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Abstract. We consider the problem of specifying the joint distribution of a collection of variables
with maximum entropy when a set of marginals are fixed. One can easily derive that the structure of
the solution joint distribution is that of a graphical model. The potential functions are then marginals
at some power. We address the following question: under which conditions on the set of constraints,
is it possible to fully identify the canonical exponents in the maximum entropy solution as functions
of the problem structure? Literature related to this topic is somehow scattered in disciplines such
as statistical mechanics, information theory, graph theory or inference in graphical models. In this
article we gather and link results from these different fields. From this, we show that for a particular
class of constraints set on marginal, the chordal maximal coherent sets of constraints, it is possible to
derive the canonical exponents of the graphical model solution of the maximum entropy problem as
the numbers of occurrence of separators in an associated joint tree. Conversely, we present sufficient
conditions to ensure that a graphical model is solution of a maximum entropy problem.
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1. Introduction. Consider the problem of infering or specifying the joint distri-
bution of a collection of variables, from partial information represented by empirical
knowledge on some marginal distributions. Each marginal distribution involves only
subsets (not necessarily disjoint) of the collection. One constructive approach to deter-
mine a joint distribution coherent with this information is the principle of maximum
entropy under constraints ([10]). This method ensures that the extra amount of in-
formation embodied into the solution distribution, in addition to the one brought by
the the constraints is minimal. For some particular set of constraints, the solution of
the maximum entropy (ME) problem is well know and leads to classical distributions:
uniform distributions are solution of the ME problem when no information is avail-
able; the Gibbs distributions maximise the entropy among distributions with same
fixed mean; Gaussian distributions can be recovered as ME distributions for fixed
mean and variance. In these three situations, the solution of ME under constraints
can be expressed straightforwardly as a function of the constraints.

When constraints are specifications on some marginals of the distribution, if two
fixed marginals involve two non disjoint subsets of random variables, then these two
constraints imply conditional independence properties, in the Markovian sense, in the
ME solution. One can easily derive that the structure of solution joint distribution
is that of a graphical model ([23], this property of the ME solution holds actually
for any set of linear constraints). More precisely, the joint distribution is a product
of some marginals at a certain power. Exponents are called canonical exponents
([22]). In general the ME distribution is solution of a system intractable by hand, and
identification of the canonical exponents is not possible by simple calculus.
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In this paper we bring some insights on the following questions: for which par-
ticular structure of the set of specified marginals, is it possible to fully identify the
canonical exponents of the ME solution? Under which conditions can a graphical
model be derived as the solution of a ME problem? In very simple situations, the ME
problem is easy to solve: if the marginals are specified on disjoint subsets of the vari-
ables, the distribution defined as the product of these marginals is the ME solution;
if marginals are specified on pairs of variables only, and if these contraints induce no
loop, then the ME solution is a graphical model on a tree, whose analytical expres-
sion is a classical result of graphical models ([19]): pairs marginals occur at power
one and singleton marginals at power equal to the node degree minus one. How can
we generalise these two results? We gather several well know results from maximum
entropy methods ([10]), graph theory ([1]), graphical models ([16]) and variational
methods for graphical models ([22]) to define a class of constraints sets on marginals,
chordal maximum sets of constraints, for which we can derive the canonical exponents
from the problem’s structure. As opposed to the classical approach for solving ME
problem, the main result of this work does not require Lagrange multipliers.

The paper is organised as follow. Basic notions on Probability and marginal dis-
tributions are recalled in Section 2. The maximum entropy problem is formalised in
section 3 and its link with graphical models is developped in Section 4. Identification
of the canonical exponents is illustrated on some toy examples (Section 5) to give
the flavour of a key condition for analytical resolution of the ME problem: the exis-
tence of an elimination order of the variables. We present briefly some elements of
graph theory to formalise this notion in Section 6 and present our main result for the
familly of chordal maximum sets of constraints (Section 7). This papers ends by a
discussion of link with methodologies for graphical models inference and variationnal
approximations.

2. Coherent set of constraints on marginal distributions. Let us consider
V a finite set of n points , with elements indexed on {1, . . . , n}. A random variable Xi

is attached to each point i ∈ V , taking value in Λ. Then, a state of X = (X1, . . . , Xn)
is a vector x = (x1, . . . , xn), with xi ∈ Λ. The set of all possible states is called the
state space, and is noted Ω = Λ|V|. ΩI is then the state space of the collection of
random variables XI = {Xi, i ∈ I}. If p is the probability distribution of X on Ω, we
define the notation

p (x) = p{X = x}

A marginal distribution of p is the probability distribution of a subset ofX induced
by p. If I ⊂ V and Ī = V \ I, the marginal distribution pI of XI is defined as

pI(xI) =
∑

xĪ∈ΩĪ

p (xI , xĪ)

If pI is given, then the marginal for any part J of I is uniquely specified as (with
K = I \ J)

pJ(xJ ) =
∑

xK

pI(xJ , xK) (2.1)

If M is a set of parts I ⊂ V , let us consider a set of specified marginal distributions
on M: pI = aI , ∀I ∈ M. Marginal distributions of a set M are said mutually coherent
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if for any intersection K of two elements I and J of M, the marginal pK derived from
pI is equal to the one derived from pJ :

∀ xK ∈ Λ|K|,
∑

xI\K

pI(xK , xI\K) =
∑

xJ\K

pJ (xK , xJ\K) = pK(xK)

Since when marginals on M are specified they are specified (by (2.1)) on any part
of any element of M, it is useful to consider the set

A = M∪ {J : ∃ I ∈ M : J ⊂ I}

The set A is a complete set, it is stable by intersection and inclusion.
The association of a complete set A of part of V , and of mutually coherent

marginal distributions {aI , I ∈ A} is called a coherent set of constraints (CSC). It
will be synthetically denoted by (A, aI). For a CSC (A, aI), a part I ∈ A is said
maximal if there exists no element J in A, such that I ⊂ J . The set of maximal
elements of A is called the set of generators of A and will be denoted G(A).

A graph GCSC can be associated to any CSC : vertices are points of V and two
vertices i and j are linked by an edge if there exists I ∈ A such that i ∈ I and j ∈ I.
This graph will be referred to as the constraint graph, a classical notion of constraint
processing ([5]).

3. Maximum entropy problem. The entropy of a probability distribution p
is defined as

H(p) = −
∑

x

p (x) Log p (x)

with convention that p (x) Log p (x) = 0 whenever p (x) = 0. Finding the distribu-
tion with largest entropy under some constraints has been a classical way to either
construct or interprete/justify classical probability distributions. The solution is the
distribution satisfying the constraints and including minimal extra information, in
addition to the one brought by the constraints: all the uncertainty permitted by
the available information is maintained. When considering a set of random variables
X = (X1, . . . , Xn) with state space Ω, and a set of constraints taking the form of a
specified set of marginals, the question is to find the simplest joint distribution (in
the sense of its dependence structure) satisfying these constraints. Let (A, aI) be a
CSC . We can consider the set Q of distributions q on Ω which fulfill the constraints
on each marginal aI :

Q = {q : ∀ I ∈ A, qI = aI}

The solution (if it exists) of the maximum entropy (ME) problem under con-
straints (A, aI) is then

q = argmax
q∈Q

H(q)

Maximum entropy problem are classically solved using Lagrange multipliers ([10]),
even if more efficient methods have been developped since ([8, 23] and reference
therein). We will see in the next section that even if the explicit form of the so-
lution is not always available, we can obtain some information on the structure of this
solution, in terms of conditional independence assumptions, and factorisation of the
solution joint distribution.
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4. Maximum entropy and graphical models. A joint distribution p on Ω is
said to be a graphical model ([16]) indexed on a set B of parts of V if there exists a
set Ψ = {ψB}B∈B of maps, called ’potentials’, indexed by B

ψB : ΩB −−−−→ R+

such that p can be expressed in the following factored form:

p(x) =
∏

B∈B

ψB(xB) (4.1)

Note that a potential is not necessarily a probability distribution: in general ψB is
not normalised and is not the marginal distribution of xB . Classically, a graph GGM =
(V , E) is associated to such a decomposition: the nodes are the points of V and an edge
is drawn between two nodes i and j if there exists B ∈ B such that i and j are in B. If
the set B forms a partition of V , the factorisation property (4.1) implies that Xi and
Xj are independent random variables if i and j are not included in the same part B of
the partition. The graph of the model will be composed of |B| connected components.
If intersections between elements of B are non empty, the factorisation of p(x) implies
conditional independence. For instance, if V = {1, 2, 3} and B = {{1, 2}, {2, 3}}, in
the corresponding graphical model, X1 and X3 are independent conditionally to x2.
The graph of the model is a 3-nodes line with 2 as central node, “separating” 1 from
2. More generally, if I, J and K are subsets of V such that any path in GGM between
a node in I and a node in J goes through K, then XI is independent of XJ given
xK ([16]). We present now two properties on the structure of the solution of the ME
under a given CSC , which specifies the relationship between graphical models and
maximum of entropy when information available is on marginals.

Lemma 4.1. The joint probability distribution q with maximum of entropy com-
patible with a CSC (A, aI) is a graphical model indexed by G(A):

∀ x ∈ Ω, q (x) = λ
∏

I∈G(A)

ψI(xI) (4.2)

See the Appendix (Section 9) for the proof. Expression of the ME solution as a
product of local functions, one for each constraint is not new and appears already in
the seminal work of Jaynes ([10]). The explicitation of the link with graphical models
can be found in [23].

For a general CSC , a major difficulty is to solve the system with contraints and
to derive from (4.2) an analytic expression of the ME solution as a function of the
constraints aI . However, it is possible to specify further the decomposition of the
solution of the ME problem:

Lemma 4.2. Let (A, aI) be a CSC , any distribution on Ω which can be expressed
as follows: .

a(x) = λ
∏

I∈A

aI(xI)
βI (4.3)

with βI ∈ Z, and satisfies the CSC is of entropy larger that any distribution q on Ω
satisfying the CSC :

∀q ∈ Q, H(q) ≤ H(a)
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Fig. 5.1. A CSC with tree structure: G(A) = {{1, 2}, {2, 3}, {3, 4}, {3, 5}, {3, 6}}.

The parameters βi will be referred to as the canonical exponents, following the
formalism of exponential families ([22]).

The proof is developped in the Appendix (Section 9). It differs from classical
approaches for solving ME problem by the fact that it does not rely on the introduction
of Lagrange multipliers.

Note that decomposition (4.2) runs on the set G(A) of generators of the CSC ,
while (4.3) runs on A. Some exponents βI may be equal to zero but we will see in
section 7 that marginals on subsets other than the generators have non zero βI .

From Lemma 4.2, we can state that if a distribution with decomposition (4.3)
is constructed, which is coherent with the contraints, then, this distribution is the
solution of the ME problem.

In the particular case where the generators of the CSC have empty intersections,
resolution is tractable and q(x) =

∏

I∈G(A aI(xI). Let us now consider a graphical

model such that GGM = {V , E} is a tree. If aI is the marginal distribution of the
graphical model for I a pair of points linked by an edge in the tree, it can be shown
([19] and Section 5) that the distribution of the graphical model is given by

q (x) =

∏

I∈E aI(xI)
∏

i∈V ai(xi)di−1
(4.4)

where di is the degree of i, i.e. the number of points linked to i by an edge in GGM .
From Lemma 4.2, this is the solution of the ME problem for the CSC (A, aI) with
A = V ∪ E . One can note that GGM = GCSC , meaning that the constraints set has a
tree structure.

Under with condition on the structure of a CSC is it possible to fully specifiy the
ME solution? In other words when is it possible to identify the exponents βI? We
explore this problem in the next sections of this article, starting with a set of simple
examples to give a flavour of the important elements.

5. Examples. If the generators of a CSC (A, aI) are of size 2 and GCSC is a tree
(see Fig. 5.1 for an example). We demonstrate here the optimality of distribution
(4.4), starting from the decomposition (4.2). By integrating the normalisation con-
stant in one of the potential functions, it is possible to write the maximum entropy
solution as

p (x) =
∏

i∼j

ψij(xi, xj)

where, for two nodes i and j of GCSC , notation i ∼ j means that there is an edge
between i and j. Since GCSC is a tree, there exists at least one vertex of degree equal
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to one. Let us label it node 1, and its unique neighbour node 2. Then

p (x) = p (x1 |x2 . . . xn) p (x2 . . . xn)

The conditional probability p (x1 |x2 . . . xn) can be written as a function of the
potential ψ12 only as follows:

p (x1 |x2 . . . xn) =
p (x1 . . . xn)

∑

x′
1
∈Ω1

p (x′1 . . . xn)

=
ψ12(x1, x2)

∏

i∼j : i,j 6=1 ψij(xi, xj)
∑

x′
1
∈Ω1

ψ12(x′1, x2)
∏

i∼j : i,j 6=1 ψij(xi, xj)

=
ψ12(x1, x2)

∑

x′
1
∈Ω1

ψ12(x′1, x2)

Moreover, since p satisfies the marginals,

a12(x1, x2)

a2(x2)
=

ψ12(x1, x2)
∑

x′
3
...x′

n

(

∏

i∼j : i,j 6=1,2 ψij(x
′
i, x

′
j)

) (

∏

i6=1 ψ(x′i, x2)
)

∑

x′
1
∈Ω1

ψ12(x′1, x2)
∑

x′
3
...x′

n

(

∏

i∼j : i,j 6=1,2 ψij(x′i, x
′
j)

) (

∏

i6=1 ψ(x′i, x2)
)

=
ψ12(x1, x2)

∑

x′
1
∈Ω1

ψ12(x′1, x2)

we obtain

p (x1 |x2 . . . xn) =
a12(x1, x2)

a2(x2)
= p (x1 |x2) (5.1)

and we recover conditional independence property of graphical models: given x2, the
variable X1 is independent of the other variables. Finally,

p (x) =
a12(x1, x2)

a2(x2)
p (x2 . . . xn)

This procedure can be seen as a ”deconditioning“ of node 1. This procedure can
be run through the whole tree GCSC since if node 1 is remove, the resulting graph is
still a tree, with at least one node of degree one, ... and so on. The treatment of a

node i adds a term
aij(xi,xj)

aj(xj)
in the expression of p(x). The marginal aj of node j is

involved for the treatment of each node linked to j except one (the one used for the
treatment of node j). If di is the degree of i by an edge in GCSC , n iterations of the
procedure lead to

p (x) =

∏

i∼j aij(xi, xj)
∏

i∈V ai(xi)di−1

For instance, the distribution of maximum of entropy with specified marginals
a12, a23, a34, a35, a36, (see Fig. 5.1) is

p =
a12a23a34a35a36

a1a2
3

Note that the above demonstation does not explicitly exploit the fact that the
edges of the constraint graph GCSC define conditional independence. This property is
actually recovered via equation (5.1).

It is possible to identify the exponents in (4.3) for more complex structure of the
graph GCSC . Let us now consider the two following CSC :
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Fig. 5.2. Two CSC with star structure: (a) G(A) = {{1, 4}, {2, 3, 4}, {4, 5, 6, 7}}, (b) G(A) =
{{1, 2, 3}, {1, 5}, {2, 6}, {3, 4}}.

(a) G(A) = {{1, 4}, {2, 3, 4}, {4, 5, 6, 7}},
(b) G(A) = {{1, 2, 3}, {1, 5}, {2, 6}, {3, 4}}.

The corresponding GCSC are represented on Fig. 5.2. Both present a star struc-
ture: an element S ∈ A has a central position in GCSC . This is respectively {4} and
{1, 2, 3} on Fig. 5.2 (a) and (b). The set S has the following property that it separates
the different generators of the CSC : any path in GCSC from generator G1 to generator
G2 goes through S. (This is not a formal definition, these central sets will be linked to
the notion of separators in Section 7.) In both examples, removing S from GCSC cre-
ates three connected components C1, C2, C3. It can be shown, using similar calculus
than for the CSC with tree structure, that XCi

given XC̄i
depends only on a subset Si

of S. For instance, for the CSC (a), we have p (x2, x3 | x1, x4, . . . , x7) = p (x2, x3 | x4),
and for the CSC (b) p (x4 | x1, x2, x3, x5, x6) = p (x4 | x3). Each connected component
can thus be eliminated in turn in p(x), creating terms aCi∪Si

/aSi
. After elimination of

the Cis, the last remaining term is aS . Doing so we obtain the following decomposition
of p(x) for the two examples

(a) p =
a14a234a4567

a2
4

(b) p =
a123a15a26a34

a1a2a3

In all the toy examples presented here, one can notice that the exponent βI

associated to a given specified marginal aI (I ∈ A) is always equal to 1 if I ∈ G(A)
and negative or null otherwise. This property will be rigorously established in Section
7.

From these examples, one can get the intuition that if it is possible to establish
an order to eliminate successively points or group of points of V , by application
of conditional independence induced by the specified marginals, we can derive the
canonical exponents as functions of the CSC structure.

6. Elimination order and chordal graphs. The notion of elimination order
has been defined formally in graph theory and has been linked with the notion of
chordal graph ([6]). In this section, we present briefly these elements that will be
essential to the establishment of an analytical solution of the ME problem.

Let G = {V , E} be a graph. A clique is a set of vertices such that any two vertices
of this set are linked by an edge. If c ⊂ V is a clique, then any subset c′ ⊂ c is a clique
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too. A maximal clique is a clique which is not strictly included in another clique. The
set of maximal cliques in G is denoted C.

A vertex is a simplicial vertex if its neighborhood (set of vertices linked to it by
an edge) is a clique. This clique is then maximal. An ordering {i1, . . . , in} of a graph
with n vertices is an ordering of the vertices. For a given ordering, let us define Gα as
the subgraph induced by vertices (ik)k≥α. Then a simplicial elimination order is an
ordering such that for any 1 ≤ k ≤ n, ik is simplicial in subgraph Gk ([18]). Graphs
which present a simplicial elimination order has been characterised: there exists a
simplicial elimination order if and only if the graph is chordal. A graph is said chordal
if any loop of length > 3 is cut by an edge. This class of graphs is also referred to as
decomposable or triangulated graphs ([16]).

As a preliminary result for propositions 7.1 and 7.2, we recall a property of graph-
ical models ([19, 4]) with chordal graph GGM : the joint distribution can be expressed
as a product of some marginal distributions.

Lemma 6.1. Let p by a graphical model on Ω indexed on B. If the graph GGM

associated is chordal then

p (x) =

∏

c∈C pc(xc)
∏

S∈S pS(xS)
(6.1)

where C is the set of maximal cliques and S is a particular subset of the cliques of
GGM .

Proof. We propose here only a sketch of the proof, to give to the reader the key
elements. A rigorous demonstration can be found in ([19, 4]).

A nice property of chordal graph is that the maximal cliques can be decomposed
into a join tree ([6]). A join tree (which is not unique in general) of a graph G is
a tree, denoted T whose vertices are maximal cliques of G. Edges have no specific
definition, but must fulfill the running intersection property: if there exists a path
between two vertices of T , let say c and c′, then points in c ∩ c′ must be present in
any maximal clique along this path. The notion is examplified on the two graphs of
Fig. 5.2: a possible join tree for both graphs is drawn on Fig. 6.1.

An intersection of two maximal cliques of G linked by an edge in T is called a
separator. It can be shown ([4]) that the set of all separators (repetition included)
when running over all edges in T does not depend on the specific join tree built on G.

In formula (6.1), the set S is the set of separators of the join tree of GGM . This
formula can be recovered by applying the same iterative elimination procedure that
in Section 5 to the junction tree instead of to GGM . Note that the same subset of
V can be a separator several times in the join tree (see for instance node 4 on the
join tree of Fig. 6.1 (a) ). The set S is a list with possible repetitions. The number
of occurrence of a separator S in S can be determined by building the junction tree.
Moreover there is a relationship between these numbers and the Mœbius numbers of
the decomposition of the entropy of a graphical model ([17]).

7. Maximum entropy for chordal maximal CSC. Intuitively, if the graph
GCSC associated to a CSC is chordal, this will enable to built the maximum of entropy
distribution recursively, by following the elimination sequence of the maximal cliques,
leading to an expression of form (6.1). This expression depends on the marginal dis-
tribution on the maximal cliques. However, even if a generator of a CSC correspond
to a clique in GCSC , it is not necessarily maximal. If G(A) = {{1, 2}, {2, 3}, {3, 1}},
{1, 2, 3} is a maximal clique of the graph GCSC but does not correspond to any gen-
erator. Since in general a probability distribution on Ωc cannot be uniquely defined
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Fig. 6.1. Examples of join tree: (a) join tree of graph on Fig. 5.2 (a), join tree of graph on
Fig. 5.2 (b).

from marginals on subsets of c, one can expect that if the generators of the CSC do
not correspond exactly to the maximal cliques of GCSC , there will be difficulties to
find the solution of the ME problem. We show now that the two properties, chordality
and maximality of the generators, are sufficient conditions for an identification of the
exponents in the expression of the ME under constraints on marginals.

Let us define the familly of chordal maximal CSC . Let (A, aI) be a CSC , with
G(A) the set of generators of A. The CSC is chordal maximal if the graph GCSC

associated is chordal and if the maximal cliques of GCSC correspond to the generators
of A.

Theorem 7.1. Let (A, aI) be a chordal maximal CSC . If C and S are respectively
the set of maximal cliques and the set of separators of the graph GCSC associated to
the CSC , then the distribution defined as

p (x) =

∏

c∈C ac(xc)
∏

S∈S aS(xS)
(7.1)

is the joint distribution with maximum entropy under constraints defined by (A, aI).
Proof. Expression (7.1) is a decomposition matching (4.3): since separators are

cliques of GGM , they are elements of A, thus the aS are known from the constraints
set. By Lemma 6.1 this is the joint distribution of a graphical model with graph
GGM equal to GCSC and marginal distributions on the maximal cliques of GGM (the
generators of the CSC ) equal to the aI . Thus p complies with constraints of the CSC .
By Lemma 4.2, H(p) is a majorant of the entropy of any distribution satisfying to the
constraints. As p belongs to this set, majorant is reached by p, and p is the distribution
with maximal entropy under the contraints on marginals defined by (A, aI).

Conversely, any graphical model with chordality property can be defined as the
solution of a ME problem with specification of a particular set of marginals.

Theorem 7.2. A graphical model with chordal graph GGM is the distribution with
maximum of entropy when marginals on the maximal cliques of GGM are specified.

Proof. Indeed, the joint distribution of the graphical model is given by expression
(6.1). Let us consider the CSC (A, aI) with generators equal to the maximal cliques
of GGM . Since GGM = GCSC , this CSC is in the familly of chordal maximal CSC .
By proposition 7.1, the graphical model is solution of the maximum of entropy under
(A, aI).

8. Conclusion and discussion. Maximum entropy under constraints problem
has a long history in statistical mechanics ([10, 11, 9]) and in information theory
([21, 3, 9]). The particular case where the available incomplete information is a set of
marginals of an unknown joint distribution occurs in probabilistic reasonning ([23])
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or statistical inference ([13]). Methods have been developped to solve numerically
the optimisation problem (see for instance [13, 8, 23] and reference therein), even
in the case of relaxed constraints ([7]). In this latter case, the authors prove that
a relaxed version of maxent gives an almost best solution. However, under certain
conditions on the set of constraints, it is possible to analytically express the maximum
entropy solution as a function of the specified marginals. Literature related to this
topic is somehow scattered in disciplines such as statistical mechanics, information
theory, graph theory or inference in graphical models. In this article we gather and
link results from these different fields. From this, we show that for a particular class
of constraints set on marginal, the chordal maximal coherent sets of constraints, it is
possible to derive analytically the distribution of the graphical model solution of the
maximum entropy problem and to express the potential functions as functions of the
constraints and the problem’s structure.

It is not surprising that the notions of elimination order and chordal graph are key
elements in this result. They have been long studied in graph theory for their appli-
cation in bayesian networks inference ([14, 12]), or in constraint satisfaction problems
([5]). It is well known that when the moral graph of a bayesian network is chordal,
there exist methods for exact inference, based on intelligent message passing algo-
rithms ([14, 12]). When the graph of a Markov Random Field is a tree (particular
case of a chordal graph), finding the configuration with Maximum a Posteriori proba-
bility is tractable using maxsum algorithms ([2][chapter 8]). Similarly, when the graph
of the constraints in a constraint satisfaction problem is chordal, exact optimisation
methods are available ([5]).

In this article, we have essentially explored the information theory part of the
maximum entropy principle. As we mentionned earlier, this notion is also essential
in statistical mechanics. Statistical mechanics are at the origin of a familly of meth-
ods, namely the Kikuchi or variational methods ([15, 24]), for the approximation of
marginals of a complex joint distribution by ones simpler to compute. These meth-
ods are built as truncatures of the Mœbius decomposition of the complex distribution.
Well known order 1 and order 2 elements of this familly are respectively the mean field
and the Bethe approximations. They do not necessarily correspond to an approxima-
tion of the complet joint distribution which is normalised. One open question closely
linked to the one addressed in this paper is: under which conditions is the variational
approximation of a joint distribution exact? In that case, can it be derived by a max-
imum entropy principle? Intuitively, when a variational approximation correspond to
a valid joint distribution, it is the joint distribution of a graphical model. If truncature
is at order lower than the size of the largest clique, approximation can not be exact.
But what if truncature is at order higher? If conditions for equality between a graphi-
cal model and its variational approximation can be established rigorously, then under
chordality assumption, a variational approximation is the solution of a maximum of
entropy problem under constraints on some marginals. We are currently investigating
this issue. Such a result would open new directions to exploit variational methods
not only as approximations of marginals (Generalised Belief Propagation algorithms
for graphical models inference [24, 20]) but also of joint distributions.

9. Appendix. Lemma 4.1. The joint probability distribution p with maximum
of entropy compatible with a CSC (A, aI) is a graphical model indexed by A.

Proof. The demonstration is straightforward when maximising the entropy under
constraints using Lagrange multipliers. Let q be the solution of the ME problem.
Each contraint has the form qI = aI , for I ∈ G(A) (contraints on elements which are
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not generators are derived from these ones). The constraints are then (with Ī = V \I)

∀ I ∈ G(A),
∑

xĪ

q (xI , xĪ) = aI(xI)

If φI(xI) is the Lagrange multiplier associated to generator I and state xI , then
the quantity to maximise is

H(q) −
∑

I∈G(A)

∑

xi∈Λ

φI(xI)(
∑

xĪ∈ΩĪ

q (xI , xĪ) − aI(xI))

Derivation leads to

∀ x ∈ Ω,
∑

I∈G(A)

φI(xI) = 1 + Log q(x)

We obtain the following factored form for q:

∀ x ∈ Ω, q (x) = λ
∏

I∈G(A)

ψI(xI)

where λ corresponds to the Lagrange multiplier associated to the constraint
∑

x q (x) =
1, and ψI(xI) = expφI(xI). We recover the expression of a graphical model indexed
on G(A).

Lemma 4.2. Let (A, aI) be a CSC , any distribution on Ω which can be expressed
as follows:

a(x) = λ
∏

I∈A

aI(xI)
βI

with βI ∈ Z, and satisfies the CSC is of entropy larger that any distribution q on Ω
satisfying the CSC :

H(q) ≤ H(a)

Proof. Let us note C(x) = q(x)/a(x). Then

H(q) = −
∑

x∈Ω

a(x)C(x) Log a(x)C(x)

= −
∑

x∈Ω

a(x)C(x) Log a(x) −
∑

x∈Ω

a(x)C(x) Log C(x)

By convexity, C(x) Log C(x) ≥ C(x) − 1, so

H(q) ≤ −
∑

x∈Ω

a(x)C(x) Log a(x) −
∑

x∈Ω

a(x)(C(x) − 1)

Since a and q are probability distributions,
∑

x∈Ω a(x)(C(x) − 1) = 0, and

H(q) ≤ −
∑

x∈Ω

a(x)C(x) Log a(x) (9.1)
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We establish now that
∑

x∈Ω

a(x)C(x) Log a(x) =
∑

x∈Ω

a(x) Log a(x) = H(a)

We use the following classical result of probability theory: if p(x) is a probability
distribution of a collection of variables indexed on V , and f is a function only of the
variables xI for I ∈ V then,

∑

x∈Ω

p(x)f(xI) =
∑

xI∈ΩI

pI(xI)f(xI)

Indeed, if we note Ī = V \ I

∑

x∈Ω

p(x)f(xI) =
∑

x∈Ω

p(xĪ | xI)p(xI)f(xI)

=
∑

xI∈ΩI

p(xI)f(xI)
∑

xĪ∈ΩĪ

p(xĪ)

=
∑

xI∈ΩI

p(xI)f(xI)

since
∑

xĪ∈ΩĪ
p(xĪ) = 1. Using this result, we have the following equality

∀ I ∈ A,
∑

x∈Ω

a(x)C(x) Log aI(x) =
∑

x∈Ω

a(x) Log aI(x)

Since aI is the marginal distribution of a and of q, both formula are equal to
∑

x∈Ω aI(xI) Log aI(x). Then

∑

x∈Ω

a(x)C(x) Log a(x) = Log λ+
∑

I∈A

βI

∑

x∈Ω

a(x)C(x) Log aI(xI)

= Log λ+
∑

I∈A

βI

∑

x∈Ω

a(x) Log aI(xI)

=
∑

x∈Ω

a(x) Log λ
∏

I∈A

aβI

I (xI)

= H(a)

(9.2)

Finally, from (9.1) and (9.2): H(q) ≤ H(a).
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et Techniques du Languedoc, 1998.

[19] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman, 1988.

[20] A. Pelizzola. Cluster variation method in statistical physics and probabilistic
graphical models. Journal of Physics A: Mathematical and General, 2005.

[21] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication.
University of Illinois Press, Ill., 1949.

[22] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, pages 1–305,
2008.

[23] J. Williamson. Maximising entropy efficiently. Electronic Transactions in Artifi-
cial Intelligence, 2002.

[24] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Informa-
tion Theory, 51(7):2282–2312, 2005.


