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Development

Context : Root System

Root Architecture

Interaction with microorganisms



0.5 mm

Context : Secondary organogenesis

From a single 

embryonic root …

… with a complex architecture 

resulting from interactions 

between genetics and environment.

… to a mature 

root system …



Context : Lateral root organogenesis
In Arabidopsis, LR 

initiation occurs 

in the pericycle

And LR develop 

through the tissues 

to finally emerge 



Context : Lateral root organogenesis

Guyomarc’h et al., 2010

Well described sequence 

of morphogenesis

Is this development 

highly regular ?



Let’s have a look 

at lots of LRP

(Lucas et al. 2013)

Context : Lateral root organogenesis

(Lucas et al. 2013)



Let’s have a look 

at lots of LRP

Context : Lateral root organogenesis

Number of cells 

increases 

linearly

Stages are not 

reached at the 

same cell number

LRP1

LRP2

(Lucas et al. 2013)



Let’s have a look 

at lots of LRP

Context : Lateral root organogenesis

(Lucas et al. 2013)

Multiple ways of 

building a LRP

LRP patterning is 

not stereotypical

Sequence

of division 

events

actually

varies 

between

LRP



Context : Lateral root organogenesis

Guyomarc’h et al., 2010

Plastic development, 

but fixed ending

DYNAMIC PATTERNING 

?



Context : Lateral root organogenesis

Elementary 

dynamic 

organogenesis 

processes

Complex, random (?) 

root architecture

How to study this 

process to 

understand and 

control RSA ?



(De Smet et al. 2007)

LRP initiation correlated 

with root bending

Gravitropism induces 

root bending

Can new lateral roots 

be induced using 

gravistimulation ?

(Rosen, 1999)

g


Modulation of lateral root initiation



1 cm

1 cm

1 cm

Modulation of lateral root initiation

(Lucas et al. 2008)



... within a tightly controlled 

spatio-temporal window

DR5:GFP and 

propidium iodide

Repeated 

Gravistimulation

Normal 

growth

Induction of rhizogenesis by gravistimulation

Gravistimulation induces 

initiation…

(Lucas et al. 2008)



Gravistimulation induces 

initiation…

... within a tightly controlled 

spatio-temporal window

Control of rhizogenesis by gravistimulation

(Péret et al. 2012)

Can we use this to access the dynamics 

of LR morphogenesis regulation ? 



3 days after 

germination
90° rotation

Time t

Transcriptomics of LRP development

Harvest bends with 

synchronized LRP

Pool RNA and run 

transcriptomics analysis
(Voss et al 2015)



Transcriptomics of LRP development

(Voss et al 2015)



Transcriptomics of LRP development

Database of ~8500 differentially 

expressed genes (inc. 700 TFs)

(Voss et al 2015)



Illustration of some 

transcription factors 

expression profiles 

from the database

Transcriptomics of LRP development

Time after gravistimulation
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Extracting information 

from the LR dataset ?

Expression database exploitation

Use statistical 

network inference 

methods

Developed a new 

algorithm in our lab 

(J. Lavenus thesis)



Time Delay Correlation - TDCor

• Implemented in R (CRAN)

• Uses Pearson’s correlation with

time delay computation to 

produce a preliminary network

• Uses bootstrap and statistical

filters to eliminate false positive 

and refine the network topology

• Looks for non-combinatorial

linear interactions
Time after 

gravistimulation
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• Runs on expression profiles

extracted from the LR dataset

(or any other transcriptomic

kinetics dataset)



TDCor – data treatment pipeline

Lavenus et al., Plant Cell 2015

TPI= Triangle Pruning Index

DPI= Diamond Pruning Index



Using TDCor on the LR dataset

• lateral root formation

Selection of genes involved in 

• root meristem organization and activity

• hormonal transduction

• cell division

• cell differenciation

Perilli et al. 2012

Possibility to include any other gene

present on the Affymetrix chip (e.g.

selected because of interesting

features of its expression profile …) 



Using TDCor on the LR dataset

• Selected a list of 261 genes

• Not only transcription factors

• A “prior” data is given to each

gene, based on the litterature, 

to indicate if transcriptional

regulation activity has been 

reported or not

• This “prior” information helps 

the inference procedure by 

authorizing or not the 

algorithm to draw outward 

edges from the node. However 

indicating a prior is not 

compulsory (prior = 2)



Using TDCor on the LR dataset

Generated a full network (~3h computation on standard PC)

With indices of confidence and directness for each interaction.

But are we confident in the predictions ?  



Validating the network – the ARF7 case

ARF7 is predicted to occupy a upstream position in the network

ARF7 is predicted to positively regulate a LOB/PUCHI genetic module

Transcription factor ARF7 

experimental profile in the LR data set Inference by TDcor algorithm

Lavenus et al., 2015



Validating the network – the ARF7 case

Lavenus et al, Plant Cell 2015

vs



Validating the network – the ARF7 case

✔

✔

✔✔

✔✔

✔

✔

✔ ✔

✔

✔

✔ ✔✔

✔

✔

✔

✔

22/31 targets confirmed

by transcriptomics



Validating the network – the ARF7 case

✔

✔

✔

✔

4 primary targets confirmed

by ChIP PCR



Moving forward with the network

Having validated our inference approach, we went forward

with the network exploration



Topology of the LR GRN

Expert (i.e. by hand) analysis of the network 

structure revealed a modular organisation.

Module 2Module 1



Topology of the LR GRN – biological meaning ?

PLT2

PLT1PLT3

PLT5

PLT7 PUCHI

LBD16

PI

PLT4

Having a look at some of the 

genes in those two modules...



Topology of the LR GRN – biological meaning ?
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Time after gravistimulationVoβ et al., 2015

What are their expression profile like ?



Topology of the LR GRN – biological meaning ?
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LBD16

PUCHI

PI

PLT2

PLT1

PLT3

PLT4

PLT5

PLT7

Voβ et al., 2015

Module 1 Module 2

Where are they expressed ?



Topology of the LR GRN – biological meaning ?
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Module 1 Module 2

PUCHI PLT4

Flanking
region

Center 
region



Topology of the LR GRN – biological meaning ?
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LBD16

PUCHI

PI

PLT2
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PLT4

PLT5

PLT7

Voβ et al., 2015

Module 1 Module 2

PUCHI PLT4

Flanking
region

Center 
region

Quiescent center establishment



Topology of the LR GRN – biological meaning ?

There appears to be biological meaning

behing this modular topology

Module 2

Late / 

Meristematic

genes

Module 1

Early / 

Boundary

genes

Can we investigate the dynamics of this patterning event

(establishment of QC / definition of boundary) ?



Modeling GRN dynamics - PANTHEON

We wanted to investigate the precise dynamics of our GRN. 

With several hundred of genes and interactions to consider

and no already available solution to simulate such a system 

easily, we opted to develop our own software.



Modeling GRN dynamics - PANTHEON

Based on Boolean formalism

Automatically model large-

scale genes network

Designed to work from

simple network description 

(list of genes and 

interactions)



Modeling GRN dynamics - PANTHEON

GUI : no need to code to simulate

your gene network behavior

Tools included :

in silico mutants 

study with a click 

among other things

Import your network or generate

a random one / Export simulation 

results as csv files

Modular structure : 

base library of 

regulation models

can be extended at 

will with your own



PANTHEON – the LR dataset case study

Working on a subset of 134 genes / 495 interactions, 

full simulation of the network behavior using pure logical

or algebraic model

Prediction of majority stable state
corresponding to meristematic state

(genes from module 2 active, 
genes from module 1 inactive)



PANTHEON – the LR dataset case study

ARGOS Module – Mass in-silico mutagenesis and computation of

a score of impact on network behavior for each gene (mean

hammond distance between wild-type and mutants stable

states for all model and mutation combinations)

Highlight the most important 
genes for the network behavior

with no a priori



PANTHEON – the LR dataset case study

ARGOS Module – Mass in-silico mutagenesis and computation 

of a score of impact on network behavior for each gene

Genes mean distance for KO Genes mean distance for OA

PLT1 0.168600746 PLT7 0.346343284

ARF6 0.136735075 PUCHI 0.326567164

LRP1 0.13113806 CRF1 0.272742537

PHB 0.124869403 ARF2 0.248246269

TMO5 0.103973881 PLT5 0.245466418

SHR 0.098656716 ARF9 0.226529851

SCR 0.087817164 ARF17 0.179328358

SHP1 0.081100746 U.box 0.153955224

ATML1 0.063302239 ARF19 0.148022388

PID2 0.060970149 WRKY43 0.13369403

TOP10 predicted as most significant genes when KO or OA



PANTHEON – the LR dataset case study

Most impactful genes when OA are in module 1 

(early genes which we need to be repressed later on)

Genes mean distance for KO Genes mean distance for OA

PLT1 0.168600746 PLT7 0.346343284

ARF6 0.136735075 PUCHI 0.326567164

LRP1 0.13113806 CRF1 0.272742537

PHB 0.124869403 ARF2 0.248246269

TMO5 0.103973881 PLT5 0.245466418

SHR 0.098656716 ARF9 0.226529851

SCR 0.087817164 ARF17 0.179328358

SHP1 0.081100746 U.box 0.153955224

ATML1 0.063302239 ARF19 0.148022388

PID2 0.060970149 WRKY43 0.13369403





















PANTHEON – the LR dataset case study

Most impactful genes when KO are in module 2 

(late genes which we need to be expressed for LRP development)

Genes mean distance for KO Genes mean distance for OA

PLT1 0.168600746 PLT7 0.346343284

ARF6 0.136735075 PUCHI 0.326567164

LRP1 0.13113806 CRF1 0.272742537

PHB 0.124869403 ARF2 0.248246269

TMO5 0.103973881 PLT5 0.245466418

SHR 0.098656716 ARF9 0.226529851

SCR 0.087817164 ARF17 0.179328358

SHP1 0.081100746 U.box 0.153955224

ATML1 0.063302239 ARF19 0.148022388

PID2 0.060970149 WRKY43 0.13369403





















LRP morphogenesis – In summary

Arabidopsis LR as an excellent 

model system of organogenesis : 

simple, controllable, accessible

Creation of the LRP database 

covering the full development 

of the organ

Time after gravistimulation
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Creation of the TDCor

algorithm and inference of 

the LRP development GRN



LRP morphogenesis – In summary

Creation of an automated Boolean 

modeling software which predicted 

that the topology a the GRN was 

enough to generate a meristematic 

identity and was able to retrieve 

modular organization with no a priori

Topological analysis revealed a 

modular structure tied to 

biological function and a possible 

bifurcation switch between 

flank/organizing center identities

Once now, back to biology to confirm the prediction of the model

(i.e. working on generating and characterizing mutants…)
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KANADI transcription factor 

WT ats/kan4-1

Leon-Kloosterziel, et al., 1994; Mc Abee et al., 2006; Kelley et al., 2009 

Roles of polarity determinants in ovule 
development

• ATS provides boundary maintenance and 
promotes the laminar growth of the inner 
ovule integument
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LRIS

PISTILLATA expression is enhanced in lhw mutant

x8,62

x12,04
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3 independant biological replicats (n>50 seedlings/replicats), Student tests p*** < 0,01  
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Upstream regulators of PI as candidates genes for QC establishment
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Genes are organised into three main groups

Node size Edge color Edge width

Some later-expressed
meristem-related genes: 
ARF5/MP, SHR, SCR, 
WOL,GL2,  PLT1-4,…

Some early-expressed, 
boundary-related genes: 
ARF7, ARF19, LOB, PUCHI, 
PLT5, PLT7…

Group 2 Group 1

Group 3
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Activation pattern of the ARF7 module in the primordium

LBD16

PUCHI

PLT5
Lavenus et al., 2015
Hirota et al., 2007



Gene patterns from transcriptomic LR dataset
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Gene patterns from transcriptomic LR dataset
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Gene patterns from transcriptomic LR dataset
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Time after gravistimulation
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Genes are organised into three main groups

Red edge = inhibition; Blue edge = stimulation
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Genes are organised into three main groups: 
example of PLETHORA family transcription factors

Red edge = inhibition; Blue edge = stimulation

PLT4PLT3
PLT2

PLT1

PLT5
PLT7



Lavenus et al., (2015)

Several network topologies could explain profile correlation



Activation pattern of the ARF5 subnetwork in the LRP

Lavenus et al., 2015

pMP::MP:GFP Du & Scheres, 2017
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This is consistent with both temporal and spatial patterning in gene
expression pattern

Time after stimulus (h)

Transcript accumulation

PLT5

PLT7
PLT3

PLT1
PLT2
PLT4

 The general topology of the network suggests a toggle-switch mechanism controlling a 
spatio temporal gene expression pattern in relation with root meristem establishment
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Genes are organised into three main groups

Node size Edge color Edge width
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The root apical meristem generates root primary tissues

 Primary anatomical organization of roots is stereotyped.

 Arabidopsis thaliana as a simple plant model.

 Root meristem organized around a central stem cell niche

Stem cell niche

Organising Center (termed
“Quiescent Center”)



The soil and light environment plays a key role in lateral root (LR) positioning 



A new simulation algorithm – PYTHONIS
(PYTHon-based bOolean Network generIc Solver)

 Uses any given predicted topology of a GRN (e.g. 246 genes, 1069 interactions)

 Boolean modeling as a simplification (various formats)

 Strong biological assumptions

o Strong upregulators

o Strong downregulators

o No lazy genes

67



A new simulation algorithm – PYTHONIS
(PYTHon-based bOolean Network generIc Solver)

 Uses any given predicted topology of a GRN (e.g. 246 genes, 1069 interactions)

 Boolean modeling as a simplification (various formats)

 Strong biological assumptions

o Strong upregulators

o Strong downregulators

o No lazy genes

 Automated generation and solving of boolean model for entire network



A new simulation algorithm – PYTHONIS
(PYTHon-based bOolean Network generIc Solver)

 For any random or given initial state, 

o state flow (deterministic)

o final states (can be stable states or loops)

o basins of attraction

o Hamming distance between basins of attractions 

o => identification of nodes important for cell fate bifurcation?

SHR

SCR

GL2

QC

AHP6

WER

Transcript accumulation of gene of interest

Time after stimulus (h)

min

max WOL



A new simulation algorithm – PYTHONIS
(PYTHon-based bOolean Network generIc Solver)

 For any random or given initial state, 

o state flow (deterministic)

o final states (can be stable states or loops)

o basins of attraction

o Hamming distance between basins of attractions 

o => identification of nodes important for cell fate bifurcation?

SHR

SCR

GL2

QC

AHP6

WER

Transcript accumulation of gene of interest

Time after stimulus (h)

min

max WOL



A new simulation algorithm – PYTHONIS
(PYTHon-based bOolean Network generIc Solver)

 For any random or given initial state, 

o state flow (deterministic)

 Currently being validated against known regulatory networks

o final states (can be stable states or loops)

o basins of attraction

o Hamming distance between basins of attractions 

 Simulation of the impact of knock-out (always 0) or gain-of-function (always 1) mutations

o impact on state flow and final states
o Hamming distance between « mutant » and « wild type » final 
states  
o => assessing the significance of each node in state flow

o => identification of nodes important for cell fate bifurcation?

71



Modeling dynamic properties of the inferred network

 Aim : to model dynamically the state flow of the gene network in order to identify
gene regulatory cascades, master regulators, attractor states, bifurcation behaviours…

72

TDCore inputs

TDCor outputs
Complex network

e.g. 246 genes, 1069 
interactions
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Modeling dynamic properties of the inferred network

 Strategy: to use boolean modeling of the network

B
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Modeling dynamic properties of the inferred network

 Strategy: to use boolean modeling of the network

B

 However most available boolean models require explicit specification of network and of 
each interaction rules (BooleanNet, NetDS, NetworkToolkitExtended, BooleSim, 
SimBoolNet, Atalia, …)

 Impractical for massive network modelling

 Currently developing implementation of automated boolean modelling for 
large scale networks



A new simulation algorithm – PYTHONIS
(PYTHon-based bOolean Network generIc Solver)

 Uses any given predicted topology of a GRN (e.g. 246 genes, 1069 interactions)

 Boolean modeling as a simplification (various formats)

75
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The LR network is predicted to organize into two subnetworks with distinct 
crosstalk with auxin

 

 Distinct crosstalks of each module with auxin distribution and signaling may contribute to 
progressive patterning of the lateral root primordium.

Benkova et al., 2003

Auxin signaling (DR5::GUS)
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Use of marker genes to monitor LRP functional patterning

stele quiescent centre epidermis

hag
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root cap

SHR SCR QC WER GL2
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Use of marker genes to monitor LRP functional patterning
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Gradual functional patterning of the LRP

 Critical changes in gene expression occur at stage I-II transition and stage IV (meristem 
formation phase), and early after emergence (expression of epidermis and root cap 
markers)

Stele (SHR) quiescent centre (WOX5) epidermis (GL2)



Model of polarity establishment in lateral organs

HDZIP III, KANADI transcription factors

Eshed et al., 2001, Current Biology
KANADI loss- and gain-of-function alleles suggest that fine 
regulation of these genes is at the core of polarity 
establishment. As such, they are likely to be targets of 
the PHB-mediated meristem-born signaling that patterns 
lateral organ primordia.



Izhaki et al., 2007, Development
KANADI and Class III HD-Zip Gene Families Regulate Embryo Patterning and Modulate Auxin 
Flow during Embryogenesis in Arabidopsis
Loss of KANADI activity in a Class III HD-Zip mutant background mitigates the defects in bilateral 
symmetry, implying that the two gene families act antagonistically during embryonic pattern 
formation.

Materials:
- Mutant lines have been described previously: kan1-2 (Eshed et al., 1999); kan2-1 (Eshed et 

al., 2001); kan3-1, phb-6, phv-5, and rev-9 (Emery et al., 2003); kan4-3 (Mcabee et al., 2006)
- kan1-2 kan2-1 kan3-1 kan4-3 quadruple mutant
- kan1-2 kan2-1 kan4-3 phb-6 phv-5 rev-9 hextuple mutant

KANADI transcription factor 



Kelley et al., 2009, Plant Journal
Roles of polarity determinants in ovule development
Class III homeodomain leucine zipper (HD‐ZIPIII) genes CORONA (CNA), PHABULOSA (PHB) 
and PHAVOLUTA (PHV) are expressed adaxially in the inner integument during ovule development, 
independent of ABERRANT TESTA SHAPE (ATS, also known as KANADI4) activity. Loss of HD‐ZIPIII activity can 
partially compensate for loss of ATS activity in the ats cna phb phv quadruple mutant, showing 
that CNA/PHB/PHV act in concert with ATS to control integument morphogenesis

Materials:

- ats‐3 phb‐6 phv‐5 rev‐9/+

KANADI transcription factor 



Gao et al., 2010, Plant Biotech journal
A new dominant Arabidopsis transparent testa mutant, sk21‐D, and modulation of seed 
flavonoid biosynthesis by KAN4

Materials:

- KAN4 activation over‐expression lines

KANADI transcription factor 



Caggiano et al., 2017, eLife
Cell type boundaries organize plant development
Leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene 

expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate 
plant development by localizing auxin response between their expression domains.

Materials:

-REV-2 ×YPet (red), PIN1-CFP (blue) and KAN1−2 ×

GFP (green) 

- pREV::REV-VENUS (Heisler et al., 2005) 

KANADI transcription factor 

vegetative shoot apical meristem



LONESOME HIGHWAY, bHLH transcription factor 

Parizot et al., 2008, Plant Physiology

Quantitative losses in vascular bundle and pericycle heterogeneity appear intimately correlated: 
There is a concomitant loss of diarch and bilateral structures in lhw mutants.

Materials:

-



LONESOME HIGHWAY, bHLH transcription factor 

Ito et al., 2013, Development

LHW is required for proper asymmetric cell division to generate vascular initial cells as well as 
for the correct expression patterns of components related to auxin flow, such as PIN-FORMED 
1 (PIN1), MONOPTEROS (MP) and ATHB-8, and ATHB-8 partially rescues the vascular defects of 
lhw. These results suggest that LHW functions as a key regulator to initiate vascular cell 
differentiation in association with auxin regulation.

Materials:
- lhw (?) expressing PIN1::PIN1-GFP; PIN1::YFP-nls; DR5::GFP
- estrogen-inducible LHW expressing DR5::GFP, PIN1::YFP-nls and MP::YFP-nls (same ?)

PIN1::PIN1-GFP



LONESOME HIGHWAY, bHLH transcription factor 

De Rybel et al., 2013, Developmental Cell

A TMO5/LHW bHLH heterodimer controls plant vascular development. The dimer is necessary 
and sufficient for triggering periclinal cell division. Overlapping transcription patterns localize 
TMO5/LHW activity

Materials:
- pLHW-n3GFP
- lhw (SALK_023629), and ll1 (SALK_108940); lhw ll1 double-mutant

- pLHW-LHW-YFP

- pRPS5A-LHW



LONESOME HIGHWAY, bHLH transcription factor 

Vera_Sirera et al., 2016 Current opinion in Plant Bioogy

Active domains of key factors for vascular development in an Arabidopsis root apical meristem. 



Premières analyses Cytoscape 3.7/
Set de gènes issus du TDCor (sept 2018)

TDCor6.32_output_221018_parallel - Copie_cytoscape_ Outgoing 2step PI

135 nodes, 496 edges 55 nodes, 136 edges



Premières analyses Cytoscape 3.7/
Set de gènes issus du TDCor (sept 2018)

TDCor6.32_output_l_gnp-18july29-copy_ Undirected node PI

281 nodes, 1216 edges 18 nodes, 25 edges



Premières analyses Cytoscape 3.7/
Set de gènes issus du TDCor (sept 2018)

TDCor6.32_output_l_gnp-18july29-copy_ Incoming 1step PI

281 nodes, 1216 edges 6 nodes, 9 edges



Premières analyses Cytoscape 3.7/
Set de gènes issus du TDCor (sept 2018)

TDCor6.32_output_l_gnp-18july29-copy_ Incoming 2 step PI

281 nodes, 1216 edges 18 nodes, 46 edges



Lateral root development in Arabidopsis thaliana

Priming

Prebranch site

LRFC specification

Initiation

LR outgrowth

I

II

III

IV

V

VI

VII

Emergence

VIII

54h 
gravistimulation

Mallamy and Benfey, 1997; Casimiro et al., 2003; De Smet et al., 2007; Péret et al., 2012; Lucas et al., 2013; Du and Scheres, 2017; Goh et al., 2016 

Meristem
patterning

Early
morphogenesis

phase

Quiescent center establishment
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RLK7

PUCHI
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Auxin gradients
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CDKA1
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FLP
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LR initiation LR patterning

WOX5

TCP20

Feeding GRN with spatial and temporal information result in robust 
spacing and patterning of developing LRP

pericycle

central 
vascular
tissues

endodermis

cortex

epidermis

Banda et al., 2019 
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The ARGOS module

Reference state flow for a given
combination of model parameters
(random initial state to final state)

Genes A B C D E …

Initial State 1 0 1 0 1 1 …

Final State 1 0 0 1 0 1 …

Mutate 1 gene (KO or OA) 
and compute mutant final state

Genes A B C D E …

Initial State 1* 1 1 0 1 1 …

Final State 1* 1 0 0 1 1 …

Compute distance between
ref final state and mutant final state
e.g.  :  d = 0,75 (75% different)

ARGOS does this :
- For each gene,
- For KO and OA,
- For all possible combinations of 

model parameters,
- For a set of initial states

And return for each gene the mean
of all distances for KO and OA



Approach and example of 
application in vivo: 

PISTILLATA



Understanding and manipulating functional organisation in developing
LR primordia of A. thaliana

 Identify and validate new candidates involved in QC formation 



Looking for a new quiescent Center marker gene, PISTILLATA:GFP 
(PI:GFP)

Nawy et al., 2005

 PI : GFP expressed in the QC of primary root

PI:GFP



 Confirms that PISTILLATA is a QC-specific gene

Denyer et al., 2019

Single-cell RNA Sequencing in root identified 12 quiescent center 
specific genes

PISTILLATA

QC genes



Nawy et al., 2005

PI:GFP expression in the LR primordia ?

 PI::GFP expressed in the QC of primary root AND lateral root

PI::GFP
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Voβ et al., 2015

Time after gravistimulation

PI:GFP

PI:GFP signal appears following the quiescent center establishment 



Floral homeotic gene encoding a MADS domain transcription factor. Required for the 
specification of petal and stamen identities.

AT5G20240: PISTILLATA (PI)

pi-1
Class B mutant, outer 

whorls of sepals and an 
abnormally large 

gynoecium

Bowman et al., 1990; Smyth et al., 1990; Krizek and Meyerowitz, 1996; Nawy et al., 2005 28

PI : GFP 
expressed in the QC of primary root.

No LR phenotype



135 genes
(Lavenus et al., 2015)

281 genes 309 genes

TD Cor inference

Common upstream regulators

LR GRN LR GRN LR GRN

Voβ et al., 2015; Lavenus et al., 2015

Upstream regulators of PI involved in meristem patterning ? 

PI



PI

Upstream regulators of PI involved in meristem patterning ? 

PLT1 PISTILLATA

Voβ et al., 2015

PHABULOSA (HDZIP III TFs)

KANADI 4 (GARP TFs)



Leon-Kloosterziel, et al., 1994; Emery et al., 2003; Hawker et al., 2004; Mc Abee et al., 2006; Kelley et al., 2009; Caggiano et al., 2017

• Act antagonistically to each other to regulate organs patterning
- To establish the bilateral symmetry during embryo patterning (auxin)
- To coordinate leaf dorso-ventral patterning by spatiallized expression domains 

(auxin)

KANADI (4) and HDZIP III (5) TFs play antogonists role in development
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Leon-Kloosterziel, et al., 1994; Emery et al., 2003; Hawker et al., 2004; Mc Abee et al., 2006; Kelley et al., 2009; Caggiano et al., 2017

• Act antagonistically to each other to regulate organs patterning
- To establish the bilateral symmetry during embryo patterning (auxin)
- To coordinate leaf dorso-ventral patterning by spatiallized expression domains 

(auxin)

KANADI (4) and HDZIP III (5) TFs play antogonists role in development

Antagonists role during LR meristem patterning ?

PHB

KAN4



LRIS: 14d-old seedlings
NPA/NAA (48h)

1 biological replicats (n>50 seedlings/ technical replicats), Student tests p*** < 0,01  
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PISTILLATA expression seems to not be changed in kan4-1 during LRIS 



3-5 independant biological replicats (n>20 seedlings), Student tests p** < 0,02 

kan4-1 formed less LR primordium

LR Index
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Gravistimulation kan4-1 and phb-11 show delayed LRPs

Ler kan4-1 phb-11

No difference morphologically



I II III IV V VI VII LR

48h

Ler (n=51) phabulosa (n=85) ats/kan4 (n=61)

3-5 independant biological replicats, Chi² test p***<0,01

Gravistimulation kan4-1 and phb-11 show delayed LRPs
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13

Do kan4, phb, lhw mutations impact QC marker genes expression ?

Next steps

PI:GFP
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Do kan4, phb, lhw mutations impact QC marker genes expression ?

QC ON/OFF in vivo ? 

PI:GFP QC25:CFP WOX5:GFP

Next steps

New allelic KO mutant for LR phenotype


