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Abstract

One of the most powerful techniques to study proteins is to look for
recurrent fragments (also called substructures), then use them as patterns
to characterize the proteins under study. Although protein sequences
have been extensively studied in the literature, studying protein three-
dimensional (3D) structures can reveal relevant structural and functional
information which may not be derived from protein sequences alone., An
emergent trend consists in parsing proteins 3D structures into graphs of
amino acids. Hence, the search of recurrent substructures is formulated as
a process of frequent subgraph discovery where each subgraph represents
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Introduction

Why Networks?

Networks are everywhere...
especially in Biology!

* Molecular networks
* Cell-cell communication
* Nervous systems

Networks are powerful tools...
especially in Biology!

* Reduce complexity

* More efficient than tables
* Great for data integration
* Intuitive visualization




Protein-Protein Interactions (PPI)

* |nteraction between two proteins is carried out by
several biochemical events

* The forces responsible for these interactions include:

v’ Electrostatic forces: Forces interacting between static
electrically charged particles

v' Hydrogen bonds: electrostatic attraction between hydrogen (H)
and highly electronegative atom (e,g. O, N)

v' Van der waals forces: residual attractive or repulsive forces
between molecules or atomic groups,

v Hydrophobic interactions: Maximize hydrogen bond ...

* Play an essential role in the proper functioning of living
cells



A protein-protein interaction network

PPl is represented as undirected edges (the physical
relationships) between proteins.

* Proteins are represented as nodes that are linked by
undirected edges.

. . ‘ PPI network for nucleic acid metabolism pathway :

NFYA - Nuclear transcription factor Y subunit alpha,
HIF1A - Hypoxia inducible factor 1 alpha,
NRIP1 - Nuclear receptor interacting protein 1,

‘ ‘ NCOA2 - Nuclear receptor co-activator 2,

NR4A1 — Nuclear receptor sub-family 4 group A member 1;

ATF4 — Activating transcription factor 4 (Cyt),

‘ JUN — Transcription factor activator protein 1 (Nuc),
C/ATF4 - Cyclic AMP-dependent transcription factor ATF-4

vy

Source : IEEE/ACM TCBB 13(4): 689-705, 2016



Types of Protein-Protein interaction

** PPIs can be classified on the bases of
v’ Stability :
= Stable: Always stable and active (e.g., Hormones, Hemoglobin)

" Transient: Control the majority of cellular processes, can be
strong or weak, fast or slow

v' Structural :

= Homo-oligomer: Same type of subunits (e.g., Enzymes)
= Hetero-oligomer: Different types of subunits (e.g., G-proteins)

v" Chemical bonding :

= Covalent bonding: Share electron pairs

=  Non Covalent Bonding: Rather sharing electrons, involves in
some electromagnetic forces



Comparing Biological Networks

Network Alignment
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A. Network querying :  B. Local network alignment
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Source : Yoon, Byung-Jun, Xiaoning Qian, and Sayed Mohammad Ebrahim Sahraeian. "Comparative analysis of biological networks using Markov
chains and hidden Markov models." IEEE Signal Processing Magazine 29(1):22-34, (2012).



PPl Network Alignment

PPl networks alignment enables us to uncover
the relationships between different species

* Network alignment can be used to transfer
biological knowledge between species

* A comparative analysis of PPl networks provides
insight into species evolution and information
about evolutionarily conserved biological
interactions, such as pathways across multiple
species
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PPl Alignment

* Graph alignment problem
e Subgraph isomorphism
— NP-complete

* Approximate solutions

— Many existing approaches depending on :

* Node similarities (scoring functions)
e Search methodologies

— Domain knowledge can help



Pairwise vs Multiple Network Alighment

* Network alignment (NA) can be pairwise (PNA) and multiple (MNA):
v" PNA produces aligned node pairs between two networks (Fig.a),
v" MNA produces aligned node clusters between more than 2 networks (Fig.b).

Note: Recently, the focus has shifted from PNA to MNA, because MNA captures conserved
regions between more networks than PNA (and MNA is thus considered to be more
insightful), though at higher computational complexity.
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Source: Faisal, Fazle E., et al. "The post-genomic era of biological network alignment." EURASIP Journal on Bioinformatics and Systems
Biology 2015.1 (2015): 3.




Pairwise PPl Alighment

 G;=(Vy,Ey), G, =(V,,E,), [V1l=n, |V =m, (u,v) EE st.uveEV,

Problem : Find an injective function f : V; = V, that aligns each node in
V, to only one node in V,

f(u) ={v, whereu € V;and v € V,}
* Variant : f can be partially defined

 Bestalignment:
— A :set of all possible alignments
— One that has the maximum score using a scoring function S
a=argmax ,; _»S(aj)



PPI Alignment : classification

*»* According to type of PPl network alighnment:

Local Area Network (LNA) :

small similarity regions are independently

adapted, and many of these regions may overlap in a contradictory

Manner.

Global Network Alignment (GNA) :

each node of the lower network is

uniquely aligned to a single, better matching node in the large network.

Remark :

biologica

- LNA is more faithful to

| theory, but difficulty

of interpreting LNA results

=> GNA

Source :

Ahed Elmsallati, Connor Clark, Jugal Kalita
IEEE/ACM TCBB 13(4):689-705, 2016




PPI Alighment : Validation

* Topological Assessment :
— Unsupervised

E\)NE
EC(Gy. G, f) = I Illzle 2|
* Edge Correctness
* Induced Conserved Structure [CS(Gy. G, f) = I{éEl) N Ey|
G2[f(V1)]
* Symmetric Substructure Score
| f(E1) N Eo

S3(G1.Go. f) = .
(G1,G2, 1) |E1| + |Ecyprviy| — | £(E1) N Esf

— Supervised
* Node Correctness NC(G1,Ga, f) = u f(ulil?f!: o) x 100

* Interaction Correctness



PPI Alighment : Validation

* Biological Assessment :

— Use Gene Ontologoly (GO) annotations

* Resnik ontological similarity

* GO Consistency (GOC). --- similar to Jaccard index
GO (u;) NGO (v})]

GOC (Gy1,Ga, f) = Z |G()(u,-)UGO(’j)}

(u,',vj)ea

-—

— Consistency : Assess the functional coherence
* Mean Entropy
 Mean Normalised Entropy

e Other Assessment :

— Coverage :

amount of protein in the whole set of proteins that are
covered by the alignment



Background / Related works

» SMETANA is a many-to-many global MNA
algorithm, tries to find correspondences by using
a semi-Markov random-walk model. Compute
pairwise sequence scores and pairwise

topological scores.

» BEAMS is a fast approach that constructs global
many-to-many MNA from the pairwise sequence
similarities of the nodes by using a backbone
(seed) extraction and merge strategy.



Background / Related works

»lsoRankN (IsoRank-Nibble) is the first global
MNA algorithm that uses both pairwise
sequence similarities and network topology,
to generate many-to-many alignments.

It applies IsoRank to derive pairwise alignment

scores between every pair of networks, and then

employs a PageRank-Nibble algorithm to cluster
all the proteins by their alignment score.



Background / Related works

» NetCoffee aligns multiple PPI networks based only on
sequence similarity and does not take into account the
topology of the considered networks.

1. Its alignment strategy constructs a weighted bipartite
graph for each pair of networks, searches for candidate
edges from each bipartite graph by solving maximum
weight bipartite matching problem.

2. NetCoffee applies a triplet approach similar to T-Coffee to
compute the edge weights of the kpartite graph. Then,
the algorithm finds candidate edges in the bipartite
graphs and combines qualified edges through simulated
annealing.



Background / Related works

* PINALOG is a global network alignment
algorithm which combines information from
protein sequence, function and network
topology.

v PINALOG forms the alignment between two PPINs
based on the similarities of protein sequence and
the protein function between the two networks.
Functional similarity is formalized using GO (gene

ontology) annotations.



Background / Related works

Although few methods have been developed for
multiple PPl network alignment and thus, new network
alignment methods are of a compelling need.

Moreover, many alignment tools encounter limitations
in introducing the functional similarities during the
alignment process because it needs faster and more
efficient alignment tool especially for the alignment of
multiple PPl networks.

Note : Most of them make use of the Gene Ontology (GO) at the final
validation step of the quality of the final alignment and not during the
alignment process.



Gene Ontology / Goals

Develop a set of controlled, structured
vocabularies — gene ontology (GO) to describe
aspects of molecular biology

Describe gene products using vocabulary terms
(annotation)

Provide a public resource, allowing access to
the GO, annotations and software tools

developed for use with the GO data
www.geneontology.org



http://www.geneontology.org/

Gene Ontology / The Three
Ontologies

Molecular Function — describes activities, or tasks, performed
by individual or by assembled complexes of gene products (DNA
binding, transcription factor)

Biological Process — a series of events accomplished by one or
more ordered assemblies of molecular functions. NOT a
“pathway”! (mitosis, signal transduction, metabolism)

Cellular Component — location or complex , a component of a
cell, that also is part of some larger object (nucleus, ribosome,
origin recognition complex)

28



Gene Ontology / Relationships
between terms

Directed acyclic graph: each child may have one or more parents

/ \ ,//' \ Every path from a node back to

the root must be biologically

/ / \ / accurate (the true path rule)

Relationship types:
* is_a: class-subclass relationship, meaning that a is a type of b

Exemple:

e part_of : physical part of (component) subprocess of (process)
part_of ¢ part_ of d, meaning that whenever c is present, it is a part of d, but ¢ doesn’t

always have to be present.

Example: ; meaning that nucleus are always part of a cell, but not all

cells have nucleus. .



The Gene Ontology Annotation
database (GOA)

The Gene Ontology Annotation database (GOA) contains a
list of associations between UniProtKB identifiers and GO
terms.

But, only 558,681 protein sequences in UniProtKB have an
experimentally determined annotation.

As these annotations come from various labs and genome
annotation consortia, neither the proteins nor the GO terms
are studied uniformly.

Experimental annotations, which usually describe a protein

function in part or at a high level, are expensive to obtain,
rare, and collected with bias.
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MAPPIN (GOA + PPI)

** MAPPIN uses sequence similarity together with
the Gene Ontology Annotation (GOA) of proteins
to incorporate functional similarity between the
proteins and perform the matching among the
proteins of different species.



\

Preparation steps

[

Step1:

Step 2 :

Step 3:

Workflow of our approach

Our approach in four major steps:

Read input files : networks, BLAST
scores, Gene annotations

Vi

Calculate sequence similarity,
topological similarity and functional
similarity

AV

Generates seeds according to Alpha
parameter

V.

Define a seed-expansion strategy

—

Combine and Extend Alignment

Input :
- N PPINs
-Blast scores
-Gene annotations

-

Output : Global multiple
alignment

(1)
(2)

(3)

(4)

Parsing the n PPl networks;

Giving a calculated weight to each
edge in the bipartite graphs using the
information in the GOA (Gene
Ontology Annotation) and sequence
level for each aligned protein;

Collecting seed with high similarity
scores from the bipartite graphs,
each seed is expanded in an iterative
fashion by exploring the local
neighborhood for each compared
protein;

Finally, MAPPIN applies a simulated
annealing (SA) function in order to
find a global alignment.



Workflow of our approach

Input: G, (V}.E). G2 (V5. E>), alpha
Output: Biological score Matrix BM
for all p; €'V, do
forall p; € V5 do
‘ BLAST (pi.py)
\/BLAST(P:-P:)XBMST(P;-PJ ) .
S funct (Pis Pj) € SSchlicker (Pis P} )
BM;j «— Osgeq (pi.pj) + (1 — @) S pumes (Pin pj):
end for

end for
return BM

Sseq (Pi-Pj) 4

SimilarityScore (G,, G,, a)



Input: Set of network Gy (Vi Ey ). Ga(Vh. E>) .. G (Vi Ep ). @, ¢,
K, Twins Tmax: $
Output: A set of global Multiple match-sets

I: Initialize V* =90

2 Inmtalize E* =0

Q0

& Ae—9

S for i=1tokdo

& for all all remaining networks G; do

7 GPj «— mw'udlsgmm(G,,G,,a T) & Create
node alignment

8 for cach node of G;, v €V, do

9 VertexCluster (v) = {v}

x for each each pairwise ahgnmem GP,

I: VertexCluster(v) = aéhurer (v) U
VertexCluster;j(v)

12 end for

e Concatenate scts
13: V* =V*UV* VertexCluster (v)



14: end for

15: for cach edge of G, (u,v) € E; do

16 EdgeCluster (u,v) = {(u,v)}

17: for cach pair (k1) € VerrexCluster(u) x
VertexCluster(v), (u,v) € E; do

18: if (k.1) form an edge then

19: EdgeCluster(u,v) «— EdgeCluster (u,v)U (k1)
20 end if

21: end for & Concatenate sets
22 E* = E*UE" EdgeCluster (u.v)

23 end for

24: end for

25: end for

26c Q +— Seed — Expansion(E* . V") > Generation

a feasible solution with a set of mutually disjoint match sets. The
parameters K, Tain, Tnax and s control the SA

27: A ¢ Simulated — annealing (2. K, Toin, Toax . 5)

28 return A

20:




Workflow of our approach

B. Collecting seed with high similarity scores
from the bipartite graphs

C. Seed Expansion: Each seed is expanded in an
iterative manner by exploring the local
neighborhood of the current solution beyond its
iImmediate neighbors.

In the MAPPIN's extension step, seed pairs that
are similar should also have similar neighbours.



Workflow of our approach

D. Multiple global alignment:

Apply a simulated annealing (SA) with a large
number of iterations of a Metropolis Scheme to
maximize a scoring function for global
alignments.

Several mapping pairs are removed from the
final mapping in order to respect the coherence
of the biological results



MAPPIN : Example

Gy G G3

aro

‘-...--"’-'.-..)

O Seed node
. Functional clusters

" Iterative seed
{  Unaligned node

() Aligned node at Eliminated mapping
the extend phase from the global alignment using
the Simulated Annealing function




MAPPIN : Example

1- Building the three PPI networks:

2- Bipartite graphs: Assigning a weight for cach interaction:

Gl.net G2.net
(U1 — W1, U2 — F2
U1-n U2 - R2
Ul - B1 U2 - 12
lm-z21% {uz-wz2
Ul -Y1 U2 - B2
Ul -Xx1 U2 -52
\71-T1/ L 52 — V2 )
G3.net

(U3 - P3)

U3 - N3

U3 -R3

Juz-F3|

U3 - B3

R3~-T3

P3 - 53

\§3 —~ M3/

G1-G2.net G1-G3.net G2-Gi.net
(U1—U2 =081, T1-T3 = 041 U2 - U3 = 0.92)
11 -12 =070 R2 - R3 = 0.74
Wil-W2=052 F2 - F3 =068
431-32=0.37} *82-33=0.85}
§2-53 =089
| ) \ )

=> MAPPIN takes into consideration mapping pairs greater than the threshold
fixed at 03 for example




MAPPIN : Example

3- Seed Generation: 4- Iterative Seed and 5- Global alignment greedy phase:
Extend phase:
Aligned nodes Aligned nodes
{“1 - “;"} Aligned nodes (U1 — U2
U2-U3 ¢ Ul - U2 U2-U3
UZ~-U3
—> ) S
1 >
\ J
h )




Theoretical Time Study

Suppose we have k networks, where :
* the maximum network size is n = max;|V;|,
* the maximum number of interactions in a network is m = max;|E;|.

Suppose there is a bipartite graph, B, = (V,; UV,,, E)
— the running time complexity on B, is about O(|V,; U V,,|.log|E;]).

So, the collection of candidate edge costs (IZ() O(nlog(n)) time.

Running the Simulated Annealing only depends of two parameters
of the cooling scheme, K and N, which are independent of the
number of compared species k.



Summary

I N O

PROPER 2016
PINALOG ? X - X - 2012
IsoRank 0(n*) X - X - 2007
IsoRankN 0(n*) X X X - 2009
SMETANA 0(nk3) X X X . 2013
NetCoffee O(knlog(n)) - X X - 2014
MAPPIN (’Zi) 0(nlog(n)) X X X - 2018

BEAMS ? X X X - 2013
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Data sets

Characteristics of the PPI Networks and Datasets from Eight Species

Species Proteins Interactions D1 D2 D3 D4 D5
Arabidopsis 2651 5235 X
C.elegans 4305 7746 O (O (S
D.melanogaster 8374 25610 e OX X X X
E.coli 2818 13841 X X
H.sapiens 9003 34935 X X X X X
M.musculus 2897 4372 %X N X
Rat 1150 1305 X, X X X
S.cerevisiae 5674 49830 X, X X




Quality Validation

Validation on
Swiss-Prot Database

Measures :

Coverage : percentage of proteins in the whole set of

TrEMBL (137.213,158) proteins that are covered

Automatically avotated and not

d
Mean‘ Entropy | . HAD = - Zpi log p;
p; = fraction of A; with GO term i i=1

d = number of GO terms in each cluster

1

- Mean Normalized Entropy ﬁ(A1) —
logd

H(A,).

- Runtime



Evaluation
| Results |

Default parameters

Measure | MAPPIN | NetCoftee | SMETANA | BEAMS
DT (Multiple Alignment)
CV(%) 738 59.6 729 71.8
ME 0.324 0.128 0.274 0.231
MNE (.233 0.13 0.256 0.231
Time 39mn 15s S0s 20s
D2 (Multiple Alignment)
CV(%) 73.6 60.8 74.6 71.8
ME 0.368 0.196 0.312 0.283
MNE 0.256 0.195 0.276 0.253
Time 42mn 45s 225s 1h30
D3 (Multiple Alignment)
CV(%) 63.4 534 64.5 634
ME 0411 0.264 0.381 0.326
MNE (.283 0.251 0.294 0.286
Time 42mn 57s 321s 3h
D4 (Multiple Alignment)
CV(%) 60.8 52.7 63 614
ME 0.393 0.246 0.351 0.526
MNE 0.273 0.241 0.297 0.392
Time 44mn 2.45s S21s ~8h
D3 (Multiple Alignment)
CV(%) 59.8 53.2 - 58.3
ME (0.384 0.248 - 0.264
MNE 0.27 0.242 - 0.27
Time 44mn 34ls - ~13h




Discussion |Results|

VMIAPPIN algorithm can occasionally be efficient in terms of CV,
ME and MNE across all cases, showing that it can accurately align
real PPl networks.

For D1 and D5 datasets, MAPPIN outperforms its competitors in
terms of CV. On average, our approach provides an acceptable
lower entropy values.

NetCoffee also shows good performance on the all datasets, with
a slightly lower CV and achieves entropy scores lower than all the
compared approach.

In addition, SMEETANA gives a good coverage for all the five
datasets, but it couldn’t align the dataset D5.

For D4 and D5 datasets, BEAIVIS struggles to provide a coherent
alignment in a reasonable time.




Discussion |Results|

MAPPIN gives encouraging results in terms of coverage
and consistency compared to its competitors.

Indeed, these results stand on the incompleteness of the
GO annotation of proteins. In addition, the assignment of
more and less specific annotation terms, for each protein,
also has a negative impact on the accuracy of the
produced alignments.

Moreover, the high number of unannotated protein
isoforms, that have considerably different functions,
often play radically different roles within tissues and cells,
leads to worse biological alighment quality.




Availability

e https://github.com/waritheddine/MAPPIN

warltheddine / MAPPIN OWchs ¢ Wi 0 o
<> Cocke ;508 0 Pl roquests 0 ojects 0
MAPPIN (Multiple Alignment for Protein Protein Interactions Networks) a global many-to-marry alignment of muliple PPINs from Een

diflerent species

(D3 con ; ¥ 1 branct 0 reina iR h GM

masier New pul request Createrewille Uploadiies Find Nie Clorne or download ~
e 6ra

ENS
MAPPIN Cock
MAFFIN ¢ aie |
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Conclusion

MAPPIN

NetCofTee

The difference

It aligns two or more PPl networks

It aligns 3 networks or more, 5o it can not align two
networks.,

The topological similarity is used for the detection
of hubs and in phase of Seed Expansion

Topological similanty is based on the T-Coffee ap-
proach.

It includes the functional similarity during the
alignment process from the Gene Ontology Anno-
tation (GOA) collected from UniProt-GOA

It doesn’t rely on functional similarity. The Gene
Ontology, used after the process of the alignment
in order to test the coherence of the alignments.

It ngorously combines protein sequence similarity,
network topology similarity and functional similar-
ity (using GO) into a suitable sconng scheme for
aligning £ multiple networks.,

It rigorously combines protein sequence similarity
and network topology similarity for aligning & mul-
tiple networks.

The common features

They use the same sequence homology similarity matnix

They use the Simulated Annealing function to find the global alignment




Conclusion

v MAPPIN : an effective method for PPI network
alignment.
v’ Test on the five eukaryotic species.

v’ Results consistent with existing approaches,
v’ lead to better functional predictions.

v’ Shortcomings :
v Runtime with GO Annotations

v Changes (temporal, ...) on alignment
v’ Evolving alignment, Dynamics

Vo
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Ongoing research

Predicting protein functions by transferring
annotation via alignment networks



Classes of function prediction methods

Sequence based approaches

— protein A has function X, and protein B is a homolog (ortholog) of
protein A; Hence B has function X

Structure-based approaches

Motif-based approaches

— a group of genes have function X and they all have motif Y; protein A
has motif Y; Hence protein A's function might be related to X

Function prediction based on “guilt-by-association”

— gene A has function X and gene B is often “associated” with gene A,
B might have function related to X



Assumptions and Observations

* The more closer two nodes are in the
network, the more functionally similar they
will be in terms of cellular pathway or process
as opposed to molecular function

* Non-neighboring proteins with similar
network connectivity patterns can have similar
molecular functions



Local Neighbor Methods

* Early network-based annotation methods simply
inherited the function(s) most commonly observed

among the direct neighbors of an uncharacterized
node %”majorlty rule”)

* Performances increases when wider local
neighborhood is taken into account and only
statistically enriched functions are transferred

* The predictive power of local methods is still limited,
most obviously when interaction and/or annotation

dare sparse.
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