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Abstract. Mixture models for random graphs have a complex depen-
dency structure and a likelihood which is not computable even for mod-
erate size networks. Variational and variational Bayes techniques are
useful approaches for statistical inference of such complex models but
their theoretical properties are not well known. We give a result about
the consistency of variational estimates of the parameters of the model
and we propose variational Bayes estimates. We compare the accuracy
of the two variational methods through simulation studies and show an
application to a large Protein-Protein interaction network.
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1 Introduction

Complex networks are more and more studied in different domains such as social
sciences and biology. The network representation of the data is graphically at-
tractive, but there is clearly a need for a synthetic model, giving an enlightening
representation of complex networks. Statistical methods have been developed for
analyzing complex data such as networks in a way that could reveal underlying
data patterns through some form of classification.

Unsupervised classification of the vertices of networks is a rapidly developing
area with many applications in social and biological sciences. The underlying
idea is that similar connectivity behavior between several vertices leads to their
grouping in one meta-vertex, without too much information loss. Then, the initial
complex network may be reduced to a simpler meta-network, with few meta-
vertices connected by few meta-edges. Picard et al. [15] show applications of this
idea to biological networks and Nowicki and Snijders [14] to social networks.

In mixture models, discrete latent variables assign each vertex to a group,
and each vertex is supposed to pertain to one group. Nowicki and Snijders [14]
were among the first to propose what they called a Stochastic block structure
model because their model was on the line of an older non stochastic block
structure model largely developed in social science. Their estimation method is
bayesian MCMC algorithms for networks with less than 200 vertices. Daudin
et al. [4] have given more insight on the same model, the degree distribution
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and the clustering coefficient, and used a variational method for estimating the
parameters.

Bickel and Chen give a general view about the consistency of algorithms max-
imizing some modularity criteria, such as Newman-Girvan or profile-likelihood
modularities [2]. The profile-likelihood is the likelihood of the Stochastic block
structure model, with some parameters replaced by their estimates. They used a
label switching algorithm to maximize modularity criteria and give some asymp-
totic results of consistency and speed of convergence. In particular they proved
that, using the profile-likelihood, one can recover exactly the class of each node
when the number of nodes, n, tends to infinity, a result which was given first by
Snijders and Nowicki [17] for two classes.

The variational method allows to deal with several thousand vertices and
gives good results in practice ([12]). However the statistical properties of vari-
ational estimates are not well known. They maximize a pseudo-likelihood and
no general properties have been established. Gunawardana and Byrne [7] show
that the variational estimates are consistent only for degenerate cases. However
the variational estimates have been proved to be consistent in some cases ([8],
[9], [3], [22]) and not consistent in other ones ([21]).

In this paper we give some results about the consistency of variational esti-
mates under three identifiability conditions, and their asymptotic equivalence to
the maximum likelihood estimates. Then we build variational Bayes estimates for
the same model and compare the two variational methods through simulations.
Marras et al. ([11]) propose to analyze large Protein-Protein Interaction net-
works (PPIN) using two steps: first a deterministic method allows to find large
core and community structures and second a stochastic method (such as mix-
ture model) permits to uncover fine-grained interactome components. We show
that it is possible to analyze the same large PPIN (6,463 interactions between
2,235 distinct proteins) in one step, using variational algorithm to estimate the
parameters of the mixture model, obtaining both large and small clusters from
the same model.

2 Model and log-likelihood

2.1 MixNet Model

The definition of the model first proposed by [14], developed by [4] and illustrated
by [15] is the following:

Let i = 1, . . . , n vertices pertaining to q = 1, . . . , Q classes. Let Xij = 1 if
there is an edge from node i to node j and Xij = 0 if not. X may be symmetric
(undirected network) or not (directed network). Let Z[n] = (Z1, ...Zi...Zn), Zi ∈
{1, . . . , Q} a sequence of independent random integers with P (Zi = q) = αq,
and α = (α1, ..., αQ). In some cases we will use the notation Ziq, with Ziq = 1 if
Zi = q and Ziq = 0 if Zi 6= q.

The model is the following
Conditionally to Z, Xij are independent Bernoulli random variables with

P (Xij = 1 | Zi = q, Zj = l) = πql,
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π is the Q × Q matrix of the parameters πij and X is the random matrix
composed of the Xij .

The parameters of the model are α and π. In the following, this model is
denoted MixNet model. Note that the graph of conditional dependency structure
of (Z1...Zn)/X is a clique.

2.2 Log-likelihood

Let bij(q, l) = xij log πql + (1 − xij) log(1 − πql). In the following, the subscript
[n] indicates that the indexed mathematical object is defined for n nodes.

The Log-Likelihood L(x[n];α, π) = log
{∑

z[n]∈Zn
e[

∑n
i,j 6=i bij(zi,zj)]PZ[n](z[n])

}
is not computable even for networks with moderate size because the sum

∑
z

runs over Qn terms.
The Variational log-likelihood approximation is the following, see [4]:

J (x[n]; τ[n], π, α) =
n∑

(i,j 6=i)=1

Q∑
(q,l)=1

bij(q, l)τiqτjl +
n∑
i=1

Q∑
q=1

τiq(logαq − log τiq)

for any τ ∈ Sn, a continuous version of z’s, with Sn = {u ∈ ([0, 1]Q)n : ∀i = 1 :
n,

∑Q
q=1 uiq = 1}. Note that the variational likelihood is a mean field approx-

imation. In other words, the approximation comes to the fact that P (Zi, Zi|X)
is assumed to be a product, and the τiq can be interpreted as approximations of
P (Zi|X).

The Maximum Likelihood estimates are not computable. The E step of the
EM method is highly computationally intensive because it needs to compute n
sums of Qn−1 terms. It cannot be achieved for networks of size greater than 20
nodes, but an iterative algorithm (see [4]) is available to obtain the variational
estimates, (τ̂ , π̂) = arg maxτ[n],π J (x[n]; τ[n], π, α). There is no proof that the
algorithm gives a global maximum, but in practice some simulations indicates
that this is the case when n/Q is greater than 20. For smaller values of n/Q, the
result may depend on the initial values.

3 Properties of the variational estimates

Condition C1
∀(q 6= q′) ∃l ∈ (1, Q) : πql 6= πq′l or πlq 6= πlq′ .

Condition C2
∃a > 0 : min(min(πql > 0),min(1− πql) > 0) ≥ a.

Condition C3
∃b > 0 : min(αq) ≥ b.

Theorem 1. Assume that C1, C2 and C3 are true. Then the variational es-
timates of (π, α) are consistent and asymptotically equivalent to the maximum
likelihood estimates. Moreover, when n→∞,

1
n2

[
L(x[n];α, π)− J (x[n]; τ[n], π, α)

] P−→ 0 and τ̂[n]
P−→ z∗, with z∗ being the

true value for Z.
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The proof is tricky and will appear in another paper. It uses the properties of
J , concentration inequalities and an extension of classical methods for proving
consistency in [20]. There are two mains properties of networks data and the
MixNet model which are important in this proof: (i) there are n2 data which
helps greatly for obtaining strong concentration inequalities (ii) the asymptotic
pdf of Z|X pertains to the factorized class of pdfs in which the variational
approximation is searched. These two properties are rarely shared by other data
sets and models so the properties of theorem 1 may be quite specific to random
networks.

4 Variational Bayes method

The variational approximation can be applied in a Bayesian setting where pa-
rameters are viewed as unobserved variables. It turns out to be helpful to handle
the two sets of unobserved variables: Z and θ = (α, π). Using conjugate priors,
[10] give closed-form approximate conditional distributions of both Z and θ. We
show that the same results can be obtained as an application of the general
variational Bayes method with exponential families given by [1].

Proposition 1. If the proportions α and the connexion probabilities {πq`} have
all independent prior Dirichlet and Beta distributions

α ∼ D(n0), πq` ∼ B(η0
q`, ζ

0
q`),

where n0 = (n0
1, . . . , n

0
Q), then the VB approximate conditional mean of Ziq

satisfies

τVB
iq ∝ eψ(ñq)−ψ(∑Q

l=1 ñ`)
n∏
j 6=i

Q∏
l=1

eτ
VB
j` {ψ(ζ̃q`)−ψ(η̃q`+ζ̃q`)+Xij [ψ(η̃q`)−ψ(ζ̃q`)]})

and the VB approximate posterior distributions of the parameters are

(α|X) ≈ D(ñ), (πq`|X) ≈ B(η̃q`, ζ̃q`)

where ψ is the digamma function,

ñq = n0
q +

∑
i

τVB
iq ,

η̃q` = η0
q` +

(
1− 1

2
1q=l

)∑
i6=j

Xijτ
VB
iq τVB

j` ,

ζ̃q` = ζ0
q` +

(
1− 1

2
1q=l

)∑
i 6=j

(1−Xij)τVB
iq τVB

j` .

Proof. We follow the strategy described in [1] which aims at maximizing

J (X) = logP (X)−KL(R, P (θ, Z|X)) with R(Z, θ) = RZ(Z)Rθ(θ) (1)
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whith KL the Kullback-Leibler divergence and R(Z, θ) the variational approxi-
mation of P (Z, θ|X), omitting the subscript X for R. RZ and Rθ are approxi-
mate conditional distributions given the dataX. As we use conjugate priors, P (θ)
is proportional to exp[φ′(θ)ν] and P (X,Z|θ) is proportional to exp[φ′(θ)u(X,Z)]
where φ(θ), ν and u(X,Z) are vectors with dimension Q+2×Q(Q+1)/2 defined
as

φ(θ) = [{logαq}q {log πq`}q≤l {log(1− πq`)}q≤l],
ν = [(nq − 1)q (ηq` − 1)q≤l (ζq` − 1)q≤l],

u(X,Z) =
[
{
∑
i Ziq}q

{
(1− 1

21q=l)
∑
i6=j XijZiqZj`

}
q≤l

{
(1− 1

21q=l)
∑
i 6=j(1−Xij)ZiqZj`

}
q≤l

]
.

The variational approximate distribution R is searched in the family of fac-
torized distributions. More precisely, the factorizations R(Z, θ) = RZ(Z)Rθ(θ),
Rθ(θ) = Rα(α)Rπ(π) and RZ(Z) =

∏
iRZi(Zi) are assumed. The optimization

of (1) under the factorization assumptions leads to

Rθ(θ) ∝ exp{φ(θ)′[ν + u(X)]} and RZ(Z) ∝ exp{φ′u(X,Z)},

where
u(X) =

∑
z

u(X, z)RZ(z) and φ =
∫
φ(t)Rθ(t)dt

and the result follows after standard calculations. �

5 Simulations

We now present a simulation study to compare the accuracy of the two meth-
ods, variational (VEM) and variational Bayes (VB), in terms of parameter infer-
ence. We have restricted the study to algorithms which can deal with networks
containing more than 200 nodes. Therefore we have not included the MCMC
method in our comparison. For small networks, MCMC may give good results.
However, the presentation of the results is difficult because the label switching
creates some confusion, see [18]. For example the package StOCNET [19] does
not give the class of each node but only if two nodes are frequently in the same
class. Therefore the results of the MCMC algorithm cannot be compared on the
ground of the classification of the nodes. It would be possible to use a relabeling
algorithm, but they are numerous, it is difficult to choose between them and the
result depends on this choice. Note that the VBEM algorithm selects a particu-
lar labeling code, so each node can be classified. This discrepancy between two
bayesian algorithms for mixture models is surprising and has been recognized by
some authors [16].

Simulation design For computing time reasons, we have made the simulations
on small networks with with n nodes, with n from 2 to 50. This choice may
seem to be inconsistent with the claim that we want to work on large networks.
Actually we use estimation procedures which are able to deal with more than
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one thousand of nodes, but we test them on small networks. In practice the
important parameter is the number of nodes in each class. The convergence is
very good once this number is greater than 20. Therefore we considered a 2-group
model with the following parameters.

α =
(

0.6 0.4
)
, π =

(
0.8 0.2
0.2 0.3

)
.

The model involves 4 independent parameters: α1, π11, π12 and π22. We
simulated 500 graphs for each graph size.

Fig. 1. Mean (top) and standard deviations (bottom) of the estimates. From left to
right: α1, π11, π12, π22. VEM: red circles, VB: blue crosses.

Comparison of the two estimates The results displayed on Figure 1 confirm that
VEM provides consistent estimates (see section 3) and that seems to be true
also for VB. The consistency of VB has already been proved for some simpler
models (see [9] and [3]). In view of our simulations, VB estimates were more
robust to extremal samples, resulting in smaller standard deviation than VEM
for networks with few nodes. For networks with 25 to 50 nodes there is no real
difference between the two methods. A similar study with Q = 3 groups was
made, from which similar conclusions were drawn (not shown).

VB Credibility intervals The approximation of the posterior distribution pro-
vided by VB permits to construct (approximate) credibility intervals. Figure 2
presents the actual credibility of these intervals. The actual credibility was found
to be similar to the nominal one as soon as the graph includes n = 25 nodes.

Convergence rate of the VB estimates We studied the rate of convergence of the
VB estimates. Some parameters of the MixNet model are related to the nodes
(i.e. the proportions αq), whereas some other (i.e. the connexion probabilities
πq`) are related to the edges. Information does not accumulate at the same speed
for both of them. The ICL model selection criterion developed in [4] involves two
distinct penalty terms: one in log(n) for the proportions and one in log[n(n+1)/2]
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Fig. 2. Proportion of the simulations where interval with credibility 90% contain the
true value of the parameter. α1: black crosses, π11: red triangles, π12: blue circles, π22:
green solid circles. Binomial confidence interval: dotted lines.

Fig. 3. Width of the 90% credibility as a function of the graph size (in log scale). From
left to right: α1, π11, π12 and π22. Straight lines have slope −0.5 α1 and −1 for the
three others.

(for undirected networks) for the connexion probabilities. Figure 3 presents the
evolution of the width of the credibility interval as n increases.

Interestingly the empirical convergence rate was found close to n−1/2 for the
proportion α1 and close to n−1 for the πq`. These rates have been found by [2] in
a similar context and are consistent with the penalty terms of the ICL criterion:
the relevant sample size for the proportion is the number of nodes, whereas it is
the number of edges for the connexion probabilities.

6 Analysis of a large PPIN

MS-Interactome (Ewing et al, [5]), with online materials and protocols available
at [13], represents the first large-scale study of protein-protein interactions in
human cells using a mass spectrometry approach. A total of 6,463 interactions
between 2,235 distinct proteins is available. The MS-Interactome includes human
protein-protein interactions identified by a combination of immunoprecipitation
(IP) and high-throughput mass spectrometry (HTMS). Protein complexes in Hu-
man kidney cells were pulled by immuno-precipitation using 338 bait proteins,
then identified by LC-ESI-MS/MS. Non specific interactions and false positives
were filtered out based on control experiments, quality control parameters and
repeat experiments. Bait proteins were chosen based on known functional anno-
tation and implied disease association. About one third of the 338 bait proteins
are disease-related ones, and mainly involved in cancer. The complete dataset
comprises bait-prey pairs with associated confidence values (complete details are
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in Ewing et al. 2007, and a summary is reported in the online supplementary file
TableMS-Int-Exp-details.doc from [11]). We have analyzed the complete dataset
using Mixnet ([12]) with the VEM algorithm. We present here the results ob-
tained on a subset of the interactions possessing a level of confidence exceeding
0.2 (the scale goes from 0 or NA to 1). This reduced dataset contains 3,494
interactions between 1,561 proteins.

6.1 Number of groups

In the context of mixture model for graphs and using the variational estimation
method, Daudin et al. ([4]) propose to use ICL for choosing the number of groups.

ICL = J (x[n]; τ[n], π, α)− (Q− 1) log n− Q(Q+ 1)
2

log
[
n(n− 1)

2

]
We have found in practice that ICL has a tendency to underestimate the true
number of groups and that AIC give better results for moderate ratios Q/n.

AIC = J (x[n]; τ[n], π, α)− (Q− 1)− Q(Q+ 1)
2

Note that ICL and AIC defined above are approximations of the true correspond-
ing criteria, because the Log-Likelihood is replaced by its variational approxi-
mation. However the approximation is precise if n is sufficiently high, thanks to
theorem 1. Figure 4 shows that the best choice using AIC (respectively ICL) is
Q = 23 (resp. Q = 8).

Fig. 4. Left side: Log-Likelihood, AIC and ICL for the MS20 PPIN. x-axis : number
of groups. Right side: zoom on models Q = 10 to Q = 30. y-axis AIC for the MS20
PPIN. x-axis : number of groups
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6.2 Results for 18 groups

We have first computed the results for Q = 1 to Q = 20. The best model using
AIC is Q = 18, and we have proceed to the complete analysis of each of the
18 groups. Then we examined the values of AIC from Q = 20 to Q = 30 to
see how the curve decreases with Q, and we discovered that AIC was better for
Q = 23 than for Q = 18. However we had no time to reanalyze the 23 new
groups for this paper, so we present here the results with Q = 18. We have used
the GO term Finder application from Lewis-Sigler Institute to characterize the
groups obtained by Mixnet. The Gene Ontology project (see [6]) provides an
ontology of defined terms representing gene product properties. The ontology
covers three domains; cellular component, the parts of a cell or its extracellular
environment; molecular function, the elemental activities of a gene product at the
molecular level, such as binding or catalysis; and biological process, operations
or sets of molecular events with a defined beginning and end, pertinent to the
functioning of integrated living units: cells, tissues, organs, and organisms. We
present above the results obtained with the last domain (Biological process).
The other two domains have also been tested with some interesting results (data
not shown). The P-Values for testing the association between a group and a
GO term is obtained by the exact Fisher test which compares the proportion of
proteins associated to the GO term in one group with the same proportion in
the reference set composed of all the annotated proteins of the goa-human-hgnc
database. We have also computed the exact Fisher test by comparing to another
reference set, composed of the 1561 proteins of this study, with similar results
(not shown). The P-Values are corrected for multiple testing.

Table 1 shows that each group can be identified by at least one GO term with
low corrected P-values excepted for very small groups such as groups 13 and 17
containing only 2 proteins. It is interesting to note that some proteins were
not recognized by GO term Finder. This means that one can use the results of
Mixnet to propose a classification for unknown protein. This possibility concerns
a total of 234 proteins. The larger groups have quite general GO terms: for
example the group 7, which contains 353 proteins, is characterized by the GO
term ”Cellular metabolic Process” and group 9, which contains 372 proteins,
is characterized by ”protein complex assembly”. On the opposite small groups
are characterized by GO terms which are more precise. For example groups 11
and 12 containing respectively 5 and 15 proteins are characterized by ”negative
regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle”, and
group 17 containing only two proteins is characterized by ”regulation of cellular
process”.

Table 2 shows the connectivity between groups. One can see that some groups
are highly connected, such as group 2 with group 17, group 5 with groups 13 or
14, group 6 with groups 10 and 13, and group 15 with group 18. Large groups
such as 8 and 9 are loosely connected with other groups.

Figure 5 summarize the connections between groups using a threshold value
of 0.015. One can see that some small groups are connected to many other groups,
such as groups 1(Cellular metabolic Process & Apoptose), 3 (cell proliferation),
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13 (RNA metabolic process), 14 (induction of apoptosis by intracellular signals),
15 (ribosome biogenesis) and 17 (regulation of cellular process). On the opposite
large groups are less connected.

Interestingly we note that the 17th group is composed of two proteins highly
related with tumor progression: the Von Hippel Lindau (VHL) tumor suppression
protein and MCC, which blocks cell cycle progression. A similar comment may
be made for group 13, composed of two proteins Tgfb1i4 (transforming growth
factor beta 1 induced transcript), which is a growth factor, and RNSP1, which is
a part of a post-splicing multiprotein complex regulating exons. This is consistent
with the fact that about one third of the 338 bait proteins of the dataset are
disease-related ones, and mainly involved in cancer.

These results show that it is possible to use a mixture model such as Mixnet to
cluster large networks in one pass. This method gives interesting results which
deserve to be compared with the ones obtained by the two steps procedures
proposed by Marras et al ([11]). We cannot make a more precise comparison
because the classification obtained in [11] is not available. A bigger dataset (7385
proteins) described by [11] has also been analyzed with Mixnet (not shown).
However this analysis required 7 days.

Table 1. Description of the 18 groups. The proteins have been affected to one group if
their probability of pertaining to the group is greater than 0.5. The 19th group contains
the unclassified proteins

group # pro-
teins

# unrecog-
nized proteins

GO Term Corrected
P-Value

1 44 2 Cellular metabolic Process & Apoptose 4.10−7

2 79 11 RNA Processing 5.10−3

3 12 cell proliferation 8.10−3

4 211 24 intracellular transport 9.10−8

5 55 11 macromolecule localization 1.10−4

6 4 protein targeting and transport 1.10−6

7 353 57 Cellular metabolic Process 5.10−12

8 111 12 macromolecule modification 3.10−16

9 372 73 protein complex assembly 3.10−8

10 96 14 phosphorylation 7.10−7

11 5 2 negative regulation of ubiquitin-protein ligase activity in-
volved in mitotic cell cycle

1.10−5

12 15 negative regulation of ubiquitin-protein ligase activity in-
volved in mitotic cell cycle

2.10−38

13 2 RNA metabolic process 1.10−2

14 8 1 induction of apoptosis by intracellular signals 5.10−3

15 8 1 ribosome biogenesis 1.10−3

16 110 27 translation 4.10−25

17 2 regulation of cellular process 8.10−2

18 19 1 translational elongation 4.10−38

19 55
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Fig. 5. Representation of the 18 groups obtained with Mixnet. Edges between two
nodes are present only if the probability of connection between them is greater than
0.015. The size of each node and the size of the police are proportional to the number
of proteins contained in it. The width of the edges are proportional to the probability
of connection between the corresponding nodes
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Table 2. 100(Probability of connection between the groups)

group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 7 1 0 2 0 2 1 0 0 0 1 2 1 0 2 6 4

2 7 0 4 0 0 5 0 2 0 0 1 0 5 2 6 0 25 0

3 1 4 0 3 19 2 0 1 1 0 2 0 4 0 2 0 0 0

4 0 0 3 0 0 0 0 0 0 0 0 0 8 11 0 0 1 0

5 2 0 19 0 0 0 0 1 0 0 1 0 24 38 0 0 8 0

6 0 5 2 0 0 0 1 1 0 45 0 0 25 0 0 0 0 3

7 2 0 0 0 0 1 0 0 0 0 1 0 5 0 0 0 8 0

8 1 2 1 0 1 1 0 1 1 0 1 0 0 1 1 0 3 1

9 0 0 1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0

10 0 0 0 0 0 45 0 0 0 0 0 0 6 0 1 0 0 0

11 0 1 2 0 1 0 1 1 0 0 80 84 0 0 0 0 10 1

12 1 0 0 0 0 0 0 0 0 0 84 0 0 5 0 0 4 0

13 2 5 4 8 24 25 5 0 2 6 0 0 0 6 0 0 0 5

14 1 2 0 11 38 0 0 1 0 0 0 5 6 4 0 1 0 1

15 0 6 2 0 0 0 0 1 0 1 0 0 0 0 3 10 0 58

16 2 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 7 0

17 6 25 0 1 8 0 8 3 0 0 10 4 0 0 0 7 100 7

18 4 0 0 0 0 3 0 1 0 0 1 0 5 1 58 0 7 0
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