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Rationale

Ecology has many complex problems.
Conservation is management within ecology.
Management is allocation of resources.
Ecological systems as food webs.

How should we allocate resources to these systems
through time?
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The problem - managing a food web - a DAG

prey — predator



Managing a food web
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Graph metrics provide a suitable set of heuristics.

If we’re going to manage then we need to quantify the
management problem.

v

» What is the problem? Management of graph, G = (V, E)
over time.

» Has been done over one time step using a Bayesian
network.

» Compare heuristics with optimal solution.



Diagram of modelling techniques
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MDP framework, (X, A, P, R), G

» Finite time horizon: t ={1,--- | T}, T <
» Species states: extinct or extant, x! € {0,1}
» Species-level actions: to protect or not, af € {0, 1}

Budget constraint: Z ca < B
ieVv



Neighbourhoods

A species’ neighbourhood includes all prey and itself

N(i)={jeV|(,i)e E}u{i}

Allows decomposition on a local scale of transition probabilities
(into a product) and rewards (into a sum).



Transition probabilties

n
Pt(xt—H | x’,at) — H Pit(Xit+1 | Xlil(i)7 a}‘)
i=1
Subject to:
Probability of survival is p? times proportion of alive prey.

Pi(x{T1 =1 xt =1, xniy o al = 0) = p? (th)
For basal species, survival probability is just p?.
Extinction (death) is an absorbing state.

A species must have at least one prey species extant.
A species will survive if protected and the above hold.
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Rewards

Final time-step reward function: number of extant species,
n
RT(XT) — Z X,-T
i=1

and per-time-step rewards are zero, Ri(x!) =0, t < T.

x1,6]

Various reward functions can be investigated.

Total expected reward of a policy, ¢

.
> R(x',a")

t=1
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Optimal solution - Backwards Induction Algorithm

1. Set the current time-step to t = T and the value in the final

time-step to v/ (x") = RT(xT) vxT e &
2. Sett =t — 1 and calculate vi(x?) for each state using

vi(x") = max Q'(x, &)
ale A
al = argmax Q'(x!, a")
ale A
where

Qt(xt,a) Fl’t _|_ZP Xt |X a)vt—H( t+1)

xt+1

3. If t =1 then stop, otherwise return to step 2.



Metrics policies, § = (d',---,d"1),d": x! — &

Manage species in descending order of metric
until B! is exhausted

Metric policies
» Degree centrality
» Betweenness centrality
» Closeness centrality
» Keystone index
» Trophic level
Other policies
Bottom-up index

v

» Return on Investment
» None
» Random



Metrics policies

» Isolates have metric values of zero (managed last)
» Ties use randomisation

» Disconnected graphs calculate relative measures on each
subgraph.




Metrics - degree centrality

D; = D + D




Metrics - prey degree
D;~ is the size of the set V/~ = {j € V : (j, ) € E} of all prey of
species i




Metrics - predator degree
D7~ is the size of the set V;~ = {j € V : (i,j) € E}, the set of all
predators of species i




Metrics - betweenness centrality

Z gikll) (i
j<k g]k

BC; =

(VI-n(vi-2y

gk = number of shortest paths between species j and k,
gik(i) = number of shortest paths between species j and
species k which pass through species i.



Metrics - closeness centrality

d(i, k)
CCy = T d(i, k) = distance from species i to k

s



Metrics - trophic level

Related to Bottom-up prioritisation



Metrics - keystone index

Ki = K,-l + K,-T, top-down + bottom-up

1 1
K=" o (1 K, K= Df(“rKeT)
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Metrics - keystone top-down index




Metrics - keystone bottom-up index




Metrics - keystone directed index

Ki = KP" + K9 (direct + indirect)

i - T
KA — ZD1i+ZD17_>’ Kindir _ ngc—jL gg
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Metrics - keystone indirected index




Finite horizon metric policy evaluation

1. Set the current time-step to t = T and the terminal rewards
in the final time-step to v/ (x™) = RT(xT) ¥ xT e X
2. Sett =t — 1 and calculate v}(x!) for each state using
vi(x') = Q'(x', d(x"))
where
Q'(x',d(x) = R'(x") +
ZP(XH1 ’X dt( )) 1‘+1(Xt+1)

xtH

3. If t = 1 then stop, otherwise return to step 2.



Experiments

» For 25 species, B = 8, we’ve more than 1.2 x 102
transition probabilities
» Various transitions can be set to zero based on the
conditions of the transition probabilities.
» M=SG
» S: X — 2% isa2” x nBoolean matrix that indicates for
each possible state which species is extant.
» G is adjacency matrix. G; = 1 if species i is a prey of
species j and otherwise 0. No cannibalism.
> M;; =
Number of extant prey of species j when the state is S; .
» Q=MoS
> Pi,i’,a =0 if Q,’J =0 Vj s.t. Si/vj > 0.
» For 10 species Alaskan web, > 95% of state transitions are
invalid.



Preliminary results - 10 species

Start with solution to 10 species, B=4, T =.10.



Preliminary results - 10 species

Policy vs(x")

Optimal 5.92
K 5.52
BUP 5.52
D~ 5.51
K 4.99
Kindir 4.97
Kair 4.76
BC 4.00
D 3.84
CcC 3.72
Random 3.66
K 3.49
D 3.45
None 1.10

Parameters: 10 species, Bt =4, T = 10



Results
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Parameters: Bt = [27 3a 37 47 47 47 4] respectively, T =1 0,
25 random food webs, connectance = 0.1



Future work

» Find exact solution for webs with n up to 20.

» Code transition probabilities in a faster language
» Use POMDP solver, eg Perseus

» Extract decision tree from optimal policy
» Simulate management using heuristics on large webs
» Investigate alternative approximating solutions



