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Context

Rising interest in jointly analysed species abundances:
m Metagenomics
= Microbiology
m Ecology

Ecological network

Tool to better understand species interactions (direct/indirect), eco-systems
organizations (clusters ?)

Allows for resilience analyses, pathogens control, ecosystem comparison, response
prediction...
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Data example

m Species: bacteria, fungi...

m Abundances: read counts from Next-Generation Sequencing technologies
(metabarcoding)

m Covariates: sequencing depth, temperature, water depth...

Repeated signal : n samples, p abundances.

Data table

Y =[Yilipetr, ...mx{1,....0}
m Yj: abundance of the j species in the i* sample

Infer the species interaction network from count data Y
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Challenges

m Statistical network inference

m Count data

m Offsets and covariates
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Network inference = General Framework

Graphical models: a statistical framework for network inference

Example:

@ m All variables are dependant

m Some are conditionally independent
(i.e. indirectly dependeant)

Y, is independent from (Y1, Y3)
conditionally on Y>
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Network inference = General Framework

Graphical models

Definition [Lauritzen, 1996
The joint distribution P is faithful to the graph G iff

P(Yi,...,Ys) o< ] ¢e(Yo)

CeCg

where Cc = set of maximal cliques of G.

(%)

P(Yl,Y2, Y?,7 Y4) X
P1( Y1, Y2, Y3) X 92( Y3, Ya)
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Network inference Using trees

Spanning trees

. (p—1)
Unconstrained graph = very large space to explore: #G, = 2%

Spanning trees are a sparse solution :

G is connected

G has no cycle } G has (p — 1) edges

6001 Ay

== Spanning tree

Much smaller space to explore:

400 #7, = pP=?

log( #graphs )

0 10 20 30 40
#nodes
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Network inference Using trees

Spanning trees

. (p—1)
Unconstrained graph = very large space to explore: #G, = 2%

Spanning trees are a sparse solution :

G is connected

G has no cycle } G has (p — 1) edges

6001  wm Any Much smaller space to explore:
" == Spanning tree
5 —2
S 400 #7, = pP=?
2
=
S 200
Still a huge complexity...
0
0 10 20 30 40

#nodes
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Network inference Using trees

Maximizing and summing over spanning trees

Maximum spanning tree Kruskal's algorithm

T = argmax H Dis(Y) p = O(p)
(k,)ET

Tree averaging Matrix tree theorem [Chaiken and Kleitman, 1978]

> T wea(y) = det(L(Y)) = ©(p")

T (k,)eT
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Network inference Using trees

Maximizing and summing over spanning trees

Maximum spanning tree Kruskal's algorithm

T = argmax H Dis(Y) p = O(p)
(k,)ET

Tree averaging Matrix tree theorem [Chaiken and Kleitman, 1978]
> I dwa(Y) =det(L(Y)) = ©(p")

T (k,)eT

Approach: infer the network by averaging spanning trees
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Network inference Using trees

Tree structured data

m Data dependency structure relies on a tree

m Likelihood factorizes on nodes and edges
[Chow and Liu, 1968]:

PYIT)=[PO%) T] wa(Y)

j=1 kIET
Where

__ P(MuY)
#) = By B

Rmq : with standardised gaussian data, W = [i/i] o< (1 — p?) /2
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Tree averaging

PG VAN AN

P{T = Th|Y} P{T = T2|Y} P{T = T5|Y} P{T = Ta|Y}

Thresholding
probabilities: @ @

P{(j,k) e T|Y} P{(j,k) e T|Y}

Compute edge
probabilities:
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Model count data: PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989

Z iid  ~ Ng(0,%)
(Yi)i L 1Zi » Y ~PLN(O,X)
YilZy  ~ P(e)

m Dependency structure in the Gaussian latent layer

m Easy handling of multi-variate data (contrary to Negative binomial distribution)
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With count data = Model

Model count data: PLN model

g-Normal distribution [Aitchison and Ho, 1989

Z;iid  ~ N4(0,%)
(Yy); L1Zi Y ~PLN(O + XTO,X)

\/ij|ZIj ~ p(eog+x;r®j+z,-j)

Dependency structure in the Gaussian latent layer

Easy handling of multi-variate data (contrary to Negative binomial distribution)

Allow adjustment for covariates and offsets

Variational estimation algorithm [Chiquet et al., 2017]
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PLN -+ mixture tree

G is taken as a spanning tree T, the dependency structure is encoded in 1.

Z ~N(0,%7)
Tree averaging (mixture model):
Z~Y wrN(0,%7)
T
= P(Z) «x Z H B ibi1(Z
T k€T
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Statistical inference model

Hierarchical model with latent tree

A spanning tree is drawn in a distribution decomposable on the edges:

Decomposable distribution for a tree T [Meild and Jaakkola, 2006
P(T)= H Bu , avec B = Z H Bk

(kIeT TET (kJ)ET

m A weight Sy is assign to each edge (k,/)
m The dependence tree probability is proportional to its weights product
m We consider varying weights
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Statistical inference model

Hierarchical model with latent tree

A spanning tree is drawn in a distribution decomposable on the edges:

Decomposable distribution for a tree T [Meild and Jaakkola, 2006
P(T)= H Bu , avec B = Z H Bk

(kIeT TeT (k,)ET

m A weight Sy is assign to each edge (k,/)
m The dependence tree probability is proportional to its weights product
m We consider varying weights

Data is simulated conditionally on the drawn tree :

Z|T ~ Ng(0,%7)
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Statistical inference model

Hierarchical model with latent tree

A spanning tree is drawn in a distribution decomposable on the edges:

Decomposable distribution for a tree T [Meild and Jaakkola, 2006
P(T)= H Bu , avec B = Z H Bk

(kIeT TET (kJ)ET

m A weight Sy is assign to each edge (k,/)
m The dependence tree probability is proportional to its weights product
m We consider varying weights

Data is simulated conditionally on the drawn tree :

Z|T ~ Ng(0,%7)

The data shaping tree is treated as a latent variable.

= Z P(T)P(Z|T) : mixture tree
TeT
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E step

m Complete likelihood :

P(Y,Z,T)=P(T) x P(Z|T) x P(V|7)

log(P(Y,Z, T)) =Y Lqunery(loe(u) + log(vu(Z))) — log(B)
k,l

+ Y (log(P(Zi)) + log(I°( V4| Z4)))
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E step

m Complete likelihood :

P(Y,Z,T)=P(T) x P(Z|T) x P(V|7)

log(P(Y,Z, T)) =Y Lqunery(loe(u) + log(vu(Z))) — log(B)
k,l

+ Y (log(P(Zi)) + log(I°( V4| Z4)))

m Conditional expectation :

Eg[log(P(Y,Z, T))|Y] = Z P((k,1) € T|Y)log(Bw) + IE[]l{(kJ)Er}Iog(wk/(Z)\Y)]
kJeV

+ > Ellog(P(Z,)) Y] + Ellog(P(Yi| Zk))| Y] - log(B)
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EM algorithm  E step

Two steps solution

The PLNmodels package approximates the distribution parameters. Using PLNmodels:

Estimate >,

Apply EM mixture tree to Z ~ N(0,%7)

Simplified conditional expectation writing:

Eo[log(P(Z, T))|Z] = Y P((k.1) € T|Z)(log(Bu) +log(vu)) —log(B) + _ log(P(Zk))

k!

= EM algorithm
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EM algorithm  E step

EM output post-treatment

Thresholding Output of EM: conditional probabilities for each edge to be part of the
graph.

Probability for an edge to be part of a tree drawn uniformly = A\ = 2/p.

Resampling
m B sub-samples using a fraction f of available observations.

s For b=1...B, G’ is made of the edges having probability P22/p.

= Only edg\es selected in more than a fraction f’ of the estimated
graphs G? are kept to build the final G.
Can be parallelized. We set f = f' = 80%.
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EM algorithm  E step

Resampling example

B=150, Cluster structure, n=100, p=20 :
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Evaluating performances = Alternative methods

Three alternative methods

Two methods which take compositional data as inputs :

m SpiecEasi algorithm [Kurtz et al., 2015] (glasso on transformed counts)

m gCoda [Fang et al., 2017] (logistic-normal model with MM algorithm)

One taking raw counts and covariates :

m Mint [Biswas et al., 2016] (uses PLN model, greedy inference with a penalized
approach)
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Evaluating performances = Alternative methods

Three main questions

Effect of difficulty level

Effect of structure

Robustness to the tree hypothesis
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Evaluating performances

Simulation design

Choose G and define Q2 accordingly

=

Sample count data Y from PJA(0, Q") with possible covariates
Infer the network with PLN + mixture tree VEM, SpiecEasi, gCoda, and Mint

]

@ Compare results with presence/absence of edges (FDR, AUC)

Remarks  m gCoda and SpiecEasi do not account for covariates : residuals from
the regression of transformed data.
m The MInt method gives an optimized network and we can only
compare ourmethod to it with the FDR criterion.

= 100 replicates for each setting (parameters x structure)
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Difficulty level
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Evaluating performances ~ Results

Effect of structure

n n n

Erdds Cluster Scale-free

--EM
—><EM1
-#-gCoda
-A-SpiecEasi
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Evaluating performances ~ Results

Away from tree-like density: 5/p

n n p p ratio
Dense Cluster Dense Erdos Dense Cluster Dense Erdos Dense Cluster

25 50 75 100 125 25 50 75 100 125 10 15 20 25 30 10 15 20 25 30 0 10 20 30 40

8- EMov ¢ EM1 -#- gCoda -4 SpiecEasi
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Evaluating performances ~ Results

With one iteration
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Oak Mildew

Pathogen Erysiphe alphitoides (EA). Oak leaf with powdery mildew.

Metabarcoding of oak tree leaves microbiome [Jakuschkin et al., 2016].

m 114 sample of 94 microbial species counts (bacteria/fungi)

m Different read depth for bacteria and fungi: unsuited for compositional data
normalization

m covariates: tree identifier and distances locating leaves in space
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Application Oak data

Inferred networks

~tree + D1+D2 + D3

re tree model for network inference



Application Oak data

Conclusion

Contributions:

Formal probabilistic model for network inference with count data
Variational estimation algorithm

Inclusion of offsets and covariates

Perspectives:

Network comparison
Model for the inference in the observed counts layer
Missing major actor (species/covariable)
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Application Oak data
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Gaussian Graphical Models (GGM)

Gaussian distribution:

Y: ~ Np(p, X), p = vector of means, ¥ = covariance matrix.

A nice property:
Inverse covariance matrix

()
1 5
Bleas g
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Gaussian Graphical Models (GGM)

Gaussian distribution:

Y: ~ Np(p, X), p = vector of means, ¥ = covariance matrix.

A nice property:

@ Inverse covariance matrix
1 5 5 0
1 1 5 5
e R
0 5 0 1

Glasso on gaussian data: ) = arg mi“nesj {L(Y, Q)+ A, |wu|}

= SpiecEasi method [Kurtz et al., 2015]: glasso on transformed counts

29 / 28
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Conditional probability computation

Kirchhoff's theorem (matrix tree, [Aitchison and Ho, 1989

For all W = (aw/)k,r a symmetric matrix, the corresponding Laplacian Q(W) is defined as
follows:

QUV(W) = {_

Then for all u et v:

QW= T a

TET {k,I}ET

Lner P(TMP(Z]T)

P(kNeTIZ)= > BT == 5mpam

TeT:(k,)ET
Qi (BYTY)
|Qii (BY)]

=1

= Tkl
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M step

Goal : optimization of weights (k.

argmax Z Ti(log(Bu) + log(vw)) — log(B) + ; log(P(Zk))

B klev

With high combinatorial complexity of B = Z H B
TET k€T

OB o
How to compute 84
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By update

A result from Meila [Meila and Jordan, 2000

Inverting a minor of the laplacien Q, we define M :

Muv S [Q*_I]uu I [Q*_l]w = 2[Q*_1]uv u,v <n

Mp, = My, = [Q*il]vv v<n
M,, = 0.
On peut montrer que :
21Qu(W)| .
—— = My x |Q, (W
95 ki X | Qu (W)

OWgllog(P(Z.T)|Z) _ 1 108

OB " Bu B 0B
Update formula at iteration h+ 1
hl _ Tkl
kI = pqh
Mkl
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