000 079
;= 2 G| 000 045 -193 -1.93 -193 -1.93 -1.93 -1.93 066 -1.93 1.30 168 107 -1.93

b.j og _LP(b) ase b, position j e

015 066 -193 -1.93 107 066 079 0.00 0.00 079 -1.93 -1.93 -066 -1.93

Computing score

—2 |W|—1
~8C 900000008 9000 8 8000 P(sivj|W;)
TGCATTATGCCTGGTCACGTGCAAA Score(S, W) = max ) _ log 7,3(;.)]
! - i+
j=0

2- [Mathelier & al. NAR (2016), Khan & al. NAR (2018)]

3- [Wyeth & al. Nat. Rev. Genet. (2004)]
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Nucleotide compositions

Pre-mRNA

mRNA

[EZBU] Distal Upstream promoter  [IBERI] Downstream Flanking Region SR 5 Untransiated Region
[SOREN Core promoter [ENTRT] Intron GBS Coding DNA Region
Distal Downstream promoter ESUIREN 3 Untransiated Region

N
percentage(N,s) = %

For each region:

@ 4 nucleotides (A, C, G and T) and 16 di-nucleotides (CpG, CpA, ...)
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Take home message

@ A Lasso penalized linear model to predict gene expression based on nucleotide
compositions in different regulatory regions

@ DNA sequences contain information able to explain gene expression

@ Sequence-level information is highly predictive of gene expression and in some
occasions comparable to reference ChlP-seq data alone
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Convolution neural network
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Types of network

There are different types of neural network. We used:

©@ Deep neural network

e More than two hidden layers
e x;: a binary or continuous vector

e y;: a binary or continuous scalar
o Classification and regression

@ Convolution neural network

e One or More layers

e High number of neurons

e X;: a matrix (DNA Sequence,
text, image)

yi: a binary or continuous scalar
o Classification and regression
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.~ Convolution networks |
Motivations

@ State of the art:

e Convolution networks applied to DNA sequence is more and more used and
developed over the years

o Networks to predict epigenetics based on the sequences ([Quang & al. NAR
(2016), Zhou & al. Nat.Methods (2015), ...]

e In 2018, predicting gene expression based on DNA sequence ([Zhou & al.
Nature genetics (2018), Agarwal & Shendure BioRxiv (2018), ...])

@ Using the DNA sequences as predictive variables instead of a summary of the
sequence (scores and compositions)
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Convolution network

|| ] Y
— All neurons are
connecte
Filters
Input . Max-pooling Fully-connected Output
layer Convolution layer layer layer

Gradient descent

Model weight estimations are obtained by the backpropagation algorithm of
gradient descent optimization
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Convolution layer

Portion I1 Portllon |3
T - ] \

Feature map

\
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Forl, (i.e.j=1):
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R N o — RETTEHG el 0, Aol 16 20



Input layer
Promoter sequence -500/+500 b Hot coding matrix for each
around TSS gene
-500 0 | ... +500
A 1 0 . 0
[ 0 0 | .. 0
=500 Tss +500, G 0 0 1
Genet A C G .. T A T G A .. C C G T o P o
Gene2 T T C .. G AT G C .. A A G
Gene3s C G A .. T AT GA .. C A T
........ ”
Genent G T A .. C A T G T .. G G A -500 0 +500
Genen G T C .. C A T G G .. G C c\ A 0 0 0
c 0 0 1
G 1 0 0
T 0 1 0
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Hyperparameters

@ Number of convolution/pooling layers

=) = - = T waco
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|
Hyperparameters

@ Number of convolution/pooling layers
@ Type and window size of the pooling layer:

o Maximum
o Average
o Window size can go from 1 to length of the output
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|
Hyperparameters

@ Number of convolution/pooling layers
@ Type and window size of the pooling layer:

o Maximum
o Average
o Window size can go from 1 to length of the output

@ Number of non-linear dense layers (ReLU: f(x) = max(0, x) activation in
general)
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Hyperparameters

@ Number of convolution/pooling layers
@ Type and window size of the pooling layer:
o Maximum
o Average
o Window size can go from 1 to length of the output
@ Number of non-linear dense layers (ReLU: f(x) = max(0, x) activation in
general)
Q@ Regularization:

e Dropout with different probabilities
e /1 and ¥, regularization with different values of the A
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Hyperparameters

@ Number of convolution/pooling layers
@ Type and window size of the pooling layer:

o Maximum
o Average
o Window size can go from 1 to length of the output

@ Number of non-linear dense layers (ReLU: f(x) = max(0, x) activation in
general)
Q@ Regularization:

e Dropout with different probabilities
e /1 and ¥, regularization with different values of the A

@ Training parameters: optimizer (Adam, RMSprop), number of epochs .. ..

< W RETTEHG Ty



|
Parameter Optimization
Non-optimized hyperparameters

@ Convolution: number of layers= 1, number of neurons = 550

@ Training: number of epochs= 1000, optimizer = RMSprop

Set of tested values

Initialisation Conv. weights PPM, PWM, Random

Maximum and Average

Pooling layer With global, 10, 100 & 400 WS

Regularization Drp = 0.4/ no drp

Neurons in ReLU Dense

I 2000, 200, 400, no layer
ayer
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Architecture

Dense linear

O
O
O

Pooling
.
.
.

Convolution
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Output layer (gene expression)
Dense layer: one neuron and linear
activation
Dropout layer with p = 0.4

Dense layer: 200 neurons and ReLU
activation function

Dropout layer with p = 0.4

Maximum pooling layer: window size = 100

Convolution layer: 550 PPMs of length
15 b. ReLU activation function

Input layer: hot coding sequence of the
CORE promoter (-500/+500 b around TSS.)
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Validation procedure

© On the set of genes

ini idati Test set of
Training set of 13393 Validation set
.g of 4000 genes | {2000 genes
genes:
: Compute
Estimate network e
ight Model validation performances:
weignts (early stopping) Spearman .
Correlation
\ Set of 19393 genes

@ On the number of conditions:

Only 12 conditions, one from each type of cancer, chosen randomly

One model per patient
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Results
0.55
050] ~
c
S Pooling
3 0.45 B o
ISh B Linear (Lasso)
O
0.40
0.35

CORE ﬁromoter Motifs Motifs & nucleotides

@ CNN model shows higher performances than Lasso penalized regression based
only on motifs scores

@ Similar results when fitting a linear model with both motifs and nucleotide
composition in CORE promoter

@ CNN models may capture the effect of both motifs and nucleotides
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Limits and Perspectives

© Hyperparameters were optimized by a manual search. Not considering
dependencies.
= Optimized architecture using random search with the keras package
“hyperopt” that select the model with lower prediction error
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Limits and Perspectives

© Hyperparameters were optimized by a manual search. Not considering
dependencies.
= Optimized architecture using random search with the keras package
“hyperopt” that select the model with lower prediction error

@ Not enough input data to well estimate weights
= Considering coding and non-coding genes
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|
Limits and Perspectives

© Hyperparameters were optimized by a manual search. Not considering
dependencies.
= Optimized architecture using random search with the keras package
“hyperopt” that select the model with lower prediction error

@ Not enough input data to well estimate weights
= Considering coding and non-coding genes

@ The sequence is limited to -500/+500 b
= Consider larger sequence length This extension also may help to define
interactions between different regions. Note: This may increase the number
of parameters
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Thank you for your attention
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