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Problem

Microarray data

n ≈ 10s/100s of microarrays

p ≈ 1000s of genes

O(g2) parameters (edges) !

Inference

Gene regulatory network

Which regulations?
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Problem

Which measure to use ?

I Correlation

• Tends to group genes with close expression profiles

  

X1

X2 X3cor(X2,X3) ≠ 0

• Do not provide any clue on how the chain of information goes
from gene to gene

I Partial Correlation

• Quantify the correlation between two genes after excluding
the effects of other genes
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Problem

High dimensional setting

I “large p, small n”
 number of random variables (p) is much larger than the number of
individuals (n)

I p(p − 1)/2 possible interactions

Handling the scarcity of data

I Sparsity:

Among all possible interactions only a few actually take place.

I Coefficient matrix with mostly zero-valued entries
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Problem

Regularized Gaussian graphical model

I GGM: a well-studied framework to spot those direct relationships

I Dependency pattern described by the covariance matrix
(independency between variables⇔ absence of edge)

I Sparse estimation via L1-regularization

Banerjee, O. and El Ghaoui L. and d’Aspremont A.) Model Selection Through Sparse Maximum Likelihood
Estimation for Multivariate Gaussian or Binary Data. JMLR - 2008
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Problem

A challenging issue

A vaste space of possible network structures

Biological prior knowledge could be used to limit the set of candidate
networks
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Outline

1 Method
a) Biological prior definition: differential and pathway analysis
b) Network inference: regularized GGM, multitask strategy

2 Application
a) Context: ER status in Breast Cancer
b) Results and interpretation

3 Conclusion
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Method
Biological prior definition
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Method - Biological prior definition

Differential analysis

X (c)
ig : expression level of the ith sample for gene g under condition c

E(X (c)
ig ) = µ

(c)
g and V(X (c)

ig ) = σ2
g,

Null hypothesis to test: {
H0 : µ

(1)
g = µ

(2)
g ,

H1 : µ
(1)
g 6= µ

(2)
g .

Limma t-statistic (Smyth 2004)

t limma
g =

x̄ (1)
·g − x̄ (2)

·g

S limma
g

√
1
n1

+ 1
n2

,

• S limma
g : Bayesian estimator of the variance

• Stabilize the estimation of gene variances 9 / 35



Method - Summary

  

Signature
1 . . . . . . . . . .s

Microarray data

Differential analysis
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Method - Biological prior definition

How to interpret gene signatures in biologically meaningful terms ?

 by determining whether the signature is enriched in pathway* key
actors.

  

pa
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w
a y

s

1  .  .  .  .  .  .  .  . t

Signature

1 . . . . . . . . . . .  . .s

Figure: Group testing for pathway analysis

* Pathway: set of gene interacting in order to achieve a specific cellular
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Method - Biological prior definition

  

pa
th

w
a y

s
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Signature

1 . . . . . . . . . . .  . .s

Under the null hypothesis of no over-representation

P(Y ≥ y) = 1− P(Y ≤ y)

= 1−
y∑

i=0

(s
i

)(p−s
t−i

)(p
t

) .

P(Y ≥ y) probability of observing at least y genes of a pathway of size t
in the signature

12 / 35



Method - Biological prior definition

In practice...

Pathway Name Genes in pathway

HER-2 Signaling in Breast Cancer CCNE1,CDK6,PARD6B,ERBB3,EGFR

Glioblastoma Multiforme Signaling CCNE1,RHOB,IGF1R,CDK6,EGFR

Estrogen-Dependent Breast Cancer Signaling IGF1R,ESR1,EGFR

Small Cell Lung Cancer Signaling CCNE1,CDK6,BCL2

Aryl Hydrocarbon Receptor Signaling CCNE1,TFF1,CDK6,ESR1

Table: Results of pathway analysis

I Pathways do not clearly represent distinct entities !
 we need to summarize the set of pathways found significant
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Method - Biological prior definition

  

0  1  0  1  .  .  .  .  .
0
1
.
.
.

Jaccard distance

Ward's criterion

Binary matrix

Distance matrix

Core pathways
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Method - Summary

  

Signature
1 . . . . . . . . . .s

Microarray data

Differential analysis

Signature
1 . . . . . . . . . .s

Microarray data Core pathways

Differential analysis Pathway analysis
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Method
Network Inference
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Method - Network Inference
Inferring sparse Gaussian graphical models

R package SIMoNe : general settings

I Enables inference of undirected networks:
. In a Gaussian graphical models (GGM) framework
. Multitask inference strategy: joint estimation of the graphs by

coupling the estimation problems

I Based on partial correlation coefficients

Chiquet et al. 2010,
Inferring Multiple Graphical Models.
Statistics and Computing

17 / 35



Method - Network Inference

Graphical model
Def.: Probabilistic model for which a graph denotes the conditional
independence structure between random variables.

Gaussian model for an i.i.d. sample

I Let P = {1, ...,p} be a set of nodes (i.e. genes)

I X = (X1, ...Xp)T is the signal over this set (i.e. the gene expression
levels), such as: X ∼ N (0p,Σ)

I Let Θ be the parameter to be inferred (i.e. the edges)

. Θ = (θij)i,j∈P , Σ−1 is the concentration matrix.

. corij|P\{i,j} = −θij/
√
θiiθjj for i 6= j
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Method - Network Inference

Interpretation
If 2 nodes i and j are partially uncorrelated, no edge is inferred:

Xi ⊥⊥ Xj |X(P\{i, j})⇔ θij = 0

After a simple rescaling Θ can be interpreted as the adjacency matrix

conditional dependency
or

non null partial correlation between
if and only if

j

i
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Method - Network Inference

Let S = n−1XᵀX be the empirical variance-covariance matrix.

I S−1 is not defined for n < p.

I If n < p, neither Θ nor its support can be estimated

I The need for regularization is huge

Estimation: a penalized likelihood approach

Θ̂λ = arg max
Θ
L(Θ; data)− λ pen`1

(Θ),

I L is the model log-likelihood,

I pen`1
= ||Θ‖`1 is a penalty function tuned by λ > 0.

It performs:

1 regularization (needed when n� p),

2 selection (sparsity induced by the `1-norm)
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Method - Network Inference

Take into account the core-pathways information as an a-priori
knowledge:

 Edges between two genes of the same core-pathway are less
penalized

Statistical approach
Use adaptive penalty parameters for different coefficients

I Let Z be the set of indicator variable for nodes

Θ̂λ = arg max
Θ
L(Θ; data)− λ‖PZ ?Θ‖`1 ,

where PZ is a matrix of weights depending on the core-pathway
membership Z.

21 / 35



Method - Network Inference

Multitask inference
 How to deal with various conditions ?

. Assumption: strong relationship between both networks

. Approach: joint estimation of the graphs by coupling the estimation problems

Data
pCR not-pCR

inference

Chiquet et al. 2010, Inferring Multiple Graphical Models
Statistics and Computing 22 / 35



Method - Network Inference

Consider C conditions where the same p genes are measured

Graphical coop-LASSO

max
Θ(c)

C∑
c=1

L
(

Θ(c); data
)

− λ
∑
i,j∈P
i 6=j


(

C∑
c=1

[
θ

(c)
ij

]2

+

)1/2

+

(
C∑

c=1

[
θ

(c)
ij

]2

−

)1/2 ,

where [u]+ = max(0,u) and [u]− = min(0,u).

I Group-lasso like penalty
I Disconnect the activation of up and down regulation
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Method - Network Inference
. Q = {1, . . . ,Q} of given overlapping core-pathways
. Ziq = 1 if i ∈ q and 0 otherwise

Maximisation Problem

max
θ(c)

C∑
c=1

L
(

Θ(c); data
)
− λ

∑
i,j∈P

i 6=j

ρZi Zj


(

C∑
c=1

[
θ

(c)
ij

]2

+

)1/2

+

(
C∑

c=1

[
θ

(c)
ij

]2

−

)1/2
 , (1)

where [u]+ = max(0,u) and [u]− = min(0,u) and the coefficients of the penalty
are defined as:

ρZi Zj =



∑
q,`∈Q

ZiqZj`
1
λin
, if i 6= j, and q = `,

∑
q,`∈Q

ZiqZj`
1
λout

, if i 6= j, and q 6= `,

1, otherwise.

(2)
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Method - Summary

  

Signature
1 . . . . . . . . . .s

Microarray data Core pathways Regulation network

Differential analysis Pathway analysis Network inference
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Application
ER status in breast cancer
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ER status in breast cancer

Breast cancer in a few words

I An heterogeneous disease (5 subtypes)

I Presence (ER+)/absence (ER-) of estrogen receptors: an essential
parameter of tumor characterization.

 Understanding the molecular mechanism of ER status: a key issue for
treatment and prognosis
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ER status in breast cancer

Inference of regulation networks under ER+ and ER-
conditions

  

ER + ER -

I Comparison of regulation patterns
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ER status in breast cancer

Molecular Mechanisms of Cancer

Small Cell Lung Cancer

P53 Pathway

Apoptosis

Aryl Hydrocarbon Receptor Signaling

G1 Pathway

Cell Cycle

RacCycD Pathway

Cellular growth & proliferation

Erk Pathway

Estrogen-Dependent Breast Cancer Signaling

Glioblastoma Multiforme Signaling

Glioma

Melanoma

Pathways in Cancer

Prostate Cancer

Bad Pathway

Tel Pathway

Cell death

ERBB Signaling Pathway

Calcium Signaling Pathway
Endocytosis

HER-2 Signaling in Breast Cancer

CDK5 Signaling

Oocyte Meiosis

Progesterone Mediated Oocyte Maturation

Small molecules biochemistry

Valine Leucine and Isoleucine Degradation

Sphingolipid Metabolism

Protein trafficking

Figure: Core pathways
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ER status in breast cancer

  

ER+

ER-

Figure: Sub-network inferred from the ER status signature
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ER status in breast cancer

Anti-apoptotic mechanisms

  

ER+

ER-

Common regulations

Estrogen receptor (ESR1) - BCL2 (Peterson at al. 2007)

ESR1 - EGFR/IGF1R (Salvatori et al. 2000, Oesterreich et al. 2001)

Specific regulations

EGF receptor family: ERBB3 - ERBB4 (Lee et al. 2001)
CDK6 - IGF1R
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ER status in breast cancer

ERBB4 

ERBB3 

IGF1R  EGFR 

ESR1 

BCL2 

Apoptosis 

Extracellular space 

Plasma membrane 

Cytoplasm 

Nucleus 

Growth Hormone IGF‐1 
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repression 

Kinase 

Ligand‐dependent nuclear receptor 

Transmembrane receptor 

Other 

MAPT 

B binding 
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B
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Figure: Anti-apoptotic mechanisms
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Discussion

Summary

I Very challenging issue

I Introducing biological priors reduce the space of possible
networks

I Promising application on Breast cancer dataset

I Importance of missing covariates

 Persepectives: need for integration of heterogeneous omics
data.
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