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Abstract.

As [18] have shown, weighted constraint satisfaction problems
can benefit from the introduction of global cost functions, lead-
ing to a new Cost Function Programming paradigm. In this
paper, we explore the possibility of decomposing global cost
functions in such a way that enforcing soft local consistencies
on the decomposition achieves the same level of consistency
on the original global cost function. We give conditions under
which directional and virtual arc consistency offer such guaran-
tees. We conclude by experiments on decomposable cost func-
tions showing that decompositions may be very useful to easily
integrate efficient global cost functions in solvers.

Introduction
Graphical model processing is a central problem in artificial intel-
ligence. The optimization of the combined cost of local cost func-
tions, central in the valued/weighted constraint satisfaction problem
frameworks [24] federates a variety of famous problems including
CSP, SAT, Max-SAT, but also the Maximum A posteriori Problem
(MAP) in Random Markov fields, the Maximum Probability Expla-
nation (MPE) problem in Bayes nets [14] and polynomial pseudo-
Boolean optimization [6]. It has applications in resource allocation
or bioinformatics.

The main approach to solve such problems in the most general sit-
uation relies on Branch and Bound combined with dedicated lower
bounds for pruning. Such lower bounds can be provided by enforc-
ing soft local consistencies [7], as in Constraint Programming (CP)
solvers. CP solvers are also equipped with global constraints which
are crucial for solving large difficult problems. Dedicated algorithms
for filtering such constraints have been introduced. For some global
constraints such as REGULAR, CONTIGUITY, AMONG, it has been
shown that a decomposition into a Berge-acyclic network of fixed ar-
ity constraints can lead to simpler implementation, without any loss
in efficiency or effectiveness in filtering [2, 4].

The notion of global constraints has been recently extended to
weighted CSP, defining Global Cost Functions [27, 18] with asso-
ciated efficient filtering algorithms. In this paper, after some prelim-
inaries, we define cost function decomposition and show how de-
composable global constraints can be softened in families of decom-
posable global cost functions with the same decomposition structure.
For Berge-acyclic decomposable global cost functions, we show that

1 This work has been funded by the “Agence nationale de la Recherche”,
reference ANR-10-BLA-0214.

enforcing directional arc consistency or virtual arc consistency on
the decomposition is essentially equivalent to a direct application on
the original global cost function. Finally, we experimentally compare
the efficiency of decomposed and monolithic versions of different
global cost functions and observe important speedups using decom-
positions.

1 Preliminaries

1.1 Cost function network.

A Cost Function Network (CFN) is a pair (X,W ) where X =
{1, . . . , n} is a set of n variables and W is a set of cost functions.
Each variable i ∈ X has a finite domain Di of values that can be as-
signed to it. A value a inDi is denoted (i, a). The maximum domain
size is d. For a set of variables S ⊆ X , DS denotes the Cartesian
product of the domains of the variables in S. For a given tuple of
values t, t[S] denotes the projection of t over S. A cost function
wS ∈W , with scope S ⊆ X , is a function wS : DS 7→ [0, k] where
k is a maximum integer cost (finite or not) used to represent forbid-
den assignments (expressing hard constraints). To faithfully capture
hard constraints, costs are combined using the bounded addition de-
fined by α ⊕ β = min(k, α + β). In this paper, a hard constraint
is therefore represented as a cost function using only costs in {0, k}.
If ∀t ∈ DS , zS(t) ≤ wS(t), we say that the cost function zS is a
relaxation of wS , denoted by zS ≤ wS . A cost β may be subtracted
from a larger cost α using the operation 	 where α 	 β is (α − β)
if α 6= k and k otherwise. Without loss of generality, we assume that
every network contains one unary cost function wi per variable and
a 0-arity (constant) cost function w∅.

The central problem in CFN is to find an optimal solution:
a complete assignment t minimizing the combined cost function⊕

wS∈W
wS(t[S]). This optimization problem has an associated

NP-complete decision problem and restrictions to Boolean variables
and binary constraints are known to be APX-hard [20].

A Constraint Network (CN) is a CFN where all cost functions are
hard constraints (i.e., only using costs in {0, k}). Such cost functions
are simply called constraints.

1.2 Local consistency.

Algorithms searching for solutions in CNs usually enforce local con-
sistency properties to reduce the search space. In CNs, the standard
level of local consistency is generalized arc consistency (GAC). A



constraint cS is GAC iff every value in the domain of every vari-
able in S has a support on cS , where a support on cS is a tuple
t ∈ DS such that cS(t) = 0. Enforcing GAC on cS will often be
called filtering cS . General exact methods for solving the minimiza-
tion problem in CFNs usually rely on branch and bound algorithms
equipped with dedicated lower bounds. We consider here the incre-
mental lower bounds provided by maintaining soft local consisten-
cies such as directed arc consistency (DAC) [8, 17] and virtual arc
consistency (VAC) [7].

1.3 Global cost function.

A global constraint c(S, θ) is a family of constraints with a pre-
cise semantics parameterized by the set of variables S involved and
possible extra parameters represented as θ. Global constraints usu-
ally have efficient associated local consistency enforcing algorithm
(compared to generic filtering algorithms). Global constraints have
been extended to define soft global constraints such as SOFTALLD-
IFF(S) [22] or SOFTREGULAR(S,A, d) [26]).

These ”soft” global constraints are in fact hard global constraints
including one auxiliary variable in their scope representing the
amount of violation of the assignment of the original variables. This
amount of violation depends on the semantics of violation used for
the softening of that global constraint. For several such constraints,
efficient dedicated algorithms for enforcing GAC have been pro-
posed.

Recently, different papers [27, 18] have shown that it is possible to
define soft global constraints as parameterized cost functions z(S, θ)
directly providing the cost of an assignment. This approach allows
to directly enforce soft local consistencies with dedicated algorithms
providing stronger lower bounds. Indeed, compared to the previous
cost variable based approach using constraints and GAC, cost func-
tions and soft local consistencies offer improved filtering, thanks to
the enhanced communication between cost functions enabled by the
use of Equivalence Preserving Transformations [9].

1.4 Hypergraph.

The hypergraph of a CFN (or CN) (X,W ) has one vertex per vari-
able i ∈ X and one hyperedge per scope S such that ∃wS ∈ W .
We consider CFNs with connected hypergraphs. The incidence graph
of an hypergraph (X,H) is a graph G = (X ∪ H,H ′) where
{xi, ej} ∈ H ′ iff xi ∈ X, ej ∈ H and xi belongs to the hyperedge
ej . An hypergraph (X,H) is Berge acyclic iff its incidence graph is
acyclic.

2 Decomposing Global Cost Functions

Some global constraints may be efficiently decomposed into a logi-
cally equivalent subnetwork of constraints of bounded arities [5, 3].
Similarly, global cost functions may be decomposed into a set of
bounded arity cost functions. Notice that the definition below applies
to any cost function, including constraints (cost functions using only
costs in {0, k}).

Definition 1 A decomposition of a global cost function z(T, θ)
is a polynomial transformation δp (p being an integer that
bounds arity) that returns a CFN δp(T, θ) = (T ∪ E,F )
such that ∀wS ∈ F, |S| ≤ p and ∀t ∈ DT , z(T, θ)(t) =
mint′∈DT∪E ,t′[T ]=t

⊕
wS∈F

wS(t′[S]).

We assume, w.l.o.g, that every auxiliary variable i ∈ E is in-
volved in at least two cost functions in the decomposition.2 Clearly,
if z(T, θ) appears in a CFN P = (X,W ) and decomposes into
(T ∪E,F ), then the optimal solutions of P can directly be obtained
by projecting the optimal solutions of the CFN P ′ = (X ∪ E,W \
{z(T, θ)} ∪ F ) on X .

Example Consider the ALLDIFF(S) constraint and its associated
softened variant SOFTALLDIFF(S, dec) using the decomposition
measure [22] where the cost of an assignment is the number of pairs
of variables taking the same value. It is well known that ALLDIFF de-
composes in a set of n.(n−1)

2
binary difference constraints. Similarly,

the SOFTALLDIFF(S, dec) cost functioncan be decomposed in a set
of n.(n−1)

2
soft difference cost functions. A soft difference cost func-

tion takes cost 1 iff the two involved variables have the same value
and 0 otherwise. In these cases, no auxiliary variable is required. No-
tice that the two decompositions have the same hypergraph structure.

2.1 Softening Decomposable Global Constraints
We now show that there is a systematic way of deriving decompos-
able cost functions as specific relaxations of existing decomposable
global constraints.

As the previous ALLDIFF example showed, if we consider a de-
composable global constraint, it is possible to define a softened de-
composable global cost function by relaxing every constraint in the
decomposition.

Theorem 1 Let c(T, θ) be a global constraint that de-
composes in a constraint network (T ∪ E,C) and fθ
a function that maps every cS ∈ C to a cost function
wS such that wS ≤ cS . Then the global cost function
w(T, fθ)(t) = mint′∈DT∪E ,t′[T ]=t

⊕
cS∈C

fθ(cS)(t′[S]) is a
relaxation of c(T, θ).

Proof For any tuple t ∈ DT , if c(T, θ)(t) = 0, then
mint′∈DT∪E ,t′[T ]=t

⊕
cS∈C

cS(t′[S]) = 0 because (T ∪ E,C) is
a decomposition of c(T, θ). Let t′ ∈ DT∪E be the tuple where this
minimum is reached. This implies that ∀cS ∈ C, cS(t′[S]) = 0.
Since fθ(cS) is a relaxation of cS , this implies that fθ(cS)(t′[S]) =
0 too. Therefore

⊕
cS∈C

fθ(cS)(t′[S]) = 0 and w(T, fθ)(t) = 0.
�

By definition, the global cost function w(T, fθ) is decomposable
in (T ∪E,W ) whereW is obtained by mapping fθ on every element
of C. Notice that, since fθ preserves scopes, the hypergraph of the
decomposition is preserved.

This result allows to immediately derive a long list of decom-
positions for global cost functions from existing decompositions
of global constraints such as ALLDIFF, REGULAR, GRAMMAR,
AMONG, STRETCH. The parameterization through fθ allows a lot
of flexibility.

Consider the ALLDIFF(V ) constraint decomposed into a clique
of binary differences. From a graph G = (V,H), one can define
a relaxation function fG that preserves difference constraints i 6=
j when (i, j) ∈ H but otherwise relaxes them to a constant cost
function that is always equal to zero. This gives rise to a global cost
functionw(V, fG) that captures the graph coloring problem onG, an

2 Otherwise, such a variable can be removed by variable elimination: remove
i from E and replace the wS involving i by the cost function mini wS on
S \ {i}. This preserves Berge-acyclicity.



NP-hard problem. Thus, enforcing DAC or VAC on that single global
cost function will be intractable as well, whereas enforcing DAC or
VAC on its decomposition into binary cost functions will obviously
be polynomial but will hinder the level of filtering achieved.

Consider the REGULAR({X1, . . . , Xn},A) global constraint, de-
fined by a finite automaton A = (Q,Σ, δ, q0, F ) where Q is a
set of states, Σ the emission alphabet, δ a transition function from
Σ × Q → 2Q, q0 the initial state and F the set of final states.
As shown in [4], this constraint decomposes into a constraint net-
work ({X1, . . . , Xn}∪{Q0, . . . , Qn}, C) where the auxiliary vari-
ables Qi have Q as their domain. The set of constraints C in
the decomposition contains two unary constraints restricting Q0 to
{q0} and Qn to F and a sequence of identical ternary constraints
c{Qi,Xi+1,Qi+1} which allows a triple (q, s, q′) iff q′ ∈ δ(q, s),
thus capturing δ. An arbitrary relaxation of this decomposition may
relax each of these constraints. The unary constraints on Q0 and
Qn would be replaced by unary cost functions λQ0 and ρQn stat-
ing the cost for using every state as either an initial or final state
while the ternary constraints would be relaxed to ternary cost func-
tions σ{Qi,Xi+1,Qi+1} stating the cost for using any (q, s, q′) transi-
tion. This relaxation precisely corresponds to the use of a weighted
automaton A = (Q,Σ, λ, σ, ρ) [11]. The cost of an assignment in
the decomposition is equal, by definition, to the cost of an optimal
parse of the assignment by the weighted automaton. This defines a
WEIGHTEDREGULAR({X1, . . . , Xn},A) global cost function. As
shown in [13], a weighted automaton can encode the Hamming and
Edit distances to the language of a classical automaton. Contrary to
the ALLDIFF example, we will see that WEIGHTEDREGULAR de-
composition can be handled efficiently and effectively by soft local
consistencies.

3 Local Consistency and Decompositions

The use of decompositions instead of their monolithic variant has
both advantages and drawbacks. Thanks to local reasoning, a decom-
position may be filtered more efficiently but this may also hinder the
level of filtering achieved. In classical CSP, it is known that if the
decomposition is Berge-acyclic, then enforcing GAC on the decom-
position enforces GAC on the global constraint itself [1]. We show
that a similar result can be obtained for cost functions using either
DAC or VAC.

DAC has been originally introduced on binary cost functions us-
ing the notion of full support [7]. For a cost function wS , a tu-
ple t ∈ DS is a full support for a value (i, a) of i ∈ S iff
wi(a) = wS(t)

⊕
j∈S wj(t[j]). Notice that either wi(a) = k and

(i, a) does not participate in any solution or wi(a) < k and there-
fore wS(t)

⊕
j∈S,j 6=i wj(t[j]) = 0. DAC has been extended to non

binary cost functions in [23] and [19] with different definitions that
coincide on binary cost functions. In this paper, we use a simple ex-
tension called T-DAC (for terminal DAC). Given a total order ≺ on
variables, a CFN is said to be T-DAC w.r.t.≺ iff for any cost function
wS , any value (i, a) of the maximum variable i ∈ S according to ≺
has a full support on wS .

VAC is a more recent local consistency property that establishes a
link between a CFN P = (X,W ) and a constraint network denoted
as Bool(P ) with the same set X of domain variables and which
contains, for every cost function wS ∈ W, |S| > 0, a constraint
cS with the same scope which forbids any tuple t ∈ DS such that
wS(t) 6= 0. A CFN P is said to be VAC iff the arc consistent closure
of the constraint network Bool(P ) is non empty [7].

3.1 Enforcing soft local consistencies

Enforcing such soft local consistencies relies on arc level Equiva-
lence Preserving Transformations (EPTs) which apply to one cost
function wS [9]. Instead of deleting domain values, EPTs shift costs
between wS and the unary constraints wi, i ∈ S and therefore oper-
ate on a sub-network of P defined by wS and denoted asNP (wS) =
(S, {wS} ∪ {wi}i∈S). The main EPT is described as Algorithm 1.
This EPT shifts an amount of cost |α| between the unary cost func-
tion wi and the cost function wS . The direction of the cost move is
given by the sign of α. The precondition guarantees that costs remain
non negative in the resulting equivalent network.

Algorithm 1: A cost shifting EPT used to enforce soft arc con-
sistencies. The ⊕,	 operations are extended to handle possibly
negative costs as follows: for non negative costs α, β, we have
α	 (−β) = α⊕ β and for β ≤ α, α⊕ (−β) = α	 β.

Precondition: −wi(a) ≤ α ≤ mint∈DS ,t[i]=a wS(t);1

Procedure Project(wS , i, a, α)2
wi(a)← wi(a)⊕ α;3

foreach (t ∈ DS such that t[i] = a) do4
wS(t)← wS(t)	 α;5

To enforce T-DAC on a cost function wS , it suffices to first
shift the cost of every unary cost function wi, i ∈ S inside
wS by applying Project(wS , i, a,−wi(a)) for every value a ∈
Di. Let j be the maximum variable in S according to ≺, one
can then apply Project(wS , j, b, α) for every value (j, b) and
α = mint∈DS ,t[j]=b wS(t). Let t be a tuple where this min-
imum is reached. t is then a full support for (j, b): wj(b) =
wS(t)

⊕
i∈S wi(t[i]). This support can only be broken if for some

unary cost functions wi, i ∈ S, i 6= j, wi(a) increases for some
value (i, a).

To enforce T-DAC on a complete CFN (X,W ), one can simply
sort W according to ≺ and apply the previous process on each cost
function, successively. When a cost function wS is processed, all the
cost functions whose maximum variable appears before the maxi-
mum variable of S have already been processed which guarantees
that none of the established full supports will be broken in the future.
Enforcing T-DAC is therefore inO(edr) in time, where e = |W | and
r = maxwS∈W |S| . Using the ∆ data-structures introduced in [7],
space can be reduced to O(edr).

The most efficient algorithms for enforcing VAC enforces an ap-
proximation of VAC called VACε with a time complexity inO( ekd

r

ε
)

and a space complexity in O(edr). Alternatively, optimal soft arc
consistency can be used to enforce VAC in O(e6.5d(3r+3.5) logM)
time (where M is the maximum finite cost in the network).

3.2 Berge acyclicity and directional arc consistency

In this section, we show that enforcing T-DAC on a Berge-acyclic de-
composition of a cost function or on the original global cost function
yields the same cost distribution on the last variable and therefore the
same lower bound (obtained by node consistency [16]).

Theorem 2 If a global cost function z(T, θ) decomposes into a
Berge-acyclic CFN N = (T ∪ E,F ) then there is an ordering on
T ∪ E such that the unary cost function win on the last variable in
produced by enforcing T-DAC on the sub-network (T, {z(T, θ)} ∪



{wi}i∈T ) is identical to the unary cost function w′in produced by
enforcing T-DAC on the decompositionN = (T ∪E,F ∪{wi}i∈T ).

Proof Consider the decomposed network N and IN = (T ∪ E ∪
F,EI) its incidence graph. We know that IN is a tree whose ver-
tices are the variables and the cost functions of N . We root IN in a
variable of T . The neighbors (parent and children, if any) of a cost
functions wS are the variables in S. The neighbors of a variable i
are the cost functions involving i. Consider any topological order-
ing of the vertices of IN . This ordering induces a variable ordering
(i1, . . . , in), in ∈ T which is used to enforce T-DAC on N . Notice
that for any cost function wS ∈ F , the parent variable of wS in IN
appears after all the other variables of S.

Consider a value (in, a) of the root. If win(a) = k, then any
complete assignment extending this value has cost win(a). Other-
wise, win(a) < k. Let wS , be any child of in and tS a full support
of (in, a) on wS . We have win(a) = wS(t)

⊕
i∈S wi(t[i]) which

proves that wS(t) = 0 and ∀i ∈ S, i 6= in, wi(t[i]) = 0. IN being
a tree, we can inductively apply the same argument on all the de-
scendants of in until leaves are reached, proving that the assignment
(in, a) can be extended to a complete assignment with cost win(a)
in N . In either case, win(a) is the cost of an optimal extension of
(in, a) in N .

Suppose now that we enforce T-DAC using the previous vari-
able ordering on the undecomposed sub-network (T, {z(T, θ)} ∪
{wi}i∈T ). Let t be a full support of (in, a) on z(T, θ). By definition
win(a) = z(T, θ)

⊕
i∈T wi(t[i]) which proves that win(a) is the

cost of an optimal extension of (in, a) on (T, {z(T, θ)}∪{wi}i∈T ).
By definition of decomposition, and since in 6∈ E, this is equal to
the cost of an optimal extension of (in, a) in N . �

T-DAC has therefore enough power to handle Berge-acyclic de-
compositions without losing any filtering strength, provided a correct
order is used for applying EPTs.

3.3 Berge acyclicity and virtual arc consistency

Virtual Arc Consistency offers a simple and direct link between CNs
and CFNs which allows to directly lift classical CNs properties to
CFNs, under simple conditions.

Theorem 3 In a CFN, if a global cost function z(T, θ) decomposes
into a Berge-acyclic CFN N = (T ∪ E,F ) then enforcing VAC on
either (T, {z(T, θ)}∪{wi}i∈T ) or on (T ∪E,F ∪{wi}i∈T ) yields
the same lower bound w∅.

Proof Enforcing VAC on the CFN P = (T ∪ E,F ∪ {wi}i∈T )
does not modify the set of scopes and yields an equivalent problem
P ′ such thatBool(P ′) is Berge-acyclic, a situation where arc consis-
tency is a decision procedure. We can directly make use of Proposi-
tion 10.5 of [7] which states that if a CFN P is VAC and if Bool(P )
is in a class of CSPs for which arc consistency is a decision proce-
dure, then P has an optimal solution of cost w∅.

Similarly, the network Q = (T, {z(T, θ)} ∪ {wi}i∈T ) contains
just one cost function with arity strictly above 1 andBool(Q) will be
decided by arc consistency. Enforcing VAC will therefore provide a
CFN which also has an optimal solution of cost w∅. The networks P
andQ having the same optimal cost by definition of a decomposition.
�

4 Experimental Results

In this section, we intend to evaluate the practical interest of global
cost function decompositions. Compared to the monolithic cost func-
tion filtering algorithm, these decompositions allow for a simple im-
plementation and will provide effective filtering. But their actual per-
formance needs to be evaluated.

All problems were solved using the CFN solver toulbar2
0.9.53 with pre-processing off (option line -o -e: -f: -dec:
-h: -c: -d: -q:), and a variable assignment and DAC order-
ing compatible with the Berge-acyclic structure of the decomposi-
tions. The dynamic value ordering chooses the existential EAC value
first [15]. No initial upper bound is used. The same level of local con-
sistency (namely (weak) EDGAC*, stronger than T-DAC and which
therefore will produce an optimal w∅ for every global cost function)
was used in all cases. All the experiments were run using several 2.66
Ghz Intel Xeon CPU cores with 64GB RAM.

4.1 Random WEIGHTEDREGULAR

Following [21], we generated random automata with |Q| states
and |Σ| symbols. We randomly selected 30% of all possible pairs
(s, qi) ∈ Σ × Q and randomly chose a state qj ∈ Q to form a tran-
sition δ(s, qi) = qj for each such pair. The set of final states F is
obtained by randomly selecting 50% of states in Q. Random sam-
pling uses a uniform distribution.

From each automaton, we built two CFNs: one using a mono-
lithic SOFTREGULAR cost function using Hamming distance [19]
and another using the Berge-acyclic decomposition of an equivalent
WEIGHTEDREGULAR global cost functions. To make the situation
more realistic, we added to each of these problems the same set
of random unary constraints (one per non-auxiliary variable, unary
costs randomly chosen between 0 and 9). We measured two times:
(1) time for loading and filtering the initial problem and (2) total time
for solving the CFN (including the previous time). The first time is
informative on the filtering complexity while the second emphasizes
the incrementality of the filtering algorithms. Times were averaged
on 100 runs and samples reaching the time limit of one hour were
counted as such.

n |Σ| |Q| Monolithic Decomposed
filter solve filter solve

25 5 10 0.12 0.51 0.00 0.00
80 2.03 9.10 0.08 0.08

25 10 10 0.64 2.56 0.01 0.01
80 10.64 43.52 0.54 0.56

25 20 10 3.60 13.06 0.03 0.03
80 45.94 177.5 1.51 1.55

50 5 10 0.45 3.54 0.00 0.00
80 11.85 101.2 0.17 0.17

50 10 10 3.22 20.97 0.02 0.02
80 51.07 380.5 1.27 1.31

50 20 10 15.91 100.7 0.06 0.07
80 186.2 1,339 3.38 3.47

Looking just to filtering time, it is clear that decomposition offers
impressive improvements despite a much simpler implementation.
Solving times show that it also inherits the excellent incrementality
of usual consistency enforcing algorithms for free.

3 https://mulcyber.toulouse.inra.fr/projects/toulbar2.



4.2 Nonograms

(prob012 in the CSPLib) are NP-complete logic puzzles in which
cells in a grid have to be colored in such a way that a given descrip-
tion for each row and column, giving the lengths of distinct colored
segments, is adhered to.

A n×n nonogram can be represented using n2 Boolean variables
xij specifying the color of the square at position (i, j). The restric-
tions on the lengths of segments in each row or column can be cap-
tured by a REGULAR constraint. In order to evaluate the interest of
filtering decomposable cost functions, we have performed two types
of experiments on nonograms.

Softened nonograms: can be built from classical nonograms by
relaxing the strict adherence to the indicated lengths of colored seg-
ments. For this, we relax the REGULAR constraints on each row and
column in the softened version using the Hamming distance. The
associated cost indicates how many cells need to be modified to sat-
isfy the attached description. This problem contains 2n WEIGHTE-
DREGULAR cost functions, with intersecting scopes. In order to be
able to apply Theorem 2 on each of these global cost functions, one
must build a global variable order which is a topological ordering for
each of these cost functions. Although this requirement seems hard
to meet in general, it is easy to produce in this specific case. The xij
variables can, for example, be ordered in lexicographic order, from
top left to bottom right and auxiliary variables inserted anywhere be-
tween their flanking original variables. Global cost function scopes
are usually expressed to capture properties defined on time (as in
rostering problems) or space (as in nonograms, or text processing
problems). In those cases, the global order defined by time or space
defines a global variable ordering that will often satisfy the condi-
tions of Theorem 2.

Random n × n nonogram instances are generated by uniformly
sampling the number of segments in each row/column between 1 and
bn
3
c. The length of each segment is uniformly and iteratively sam-

pled from 1 to the maximum length that allows remaining segments
to be placed (considering a minimum length of 1).

We solved these problems with toulbar2 as before and mea-
sured the percentage of problems solved as well as the mean cpu-
time (unsolved problems are counted for one hour) on samples of
100 problems.

Size Monolithic Decomposed
Solved Time Solved Time

6× 6 100% 1.98 100% 0.00
8× 8 96% 358 100% 0.52

10× 10 44% 2,941 100% 30.2
12× 12 2% 3,556 82% 1,228
14× 14 0% 3,600 14% 3,316

In this more realistic setting, involving different interacting global
cost functions, decomposition is again the most efficient approach
with orders of magnitude speedups.

White noise images: a random solution grid, with each cell col-
ored with probability 0.5, is generated. A nonogram problem in-
stance is created from the lengths of the segments observed in this
random grid. These problems usually have several solutions, among
which the original grid. We associate random unary costs, uniformly
sampled betwen 0 and 99, with each cell. These costs represent the
price to color the cell. A solution with minimum cost is sought. This
problem has been modeled in choco (rel. 2.1.3, default options) and

toulbar2 (-h: option) using 2n REGULAR global constraints.
In the choco model, a SCALAR constraint involving all variables
is used to define the criteria to optimize. In toulbar2, coloring
costs are captured by unary cost functions and the REGULAR con-
straints are represented by WEIGHTEDREGULAR cost functions with
weights in {0, k}. The monolithic version has been tried but gave
very poor results.

We measured the percentage of problems solved as well as the
mean cpu-time (unsolved problems are counted for 1

2
hour, the time-

limit used) on samples of 50 problems.

Size choco toulbar2
Solved Time Solved Time

20× 20 100% 1.88 100% 0.93
25× 25 100% 14.78 100% 3.84
30× 30 96% 143.6 96% 99.01
35× 35 80% 459.9 94% 218.2
40× 40 46% 1,148 66% 760.8
45× 45 14% 1,627 32% 1.321

On this problem, enforcing soft filtering on decomposed global
cost functions is preferable to traditional bound/GAC filtering of a
pure CP model with cost variables. Using decomposition, the direct
use of soft filtering such as EDAC, which subsumes T-DAC, provides
a better exploitation of costs, with minimal implementation efforts.

Beyond decomposable cost functions
In some cases, problems may contain global cost functions which
are not decomposable just because the bounded arity cost function
decomposition is not polynomial in size. However, if the network
is Berge-acyclic, Theorem 2 still applies. With exponential size net-
works, filtering will take exponential time but may yield strong lower
bounds. The linear equation global constraint

∑n
i=1 aixi = b (a and

b being small integer coefficients) can be easily decomposed intro-
ducing n − 3 intermediate sum variables qi and ternary sum con-
straints of the form qi−1 + aixi = qi with i ∈ [3, n − 2] and
a1x1 + a2x2 = q2, qn−2 + an−1xn−1 + anxn = b. The auxil-
iary variables qi have b values which is exponential in the represen-
tation of b. We consider the Market Split problem defined in [10, 25].
The goal is to minimize

∑n
i=1 oixi such that

∑n
i=1 ai,jxi = bj for

each j ∈ [1,m] and xi are Boolean variables in {0, 1} (o, a and b
being positive integer coefficients). We compared the Berge-acyclic
decomposition in toulbar2 with a direct application of the Integer
Linear Programming solver cplex (version 12.2.0.0). We generated
random instances with random integer coefficients in [0, 99] for o
and a, and bj = b 1

2

∑n
i=1 ai,jc. We used a sample of 50 problems

with m = 4, n = 30 leading to max bj = 918. The mean number
of nodes developed in cplex is 50% higher than in toulbar2.
But cplex was on average 6 times faster than toulbar2 on these
problems. 0/1 knapsack problems probably represent a worst case
situation for toulbar2 given that cplex embeds much of what is
known about 0/1 knapsacks (and only part of these extend to more
complicated domains). Possible avenues to improve toulbar2 re-
sults in this unfavorable situation would be to use a combination of
the m knapsack constraints into one as suggested in [25] and a di-
rect exploitation of the properties of the ternary linear constraints for
more compact representation and more efficient filtering.

Related works
It should be pointed out that T-DAC is closely related to mini-
buckets [12] and Theorem 2 can easily be adapted to this scheme.



Mini-buckets perform a weakened form of variable elimination:
when a variable x is eliminated, the cost functions linking x to the
remaining variables are partitioned into sets containing at most i
variables in their scopes and at most m functions. If we compute
mini-buckets using the same variable ordering, with m = 1 and
unbounded i, we will obtain the same marginal cost function as T-
DAC on the root variable r, with the same time complexity. Mini-
buckets can be used along two main recipes: precomputed (static)
mini-buckets do not require update during search but restrict search
to one static variable ordering; dynamic mini-buckets allow for dy-
namic variable ordering (DVO) but suffer from a lack of incremen-
tality. Soft local consistencies, being based on EPTs, always yield
equivalent problems, providing incrementality during search and are
compatible with DVO. Soft arc consistencies also offer a space com-
plexity in O(edr) while mini-bucket may require space exponential
in i.

Conclusion

In this paper, we have extended constraint decomposition to cost
functions occurring in CFNs. For cost functions having a Berge-
acyclic decomposition, we have shown that a simple filtering, at the
directed arc consistency level, provides a comparable filtering on the
decomposition or on the global cost function itself, provided a suit-
able variable ordering is used for DAC enforcing. For the stronger
Virtual AC filtering, the same result is obtained, without any require-
ment.

The application of this result on the trivial class of Berge-acyclic
global cost functions defined by Berge-acyclic decomposable global
constraints is already significant since it allows to enforce soft local
consistencies on networks containing Berge-acyclic decomposable
global constraints such as REGULAR, GRAMMAR, AMONG,. . .

We have shown that these Berge-acyclic global constraints can
also be relaxed into a Berge-acyclic global cost function using a gen-
eralization of the usual “decomposition” measure. This immediately
provides a long list of Berge-acyclic decomposable global cost func-
tions. Our experimental results based on the application of DAC on
the relaxation of the REGULAR constraint into the WEIGHTEDREG-
ULAR cost function show that the decomposition approach offers im-
pressive speedups and cheap implementation compared to the mono-
lithic cost function algorithms.

To experimentally evaluate the practical interest of the stronger
result on VAC, a technically involved implementation of VAC on non
binary constraints would be needed.

Although it is currently restricted to Berge-acyclic decomposi-
tions, this work paves the way for a more general form of “structural
decompositions” of global cost functions where global cost func-
tions decompose into an acyclic structure of local cost functions,
with bounded separator sizes (but not necessarily of cardinality 1).
These global structurally decomposed cost functions could then be
filtered efficiently through dedicated incremental equivalence pre-
serving transformations capturing non serial dynamic programming
algorithms.
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