Statistics and learning Regression

Emmanuel Rachelson and Matthieu Vignes

ISAE SupAero

Friday 1st February 2013

 \blacktriangleright expresses a random variable Y as a function of random variables X $in\mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

lacktriangleright expresses a random variable Y as a function of random variables X $in\mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

where functional f depends on **unknown parameters** β_1, \ldots, β_k and the **residual** (or **error**) ϵ is an unobservable rv which accounts for random fluctuations between the model and Y.

▶ Goal: from n experimental observations (x_i, y_i) , we aim at

lacktriangleright expresses a random variable Y as a function of random variables X $in\mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at
 - estimate unknown $(\beta_l)_{l=1...k}$,

 \blacktriangleright expresses a random variable Y as a function of random variables X $in\mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at
 - estimate unknown $(\beta_l)_{l=1...k}$,
 - evaluate the fit of the model

 \blacktriangleright expresses a random variable Y as a function of random variables X $in\mathbb{R}^p$ according to:

$$Y = f(X; \beta) + \epsilon,$$

- ▶ Goal: from n experimental observations (x_i, y_i) , we aim at
 - estimate unknown $(\beta_l)_{l=1...k}$,
 - ▶ evaluate the fit of the model
 - if the fit is acceptable, tests on parameters can be performed and the model can be used for **predictions**

► A single **explanatory variable** *X* and an affine relationship to the **dependant variable** *Y*:

$$E[Y\mid X=x]=\beta_0+\beta_1x \text{ or } Y_i=\beta_0+\beta_1X_i+\epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

► A single **explanatory variable** *X* and an affine relationship to the **dependant variable** *Y*:

$$E[Y \mid X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

▶ Residuals ϵ_i are assumed to be centred (R1), have equal variances (= σ^2 , R2) and be uncorrelated: $Cov(\epsilon_i, \epsilon_j) = 0$, $\forall i \neq j$ (R3).

► A single **explanatory variable** *X* and an affine relationship to the **dependant variable** *Y*:

$$E[Y \mid X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

- ▶ Residuals ϵ_i are assumed to be centred (R1), have equal variances (= σ^2 , R2) and be uncorrelated: $Cov(\epsilon_i, \epsilon_j) = 0$, $\forall i \neq j$ (R3).
- ► Hence: $E[Y_i] = \beta_0 + \beta_1 x_i$, $Var(Y_i) = \sigma^2$ and $Cov(Y_i, Y_j) = 0$, $\forall i \neq j$.

► A single **explanatory variable** *X* and an affine relationship to the **dependant variable** *Y*:

$$E[Y \mid X = x] = \beta_0 + \beta_1 x \text{ or } Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where β_1 is the slope of the adjusted regression line and β_0 is the intercept.

- ► Residuals ϵ_i are assumed to be centred (R1), have equal variances (= σ^2 , R2) and be uncorrelated: $Cov(\epsilon_i, \epsilon_j) = 0$, $\forall i \neq j$ (R3).
- ► Hence: $E[Y_i] = \beta_0 + \beta_1 x_i$, $Var(Y_i) = \sigma^2$ and $Cov(Y_i, Y_j) = 0$, $\forall i \neq j$.
- ▶ Fitting (or adjusting) the model = estimate β_0 , β_1 and σ from the n-sample (x_i, y_i) .

3 / 15

▶ Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0}, \beta_1) \in \mathbb{R}^2 \sum [y_i - (\beta_0 + \beta_1 x_i)]^2$$

▶ Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0}, \beta_1) \in \mathbb{R}^2 \sum \left[y_i - (\beta_0 + \beta_1 x_i) \right]^2$$

▶ Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0}, \beta_1) \in \mathbb{R}^2 \sum \left[y_i - (\beta_0 + \beta_1 x_i) \right]^2$$

▶ Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

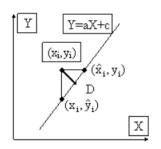
$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0}, \beta_1) \in \mathbb{R}^2 \sum [y_i - (\beta_0 + \beta_1 x_i)]^2$$

Note that Y and X do not play a symetric role!

▶ Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{(\beta_0}, \beta_1) \in \mathbb{R}^2 \sum \left[y_i - (\beta_0 + \beta_1 x_i) \right]^2$$

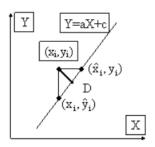
Note that Y and X do not play a symetric role!



▶ Seeking values for β_0 and β_1 minimising the sum of quadratic errors:

$$(\hat{\beta_0}, \hat{\beta_1}) = \operatorname{argmin}_{(\beta_0}, \beta_1) \stackrel{\circ}{\in} \mathbb{R}^2 \sum \left[y_i - (\beta_0 + \beta_1 x_i) \right]^2$$

Note that Y and X do not play a symetric role!



▶ In matrix notation (useful later): $Y = X.B + \epsilon$, with $Y = {}^{\top}(Y_1 \dots Y_n)$, $\beta = {}^{\top}(\beta_1, \beta_2)$, $\epsilon = {}^{\top}(\epsilon_1 \dots \epsilon_n)$ and $X = {}^{\top}\begin{pmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_n \end{pmatrix}$.

Estimator properties

• useful notations: $\bar{x}=1/n\sum_i x_i$, \bar{y} , s_x^2 , s_y^2 and $s_{xy}=1/(n-1)\sum_i (x_i-\bar{x})(y_i-\bar{y})$.

Estimator properties

- useful notations: $\bar{x}=1/n\sum_i x_i$, \bar{y} , s_x^2 , s_y^2 and $s_{xy}=1/(n-1)\sum_i (x_i-\bar{x})(y_i-\bar{y})$.
- ▶ Linear correlation coefficient: $r_{xy} = \frac{s_{xy}}{s_x s_y}$.

Estimator properties

- ▶ useful notations: $\bar{x}=1/n\sum_i x_i$, \bar{y} , s_x^2 , s_y^2 and $s_{xy}=1/(n-1)\sum_i (x_i-\bar{x})(y_i-\bar{y})$.
- ▶ Linear correlation coefficient: $r_{xy} = \frac{s_{xy}}{s_x s_y}$.

Theorem

- 1. Least Square estimators:= $\hat{\beta}_1 = s_{xy}/s_x^2$ and $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$.
- 2. These estimators are unbiased and efficient.
- 3. $s^2 = \frac{1}{n-2} \sum_i \left[y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i) \right]^2$ is an unbiased estimator of σ^2 . It is however not efficient.
- 4. $Var(\hat{\beta}_0) = \frac{\sigma^2}{(n-1)s_x^2}$ and $Var(\hat{\beta}_1) = \bar{x}^2 Var(\hat{\beta}_1) + \sigma^2/n$

Simple Gaussian linear model

▶ In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') $\forall i \neq j$, ϵ_i and ϵ_j independent and (R4) $\forall i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ or equivalently $y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$.

Simple Gaussian linear model

- ▶ In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') $\forall i \neq j$, ϵ_i and ϵ_j independent and (R4) $\forall i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ or equivalently $y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$.
- ► **Theorem**: under (R1, R2, R3' and R4), Least Square estimators = MLE.

Simple Gaussian linear model

- ▶ In addition to R1 (centred noise), R2 (equal variance noise) and R3 (uncorrelated noise), we assume (R3') $\forall i \neq j$, ϵ_i and ϵ_j independent and (R4) $\forall i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ or equivalently $y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$.
- ► **Theorem**: under (R1, R2, R3' and R4), Least Square estimators = MLE.

Theorem (Distribution of estimators)

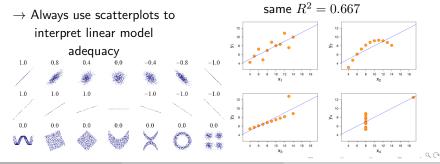
- 1. $\hat{\beta_0} \sim \mathcal{N}(\beta_0, \sigma_{\hat{\beta_0}}^2)$ and $\hat{\beta_1} \sim \mathcal{N}(\beta_0, \sigma_{\hat{\beta_1}}^2)$, with $\sigma_{\hat{\beta_0}}^2 = \sigma^2 \left(\bar{x}^2 / \sum_i (x_i \bar{x})^2 + 1/n\right)$ and $\sigma_{\hat{\beta_1}}^2 = \sigma^2 / \sum_i (x_i \bar{x})^2$
- 2. $(n-2)s^2/\sigma^2 \sim \chi_{n-2}^2$
- 3. $\hat{\beta}_0$ and $\hat{\beta}_1$ are independent of $\hat{\epsilon}_i$.
- 4. Estimators of $\sigma^2_{\hat{eta_0}}$ and $\sigma^2_{\hat{eta_1}}$ are given in 1. by replacing σ^2 by s^2 .

▶ Previous theorem allows us to build CI for β_0 and β_1 .

- ▶ Previous theorem allows us to build CI for β_0 and β_1 .
- ▶ SST/n = SSR/n + SSE/n, with $SST = \sum_i (y_i \bar{y})^2$ (total sum of squares), $SSR = \sum_i (\hat{y}_i \bar{y})^2$ (regression sum of squares) and $SSE = \sum_i (y_i \bar{y}_i)^2$ (sum of squared errors).

- ▶ Previous theorem allows us to build CI for β_0 and β_1 .
- ► SST/n = SSR/n + SSE/n, with $SST = \sum_i (y_i \bar{y})^2$ (total sum of squares), $SSR = \sum_i (\hat{y_i} \bar{y})^2$ (regression sum of squares) and $SSE = \sum_i (y_i \bar{y_i})^2$ (sum of squared errors).
- ▶ **Definition**: Determination coefficient $R^2 = \frac{\sum_i (\hat{y_i} \bar{y})^2}{\sum_i (y_i \bar{y})^2} = \frac{SSR}{SST} = 1 \frac{SSE}{SST} = 1 \frac{\text{Residual Variance}}{\text{Total variance}}.$

- ▶ Previous theorem allows us to build CI for β_0 and β_1 .
- ▶ SST/n = SSR/n + SSE/n, with $SST = \sum_i (y_i \bar{y})^2$ (total sum of squares), $SSR = \sum_i (\hat{y}_i \bar{y})^2$ (regression sum of squares) and $SSE = \sum_i (y_i \bar{y}_i)^2$ (sum of squared errors).
- ▶ **Definition**: Determination coefficient $R^2 = \frac{\sum_i (\hat{y_i} \bar{y})^2}{\sum_i (y_i \bar{y})^2} = \frac{SSR}{SST} = 1 \frac{SSE}{SST} = 1 \frac{\text{Residual Variance}}{\text{Total variance}}$



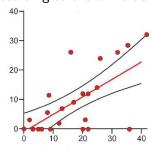
▶ Given a new x^* , what is the prediction \tilde{y} ?

- ▶ Given a new x^* , what is the prediction \tilde{y} ?
- ▶ It's simply $\widehat{y(x^*)} = \hat{\beta_0} + \hat{\beta_1}x^*$. But what is its precision ?

- ▶ Given a new x^* , what is the prediction \tilde{y} ?
- ▶ It's simply $\widehat{y(x^*)} = \hat{\beta_0} + \hat{\beta_1}x^*$. But what is its precision ?
- ▶ Its CI is $\left[\hat{\beta}_0+\hat{\beta}_1x^*+/-t_{n-2;1-\alpha/2}s^*\right]$, where $s^*=s\sqrt{1+\frac{1}{n}+\frac{(x^*-\bar{x})^2}{\sum_i(x_i-\bar{x})^2}}.$

- ▶ Given a new x^* , what is the prediction \tilde{y} ?
- ▶ It's simply $\widehat{y(x^*)} = \hat{\beta_0} + \hat{\beta_1}x^*$. But what is its precision ?
- ▶ Its CI is $\left[\hat{\beta}_0 + \hat{\beta}_1 x^* + / t_{n-2;1-\alpha/2} s^*\right]$, where $s^* = s \sqrt{1 + \frac{1}{n} + \frac{(x^* \bar{x})^2}{\sum_i (x_i \bar{x})^2}}$.
- ▶ Predictions are valid in the range of (x_i) 's.

- ▶ Given a new x^* , what is the prediction \tilde{y} ?
- ▶ It's simply $\widehat{y(x^*)} = \hat{\beta_0} + \hat{\beta_1}x^*$. But what is its precision ?
- ▶ Its CI is $\left[\hat{\beta}_0 + \hat{\beta}_1 x^* + / t_{n-2;1-\alpha/2} s^*\right]$, where $s^* = s \sqrt{1 + \frac{1}{n} + \frac{(x^* \bar{x})^2}{\sum_i (x_i \bar{x})^2}}$.
- ▶ Predictions are valid in the range of (x_i) 's.
- ▶ The precision varies according to the x^* value you want to predict:



▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.

- ▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.

- ▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- $x = (x_i^j)_{i,j}$ is the observed **design matrix**.

- ▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- $x = (x_i^j)_{i,j}$ is the observed **design matrix**.
- ▶ Identifiability of β is equivalent to the linear independence of the columns of x i.e. $\operatorname{Rank}(X) = p + 1$. This is equivalent to $^{\top}XX$ being invertible.

- ▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- $x = (x_i^j)_{i,j}$ is the observed **design matrix**.
- ▶ Identifiability of β is equivalent to the linear independence of the columns of x i.e. $\operatorname{Rank}(X) = p + 1$. This is equivalent to $^{\top}XX$ being invertible.
- ▶ Parameter estimation: $\operatorname{argmin}_{\beta} \sum_{i=1}^{n} \left(y_i \sum_{j=1}^{p} \beta_j x_i^j \beta_0 \right)^2 \Leftrightarrow \operatorname{argmin}_{\beta} \sum_{i} \hat{\epsilon_i}^2 \Leftrightarrow \operatorname{argmin}_{\beta} \|Y X\beta\|_2^2.$

9 / 15

Multiple linear regression

- ▶ Natural extension when several $(X_j)_{j=1...p}$ are used to explain Y.
- ▶ Model simply writes: $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$. In matrix notations with obvious generalisation: $Y = X\beta + \epsilon$.
- $x = (x_i^j)_{i,j}$ is the observed **design matrix**.
- ▶ Identifiability of β is equivalent to the linear independence of the columns of x i.e. $\operatorname{Rank}(X) = p + 1$. This is equivalent to $^{\top}XX$ being invertible.
- ▶ Parameter estimation: $\operatorname{argmin}_{\beta} \sum_{i=1}^{n} \left(y_i \sum_{j=1}^{p} \beta_j x_i^j \beta_0 \right)^2 \Leftrightarrow \operatorname{argmin}_{\beta} \sum_{i} \hat{\epsilon_i}^2 \Leftrightarrow \operatorname{argmin}_{\beta} \|Y X\beta\|_2^2.$
- ▶ **Theorem** The Least Square Estimator of β is $\hat{\beta} = (^{\top}XX)^{-1} \, ^{\top}X \, Y$.

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

- 1. $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(^{\top}XX)^{-1})$ and
- 2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

- 1. $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(^{\top}XX)^{-1})$ and
- 2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.
 - ▶ few control on σ^2 . So the structure of $^{\top}XX$ dictates the quality of estimator $\hat{\beta}$: optimal experimental design subject.

Properties of the least square estimate

Theorem

The estimator $\hat{\beta}$ previously defined is s.t.

- 1. $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(^{\top}XX)^{-1})$ and
- 2. $\hat{\beta}$ efficient: among all unbiased estimator, it has the smallest variance.
- ▶ few control on σ^2 . So the structure of $^{\top}XX$ dictates the quality of estimator $\hat{\beta}$: optimal experimental design subject.

Theorem

 $\hat{Y}=X\hat{\beta}$: predicted values. Then $\hat{Y}=H\,Y$, with $H=X\,(^{ op}X\,X)^{-1\,\,^{ op}}X$; $\epsilon=Y-\hat{Y}=(Id-H)\,Y$. Note that H is the orthogonal projection on $\mathrm{Vect}(X)\subset\mathbb{R}^n$. We have:

- 1. $\operatorname{Cov}(\hat{Y}) = \sigma^2 H$,
- 2. $Cov(\epsilon) = \sigma^2(Id H)$ and
- 3. $\hat{\sigma^2} = \frac{\|\epsilon^2\|}{n-p-1}$.

► CI for β_j : $[\hat{\beta}_j + / -t_{n-p-1;1-\alpha/2}\sigma_{\hat{\beta}_j}]$, with $t_{n-p-1;1-\alpha/2}$ a Student-quantile and $\sigma_{\hat{\beta}_j}$ the squareroot of the j^{th} element of $\text{Cov}(\hat{\beta})$.

- ▶ CI for β_j : $[\hat{\beta}_j + / -t_{n-p-1;1-\alpha/2}\sigma_{\hat{\beta}_j}]$, with $t_{n-p-1;1-\alpha/2}$ a Student-quantile and $\sigma_{\hat{\beta}_j}$ the squareroot of the j^{th} element of $\text{Cov}(\hat{\beta})$.
- ▶ Tests on β_j : the rv $\frac{\hat{\beta_j} \beta_j}{\sigma_{\hat{\beta_j}}}$ has a Student distribution.

- ▶ CI for β_j : $[\hat{\beta}_j + / -t_{n-p-1;1-\alpha/2}\sigma_{\hat{\beta}_j}]$, with $t_{n-p-1;1-\alpha/2}$ a Student-quantile and $\sigma_{\hat{\beta}_j}$ the squareroot of the j^{th} element of $\text{Cov}(\hat{\beta})$.
- ▶ Tests on β_j : the rv $\frac{\hat{\beta}_j \beta_j}{\sigma_{\hat{\beta}_j}}$ has a Student distribution.
- ▶ Confidence region for $\beta = (\beta_0 \dots \beta_p)$:

$$R_{1-\alpha}(\beta) = \left\{ z \in \mathbb{R}^{p+1} | {}^{\top}(z-\hat{\beta}) {}^{\top}X X (z-\hat{\beta}) \le (p+1)s^2 f_{k;n-p-1;1-\alpha} \right\}.$$

It is an ellipsoid centred on $\hat{\beta}$ with volume, shape and orientation depending upon ${}^{\top}X\,X.$

- ▶ CI for β_j : $[\hat{\beta}_j + / -t_{n-p-1;1-\alpha/2}\sigma_{\hat{\beta}_j}]$, with $t_{n-p-1;1-\alpha/2}$ a Student-quantile and $\sigma_{\hat{\beta}_j}$ the squareroot of the j^{th} element of $\text{Cov}(\hat{\beta})$.
- ▶ Tests on β_j : the rv $\frac{\hat{\beta}_j \beta_j}{\sigma_{\hat{\beta}_j}}$ has a Student distribution.
- ▶ Confidence region for $\beta = (\beta_0 \dots \beta_p)$:

$$R_{1-\alpha}(\beta) = \left\{ z \in \mathbb{R}^{p+1} | {}^{\top}(z-\hat{\beta}) {}^{\top}X X (z-\hat{\beta}) \le (p+1)s^2 f_{k;n-p-1;1-\alpha} \right\}.$$

It is an ellipsoid centred on $\hat{\beta}$ with volume, shape and orientation depending upon ${}^{\top}X\,X.$

▶ CI for previsions on y^* :

$$[y^* + / -t_{n-p-1;1-\alpha/2}s\left(1 + {}^{\top}x^*({}^{\top}XX)^{-1}\right)^{1/2}].$$

<ロ > ← □

residual plot: variance homogeneity (weights can be used if not), model validation...

- residual plot: variance homogeneity (weights can be used if not), model validation...
- ▶ QQ-plots: to detect outliers . . .

- residual plot: variance homogeneity (weights can be used if not), model validation...
- ▶ QQ-plots: to detect outliers . . .
- ▶ model selection. R^2 for model with same number of regressors. $R^2_{adj} = \frac{(n-1)R^2 (p-1)}{n-p}$. Maximising R^2_{adj} is equivalent to maximising the mean quadratic error.

- residual plot: variance homogeneity (weights can be used if not), model validation...
- ▶ QQ-plots: to detect outliers . . .
- ▶ model selection. R^2 for model with same number of regressors. $R^2_{adj} = \frac{(n-1)R^2 (p-1)}{n-p}$. Maximising R^2_{adj} is equivalent to maximising the mean quadratic error.
- ▶ test by ANOVA: $F = \frac{SSR/p}{SSE/(n-p-1)}$ has a Fisher distribution with p, (n-p-1) df. Since testing (H0) $\beta_1 = \ldots = \beta_p = 0$ has little interest (rejected as one of the variable is linked to Y), one can test (H0') $\beta_{i_1} = \ldots = \beta_{i_q} = 0$, with q < p and $\frac{(SSR SSR_q)/q}{SSE/(n-p-1)}$ has a Fisher distribution with q, (n-p-1) df.

- residual plot: variance homogeneity (weights can be used if not), model validation. . .
- ▶ QQ-plots: to detect outliers . . .
- ▶ model selection. R^2 for model with same number of regressors. $R^2_{adj} = \frac{(n-1)R^2 (p-1)}{n-p}$. Maximising R^2_{adj} is equivalent to maximising the mean quadratic error.
- ▶ test by ANOVA: $F = \frac{SSR/p}{SSE/(n-p-1)}$ has a Fisher distribution with p, (n-p-1) df. Since testing (H0) $\beta_1 = \ldots = \beta_p = 0$ has little interest (rejected as one of the variable is linked to Y), one can test (H0') $\beta_{i_1} = \ldots = \beta_{i_q} = 0$, with q < p and $\frac{(SSR SSR_q)/q}{SSE/(n-p-1)}$ has a Fisher distribution with q, (n-p-1) df.
- ▶ Application: variable selection for model interpretation: backward (remove 1 by 1 least significative with t-test), forward (include 1 by 1 most significative with F-test), stepwise (variant of forward).

2013

Collinearity and model selection

▶ detecting colinearity between the x_i 's. Inverting $^{\top}XX$ if $\det(^{\top}XX)\approx 0$ is difficult. Moreover, the inverse will have a huge variance!

Collinearity and model selection

- ▶ detecting colinearity between the x_i 's. Inverting $^{\top}XX$ if $\det(^{\top}XX)\approx 0$ is difficult. Moreover, the inverse will have a huge variance!
- ▶ to detect collinearity, compute $VIF(x_j) = \frac{1}{1-R_j^2}$, with R_j^2 the determination coefficient of x_j regressed againt $x \setminus \{x_j\}$. Perfect othrogonality is $VIF(x_j) = 1$ and the stronger the collinearity, the larger the value for $VIF(x_j)$.

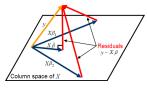
Collinearity and model selection

- ▶ detecting colinearity between the x_i 's. Inverting $^{\top}XX$ if $\det(^{\top}XX)\approx 0$ is difficult. Moreover, the inverse will have a huge variance!
- ▶ to detect collinearity, compute $VIF(x_j) = \frac{1}{1-R_j^2}$, with R_j^2 the determination coefficient of x_j regressed againt $x \setminus \{x_j\}$. Perfect othrogonality is $VIF(x_j) = 1$ and the stronger the collinearity, the larger the value for $VIF(x_j)$.
- ► Ridge regression introduces a bias but reduces the variance (keeps all variables). Lasso regression does the same but also does a selection on variables. Issue here: penalty term to tune...

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

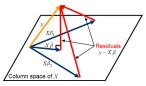
▶ Multiple output regression Y = XB + E, Y inM(n,K) and $X \in M(n,p)$ so $RSS(B) = \operatorname{Tr}\left(^{\top}(Y - XB)(Y - XB)\right)$ (column-wise) or $\sum_{i}^{\top}(y_{i} - x_{i,.}B)\epsilon^{-1}(y_{i} - x_{i,.}B)$, with $\epsilon = \operatorname{Cov}(\epsilon)$ (correlated errors).



Last generalisations

Multiple outputs, curvilinear and non-linear regressions

▶ Multiple output regression Y = XB + E, Y inM(n,K) and $X \in M(n,p)$ so $RSS(B) = \operatorname{Tr}\left(^{\top}(Y - XB)(Y - XB)\right)$ (column-wise) or $\sum_{i}^{\top}(y_{i} - x_{i,.}B)\epsilon^{-1}(y_{i} - x_{i,.}B)$, with $\epsilon = \operatorname{Cov}(\epsilon)$ (correlated errors).



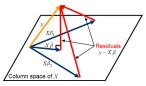
► Curvilinear models are of the form

$$Y = \beta_0 + \sum_{j} \beta_j x^j + \sum_{k,l} \beta_{k,l} x^k x^l + \epsilon.$$

Last generalisations

Multiple outputs, curvilinear and non-linear regressions

▶ Multiple output regression Y = X B + E, Y inM(n,K) and $X \in M(n,p)$ so $RSS(B) = \operatorname{Tr} \left(^{\top} (Y - XB)(Y - XB) \right)$ (column-wise) or $\sum_{i} ^{\top} (y_i - x_{i,.}B) \epsilon^{-1} (y_i - x_{i,.}B)$, with $\epsilon = \operatorname{Cov}(\epsilon)$ (correlated errors).



► Curvilinear models are of the form

$$Y = \beta_0 + \sum_{j} \beta_j x^j + \sum_{k,l} \beta_{k,l} x^k x^l + \epsilon.$$

▶ Non-linear (parametric) regression has the form $Y = f(x; \theta) + \epsilon$. Examples include exponential or logistic models.

Today's session is over

Next time: A practical R session to be studied by you!