Approximate Counting with Deterministic Guarantees for Binding Affinity Computation

Clément Viricel^{1,2}, David Simoncini¹, David Allouche¹, Simon de Givry¹, Sophie Barbe² and Thomas Schiex¹

¹Unité de Mathématiques et Informatiques Appliquées UR 875, INRA, F-31320 Castanet Tolosan, France, ²Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, INSA, UMR INRA 792/CNRS 5504, F-31400 Toulouse, France

What is a protein ?

Protein: amino acids (AA) sequence

Protein: Backbone + side-chains

Side-chain have different conformations

- Protein Design Objective
- Sequence \rightarrow structure \rightarrow function so new function requires new sequence
- Identify sequences that adopt 3D structure with suitable function (enhances activity, control recognition of partners)

Protein Design

Issue : Combinatorial Explosion

For a *n* amino acids protein, 20 natural amino acid types $\Rightarrow 20^n$ sequences

 $\Rightarrow 20^n$ sequences

For a 50 amino acids protein : $20^{50} \approx 10^{65}$ sequences.

For 1 μ g/prot $\Rightarrow \sim 10^{21}$ times the Earth's mass.

The Computational Protein Design (CPD) Goal:

• Increase the odd of finding hits

• Reduce cost and time development How:

- Mathematical model of proteins
- Criteria and algorithms for finding suitable sequences.

Modeling Protein Flexibility

Usual modeling assumptions:

- Rigid backbone
- Discrete side-chain orientations (rotamers : most frequent conformations)

Search space = Sequence space x conformation space

Computing Z

- Limited Guarantees
 - Monte Carlo(sampling), mean field, message passing (TRW).
- Exact
 - Cachet, #SAT (SAT solver, caching)
- (δ, ε) -guarantees:
 - WISH(+optimisation), MIS: XOR hashing based
 - Gumbel perturbations (+optimization)
- *ɛ*-guarantees
 - OSPREY-K*

Binding Affinity Constant

The binding constant K_A represents the affinity between two proteins (for each sequence)

K* algorithm (OSPREY)

DEE removes strongly dominated rotamers

A* enumeration produces conformations in decreasing order of probability mass

A Novel Ensemble-Based Scoring and Search Algorithm for Protein Redesign, and its Application to Modify the Substrate Specificity of the Gramicidin Synthetase A Phenylalanine Adenylation Enzyme. [Ryan H. Lilien] RECOMB'04

Tree Exploration

Enforce invariant: $U < \varepsilon \hat{Z}$ U : Amount of pruned probability mass \hat{Z} : Current Z approximation

Initially: $U \leftarrow 0$ if $U_b + U < \varepsilon \hat{Z}$ Prune and $U \leftarrow U + U_b$ else Branch

 $< (1+\epsilon)\hat{Z}$

At a leaf :
$$\hat{Z} \leftarrow \hat{Z} + e^{-\frac{E}{RT}}$$

Cost Function Networks (Toulbar2)

- $X = (x_1, ..., x_n)$ set of variables
- D_i set of domains over x_i , $|D_i| \leq d$
- W set of non-negative cost functions w_S each with a scope S
- Goal: Minimize $\sum w_S \rightarrow NP$ -hard
- w_{\emptyset} : constant function \rightarrow Lower bound

 $w_{\emptyset} = 0$

Local Consistency

Local consistencies transform the problem into an equivalent one, increasing the upper bound w_{\emptyset} .

Computational Protein Design as Cost Function Network

CPD as CFN

- *n* AA positions, $X = \{P_1, P_2, \dots P_n\}$
- D_i set of rotamers of position P_i
- W pairwise energy functions $W = \{E(i), \dots, E(i, j)\}$

[Allouche et al. CP2012] [Allouche et al. Al 2014] [Traoré et al. Bioinformatics 2013]

Upper Bound on The Partition Function Z_0^* algorithm:

$$U_b = N \times exp\left(\frac{-c_{\emptyset}}{RT}\right)$$

Takes in account the number of leaves N below the current node

 Z_1^* algorithm:

$$U_b = exp\left(\frac{-c_{\emptyset}}{RT}\right) \prod_{i \in X} \sum_{a \in d_i} exp\left(\frac{-E_i(a)}{RT}\right)$$

Takes in account unary costs

 Z_2^* algorithm:

$$U_b = Z_{STP}$$

Takes in account unary costs + binary costs on a spanning tree

Comparison $Z^*_{0,1,2}$ and K^*

$\varepsilon = 10^{-3}$	Z_0^*		$Z_1^* \boldsymbol{\nu s} Z_0^*$		$(Z_1^* + VAC) vs Z_1^*$		$Z_2^* vs Z_1^*$		<i>K</i> *	
PDB ID (#Seq.)	Nodes	Times	Nodes	Times	Nodes	Times	Nodes	Times	Nodes	Times
1ACB (6)	129	0.2 sec	≈ 0%	≈ 0%	pprox 0%	pprox 0%	$\approx -2\%$	pprox 0%	$\propto 10^5$	4,859 min
1AMU (1584)	8.45×10^{4}	$\frac{1}{2}$ min	$\approx -23\%$	$\approx -10\%$	≈ +13%	$\approx -21\%$	$\approx -3\%$	≈ +13%	6.45×10^{6}	1,278 min
3SGB (173)	2.2×10^{6}	30 min	pprox 0%	pprox 0%	pprox 0%	$\approx -5\%$	$\approx -10\%$	≈ +35%	∞	ω
1TP5 (1121)	3.19×10^{6}	31 min	$\approx -51\%$	$\approx -47\%$	pprox 0%	≈ -75%	≈ -36%	≈ +11%	∞	∞
1B74 (1809)	5.64×10^{6}	85 min	$\approx -41\%$	≈ -35%	$\approx +1\%$	$\approx -70\%$	$\approx -9\%$	≈ 17%	∞	∞
2Q2A (4716)	39.9×10^{6}	590 min	≈ -56%	$\approx -45\%$	$\approx -1\%$	≈ -72%	$\approx -5\%$	$\approx +4\%$	00	00

Limit time out: 250 h 64 GB RAM & 1 proc

Acknowledgements

 Biometrics & Artificial Intelligence Unit

- George Katsirelos
- Simon de Givry
- Thomas Schiex
- Catalysis & Enzyme Molecular Engineering Team
- Sophie Barbe

