Computational issues surrounding the management of an ecological food web

William J M Probert, Eve McDonald-Madden, Nathalie Peyrard, Régis Sabbadin

AIGM'12, ECAI2012 Montpellier, France

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Rationale

- Ecology has many complex problems.
- Conservation is management within ecology.
- Management is allocation of resources.
- Ecological systems as food webs.
- How should we allocate resources to these systems through time?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The problem - managing a food web - a DAG

prey \rightarrow predator

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Managing a food web

- Graph metrics provide a suitable set of heuristics.
- If we're going to manage then we need to quantify the management problem.
- ► What is the problem? Management of graph, G = (V, E) over time.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Has been done over one time step using a Bayesian network.
- Compare heuristics with optimal solution.

Diagram of modelling techniques

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

MDP framework, $\langle \mathcal{X}, \mathcal{A}, \mathcal{P}, \mathcal{R} \rangle$, **G**

- Finite time horizon: $t = \{1, \dots, T\}, T < \infty$
- Species states: extinct or extant, $x_i^t \in \{0, 1\}$
- Species-level actions: to protect or not, $a_i^t \in \{0, 1\}$

$$\sum_{i\in V} c_i a_i^t \leq B^t$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Neighbourhoods

A species' neighbourhood includes all prey and itself

$$N(i) = \{j \in V \mid (j, i) \in E\} \cup \{i\}$$

Allows decomposition on a local scale of transition probabilities (into a product) and rewards (into a sum).

Transition probabilties

$$P^{t}(x^{t+1} | x^{t}, a^{t}) = \prod_{i=1}^{n} P^{t}_{i}(x^{t+1}_{i} | x^{t}_{N(i)}, a^{t}_{i})$$

Subject to:

• Probability of survival is p_i^0 times proportion of alive prey.

•
$$P_i(x_i^{t+1} = 1 \mid x_i^t = 1, x_{N(i)\setminus i}, a_i^t = 0) = p_i^0\left(\frac{f^{\star,t}}{f}\right)$$

- For basal species, survival probability is just p_i⁰.
- Extinction (death) is an absorbing state.
- A species must have at least one prey species extant.
- A species will survive if protected and the above hold.

Rewards

Final time-step reward function: number of extant species,

$$R^{T}(x^{T}) = \sum_{i=1}^{n} x_{i}^{T}$$

and per-time-step rewards are zero, $R^t(x^t) = 0$, t < T. Total expected reward of a policy, δ

$$v_{\delta}^{T}(\boldsymbol{x}^{1}) = \mathsf{E}\left[\sum_{t=1}^{T} \boldsymbol{R}^{t}(\boldsymbol{x}^{t}, \boldsymbol{a}^{t}) \middle| \boldsymbol{x}^{1}, \delta\right]$$

Various reward functions can be investigated.

Optimal solution - Backwards Induction Algorithm

- 1. Set the current time-step to t = T and the value in the final time-step to $v_*^T(x^T) = R^T(x^T) \ \forall x^T \in \mathcal{X}$
- 2. Set t = t 1 and calculate $v_*^t(x^t)$ for each state using

$$egin{aligned} m{v}^t_*(m{x}^t) &= \max_{m{a}^t \in \mathcal{A}} m{Q}^t(m{x}^t,m{a}^t) \ m{a}^t_* &= rg\max_{m{a}^t \in \mathcal{A}} m{Q}^t(m{x}^t,m{a}^t) \end{aligned}$$

where

$$Q^{t}(x^{t}, a^{t}) = R^{t}(x^{t}) + \sum_{x^{t+1}} P(x^{t+1} \mid x^{t}, a^{t}) v_{*}^{t+1}(x^{t+1})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

3. If t = 1 then stop, otherwise return to step 2.

Metrics policies, $\delta = (d^1, \cdots, d^{T-1}), d^t : x^t \rightarrow a^t$

Manage species in descending order of metric until B^t is exhausted

(日) (日) (日) (日) (日) (日) (日)

Metric policies

- Degree centrality
- Betweenness centrality
- Closeness centrality
- Keystone index
- Trophic level

Other policies

- Bottom-up index
- Return on Investment
- None
- Random

Metrics policies

- Isolates have metric values of zero (managed last)
- Ties use randomisation
- Disconnected graphs calculate relative measures on each subgraph.

Metrics - degree centrality

$$D_i = D_i^{\leftarrow} + D_i^{\rightarrow}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Metrics - prey degree

 D_i^{\leftarrow} is the size of the set $V_i^{\leftarrow} = \{j \in V : (j, i) \in E\}$ of all prey of species *i*

Metrics - predator degree

 D_i^{\rightarrow} is the size of the set $V_i^{\rightarrow} = \{j \in V : (i, j) \in E\}$, the set of all predators of species *i*

Metrics - betweenness centrality

$$BC_{i} = \frac{\sum\limits_{j < k} \frac{g_{jk}(i)}{g_{jk}}}{(\mid V \mid -1)(\mid V \mid -2)},$$

 g_{jk} = number of shortest paths between species *j* and *k*, $g_{jk}(i)$ = number of shortest paths between species *j* and species *k* which pass through species *i*.

Metrics - closeness centrality

$$CC_k = \left[\frac{\sum\limits_{i=1}^n d(i,k)}{n-1}\right]^{-1}$$

d(i, k) = distance from species i to k

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Metrics - trophic level

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Related to Bottom-up prioritisation

Metrics - keystone index

$$\begin{aligned} \mathcal{K}_{i} &= \mathcal{K}_{i}^{\downarrow} + \mathcal{K}_{i}^{\uparrow}, \quad \text{top-down + bottom-up} \\ \mathcal{K}_{i}^{\downarrow} &= \sum_{c \in V_{i}^{\leftarrow}} \frac{1}{D_{c}^{\leftarrow}} (1 + \mathcal{K}_{c}^{\downarrow}), \qquad \mathcal{K}_{i}^{\uparrow} = \sum_{e \in V_{i}^{\rightarrow}} \frac{1}{D_{e}^{\rightarrow}} (1 + \mathcal{K}_{e}^{\uparrow}) \\ \end{aligned}$$

Metrics - keystone top-down index

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Metrics - keystone bottom-up index

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Metrics - keystone directed index

Metrics - keystone indirected index

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finite horizon metric policy evaluation

- 1. Set the current time-step to t = T and the terminal rewards in the final time-step to $v_{\delta}^{T}(x^{T}) = R^{T}(x^{T}) \forall x^{T} \in \mathcal{X}$
- 2. Set t = t 1 and calculate $v_{\delta}^{t}(x^{t})$ for each state using

$$v_{\delta}^{t}(x^{t}) = Q^{t}(x^{t}, d(x^{t}))$$

where

$$Q^{t}(x^{t}, d(x^{t})) = R^{t}(x^{t}) + \sum_{x^{t+1}} P(x^{t+1} \mid x^{t}, d^{t}(x^{t})) v_{\delta}^{t+1}(x^{t+1})$$

3. If t = 1 then stop, otherwise return to step 2.

Experiments

- For 25 species, B = 8, we've more than 1.2 × 10²¹ transition probabilities
- Various transitions can be set to zero based on the conditions of the transition probabilities.
- $\blacktriangleright \ \mathbf{M} = \mathbf{S}\mathbf{G}$
 - S: X → 2^X, is a 2ⁿ × n Boolean matrix that indicates for each possible state which species is extant.
 - ► G is adjacency matrix. G_{ij} = 1 if species *i* is a prey of species *j* and otherwise 0. No cannibalism.
- M_{i,j} = Number of extant prey of species j when the state is S_{i.}:
- $\blacktriangleright \mathbf{Q} = \mathbf{M} \odot \mathbf{S}$
- ▶ $\mathbf{P}_{i,i',a} = 0$ if $\mathbf{Q}_{i,j} = 0 \forall j \text{ s.t. } \mathbf{S}_{i',j} > 0.$
- For 10 species Alaskan web, > 95% of state transitions are invalid.

Preliminary results - 10 species

Start with solution to 10 species, B = 4, T = 10.

Preliminary results - 10 species

Policy	$v_{\delta}(x^1)$
Optimal	5.92
K^{\uparrow}	5.52
BUP	5.52
D^{\rightarrow}	5.51
Κ	4.99
K ^{indir}	4.97
K^{dir}	4.76
BC	4.00
D	3.84
CC	3.72
Random	3.66
K↓	3.49
D^{\leftarrow}	3.45
None	1.10

・ロ・・日・・ヨ・・ヨ・ ヨ・ シタク

Parameters: 10 species, $B^t = 4$, T = 10

Results

Parameters: $B^{t} = [2, 3, 3, 4, 4, 4, 4]$ respectively, T = 10, 25 random food webs, connectance = 0.1◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Future work

- Find exact solution for webs with n up to 20.
 - Code transition probabilities in a faster language
 - Use POMDP solver, eg Perseus
- Extract decision tree from optimal policy
- Simulate management using heuristics on large webs

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Investigate alternative approximating solutions