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Statistical estimation

Steps in estimation procedure:

I Consider a population (size N) described by a random variable X
(known or unknown distribution) with parameter θ,

I a sample with n ≤ N independent observations (x1 . . . xn) is
extracted,

I θ is estimated through a statistic (=function of Xi’s):
θ̂ = T (X1 . . . Xn).

Note: independence is true only if drawing is made with replacement.
Without replacement, the approximation is ok if n << N .

Mean estimation

Estimate the average life span of a bulb...
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Point estimation of a parameter

Recall

At our disposal: n realisations of random variables (X1 . . . Xn) iid. Some
parameters can be of interest. Direct computation not feasible so
estimation needed. Objective here: tools and maths grounds for
estimation.

Definitions

I Statistical model: definition of a probability distribution Pθ (joint if
discrete rv and density if continuous rv), with θ is a (vector of)
unknown parameter(s).

I Statistic: T : Rn → R, (xi)i=1...n 7→ T (x1 . . . xn). Examples:
empirical mean or variance (known/unknown mean).
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Estimator, bias, comparison

Exercice

Lift can bear 1, 000 kg. User weight ∼ N (75, 162).

I Max. number of people allowed in it if P (lift won’t take off) = 10−6 ?

I Lift manufacturer allows 11 people inside. P (overweight) =??

Definitions

I Estimator of an unknown parameter θ: a statistic denoted θ̂
(observed values are approximations of θ). The bias associated to θ̂ is
E[θ̂]− θ (if nul, θ̂ is said to be unbiased). Ex: (exercices) (i) the
empirical mean is an unbiaised estimator for the (theoretical) mean.

S2
n :=

∑n
i=1 (Xi−X̄)2

n is a biased estimator for σ2.

I θ̂ is asymptotically unbiased if limn→∞E[θ̂] = θ.

I θ̂1 and θ̂2: 2 unbiased estimator for θ; θ̂1 is better than θ̂2 if
V ar(θ̂1) < V ar(θ̂2); in practice, θ̂1 converges faster than θ̂2.

E. Rachelson & M. Vignes (ISAE) SAD 2013 4 / 13



Estimator, bias, comparison

Exercice

Lift can bear 1, 000 kg. User weight ∼ N (75, 162).

I Max. number of people allowed in it if P (lift won’t take off) = 10−6 ?

I Lift manufacturer allows 11 people inside. P (overweight) =??

Definitions

I Estimator of an unknown parameter θ: a statistic denoted θ̂
(observed values are approximations of θ). The bias associated to θ̂ is
E[θ̂]− θ (if nul, θ̂ is said to be unbiased). Ex: (exercices) (i) the
empirical mean is an unbiaised estimator for the (theoretical) mean.

S2
n :=

∑n
i=1 (Xi−X̄)2

n is a biased estimator for σ2.

I θ̂ is asymptotically unbiased if limn→∞E[θ̂] = θ.

I θ̂1 and θ̂2: 2 unbiased estimator for θ; θ̂1 is better than θ̂2 if
V ar(θ̂1) < V ar(θ̂2); in practice, θ̂1 converges faster than θ̂2.

E. Rachelson & M. Vignes (ISAE) SAD 2013 4 / 13



Convergence of estimators
Def: θ̂ converges in probability towards θ if ∀ε > 0, P (|θ̂ − θ| < ε)→n 1.

Theorem

An (asymptotically) unbiased estimator s.t. limn V ar(θ̂) = 0 converges in
probability towards θ.

Theorem

An unbiased estimator θ̂ with the following technical regularity hypotheses
(H1-H5) verifies V ar(θ̂) > Vn(θ), with the Cramer-Rao bound

Vn(θ) := (−E[∂
2 log f(X1...Xn;θ)

∂θ2
])−1 (inverse of Fisher information).

(H1) the support D := {X, f(x; θ) > 0} does not depend upon θ.

(H2) θ belongs to an open interval I.

(H3) on I ×D, ∂f
∂θ and ∂2f

∂θ2
exist and are integrable over x.

(H4) θ 7→
∫
A f(x; θ)dx has a second order derivative (x ∈ I, A ∈ B(R))

(H5) (∂ log f(X;θ)
∂θ )2 is integrable.
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Application to the estimation of a |N |

Definition

An unbiased estimator σ̂ for θ is efficient if its variance is equal to the
Cramer-Rao bound. It is the best possible among unbiased estimators.

Exercice

Let (Xi)i=1...n iid rv ∼ N (m,σ2). Yi := |Xi −m| is observed.

I Density of Yi ? Compute E[Yi] ? Interpretation compared to σ ?

I Let σ̂ :=
∑

i aiYi. If we want σ̂ to be unbiased, give a constraint on
(ai)’s. Under this constraint, show that V ar(σ̂) is minimum iif all ai
are equal. In this case, give the variance.

I Compare the Cramer-Rao bound to the above variance. Is the built
estimator efficient ?
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Likelihood function

Definition

The likelihood of a rv X = (X1 . . . Xn) is the function L:

L : Rn ×Θ −→ R+

(x, θ) 7−→ L(x; θ) :=


f(x; θ), the density of X
or
Pθ(X1 = x1 . . . Xn = xn), if X discrete

Examples

I Xi Gaussian iid rv:

L(x; θ) =
∏
i

f(xi; θ) =

(
1

σ
√

2π

)n

exp

[
−1

2

∑
i

(
xi −m
σ

)2
]

I Xi Bernouilli iid rv: L(x; θ) = p
∑

xi(1− p)n−
∑

xi
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Maximum likelihood estimation (MLE)

Definition

θ̂MLE := arg max
θ∈Θ

(log)L(x1 . . . xn; θ)

Interpretation: θ̂MLE is the parameter value that gives maximum
probability to the observed values or random variables...

Remark: the EMV does not always exists (possible alternatives: least
square or moments). When it exists, it is not necessarily unique, can be
biased or not efficient. However...

Theorem

I θ̂MLE is asymptotically unbiased and efficient.

I θ̂MLE−θ
Vn(θ) −→n N (0, 1), where Vn(θ) is the Cramer-Rao bound.

I θ̂MLE converges to θ in squared mean.

’MLE for a proportion’ exercice ?
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Sufficient statistic

Remark/definition

Any realisation (xi) of a rv X, unknown distribution but parameterised by
θ, from a sample contains information on θ. If the statistic summarises all
possible information from the sample, it is sufficient. In other words ”no
other statistic which can be calculated from the same sample provides any
additional information as to the value of the parameter” (Fisher 1922)
In mathematical terms: P (X = x|T = t, θ) = P (X = x|T = t)

Theorem (Fisher-Neyman)

T(X) is sufficient if there exist 2 functions g and h s.t.
L(x; θ) = g(t; θ)h(x)

Implication: in the context of MLE, 2 samples yielding the same value for
T yield the same inferences about θ. (dep. on θ is only in conjunction
with T ).
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Quantiles

Definition

The cumulative distribution function F (F (x) =
∫ x
−∞ f(t)dt, with f

density of X) is a non-decreasing function R→ [0; 1]. Its inverse F−1 is
called the quantile function. ∀β ∈]0; 1[, the β-quantile is defined by
F−1(β).

In particular: P (X ≤ F−1(β)) = β and P (X ≥ F−1(β)) = 1− β

In practice, either quantile are read from tables: either F or F−1

(old-fashioned) or they are computed using statistics softwares on
computers.
Quantile for the Gaussian distribution will be denoted zβ.
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Interval estimation
θ̂: a point estimation of θ; even in favourable situations, it is very unlikely
that θ̂ = θ. How close is it ? Could an interval that contains the true
value of θ with say a high probability (low error) be built ? Not too big
(informative), but not too restricted neither (for the true value has a great
chance of being in it).

Typically, a 1/
√
n-neighbourhood of θ̂ will do the job. It is much more

useful than many digits in an estimator to give an interval with the
associated error.

Definition

1. A confidence interval În is defined by a couple of estimators:
În = [θ̂1; θ̂2].

2. its associated confidence level 1− α (α ∈ [0; 1]) is s.t.
P (θ ∈ În) ≥ 1− α.

3. În is asymptotically of level at least 1− α if ∀ε > 0, ∃Ne s.t.
P (θ ∈ În) ≥ 1− α− ε for n ≥ Ne.
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Confidence intervals you need to know
a partial typology

I Xi ∼ N (m,σ2), with σ2 known, then I(m) = [x̄+ /− z1−α/2
σ√
n

].

I when σ2 is unknown, it becomes I(m) = [x̄+ /− tn−1;1−α/2
sn−1√
n

],

with s2
n−1 :=

∑
(xi−x̄)2

n−1 and tn−1;1−α/2 the quantile of a Student
distribution with n− 1 degrees of freedom (df). Note that
tn−1;1−α/2 'n z1−α/2.

I if Gaussianity is lost, we can only derive asymptotic confidence
intervals.

I as for σ2: if m is known Iα = [ nσ̂2

χ2
n;1−α/2

; nσ̂2

χ2
n;α/2

]

I when m is unknown: Iα = [
(n−1)S2

n−1

χ2
n−1;1−α/2

;
(n−1)S2

n−1

χ2
n;α/2

]

I confidence interval for a proportion: exercices (if time permits)

I for other distributions: use the Cramer-Rao bound !
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Next time

Multivariate descriptive statistics !

Some notions of (advanced) algebras wil be needed. E.g. Matrices,
operations, inverse, rank, projection, metrics, scalar product,
eigenvalues/vectors, matrix norm, matrix approximation . . . .
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