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Motivation

Context

Rising interest in jointly analysed species abundances:

Metagenomics

Microbiology

Ecology

Ecological network

Tool to better understand species interactions (direct/indirect), eco-systems
organizations (clusters ?)

Allows for resilience analyses, pathogens control, ecosystem comparison, response
prediction...
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Motivation

Data example

Species: bacteria, fungi...

Abundances: read counts from Next-Generation Sequencing technologies
(metabarcoding)

Covariates: sequencing depth, temperature, water depth...

Repeated signal : n samples, p abundances.

Data table

Y = [Yij ](i,j)∈{1,...,n}×{1,...,p}

Yij : abundance of the j th species in the i th sample

Infer the species interaction network from count data Y
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Motivation

Challenges

Statistical network inference

Count data

Offsets and covariates
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Network inference General Framework

Graphical models: a statistical framework for network inference

Example:

Y1

Y2

Y3

Y4

All variables are dependant

Some are conditionally independent
(i.e. indirectly dependeant)

Y4 is independent from (Y1,Y3)
conditionally on Y2
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Network inference General Framework

Graphical models

Definition [Lauritzen, 1996]

The joint distribution P is faithful to the graph G iff

P(Y1, . . . ,Yp) ∝
∏

C∈CG

ψC (YC )

where CG = set of maximal cliques of G .

Y1

Y2

Y3

Y4

P(Y1,Y2,Y3,Y4) ∝
ψ1(Y1,Y2,Y3)× ψ2(Y3,Y4)
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Network inference Using trees

Spanning trees

Unconstrained graph ⇒ very large space to explore: #Gp = 2
p(p−1)

2

Spanning trees are a sparse solution :

G is connected
G has no cycle

}
G has (p − 1) edges

Much smaller space to explore:

#Tp = p(p−2)

Still a huge complexity...
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Network inference Using trees

Maximizing and summing over spanning trees

Maximum spanning tree Kruskal’s algorithm

T̂ = argmax
T

 ∏
(k,l)∈T

ψk,l(Y )

→ Θ(p2)

Tree averaging Matrix tree theorem [Chaiken and Kleitman, 1978]∑
T

∏
(k,l)∈T

ψk,l(Y ) = det(L(Y ))→ Θ(p3)

Approach: infer the network by averaging spanning trees
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Network inference Using trees

Tree structured data

Data dependency structure relies on a tree

Likelihood factorizes on nodes and edges
[Chow and Liu, 1968]:

P(Y |T ) =
d∏

j=1

P(Yj)
∏

k,l∈T

ψkl(Y ) ,

Where

ψkl(Y ) =
P(Yk ,Yl)

P(Yk)×P(Yl)
.

Rmq : with standardised gaussian data, Ψ̂ = [ψ̂kl ] ∝ (1− ρ̂2)−1/2
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Network inference Using trees

Tree averaging

Y1 Y2

Y3Y4

P{T = T1|Y}

Y1 Y2

Y3Y4

P{T = T2|Y}

Y1 Y2

Y3Y4

P{T = T3|Y}

Y1 Y2

Y3Y4

P{T = T4|Y}

...

Compute edge
probabilities:

Y1 Y2

Y3Y4

P{(j , k) ∈ T |Y }

Thresholding
probabilities:

Y1 Y2

Y3Y4

P{(j , k) ∈ T |Y }
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With count data Model

Model count data: PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989]

Zi iid ∼ Nd(0,Σ)

(Yij)j ⊥⊥ |Zi

Yij |Zij ∼ P(eZij )

Y ∼ PLN (0,Σ)

Dependency structure in the Gaussian latent layer

Easy handling of multi-variate data (contrary to Negative binomial distribution)
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With count data Model

Model count data: PLN model

Poisson log-Normal distribution [Aitchison and Ho, 1989]

Zi iid ∼ Nd(0,Σ)

(Yij)j ⊥⊥ |Zi

Yij |Zij ∼ P(eoij+xT
i Θj+Zij )

Y ∼ PLN (O + XTΘ,Σ)

Dependency structure in the Gaussian latent layer

Easy handling of multi-variate data (contrary to Negative binomial distribution)

Allow adjustment for covariates and offsets

Variational estimation algorithm [Chiquet et al., 2017]
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With count data Model

PLN + mixture tree

G is taken as a spanning tree T , the dependency structure is encoded in ΣT .

Z ∼ N (0,ΣT )

Tree averaging (mixture model):

Z ∼
∑
T

wTN (0,ΣT )

⇒ P(Z) ∝
∑
T

∏
k,l∈T

βk,lψk,l(Z)
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Statistical inference model

Hierarchical model with latent tree

1 A spanning tree is drawn in a distribution decomposable on the edges:

Decomposable distribution for a tree T [Meilă and Jaakkola, 2006]

P(T ) =
1

B

∏
(k,l)∈T

βkl , avec B =
∑
T∈T

∏
(k,l)∈T

βkl

A weight βkl is assign to each edge (k, l)
The dependence tree probability is proportional to its weights product
We consider varying weights

2 Data is simulated conditionally on the drawn tree :

Z |T ∼ Nd(0,ΣT )

The data shaping tree is treated as a latent variable.

P(Z) =
∑
T∈T

P(T )P(Z |T ) : mixture tree
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EM algorithm E step

E step

Complete likelihood :

P(Y ,Z ,T ) = P(T )×P(Z |T )×P(Y |Z)

log(P(Y ,Z ,T )) =
∑
k,l

1{(k,l)∈T}(log(βkl) + log(ψkl(Z)))− log(B)

+
∑
k

(log(P(Zk)) + log(P(Yk |Zk)))

Conditional expectation :

Eθ[log(P(Y ,Z ,T ))|Y ] =
∑
k,l∈V

P((k, l) ∈ T |Y ) log(βkl) +E[1{(k,l)∈T}log(ψkl(Z)|Y )]

+
∑
k

E[log(P(Zk))|Y ] +E[log(P(Yk |Zk))|Y ]− log(B)
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EM algorithm E step

Two steps solution

The PLNmodels package approximates the distribution parameters. Using PLNmodels:

1 Estimate Σ̂Z

2 Apply EM mixture tree to Z ∼ N (0, Σ̂Z )

Simplified conditional expectation writing:

Eθ[log(P(Z ,T ))|Z ] =
∑
k,l

P((k, l) ∈ T |Z)(log(βkl) + log(ψkl))− log(B) +
∑
k

log(P(Zk))

⇒ EM algorithm
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EM algorithm E step

EM output post-treatment

Thresholding Output of EM: conditional probabilities for each edge to be part of the
graph.

Probability for an edge to be part of a tree drawn uniformly = λ = 2/p.

Resampling
B sub-samples using a fraction f of available observations.

For b = 1 . . .B, Ĝ b is made of the edges having probability Pb
≥2/p.

Only edges selected in more than a fraction f ′ of the estimated
graphs Ĝ b are kept to build the final Ĝ .

Can be parallelized. We set f = f ′ = 80%.
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EM algorithm E step

Resampling example

B=150, Cluster structure, n=100, p=20 :
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Evaluating performances Alternative methods

Three alternative methods

Two methods which take compositional data as inputs :

SpiecEasi algorithm [Kurtz et al., 2015] (glasso on transformed counts)

gCoda [Fang et al., 2017] (logistic-normal model with MM algorithm)

One taking raw counts and covariates :

MInt [Biswas et al., 2016] (uses PLN model, greedy inference with a penalized
approach)
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Evaluating performances Alternative methods

Three main questions

1 Effect of difficulty level

2 Effect of structure

3 Robustness to the tree hypothesis
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Evaluating performances

Simulation design

1 Choose G and define Ω accordingly

2 Sample count data Y from PlN (0,Ω−1) with possible covariates

3 Infer the network with PLN + mixture tree VEM, SpiecEasi, gCoda, and MInt

4 Compare results with presence/absence of edges (FDR, AUC)

Remarks gCoda and SpiecEasi do not account for covariates : residuals from
the regression of transformed data.
The MInt method gives an optimized network and we can only
compare ourmethod to it with the FDR criterion.

⇒ 100 replicates for each setting (parameters× structure)
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Evaluating performances Results

Difficulty level
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Evaluating performances Results

Effect of structure
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Evaluating performances Results

Away from tree-like density: 5/p
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Evaluating performances Results

With one iteration
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Application Oak data

Oak Mildew

Pathogen Erysiphe alphitoides (EA). Oak leaf with powdery mildew.

Metabarcoding of oak tree leaves microbiome [Jakuschkin et al., 2016].

114 sample of 94 microbial species counts (bacteria/fungi)

Different read depth for bacteria and fungi: unsuited for compositional data
normalization

covariates: tree identifier and distances locating leaves in space
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Application Oak data

Inferred networks
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Application Oak data

Conclusion

Contributions:
Formal probabilistic model for network inference with count data
Variational estimation algorithm
Inclusion of offsets and covariates

Perspectives:
Network comparison
Model for the inference in the observed counts layer
Missing major actor (species/covariable)

Raphaëlle Momal Mixture tree model for network inference July 6, 2018 27 / 28



Application Oak data
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Gaussian Graphical Models (GGM)

Gaussian distribution:

Yi ∼ Np(µ,Σ), µ = vector of means, Σ = covariance matrix.

A nice property:

Y1

Y2

Y3

Y4

Inverse covariance matrix

Σ−1 = Ω ∝


1 .5 .5 0
.5 1 .5 .5
.5 .5 1 0
0 .5 0 1



Glasso on gaussian data: Ω̂λ = arg minΩ∈S+
d

{
L(Y ,Ω) + λ

∑
i 6=j |ωij |

}
⇒ SpiecEasi method [Kurtz et al., 2015]: glasso on transformed counts
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Conditional probability computation

Kirchhoff’s theorem (matrix tree, [Aitchison and Ho, 1989])

For all W = (akl)k,l a symmetric matrix, the corresponding Laplacian Q(W ) is defined as
follows:

Quv (W ) =

{
−auv 1 ≤ u < v ≤ n∑n

i=1 avi 1 ≤ u = v ≤ n.

Then for all u et v :
|Q∗uv (W )| =

∑
T∈T

∏
{k,l}∈ET

akl

P((k, l) ∈ T |Z) =
∑

T∈T :(k,l)∈T

P(T |Z) =

∑
(k,l)∈T P(T )P(Z |T )∑

T P(T )P(Z |T )

= 1− |Q
∗
uv (BΨ−kl)|
|Q∗uv (BΨ)|

= τkl
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M step

M step

Goal : optimization of weights βkl .

argmax
βkl

∑
k,l∈V

τkl(log(βkl) + log(ψkl))− log(B) +
∑
k

log(P(Zk))



With high combinatorial complexity of B =
∑
T∈T

∏
k,l∈T

βkl

How to compute ∂B
∂βkl

?
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M step

βkl update

A result from Meilă [Meilă and Jordan, 2000]

Inverting a minor of the laplacien Q, we define M :
Muv = [Q∗−1]uu + [Q∗−1]vv − 2[Q∗−1]uv u, v < n

Mnv = Mvn = [Q∗−1]vv v < n

Mvv = 0.

On peut montrer que :
∂|Q∗uv (W )|

∂βkl
= Mkl × |Q∗uv (W )|

∂Eθ[log(P(Z ,T ))|Z ]

∂βkl
=

1

βkl
τkl −

1

B

∂B

∂βkl

Update formula at iteration h + 1

β̂h+1
kl =

τhkl
Mh

kl
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M step
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M step
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