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     Escherichia coli 
     ( 423 genes
       578 regulations )

Goal :
Reconstruction of
gene regulatory
network. 
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→ DNA mutations in genes - in promoter region (impact on gene activity)

M1      M2       M3

G1 G2 G3

G1 G2 G3
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Polymorphism

→ observable through one genetic marker for each gene

- in coding region (modify protein structure)
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Pairwise correlation model
Correlations measurement + threshold

→ Mutual Information (ARACNE Margolin 2006, CLR Faith 2007)
→ Pearson / Spearman partial correlation (ParCorA de la Fuente 2004)

Linear model
Graphical Gaussian Models (GGM)

→ Global search (GeneNet Schäfer 2005, SIMoNe Chiquet 2008 )
→ Local regressions ( SEM Lasso Liu 2008)
→ Boosting strategy (GGMSelect Giraud 2008)

(Spearman correlation+GGM) 



  

Vandel Jimmy 6/183.Score based learning

Bayesian network

✗ Directed acyclic graph     composed of    variables     with domain size 

✗ Conditional distribution for variable     , given its parents       in    :   
  

✗ Representation of a joint probability distribution :

✗ We note           the dimension of the network with  

PG  X =∏i=1

n
PG  X i /Pa i

PG  X i /Pai
j
 = ij

X i

Pai

G

GX i

r in

DimG=∑i=1

n
 ri−1∗qi q i=∏Pai

j r j
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Score based learning

We look for the graph     with dataset    .   G score=argmaxGi
P G i / D 

P G i/D =
P D /G i P Gi 

P D

∝ P D /G iP G i

➢ :marginal likelihood of Gi 
exact under →  Bayesian 
 hypothesis     Dirichlet score

estimation →  Bayesian 
  Information 
    Criterion score

➢ :prior probability of  the graph Gi
→ assumed to be uniform

P D /Gi 

P G i

D
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• A priori on conditional probability      following a Dirichlet distribution with parameter 
     

ij

BD G =∏i

n

∏ j

qi  ij 

  ijN ij 
∏k

r i ijkN ijk 

 ijk 

ijk

➢ BIC score (G.Schwartz Annals of statistics 1978)

• Laplace approximation

BIC G=log PD /G , −
1
2
Dim G  log nbsample

➢ fNML score (T.Silander International journal of approximate reasoning 2010)
(factorized Normalized Maximum Likelihood)

• How much     explain     compare to other possible data sets      

fNML G =log P D /G , −∑i=1

n

∑ j=1

qi

logC N ij

r i with C N ij

ri the normalizing sum

G D D '
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• Extend BIC idea (Chen Biometrika 2008) 

P G i
j∝l

−Gi
j with ∈[0,1]

log P G i≃− log ∏ j=1

n
l G i

j


→ applicable for all scores seen previously

Against principle of parsimony ?

P l−1G i
jP l G i
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Network studied

Artificial gene networks
(Mendes et al., Bioinformatics, 2003)

✗ similar structure of known networks
✗ few hubs
✗ 50 nodes / 50 edges
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Predictivevalue :
TP

TPFP

Sensitivity:
TP

TPFN

 =1−FDR  TP : number of correct learned edges
FP : number of wrong learned edges
FN : number of missed edges

➢ Mean over 50 artificial networks

➢ Sample size between 50 and 500 individuals

➢ In our model we project all as a 

➢  We use Greedy search (implemented in Banjo Hartemink 2005)

➢ Evaluation doesn't takes into account edges orientation

➢ 2 common metrics Predictive value / Sensitivity

M iG j GiG j ∀ j≠i
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• We compare BIC and fNML scores with several    values
• = 0 → classic scores (solid line)
• = 0.5 (dashed line)
• = 1 → same probability over connectivity classes (dotted line)






Legend: BIC score
  fNML score   



Biological knowledge impact
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• We fix / ban relations in regulation network inference with    =1 
• without extra biological knowledge (solid line)
• with extra biological knowledge (dashed line)

Legend: BIC score
  fNML score   





Comparative results
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 Bayesian network inference : Banjo Greedy Search (BDeu1       / BIC1       / FNML1       )

 Linear model : SEM Lasso     , GGMselect     , GeneNet     , SIMoNe     )

 Pairwise correlation :  CLR      , ARACNE      , ParCorA

500 samples 50 samples 

Predictive value (1-FDR) Predictive value (1-FDR)
S

en
si

tiv
ity

S
en

si
tiv

ity
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Conclusion

➢ Scoring criteria study with uniform node in-degree prior

➢ Model description taking into account specific Biological knowledge

➢ Comparison with several regulatory network inference methods

➢ Robustness of Bayesian networks for sparse graphs 
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Perspectives

➢ Improve learning algorithm performance 

➢ Study causality

➢ Try on real data
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