

Joint Research Centre

The European Commission's in-house science service

www.jrc.ec.europa.eu

Serving society Stimulating innovation Supporting legislation

Modelling greenhouse gas fluxes from European agriculture soils in support of decision making.

Lily Paniagua PhD. Student

Main supervisors: Adrian Leip –Joint Research Centre Wim de Vries –Wageningen University

Costa Rica BS Biology

Wageningen, Netherlands

MSc Geo-Information Science

PhD student WIMEK Environment and Climate research

Work Experience

Costa Rica Project Assistant Environmental Law Office

Virginia, US Interniship Teacher Assistant Spatial Lab

Us, Peru, Bolivia Data Manager GIS Conservation Project

Munich, Germany MSc Thesis Research Assistant Remote Sensing Data Center

EUROPEAN COMMISSION

Ispra, Italy Trainee PhD Student MARS unit Institute of Environment and Sustainabiliy

Research

Climate is changing Population is growing

Modern Agriculture

Food ? Industry fiber ?

- Biodiversity loss
- soil acidification
- eutrophication of aquatic ecosystems health problems
- loss of drinking water sources
- Greenhouse gases

• N20,

N surplus in the environment

Figure 2. The processing and fluxes of reactive nitrogen in terrestrial and marine systems and in the atmosphere (Tg N yr⁻¹), showing the dominant forms of the N, in the exchanges and the magnitude of the boundary fluxes, and approximate lifetimes, integrated over global scales.

N_2O

- GHG that contributes 300 times more to global warming than same mass emitted as CO₂
- Main anthropogenic source is agriculture
- Low cost opportunity sector for emission reduction
- Relevant in climate policies strategies

19 March 2015

 N_2O

Output

TOP DOWN models

Atmospheremonitoring stations

Inverse modelling technique

Global / continental scales Strong dependence on environmental factor with spatial and temporal variability

Nr

Input

Larger regions

Extrapolate/ upscale

DNDC

CENTURY

Large number of field samples

BOTTON-UP models

This variability is expensive and difficult to measure

19 March 2015

Process based model

Components

Model flow

DNDC DeNitrification-DeComposition

simulate carbon exchange, nitrogen balances trace gas emissions from agricultural primary drivers soil environmental biogeochemical reactions.

Limited real data available

CENTURY

simulates carbon and nutrient dynamics for different ecosystems (agriculture) SOC water budget, grassland, crop... calculates the flow of carbon, nitrogen phosphorus and sulphur

Detailed national data sets but not consistent among member states

The CAPRI modelling framework "Common Agricultural Policy Regionalized Impact"

spatial assessment of agri-environmental indicators and linkages to bio-physical modelling

- Partial Equilibrium model for agriculture "Bio-economic model" for policy impact assessment
- "multi-purpose", allows to analyze
 - Market policies
 - Environmental policies
 - Changes in exogenous drivers
 - Environmental indicators
- Open source, maintained by European network including JRC institutes

FSS NUTS REGIONS (NUTS2/3)

CORINE LAND USE/COVER 2000 Flume Sea Flume Ac gévano aéstano Vergelli eVerq. Filmin Fi SOIL MAPPING UNITS 10020 Sol. Borth. **HSMU** iumo Sésia Flume A gévano Verce Year 2000 PROVINCE OF PAVIA: 146 HOMOGENEOUS SPATIAL MAPPING UNITS INTERSECT OF 20 LAND USE/COVER CLASSES 8 SPATIAL MAPPING UNITS **5 SLOPE CLASSES**

SOIL MAPPING UNITS (SMU)

20 Kilometer Homogeneous **Spatial Mapping** Units Land cover • •

Administrative data

HSMU

- Soil type •
- Slope •

1x1km

Scale consistency with regional economic statistics

JRC-AL: CC

Leip et al, 2008, Biogeosciences

DNDC-EUROPE from plot to regional level by integrating

CAPRI database environmental land use farm management

Research

Process based model

Decision making

There is a need to create a flexible modelling framework:

- complex
- requires large ammounts of data,
- very high computation requirements
- limited flexibility for data exploration.
- no user-friendly

- calculate GHG fluxes from European agricultural soils at
- different scales in a consistent way
- data variability is very high and expensive to measure
- should support data exploration,
- model integration and forecast emissions scenarios

Our aim is to model nutrient greenhouse gases fluxes at European scale in response to agriculture management practices for support of decision making by:

1. Constructing a **crop-generic meta-model**, improving input parameters by integrating different bio-physical models and validating it at different scales.

2. <u>Assessing input data quality for upscaling local validated fluxes to</u> European scale.

3. Exploring how to feed the meta-model through **N2O data assimilation**

4. **Forecasting N2O** emissions according to future climate scenarios and **crop and farm adaptations** to climate change.

The 1st meta-model: Britz and Leip 2009

The 2nd meta-model:

Follador et al. 2011 Villa-Vialaneix et al. 2011

- Since 2011 the meta-model has not been used
 - No follow-up of the work of Follador yet
- Not in CAPRI: results not sufficient robust
 - Based on insufficient number of DNDC simulation
 - No variance in wheather
 - Instransparent

Leip A, Busto M and Winiwarter W 2011

Developing spatially stratified N2O emission factors for Europe. *Environ. Pollut.* 159 3223–32 Update of the DNDC data pool

- DNDC-EUROPE simulation on ca. 200,000 spatial units (HSMUs)
- Up to 3 crops/HSMU (simulation entity)
- Each simulation entity
 - 10 simulations with different meteorological years (1991-2000)

S00 Default: downscaled from CAPRI database

S01-S05 Response to mineral fertilizer application of Nmin set to 1.25, 1.1, 0.9, 0.75, 0.5 of default

S07-S12 Response to manure nitrogen application of Nman set to 1.25, 1.1, 0.9, 0.75, 0.5 of default

Meta Model DNDC EUROPE

RANDOM Forest

CART bagging And then averages them.

Villa-Vilaneix et al. (2012)

Compared 8 metamodeling techniques, where RF:

Fast and easy to train

Large number of explanatory variables

Small available info

Handles missing data

Almost insensitive to hyperparameters

Low computational time

DNDC metamodels

specific to one crop Wheat and rape seed (Britz & Leip, 2009) Corn (Villa-Vilaneix et al. 2012)

> One metamodel One crop

Crop Generic Meta model

One metamodel ~**30** Crops (defined by CAPRI)

Input data: 11 Predictors

Input data:

- All Predictors
- 23 Crop Growth Parameters (defined by DNDC crop growth module)

DNDC crop codes

13 Sorghum

16 Vegetables

20 Paddy_rice

17 New crop

14 Cotton

18 Potato

21 Banana

22 Celery

19 Beet

15 Rye

DNDC crop

0 Fallow

- 1 Corn
- 2 Winter wheat
- 3 Soybean
- 4 Legume hay
- 5
- Non_legume_hay
- 6 Spring_wheat
- 7 Sugarcane
- 8 Barley
- 9 Oats
- 10 Alfalfa
- 11 Grassland
- 23 Peanut 12 Perennial_grass 24 Upland_rice 25 Rapeseed
- 26 Tobacco 27 Millet 28 Sunflower 29 Beans 30 DW rice 31 Onion 32 New crop 33 Strawberry 34 Lettuce 35 Artichoke 36 Nursery flowers 37 Brussels_sprout **38 Berries** 39 Truck_crops 40 Fruit trees
- 41 Citrus 42 Grapes 43 Silage_corn 44 Hops 45 Tomato 46 Rainfed rice 47 Mixed_cover_crop 48 Safflower 49 Flax

DNDC_GIS_1.txt

DNDC_GIS_1txt								noti							
1	/*=====							ppau	ai anu	5011	morn	ιαιιοπ			
2 3 4					EXAMPLE-FILE WITH HEADER> THIS PART M	UST BE REMOV	Έ								
5	Purpose:	This fi	le is	the first of	three GIS-files required to run DNDC-EURO	PE.									
6		The name must be \${scenario}_\${region}_1.txt													
7	Content:	: In this file, all information at the level of the spatial unit on which DNDC-EUROPE is run is compiled													
8															
9		- name of unit (HSMU), name of region (REGION), and name of country (COUNTRY) the unit belong to													
10		- the centre of the spatial unit is characterized by longitude (LON) and latitude (LAT)													
11		- index for the set of weather data (METEO). name of the meteo-dataset must be given in the setup.txt file													
12		- number of crop-rotations that are simulated in the spatial unit (NROT)													
13		and a	dditi	ional information	on on each rotation is given in the last	columns of t	his fi	le:							
14		- num	uber o	of years in rot	ation (RY) and										
15		- cod	le of	the management	in each year (CODE).										
16		Note	that	this part has	a flexible number of columns. \${NROT} gro	ups containi	ng one	value f	for RY and	\${RY} numbe	er of CODE.				
17		- Soil	chara	acterization:											
18		- bul	k der	nsity (BD, g/cm	3),										
19		- soi	l org	ganic carbon com	ntent (SOC, fraction),										
20		- cla	y fra	action (CLAY)]											
21		- рН	(PH)												
22		- Nitro	gen o	concentration in	n precipitation (NPRE, mg/L)										
23 24 25												(ex 080	ample for first row wi 8 means that barley is		
20	HOMIT	METEO	NDO	COUNTRY	PEGTON	LON	T. 7. IT	PD	800	CT.AY	DH	NDDF DV	CODE BY CODE BY CODE		
28	========				REGION				==========		=============		==========*/		
29	S00H47	47	3	Austria	AT11 Burgenland	16.4	47.1	1.33	0.04497	0.265	7.175	0.862 1 6	1 15 1 0808		
30	S00H48	48	3	Austria	AT11 Burgenland	16.4	47.4	1.37	0.05695	0.248	6.824	0.877 1 6	1 15 1 0808		
31	S00H49	49	2	Austria	AT11 Burgenland	16.6	47.8	1.27	0.04787	0.265	6.590	0.862 1 6	1 0808		
32	S00H50	50	3	Austria	AT11 Burgenland	16.3	47.5	1.19	0.07851	0.221	6.601	1.013 1 6	1 0808 1 1		
33	S00H51	51	3	Austria	AT11 Burgenland	16.3	47.3	1.28	0.01233	0.265	8.390	1.311 1 6	1 15 1 0808		
34	S00H52	52	3	Austria	AT11 Burgenland	16.6	47.6	1.45	0.00970	0.265	8.390	1.311 1 6	1 15 1 0808		
35	S00H53	53	3	Austria	AT11_Burgenland	16.6	47.5	1.45	0.01023	0.265	8.390	1.293 1 6	1 15 1 0808		
36	S00H54	54	3	Austria	AT11_Burgenland	16.4	47.6	1.42	0.01041	0.265	8.390	1.311 1 6	1 15 1 0808		
37	S00H55	55	3	Austria	AT11_Burgenland	16.3	47.7	1.40	0.01080	0.265	8.390	1.311 1 6	1 15 1 0808		
20	000056	56	°.	Austria	Amii Purgonland	16 0	47 0	1 20	0 01015	0 265	0 270	1 17/ 1 4	1 0000		

ID 🚍	NDC_GIS_1.txt	DNDC GIS 2td DNDC GIS 3td			Farm	management								
1	/*====					inanagomont								
2	(l Ir	nformation								
3		EXAMPLE-FILE WITH HEADER	-> THIS PART MUST BE REMOVED IN	THIS FILE IS	то в									
4	Purpose	e. This file is the second of three GIS-files required to	DNDC-FUROPE											
6	rarpoor	The name must be Siecenarial Siregianl 2 tot	run bibb bonorb.											
7	Content	t. In this file all information at the level of a rotati	on-vear (one vear) in a enatia	l unit on which	-h DNI									
8	00110011			======										
9		One row in this file represents one farming year.												
10														
11		!!! NOTE that for each spatial unit there are as may	v rows (= rotations-vears) as											
12		the sum of \${RY} over all \${NROT} rotations in a	a 111											
13			-											
14		- name of unit (HSMU), number of crops in the current	rotation-year (NCROP)											
15	- for each crop the following information is given; DNDC Crop-code (CODE), crop short name (CROP), a dummy number which is not used any longer in DNDC (used to b													
16	- number of tillage operations (NTILLI), for each tillage operation the following information is required; date in julian days (TILLI), tillage method (tillage de													
17		- number of events of mineral fertilizer application	(NMIN): date in julian days (MI	ND), applicati	ion rate in kg N/ha (Mi	INRATE)								
18		- number of events of manure application (NMAN) NOTE!	- for some crops (e.g. beet)	leaves left or	n the field are simulat	ted as "manure input" with defin	ed C/N ratio							
19	9 - date in julian days (MAND), application rate as carbon in kg C/ha (MANRATE), C/N ratio of manure (MANCN)													
20	- irrigation: fraction of water deficit compensated by irrigation [0-1] (IRRI)													
21		- number of flooding events (FLOOD) with julian date	for each											
22		- number of cutting events (CUTT)												
23		- number of grazing events (GRAZ) !!! NOTE DNDC-EUROPH	E has not yet been tested with	cutting and gr	razing option and will	probably NOT work.								
24	Please	contact adrian.leip@jrc.ec.europa.eu												
25														
26														
27	HSMU	NCROP CODE CROP DUMMY SW SD HD CR FLAG	repetition in case there	NTILL-TILLM	NMIN MINRATE	NMAN MANRATE								
28			- is a second crop)	TILLD	MIND	MAND M	ANCN							
30	S00H47	1 6 S_SW 999999 0 72 221 0.2 999		1 70 3	1 72 121.3	1 72 1.5 1	0.4							
31	S00H47	2 15 RYE 999999 1 240 150 0.2 111 15 RY	999999 2 240 150 0.2 999	1 238 3	1 240 25.5	1 240 5.7 1	0.4							
32	S00H47	2 8 BARL 999999 1 236 82 0.2 111 8 BAN	L 999999 2 236 82 0.2 999	1 234 3	1 266 102.7	1 266 0.9 1	0.4							
33	S00H48	1 6 s_sw 999999 0 72 221 0.2 999		1 70 3	1 72 115.8	1 72 2.4 1	0.4							
34	S00H48	2 15 RYE 999999 1 240 150 0.2 111 15 RY	999999 2 240 150 0.2 999	1 238 3	1 240 22.4	1 240 11.4 1	0.4							
35	S00H48	2 8 BARL 999999 1 236 82 0.2 111 8 BAR	L 999999 2 236 82 0.2 999	1 234 3	1 266 98.7	1 266 1.4 1	0.4							
36	S00H49	1 6 S_SW 999999 0 72 221 0.2 999		1 70 3	1 72 106.0	1 72 4.7 1	0.4							
37	S00H49	2 8 BARL 999999 1 236 82 0.2 111 8 BAR	2L 999999 2 236 82 0.2 999	1 234 3	1 266 81.6	1 266 2.9 1	0.4							
38	S00H50	1 6 S_SW 999999 0 72 221 0.2 999		1 70 3	1 72 109.5	1 72 3.6 1	0.4							
39	S00H50	2 8 BARL 999999 1 236 82 0.2 111 8 BAR	EL 999999 2 236 82 0.2 999	1 234 3	1 266 91.8	1 266 1.9 1	0.4							
40	S00H50	1 1 CORN 999999 0 129 308 0.1 999		1 127 3	1 129 140.2	2 129 27.5 1	0.4 309 5:							
41	S00H51	1 6 s sw 999999 0 72 221 0.2 999		1 70 3	1 72 107.2	1 72 0.6 1	0.4							
		DNDC metamodel meeting - Toulouse	Joint			26								
		16/03/2015	Research Centre											

🗄 DNE	C_GIS_1.txt	📄 DNDC_GIS_2.txt 📄 DND	C_GIS_3.txt										_							
1 2 3 4	/*=====		EXAMPI	E-FILE WI	TH HEADER	> TH	IS PART	MUST BE	REMOVED	IF THIS	FILE IS	 To be u	'SE							
5	Purnose	use: This file is the third of three GIS-files required to run DNDC-EUROPE.																		
6	rarpose.	The name must be \$(scenario) \$(region) 3.txt																		
7	Content:	In this file all i	nformation at	the level	of indiv	idual c	rons in	a crop r	otation	in a sr	atial uni	t on wh	ic			ρ μα	ame	GI		
8												=	-							
9		One row in this fil	e represents o	me cron.																
10				ne orop.																
11		!!! NOTE that for	each spatial	unit ther	e are as	many ro	ws (= r	otation-c	rops) a	s there	are crops	inar	ot							
12		The file is read sequentially, so if a cop occurs twice at different places in the rotation, it must be described twice.																		
13																				
14	4 - name of unit (HSMU)																			
15		- flag whether ther	re is more cror	-informat	ion (111)	or not	(999)	(FLAG)												
16		- crop-identificati	on with DNDC C	rop-code	(CODE). s	hort na	me (CRO	P) and lo	ng name	(CROPL)										
17		- Parameterization	of the crop in	DNDC:	(// -		(-,		(/										
18		(for a description	n of the param	eters, pl	ease refe	r to th	e DNDC :	manual or	papers	١.										
19		- PLANT-TOTC	total potent	ial bioma	ss C (ko	C/ha)			Papaza	/•										
20		- GRAIN-FRAC	portion of c	rain	(-,,														
21		- SHOOT-FRAC	portion of s	shoot.																
22		- ROOTS-FRAC	portion of r	noot																
23		- PLANT-CN	nlant CN																	
24		- GRAIN-CN	grain CN rat	io																
25		- ROOTS-CN	root CN rati	0																
26		- SHOOT-CN	shoot CN rat	io																
27		- PLANT-WATER	water requir	rement (cm	water/g	dry mat	ter of	arain)												
28		- PLANT_T MAX	may INT	chieffe (ehi	water/g	ary mae	UCL OL	grain,												
20		- PLANT-H MAX	max_beight																	
30		- PLANT-TOD	TDD 10																	
31		- DIANT-N FIX	N fivation																	
32		- PLANT-N_FIX	initial offi	ciency of	use of a	heorhed	light	(kaC02/ha	(b) / (T/	m2/a)										
33		- PLANT-PHOTO	maximum rate	of leaf	nhotogunt	hagig (ka CO2/	(Rycoz/Ha ha/h)	/ 11) / (0//	m2/3)										
34		- POOTS-D VEG	maximum race	t of grop	develorm	ent in	vegetet	ive stage	(1/d)											
35		- POOTS-D PEP	rate constan	t of crop	developm	ont in	reprodu	ctive pha	an (1/d	`										
36		- RIANT-FCONO	economic con	nonent/st	orage org	ent in anic bu	weight	corve pha	3e (1/u	/										
37		- SHOOT-LEAF	economic com	f weight	constant	/kg dm/	weight bal													
39		- SHOOT-STEM	specific sta	.r weight	(kg dm/ba	(kg ull/	114)													
30		- BLANT-CO2	ratio of int	arnal/avt	(kg dm/nd	/ 	tration	-												
40		- POOTS-DEPTH	maximum root	depth fo	r cron (m	v concer	cracion	-												
41		- ROOTS-INCRE	increase rat	e of root	denth (m	/dav)														
42		- ROOID-INCRE	Increase lat	e or root	depoir (iii	/uay)														
43	HSMII	SW CODE CROP C	ROPT.	JIANT CONT	N SHOOT	ROOTS	PLANT G	RATN ROOT	S SHOOT	PLANT P	TANT PIAN	т рт.дмт	PLANT	PLANT PL	NT BOOTS	ROOTS PT	ANT SHOOT S	HOOT PLANT	ROOT PO	от
44		SW CODE ORDE C	1	OTC FRAC	FRAC	FRAC	CN C	N CN	CN	WATER	-WDX H WY	X TDD	NETY	T. FFF DHO	TO D VEC	D REP FC	ONO LEAF S	TEM COS	DEPTH T	NCRF
45							=======							2_511 FIK		- 5_REF EC				
46	S00H47	0 6 SWHE S	SWHEAT	6232.7 0	.34 0.41	0.25	40.6	25.0 60.	0 60.0	474.0	3.0 0.5	800	1.00	0.50 40	0.030	0.030 0	.7 450 27	75 0.50	1.0 0.0	6
47	S00H47	1 15 RYFM RY	- TE	3932.9 0	.28 0.47	0.25	26.5	20.0 50	0 50 0	551.0	3.0 0.5	2000	1.00	0.40 3	0.035	0.020 0	.8 450 15	00 0.50	1.0 0.0	27
4.9	S00H47	1 9 RADI RA	RLEY	4718 2 0	26 0 47	0.27	41.0	26.0 44	0 57 0	508.0	3.0 0.5	1000	1.00	0.40 31	0.040	0.021 0	7 450 27	75 0 50	1.0 0.0	6
DND	Cmetan	nodel meeting - T	outouse 16/0	3/2015	.34 0.41	0.25	40.6	25.0 60	0 60 0	474.0	3.0 0.5	800	1.00	0.50 40	0.030	0.030 0	.7 450 27	75 0.50	1.0 0.0	6
50	SOOH48	1 15 DVFM DV	TF	3859 4 0	28 0 47	0.25	26.5	20.0 50	0 50.0	551 0	3 0 0 5	2000	1 00	0 40 31	0.035	0 020 0	8 450 15	00 0 50	1 0 0 0	2

DNDC output - Carbon

end_SOC; //Total Corg, kg C/ha

wrcvl; //Litter very labile, kg C/ha wrcl; //Litter labile, kg C/ha wrcr; //Litter resistant, kg C/ha wcrb + wcrh; //Act Humus, kg C/ha whumus; //Humus, kg C/ha net_SOC; //kg C/ha
yr_C_mine; //kg C/ha
topc[2]; //kg C/kg soil
yr_soil_co2; //kg C/ha
yr_ch4; //kg C/ha

ProdC[1]+ProdC[2]+ProdC[3]; //count all crops, kg C/ha
prograin[1]+prograin[2]+prograin[3]; //count all crops, kg C/ha
prostraw[1]+prostraw[2]+prostraw[3]; //kg C/ha
proroot[1]+proroot[2]+proroot[3]; //kg C/ha
yr_addtc; //kg C/ha
yr_weedc; //kg C/ha
yr_leach_hu; //kg C/ha
yr_addmc; //Manure_amended (kgC/ha/yr)

DNDC output - Emissions

yr_dnn2o; //kg N/ha
yr_dnn0; //kg N/ha
yr_dnn2; //kg N/ha
yr_soil_nh3; //kg N/ha
yr_plant_nh3; //kg N/ha
plantn[1]+plantn[2]+plantn[3]; //kg N/ha
yr_leach_NO3; //kg N/ha

Water balance

yr_TotalEvap; //mm water yr_trans_WE; //mm water yr_LeachWater;//parnum++;yr_PrecWater;// yr_IrriWater; yr_avet; yr_rain*10.0; // mm //

N balance

N input IniSON ; //kg N/ha IniSN ; //kg N/ha yr rainN;//kg N/ha yr fixn[1]+yr fixn[2]+yr fixn[3]; //kg N/ha yr_addfer; //kg N/ha yr addmn; yr_addtn + yr_addrn + yr_sln; yr weedn; //kg N/ha yr minern; //kg N/ha // Noutput EndSON ; //kg N/ha EndSN ; //kg N/ha

DNDC-EUROPE from plot to regional level by integrating

CAPRI database environmental land use farm management

Research

30

Weather forecast oceanography

Different sources integrated to improve forecast skills

Data assimilation

Weights each measurements according to its source and uncertainty levels

Best possible atmospheric state

integrate different N2O emissions sources (field data and processbased models results)

Random forest

Missing input data for some points.. How RF deals with data gaps? Dynamic assessment model updated with the latest state of N2O emissions

Scenario Building

Future scenarios N2O fluxes

 Crop yield during drought and inundation

New variations tolerant to heat, drought, salinity..

- planting times
- optimising irrigation
- migration of agricultural areas shifting traditional crops to others types

- Crop morphological parameters DNDC crop growth module
- Random forest to select most relevant to climate variations
- Intensive literature review
- Agronomic expert consultations

ICRE

maximum rate or lear photosynthesis (kg CO2/na/n) rate constant of crop development in vegetative stage (1/d) rate constant of crop development in reproductive phase (1/

economic component/storage organic by weight specific leaf weight constant (kg dm/ha) ratio of internal/external CO2 concentrations

Thank you!

